大学文科数学复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(每小题3分,共15分)
1.下列函数为初等函数的是( B )
(B). y = (C).⎪⎩⎪⎨⎧=≠--=101112x x x x y (D).⎩⎨⎧≥<+=001x x x x y
2.当x →0时,与sin x 等价的无穷小是( A )
(A) 2x x + (B) x x sin
x 2
3.设)0(f '存在,则0(0)()lim x f f x x
→--=( D ) (A) )0(f '- (B) )0(2f '- (C) )0(2f ' (D) )0(f '
4. 物体在某时刻的瞬时速度,等于物体运动在该时刻的( D )
(A)函数值 (B)极限 (C) 积分 (D)导数
5.若)(x f 的导函数是x sin ,则)(x f 有一个原函数为( C )
(A) x cos 1+ (B) sin x x + (C) sin x x - (D)x cos 1-
二、填空题(每小题3分,共15分)
1. 设函数cos , 0() ,0
x x f x x a x <⎧=⎨-≥⎩在0x =点连续,则=a ____1-_____. 2. 设2)(x x f =, 则[()]f f x '= ____22x _ ____ .
3.sin lim x x x
→+∞
= 0 4. 曲线1y x =在点(1,1)处的法线方程为 y x = 5. (1cos )x dx -⎰= sin x x c -+ .
三、计算题(每小题5分,共40分)
1.
求函数()ln(21)f x x =-+的定义域.
解:290x ->且210x ->,
所以函数()ln(21)f x x =-+
的定义域:132
x << 2. 设ln(2)y x =-,求其反函数 解:由2y e x =-得 2y x e =+所以函数ln(2)y x =-的反函数是:x e y +=2,(,)x ∈-∞+∞
3.求极限20(1)lim sin x x x e x
→- 解:20(1)lim sin x x x e x →-=001lim lim sin x x x x e x x
→→-=01lim 11x
x e →⋅= 4.求极限3
0tan lim x x x x →- 解: 3
0tan lim x x x x →-=220sec 1lim 3x x x →-=22222001cos sin 1lim lim 3cos 33x x x x x x x →→-== 5. 已知2ln(1)ln y x x =+-,求dy
解:因为y '=2211x x x
-+所以dy =221d (1)x x x x -+ 6.求2cos x y e x =的微分y '
解:y '=222cos sin x x e x e x -=2(2cos sin )x e x x -
7. 求不定积分21x dx x -⎰
解:21x dx x -⎰=211dx x
x ⎡⎤-=⎢⎥⎣⎦⎰211d d x x x x -⎰⎰=1ln x C x --+ 8. 求定积分21ln e x xdx ⎰
解:21ln e x xdx ⎰=3311ln 39e
x x x ⎡⎤-⎢⎥⎣⎦ =31(21)9e + 四、综合应用题(每小题10分,共30分)
1. 证明方程012=-⋅x x 至少有一个小于1的正实数根.
解:令()21x f x x =⋅-, ()010f =-< ,()110f =>, ()f x 闭区间[]0,1上连续,
由根的存在性定理,有()0,1ξ∈,使得()0f ξ= ,即012=-⋅x x 至少有一个小于1的正实数根
2. 欲做一个体积为72立方厘米的带盖箱子,其底面长方形的两边成一比二的关系,怎样做法所用的材料最省?
解:设底面长方形的两边的边长为x 厘米,x 2厘米,则高为
2362.72x x x =厘米 表面积x x x x x x x x S 21642).36.2(2).36.
(2).2.(222+=++= 求导 021682,=-=x
x S 所以在区间),0(+∞上只有唯一的驻点3=x
又因为在实际问题中存在最值,所以驻点3=x 就是所求的最值点。即当底面边长为3厘米,6厘米,高为4厘米时所用的材料最省。
3. 求由曲线x y 1=与直线24==x x y 及所围成的平面图形的面积. 解:由曲线x y 1=与直线x y 4=得到交点)2,2
1
( 所以所围成的平面图形的面积.S=dx x x )14(22
1⎰- 即.S=dx x x )14(221⎰-=2221
)ln 2(x x -=4ln 215-