材料性能与测试第五章 材料的疲劳性能
第五章__材料的疲劳性能(1)分析

疲劳微裂纹形成的三种形式
表面滑移带开裂解释 1)在循环载荷作用下,即使循环应力未超过材料屈服强 度,也会在试样表面形成循环滑移带 2)循环滑移带集中于某些局部区域(高应力或簿弱区) 3)循环滑移带很难去除,即使去除,再次循环加载时, 还会在原处再现 (驻留滑移带)
特征: 1)驻留滑移带一般只在表面形成,深度较浅,随循环次数 的增加,会不断地加宽 2)驻留滑移带在表面加宽过程中,会出现挤出脊和侵入 沟,在这些地方引起应力集中,引发微裂纹
四:疲劳裂纹扩展速率
试验表明:测量疲劳裂纹长度和循环周数的关系如图
疲劳裂纹扩展曲线
Δσ2﹥Δσ1
从图可知: 1)曲线的斜率da/dN(疲劳裂纹扩展速率)在整个过程中 是不断增长的 2)当da/dN无限增大,裂纹将失稳扩展,试样断裂 3)应力增加,裂纹扩展加快,a-N曲线向左上方移动,ac相 应减小 结论:裂纹扩展速率da/dN 和应力水平及裂纹长度有关 根据断裂力学: 可定义应力强度因子幅为
特征 1)疲劳源区比较光滑(受反复挤压,摩擦次数多) 2)表面硬度因加工硬化有所提高 3)可以是一个,也可能有多个疲劳源(和应力状态及 过载程度有关)
疲劳裂纹扩展区
是疲劳裂纹亚临界扩展的区域
特征 1)断口较光滑,分布有贝纹线(或海滩花样),有时还有 裂纹扩展台阶 2)贝纹线是疲劳区的最典型特征,贝纹线是以疲劳源为圆 心的平行弧线,凹侧指向疲劳源,凸侧指向裂纹扩展方向 3)近疲劳源区贝纹线较密,远离疲劳源区贝纹线较疏
5.2 疲劳破坏机理
一:金属材料疲劳破坏机理
疲劳裂纹的萌生
1)在材料簿弱区或高应力区,通过不均匀滑移, 微裂纹形成及长大而完成 2)定义裂纹长度为0.05—0.10mm时为裂纹疲劳 核,对应的循环周期为裂纹萌生期
材料力学性能第五章_金属的疲劳

飞机舷窗
高速列车
5.1.3 疲劳宏观断口特征
疲劳断口保留了整个断裂过程的所有痕迹,记载着很多 断裂信息,具有明显的形貌特征,而这些特征又受材料 性质、应力状态、应力大小及环境因素的影响,因此对 疲劳断口的分析是研究疲劳过程、分析疲劳失效原因的 一种重要方法。 疲劳断裂经历了裂纹萌生和扩展过程。由于应力水平较 低,因此具有较明显的裂纹萌生和稳态扩展阶段,相应
疲劳破坏属低应力循环延时断裂,对于疲劳寿命 的预测就显得十分重要和必要。
对缺口、裂纹及组织等缺陷十分敏感,即对缺陷 具有高度的选择性。因为缺口或裂纹会引起应力 集中,加大对材料的损伤作用;组织缺陷(夹杂、 疏松、白点、脱碳等),将降低材料的局部强度, 二者综合更加速疲劳破坏的起始与发展。
18
应力σmax/10MPa
40
20
灰铸铁
0 103 104
105
106
107
循环周次/次
108
109
41
图 几种材料的疲劳曲线
疲劳极限
有水平段(碳钢、合金结构钢、球铁等) 经过无限次应力循环也不发生疲劳断裂,将对应
的应力称为疲劳极限,记为σ-1(对称循环)
无水平段(铝合金、不锈钢、高强度钢等) 只是随应力降低,循环周次不断增大。此时,根 据材料的使用要求规定某一循环周次下不发生断 裂的应力作为条件疲劳极限。 例:高强度钢、铝合金和不锈钢:N=108周次 钛合金:N=107周次
大小:瞬断区大小与机件承受名义应力及材料性质 有关,高名义应力或低韧性材科,瞬断区大;反之。 瞬断区则小。
材料力学中的材料疲劳性能测试技术

材料力学中的材料疲劳性能测试技术材料疲劳性能是指材料在循环加载下的抗疲劳裂纹扩展能力,是评估材料可靠性和寿命的重要指标。
为了研究材料的疲劳性能,科学家们发展了许多测试技术。
本文将探讨几种主要的材料疲劳性能测试技术。
一、旋转梁疲劳试验旋转梁疲劳试验是材料疲劳性能测试的一种常见方法。
试验时,材料样品被固定在旋转梁上,通过施加交变载荷,观察材料在循环加载下的疲劳裂纹扩展情况。
通过测量材料断裂扭矩和载荷周期,可以确定其疲劳寿命和裂纹扩展速率。
二、拉-推疲劳试验拉-推疲劳试验是一种常用的材料疲劳测试方法。
试验时,材料样品被制成拉杆形状,分为拉伸和推压两个阶段。
在循环加载过程中,通过测量材料的载荷和位移,可以得到材料在拉伸和推压过程中的疲劳性能数据,如疲劳强度、残余强度和疲劳寿命。
三、旋转弯曲疲劳试验旋转弯曲疲劳试验是一种用于测试金属材料疲劳性能的方法。
试验时,材料样品被固定在旋转臂上,通过施加旋转和弯曲载荷,观察材料在循环加载下的裂纹扩展行为。
通过测量载荷和位移,可以计算出材料的疲劳寿命和裂纹扩展速率。
四、交变剪切疲劳试验交变剪切疲劳试验是一种测试材料疲劳性能的方法,适用于各种金属和非金属材料。
试验时,材料样品被固定在剪切试验机上,施加正交变剪切载荷,观察材料在循环加载过程中的裂纹扩展情况。
通过测量载荷和位移,可以确定材料的疲劳寿命和剪切裂纹扩展速率。
五、高温疲劳试验高温疲劳试验是一种用于测试材料在高温环境下的疲劳性能的方法。
试验时,材料样品被置于高温环境中,通过施加交变载荷,观察材料在高温下的疲劳裂纹扩展情况。
通过测量载荷、温度以及裂纹扩展速率,可以确定材料在高温环境下的疲劳寿命和性能。
总结:材料疲劳性能测试技术在材料力学中起着重要的作用。
通过旋转梁疲劳试验、拉-推疲劳试验、旋转弯曲疲劳试验、交变剪切疲劳试验以及高温疲劳试验等方法,可以获得材料的疲劳寿命、裂纹扩展速率等关键性能参数,为材料的设计和使用提供参考依据。
材料力学性能教学课件材料的疲劳

疲劳曲线
疲劳曲线是描述材料在循环载荷作用下的疲劳寿命与应力幅的关系曲 线
疲劳曲线的形状取决于材料的疲劳性能和载荷条件
疲劳曲线可以分为线性疲劳曲线和非线性疲劳曲线
疲劳曲线的斜率反映了材料的疲劳寿命与应力幅的关系,斜率越大, 疲劳寿命越长
疲劳强度
疲劳强度是指材 料在循环载荷作 用下抵抗破坏的 能力
疲劳强度与材料 的力学性能、微 观结构、环境因 素等有关
采用强化处理技术
热处理:通过加 热和冷却,改变 材料的微观结构, 提高其强度和韧 性
表面处理:如喷 丸、喷砂等,提 高表面硬度和耐 磨性
复合材料:将两 种或多种材料结 合,提高材料的 综合性能
形状优化:通过 改变材料的形状 和尺寸,提高其 抗疲劳性能
降低应力集中与尺寸效应的影响
优化设计:通过优化设计降低应力集中,如采用圆角、倒角等设计 材料选择:选择具有良好抗疲劳性能的材料,如高强度钢、铝合金等 热处理:通过热处理提高材料的抗疲劳性能,如淬火、回火等 表面处理:通过表面处理提高材料的抗疲劳性能,如喷丸、滚压等
疲劳数据处理:通过分析疲劳试验数据来评估材料的疲劳 性能
疲劳数据的处理与分析
数据采集:通过疲劳试验获取数据
数据可视化:使用图表展示分析结果, 如折线图、柱状图等
数据预处理:去除异常值、填补缺失 值等
结果解释:根据分析结果,解释材料 的疲劳性能和失效原因
数据分析:使用统计方法分析数据,如 方差分析、回归分析等
07
疲劳试验与数据处理
疲劳试验的种类与方法
静态疲劳试验:通过施加恒定载荷来测试材料的疲劳性能
动态疲劳试验:通过施加周期性载荷来测试材料的疲劳性 能
疲劳寿命试验:通过测试材料的疲劳寿命来评估其疲劳性 能
材料力学性能-第五章-金属的疲劳(2)

2021年10月21日 星期四
材料 qf
第五章 金属的疲劳
表5-3 部分材料的qf值
结构钢
粗晶钢 球墨铸铁
0.6~0.8
0.1~0.2 0.11~0.25
灰铸铁 qf<0.05
钢经热处理后强度增加, qf增加。 高周疲劳时,大多数金属对缺口都十分敏
感,在低周疲劳时,对缺口的敏感性较小,主要 是因为低周疲劳时缺口根部已处于塑性区内,产 生了应力松弛,降低了应力集中。
2021年10月21日 星期四
第五章 金属的疲劳
过载持久值
金属材料在高于疲劳极限的
应力下运行时,发生疲劳断裂的
循环周次称为材料的过载持久值,R
也称有限疲劳寿命,它表征了材 料对过载的抗力。
N
图5-12 过载持久值
曲线越陡,过载持久值越高,说明材料在相同 的过载荷下能承受的应力循环周次越多,材料的抗 过载能力越强。
AB曲线上任一点: tan max 2 m 1 r
因此只要知道了r,求得,从O作相应连线 OH,H点的纵坐标即为所求的疲劳极限。
H
A
B
O
m
45
C
min max(min)—m图
AB曲线是不同r下的max,AC曲线是不同r下 的min。此图是脆性材料的疲劳图,对于塑性材料, 应该用屈服强度0.2进行修正。
此题中,m=13,n=4,
故R=1/13× (2×546+5×519+5×492+1×464)=508MPa
2021年10月21日 星期四
第五章 金属的疲劳
测定时注意两个问题:
第一级应力水平要略高于预计的疲劳极限。对于钢
材,R≈0.45b~ 0.5b,建议取1=0.5b。应力增量 一般为预计疲劳极限的3%~5%,钢材取
材料性能与测试第五章 材料的疲劳性能

四、复合材料疲劳破坏的机理
和金属材料相比,复合材料具有良好的 疲劳性能,有以下特点: 1) 有多种疲劳损伤形式:如界面脱粘、分 层、纤维断裂等; 2) 不会发生瞬时的疲劳破坏:常用疲劳过 程中材料弹性模量下降的百分数等判据 3) 较大的应变会使纤维基体变形不协调引 起纤维基体界面开裂形成疲劳源,对应变 尤其是压缩应变特别敏感; 4) 疲劳性能和纤维取向有关:沿纤维方向 好。
由于聚合物为粘弹性材料,具有较大的 应力滞后环,所以在应力循环中部分机械 能转化为热能,温度升高,产生热疲劳失 图5-8 高分子材料的疲劳断口 效。
聚合物疲劳断口有两种特征条纹:疲劳 辉纹(fatigue striation 10微米左右), 疲劳 斑纹(fatigue marking 50微米左右);
按接触和环境情况不同:分大气疲劳、腐蚀疲劳、高温疲劳、接触疲劳、 热疲劳等。
按断裂寿命和应力高低不同:分高周疲劳(Nf﹥105 ,σ﹤σs,也称低应力 疲劳);低周疲劳(Nf=102~105,σ≧ σs,有塑性应变发生, 也称高应 力疲劳.
9
3、疲劳破坏的特点: (1) 一种潜藏的突发性破坏,呈脆性断裂。 (2) 疲劳破坏属低应力循环延时断裂, 是具有寿命的断裂。 (3) 对缺陷(缺口、裂纹等)具有高度的敏感性。 (4) 疲劳断裂也是裂纹萌生和扩展过程,但因应力水平低,
直至断裂;
④测定应力循环数N,;
(σ1,N1),(σ2,N2)… ⑤绘制σ(σmax)-N(lg N)曲线。
21
图5-10 旋转弯曲疲劳试验机和曲线
图5-11 旋转弯曲疲劳试验机的示意图
试样受铅垂力作用而承受纯弯矩,当电机拖动试样高速 旋转时,试样上的应力值拉压对称交变,使材料承受对 22 称应力疲劳考验。
西华大学《材料性能学》总复习题

绪论二、单项选择题1、下列不是材料力学性能的是()A、强度B、硬度C、韧性D、压力加工性能2、属于材料物理性能的是()A、强度B、硬度C、热膨胀性D、耐腐蚀性三、填空题1、材料的性能可分为两大类:一类叫_ _,反映材料在使用过程中表现出来的特性,另一类叫_ _,反映材料在加工过程中表现出来的特性。
2、材料在外加载荷(外力)作用下或载荷与环境因素(温度、介质和加载速率)联合作用下所表现的行为,叫做材料_ 。
四、简答题1、材料的性能包括哪些方面?2、什么叫材料的力学性能?常用的金属力学性能有哪些?第一章材料单向静拉伸的力学性能一、名词解释弹性极限:强度:屈服强度:抗拉强度:塑性变形:韧性:二、单项选择题1、根据拉伸实验过程中拉伸实验力和伸长量关系,画出的力——伸长曲线(拉伸图)可以确定出金属的()A、强度和硬度B、强度和塑性C、强度和韧性D、塑性和韧性2、试样拉断前所承受的最大标称拉应力为()A、抗压强度B、屈服强度C、疲劳强度D、抗拉强度3、拉伸实验中,试样所受的力为()A、冲击B、多次冲击C、交变载荷D、静态力4、常用的塑性判断依据是()A、断后伸长率和断面收缩率B、塑性和韧性C、断面收缩率和塑性D、断后伸长率和塑性5、工程上所用的材料,一般要求其屈强比()A、越大越好B、越小越好C、大些,但不可过大D、小些,但不可过小6、工程上一般规定,塑性材料的δ为()A、≥1%B、≥5%C、≥10%D、≥15%7、形变强化是材料的一种特性,是下列()阶段产生的现象。
A、弹性变形;B、冲击变形;C、均匀塑性变形;D、屈服变形。
8、在拉伸过程中,在工程应用中非常重要的曲线是()。
A、力—伸长曲线;B、工程应力—应变曲线;C、真应力—真应变曲线。
9、空间飞行器用的材料,既要保证结构的刚度,又要求有较轻的质量,一般情况下使用()的概念来作为衡量材料弹性性能的指标。
A、杨氏模数;B、切变模数;C、弹性比功;D、比弹性模数。
材料性能学第五章 材料的疲劳性能

§5.2 疲劳破坏的机理
一、疲劳裂纹的萌生
因变动应力的循环作用,裂纹萌生往往在材料薄弱区或 高应力区,通过不均匀滑移、微裂纹形成及长大而完成。常 将长0.05~0.10mm的裂纹定为疲劳裂纹核,对应的循环周期 为裂纹萌生期,其长短与应力水平有关。疲劳微裂纹由不均 匀滑移和显微开裂引起的,主要方式有表面滑移带开裂;第 二相、夹杂物与基体界面或夹杂物本身开裂;晶界或亚晶界 处开裂,如下图所示。
σ-1p=0.85σ-1
• 铸铁:
σ-1p=0.65σ-1
• 钢及轻合金:
τ-1=0.55σ-1
• 铸铁:
τ-1=0.80σ-1
• 同种材料的疲劳强度σ-1>σ-1p >τ-1。这些经验关系尽
管有误差(10~30%),但用于估计疲劳强度值还有一定的参考
价值。
4.疲劳强度与静强度间关系
材料的抗拉强度愈大,其疲劳强度也愈大。中、低强度钢,
(1)该破坏是一种潜藏的突发性破坏,不论在静载下显 示韧性或脆性破坏的材料,在疲破坏前均不会发生明显的塑 性变形,呈脆性断裂,易引起事故造成经济损失。
(2)疲劳破坏属低应力循环延时断裂,对于疲劳寿命的 预测就显得十分重要和必要。
(3)疲劳对缺陷(缺口,裂纹及组织)十分敏感,即对缺陷 具有高度的选择性。因为缺口或裂纹会引起应力集中,加大 对材料的损伤作用;组织缺陷(夹杂、疏松、白点、脱碳等), 将降低材料的局部强度,二者综合更加速疲劳破坏的起始与 发展。
1.对称循环疲劳强度
对称应力循环时,应力比r=-1,平均应力
σm=0,故将σ-1定义为材料的对称循环疲劳强
度。 常见的对称循环载荷有对称弯曲,对称扭转、
对称拉压等。 对应的疲劳强度分别记为σ-1,τ-1 及σ-1P,其中σ-1是最常用的。
材料的疲劳性能评估与寿命

材料的疲劳性能评估与寿命材料的疲劳性能评估是一个重要的领域,它在工程和科学领域中具有广泛的应用。
评估材料的疲劳性能能够帮助工程师和科学家预测材料在实际使用中的寿命,从而确保材料的可靠性和安全性。
本文将探讨材料的疲劳性能评估方法以及与寿命的关系。
一、疲劳性能的概念疲劳性能指的是材料在受到交变应力作用下,随时间逐渐发生的损伤或破坏。
疲劳性能通常通过疲劳寿命来评估,即材料在特定应力水平下可以承受多少次疲劳循环,直到发生破坏。
疲劳性能的评估对于许多行业来说至关重要,比如航空航天、汽车制造和桥梁建设等。
二、疲劳性能评估方法1. 疲劳试验疲劳试验是评估材料疲劳性能最常用的方法之一。
它通过施加交变载荷,在不同应力水平下进行循环加载,记录材料的变形和裂纹扩展情况。
通过分析试验数据,可以得到材料的疲劳寿命和疲劳强度等参数。
疲劳试验需要考虑许多因素,如载荷频率、温度和湿度等。
2. 数值模拟数值模拟是一种通过计算机仿真来评估材料疲劳性能的方法。
数值模拟可以基于实验数据或材料的力学性质来建立模型,通过加载历史和材料特性来预测疲劳寿命。
数值模拟方法可以提供更快速和经济的评估过程,并且可以帮助优化材料设计。
3. 材料参数估计材料参数估计是一种通过测量材料的组织结构和物理性质来评估疲劳性能的方法。
通过分析材料的晶粒结构、晶界特征和组织形态等参数,可以预测材料的疲劳寿命。
材料参数估计方法需要依赖先进的显微镜技术和材料科学的知识。
三、疲劳性能与寿命的关系材料的疲劳性能与寿命密切相关。
材料的疲劳性能评估可以帮助工程师确定材料在实际工作条件下的可靠性和安全性,并预测材料的使用寿命。
优秀的疲劳性能可以延长材料的使用寿命,提高产品的质量和可靠性。
在实际工程中,为了评估材料的疲劳性能和寿命,需要考虑材料的强度、韧性、断裂韧性和变形能力等因素。
这些因素对于材料的疲劳行为和性能有着重要的影响。
此外,材料的疲劳性能也与环境因素有关。
温度、湿度和腐蚀等环境条件会影响材料的疲劳性能和寿命。
材料力学性能总结3

2.磨损量的估算:J.F.Archard提出了粘着磨损量 估算方法。
在摩擦副接触处为三向压缩应力状态,其
接触压缩屈服强度近似为单向压缩屈服强度sc
的三倍。
设真实接触面积为A,接触压缩屈服强度为3sc,
作用于表面上的法向力为P 。假定磨屑呈半球 形,直径为d,任一瞬时有n个粘着点,设所有
粘着点的尺寸相同,直径为d,则:
2020/5/4
p
n d 2
4
3 sc
单位滑动距离内的接触点数
N
n d
4p
3scd 3
W
KNV' L
K
4p
3scd 3
2
3
d 2
3
L
K
pL
9 sc
K
pL 3H
接触点半球体积
V
'
2
d
3
3 2
H 3 sc
磨屑形成有个几率问题,几率为K --粘着磨 损系数 ,随压力增大而增加。
二、 表面强化及残余应力的影响
表面热处理及表面化学热处理:
整体加热(低淬透性钢、薄壳件) 利 表面淬火 火焰加热
用组织
相变获得表
感应加热
面强化,可使机
渗碳
件获得表硬心韧的 表面化学热处理
良好综合性能,可利用 组织相变及组织应力、热应
渗氮 碳氮共渗
力的变化,使机件表层获得很 高的强度和残余压应力。
复合强化
铁qf=0-0.05。 • (铸铁中石墨片尺寸一般大于临界裂纹扩展尺
寸,再有缺口影响不大)
2020/5/4
• 第三节 疲劳裂纹扩展速率 a
及扩展门槛值
ac1
材料性能学课后习题与解答

绪论1、简答题什么是材料的性能包括哪些方面提示材料的性能定量地反映了材料在给定外界条件下的行为;解:材料的性能是指材料在给定外界条件下所表现出的可定量测量的行为表现;包括错误!力学性能拉、压、、扭、弯、硬、磨、韧、疲错误!物理性能热、光、电、磁错误!化学性能老化、腐蚀;第一章单向静载下力学性能1、名词解释:弹性变形塑性变形弹性极限弹性比功包申格效应弹性模量滞弹性内耗韧性超塑性韧窝解:弹性变形:材料受载后产生变形,卸载后这部分变形消逝,材料恢复到原来的状态的性质;塑性变形:微观结构的相邻部分产生永久性位移,并不引起材料破裂的现象;弹性极限:弹性变形过度到弹-塑性变形屈服变形时的应力;弹性比功:弹性变形过程中吸收变形功的能力;包申格效应:材料预先加载产生少量塑性变形,卸载后再同向加载,规定残余应力弹性极限或屈服强度增加;反向加载,规定残余应力降低的现象;弹性模量:工程上被称为材料的刚度,表征材料对弹性变形的抗力;实质是产生100%弹性变形所需的应力;滞弹性:快速加载或卸载后,材料随时间的延长而产生的附加弹性应变的性能;内耗:加载时材料吸收的变形功大于卸载是材料释放的变形功,即有部分变形功倍材料吸收,这部分被吸收的功称为材料的内耗;韧性:材料断裂前吸收塑性变形功和断裂功的能力;超塑性:在一定条件下,呈现非常大的伸长率约1000%而不发生缩颈和断裂的现象;韧窝:微孔聚集形断裂后的微观断口;2、简答1 材料的弹性模量有那些影响因素为什么说它是结构不敏感指标解:错误!键合方式和原子结构,共价键、金属键、离子键E高,分子键E低原子半径大,E小,反之亦然;错误!晶体结构,单晶材料在弹性模量在不同取向上呈各向异性,沿密排面E大,多晶材料为各晶粒的统计平均值;非晶材料各向E同性;错误!化学成分,错误!微观组织错误!温度,温度升高,E下降错误!加载条件、负载时间;对金属、陶瓷类材料的E没有影响;高聚物的E随负载时间延长而降低,发生松弛;2 金属材料应变硬化的概念和实际意义;解:材料进入塑性变形阶段后,随着变形量增大,形变应力不断提高的现象称为应变硬化;意义错误!加工方面,是金属进行均匀的塑性变形,保证冷变形工艺的顺利实施;错误!应用方面,是金属机件具有一定的抗偶然过载能力,保证机件使用安全;错误!对不能进行热处理强化的金属材料进行强化的重要手段;3 高分子材料的塑性变形机理;解:结晶高分子的塑性变形是由薄晶转变为沿应力方向排列的微纤维束的过程;非晶高分子材料则是在正应力下形成银纹或在切应力下无取向的分子链局部转变为排列的纤维束的过程;4 拉伸断裂包括几种类型什么是拉伸断口三要素如何具体分析实际构件的断裂提示:参考课件的具体分析实例简单作答解:按宏观塑性变形分为脆性断裂和韧性断裂;按裂纹扩展可分为穿晶断裂和沿晶断裂;按微观断裂机理分为解理断裂和剪切断裂;按作用力分为正断和切断;拉升断口的三要素:纤维区、放射区和剪切唇;对实际构件进行断裂分析首先进行错误!宏观检测:目测构件表面外观;低倍酸洗观察;宏观断面分析;错误!扫描电镜分析错误!X射线能谱分析错误!金相分析错误!硬度及有效硬化层测定; 3、计算: 1 已知钢的杨氏模量为210GPa,问直径,长度120mm 的线材承受450N 载荷时变形量是多少 若采用同样长度的铝材来承受同样的载荷,并且变形量要求也相同,问铝丝直径应为多少E Al =70GPa 若用WE=388 GPa 、钢化玻璃E=345MPa 和尼龙线E=呢解:已知:E=210GPa , d= , 1L =120mm , F=450N ;/F S σ=ε/L L ε∴=∆ 164.5L ∴∆=∴ 2.5Al d mm ==∴ 2.5W d mm =∴ 2.5d d mm ==钢化∴ 2.5d d mm ==尼龙 2 ,直径13mm,实验后将试样对接起来后测量标距81mm,伸长率多少若缩颈处最小直径, 断面收缩率是多少解:已知:050L mm = 013d mm = 81K L mm = 6.9K d mm =∴断后伸长率∴断面收缩率 第二章 其它静载下力学性能 1、名词解释: 应力状态软性系数 剪切弹性模量 抗弯强度 缺口敏感度 硬度解:应力状态软性系数:不同加载条件下材料中最大切应力与正应力的比值;剪切弹性模量:材料在扭转过程中,扭矩与切应变的比值;缺口敏感度:常用试样的抗拉强度与缺口试样的抗拉强度的比值;NSR硬度:表征材料软硬程度的一种性能;一般认为一定体积内材料表面抵抗变形或破裂的能力;2、简答 1 简述硬度测试的类型、原理和优缺点至少回答三种解:布氏硬度、洛氏硬度、维氏硬度、肖氏硬度;布氏硬度:原理是用一定大小的载荷,把直径为D的淬火钢球或硬质合金球压入试样表面,保持规定时间后卸载载荷,测量试样表面的残留压痕直径d,求压痕的表面积;将单位压痕面积承受的平均压力规定为布氏硬度;优点是压痕面积大反映较大区域内各组成相的平均性能,适合灰铸铁、轴承合金测量,实验数据稳定,重复性高;缺点是不宜在成品上直接检验,硬度不同要更换压头直径D和载荷F,压痕直径测量较麻烦;洛氏硬度:原理是通过测量压痕深度值来表示硬度;优点是采用不同的标尺,可以测量各种软硬不同和厚薄不一样的材料的硬度,压痕小,可对工件直接进行检验,操作简便迅速;缺点是压痕小,代表性差,重复性差、分散度大,不同标尺的硬度值不能直接进行比较,不能互换;不宜在极薄的工件上直接进行检验;肖氏硬度:原理是将具有一定质量的带有金刚石或合金钢球的重锤从一定高度落向试样表面,用重锤的回落高度来表征材料的硬度;优点是使用方便,便于携带,可测现场大型工件的硬度;缺点是实验结果受人为因素影响较大,测量精度低;2 简述扭转实验、弯曲实验的特点渗碳淬火钢、陶瓷玻璃试样研究其力学性能常用的方法是什么解:扭转实验的特点是错误!扭转实验的应力状态软性系数较拉伸的应力状态软性系数高;可对表面强化处理工艺进行研究和对机件的热处理表面质量进行检验; 错误!扭转实验时试样截面的应力分布为表面最大;错误!圆柱试样在扭转时,不产生缩颈现象,塑性变形始终均匀;可用来精确评定拉伸时出现缩颈的高塑性材料的形变能力和变形抗力;错误!扭转时正应力与切应力大致相等,可测定材料的切断强度;弯曲试验的特点是:错误!弯曲加载时受拉的一侧的应力状态基本与静拉伸相同,且不存在试样拉伸时试样偏斜造成对实验结果的影响;可以用来由于太硬而不好加工拉伸试样的脆性材料的断裂强度;错误!弯曲试验时,截面上应力分布表面最大;可以比较和评定材料表面处理的质量;错误!塑性材料的F—fmax 曲线最后部分可任意伸长;渗碳淬火钢、陶瓷玻璃试样研究其力学性能常用的方法是扭转实验;3 有下述材料需要测量硬度,试说明选用何种硬度实验方法为什么a. 渗碳层的硬度分布,b. 淬火钢,c. 灰口铸铁,d. 硬质合金,e. 仪表小黄铜齿轮,f. 高速工具钢,g. 双相钢中的铁素体和马氏体,h. Ni基高温合金,i. Al合金中的析出强化相,j. 5吨重的大型铸件,k. 野外矿物解:a、e、g、i使用维氏硬度;b、c、d、f、h可使用洛氏硬度;b、c可使用布氏硬度;j使用肖氏硬度;k使用莫氏硬度;第三章冲击韧性和低温脆性1、名词解释:冲击韧度冲击吸收功低温脆性韧脆转变温度迟屈服解:冲击韧度:一次冲断时,冲击功与缺口处截面积的比值;冲击吸收功:冲击弯曲试验中,试样变形和断裂所吸收的功;低温脆性:当试验温度低于某一温度时,材料由韧性状态转变为脆性状态;韧脆转变温度:材料在某一温度t下由韧变脆,冲击功明显下降;该温度即韧脆转变温度;迟屈服:用高于材料屈服极限的载荷以高加载速度作用于体心立方结构材料时,瞬间并不屈服,需在该应力下保持一段时间后才屈服的现象;2、简答1 缺口冲击韧性实验能评定哪些材料的低温脆性哪些材料不能用此方法检验和评定提示:低中强度的体心立方金属、Zn等对温度敏感的材料,高强度钢、铝合金以及面心立方金属、陶瓷材料等不能解:缺口冲击韧性实验能评定中、低强度机构钢的低温脆性;面心立方金属及合金如氏体钢和铝合金不能用此方法检验和评定;2 影响材料低温脆性的因素有哪些解:错误!晶体结构,体心立方存在低温脆性,面心立方及其合金一般不存在低温脆性;错误!化学成分,间隙溶质原子含量增加,韧脆转变温度提高;错误!显微组织,细化晶粒课是材料韧性增加;金相组织也有影响,低强度水平时,组织不同的刚,索氏体最佳;错误!温度,在某一范围内碳钢和某些合金可能出现蓝脆;错误!加载速率,提高加载速率韧脆转变温度提高;错误!试样形状和尺寸,缺口曲率半径越小,韧脆转变温度越高; 3、计算: 某低碳钢的摆锤系列冲击实验列于下表,a. 绘制冲击功-温度关系曲线;b. 试确定韧脆转变温度; 解:有K A —t 图知,20NDT =-℃ FTP=40℃c. 要为汽车减震器选择一种钢,它在-10℃时所需的最小冲击功为10J,问此种钢适合此项应用么 解:c:此种钢不适合;第四章 断裂韧性1、名词解释: 应力场强度因子 断裂韧度 低应力脆断 解:应力场强度因子:反映裂纹尖端应力场强度的参量;断裂韧度:当应力场强度因子增大到一临界值,带裂纹的材料发生断裂,该临界值称为断裂韧性;低应力脆断:在材料存在宏观裂纹时,在应力水平不高,甚至低于屈服极限时材料发生脆性断裂的现象; 2、简答 a. 格里菲斯公式计算的断裂强度和理论断裂强度解:理论强度m σ=格里菲斯断裂强度g σ= b. Kl 和KlC 的异同解:I K 是力学度量,它不仅随外加应力和裂纹长度的变化而变化,也和裂纹的形状类型,以及加载方式有关,但它和材料本身的固有性能无关;而断裂韧性IC K 则是反映材料阻止裂纹扩展的能力,因此是材料本身的特性;c. 断裂韧性的影响因素有哪些如何提高材料的断裂韧性解:错误!外因,材料的厚度不同,厚度增大断裂韧性增大,当厚度增大到一定程度后断裂韧性稳定;温度下降断裂韧性下降,应变速率上升,断裂韧性下降;错误!内因;金属材料,能细化晶粒的元素提高断裂韧性;形成金属化合物和析出第二相降低断裂韧性;晶粒尺寸和相结构,面心立方断裂韧性高,奥氏体大于铁素体和马氏体钢;细化晶粒,断裂韧性提高;夹杂和第二相,脆性夹杂和第二相降低断裂韧性,韧性第二相提高断裂韧性;提高材料的断裂韧性可以通过错误!亚温淬火错误!超高温淬火错误!形变热处理等方法实现; 3、计算: a. 有一材料,模量E =200GPa, 单位面积的表面能γS =8 J/m 2, 试计算在70MPa 的拉应力作用下,该裂纹的临界裂纹长度若该材料裂纹尖端的变形塑性功γP =400 J/m 2,该裂纹的临界裂纹长度又为多少利用格里菲斯公式和奥罗万修正公式计算解:由格里菲斯公式得由奥罗万修正公式得 b. 已知α-Fe 的100晶面是解理面,其表面能是2 J/m 2,杨氏模量E =200 GPa,晶格常数a 0=,试计算其理解:m σ==c. 断裂韧度66MPa ·m 1/2,用这种材料制造飞机起落架,最大设计应力为屈服强度的70%,若可检测到的裂纹长度为,试计算其应力强度因子,判断材料的使用安全性;提示:假设存在的是小的边缘裂纹,采用有限宽板单边直裂纹模型,2b>>a; 若存在的是穿透裂纹,则应用无限大板穿透解:错误!^61/21.12 1.120.7210010145.9I K MPa m ==⨯⨯⨯=⋅第五章疲劳性能1、名词解释:循环应力贝纹线疲劳条带疲劳强度过载持久值热疲劳解:循环应力:周期性变化的应力;贝文线:疲劳裂纹扩展区留下的海滩状条纹;疲劳条带:略呈弯曲并相互平行的沟槽状花样,与裂纹扩展方向垂直,疲劳断裂时留下的微观痕迹;疲劳强度:指定疲劳寿命下,材料能够承受的上限循环应力;过载持久值:材料在高于疲劳强度的一定应力下工作,发生疲劳断裂的应力循环周次;热疲劳:机件在由温度循环变化产生的循环热应力及热应变作用下,发生的疲劳;2、简答a. 比较金属材料、陶瓷材料、高分子材料和复合材料疲劳断裂的特点解:金属材料的裂纹扩展分两个阶段错误!沿切应力最大方向向内扩展错误!沿垂直拉应力方向向前扩展;疲劳断口一般由疲劳源、疲劳区、瞬断区组成;有贝文线宏观和疲劳条带微观;陶瓷材料裂纹尖端不存在循环应力的疲劳效应,裂纹同样经历萌生、扩展和瞬断过程;对材料的表面缺陷十分敏感,强烈依赖于K、环境、成分、组织结构,不易观察到疲劳贝文线和条带, I没有明显的疲劳区和瞬断区;高分子材料在高循环应力作用下出现银纹,银纹转变为裂纹并扩展,导致疲劳破坏;低应力条件下,疲劳应变软化;分子链间剪切滑移产生微孔洞,随后产生宏观裂纹;循环应力作用下温度升高,产生热疲劳失效;复合材料有多种损伤形式,如界面脱落、分层、纤维断裂等,不会发生瞬时的疲劳破坏,较大应变会使纤维基体变形不协调引起开裂,形成疲劳源;疲劳性能和纤维取向有关;b. 疲劳断口宏观断口和微观断口分别有什么特征解:宏观断口有三个特征区:疲劳源、疲劳裂纹扩展区、瞬断区;错误!疲劳源是疲劳裂纹萌生的策源地,多在机件表面常和缺口、裂纹等缺陷及内部冶金缺陷有关,比较光亮,表面硬度有所提高,可以是一个也可以是多个;错误!疲劳裂纹扩展区断口较光滑并分布有贝文线,有时还有裂纹扩展台阶,断口光滑是疲劳源区的连续,程度随裂纹向前扩展而逐渐减弱,贝文线是最典型的特征;错误!瞬断区断口粗糙,脆性断口呈结晶状,韧性断裂在心部平面应变区呈放射状或人字纹,边缘应力区有剪切唇存在;一般在疲劳源对侧; c. 列出至少四条提高金属疲劳性能的措施解:错误!喷丸处理错误!表面热处理错误!复合强化错误!次载锻炼3、计算: a. 某材料的应力幅和失效循环周次如下:最少疲劳寿命105次,则许用的最大循环应力是多少 解:由图知,疲劳极限=250MPa设计寿命最少^510时,最大需用循环应力为275MPa; b. 某压力容器受到升压降压交变应力△σ=120MPa 作用,计算得知该容器允许的临界裂纹长度2ac =125mm,检查发现该容器有一长度2a =42mm 的周向穿透裂纹,假设疲劳裂纹扩展符合Paris 公式,假设疲劳扩展系数C =2×10-10,n =3,试计算该容器的疲劳寿命和循环10万次后的疲劳裂纹长度是多少 解:设裂纹为无线大板穿透裂纹,则由Paris 公式()nIda C K dN =∆得解得N=3016当N=10万次时2a=第六章磨损性能1、名词解释:磨损接触疲劳解:磨损:物体表面相互摩擦时,材料自表面逐渐减少时的过程;接触疲劳:两材料作滚动或滚动加滑动摩擦时,交变接触压应力长期作用使得材料表面疲劳磨损,局部区域出现小片或者小块材料剥落而产生的疲劳;2、简答a. 简述常见的磨损类型和特点如何提高材料的耐磨粒磨损抗力解:常见的磨损类型和特点有错误!粘着磨损,特点是机件表面有大小不等的结疤;错误!磨粒磨损,摩擦面上有擦伤或明显犁皱纹;错误!腐蚀磨损,氧化磨损,磨损产物为氧化物如红褐色的三氧化二铁;错误!接触疲劳磨损,出现许多豆状、贝壳状或不规则形状的凹坑;提高磨粒磨损的抗力可以选用高硬度韧性好的材料或使用表面硬化的材料;b. 试从提高材料疲劳强度、接触疲劳、耐磨性观点出发,分析化学热处理时应注意的事项;解:化学热处理过程中采用球化退火处理和高温回火,减小碳化物粒度并使之分布均匀;采取适当的去应力退火工艺使材料在一定范围内保持残余应力,提高疲劳强度和耐磨性;c.述非金属材料陶瓷、高分子材料的磨损特点解:陶瓷材料对表面状态极为敏感,当气氛压力下降时,磨损率加大;高分子材料硬度虽然较低,但具有较大柔顺性,在不少场合下显示较高的抗划伤能力;对磨粒磨损具有良好的适应性、就范性和埋嵌性;第七章高温性能1、名词解释:蠕变蠕变极限持久强度应力松弛解:蠕变:金属在恒温、恒载荷下缓慢产生塑性变形的现象;蠕变极限:金属材料在高温长期载荷作用下对塑性变形抗力指标;持久强度:在规定温度下,达到规定实验时间而不发生断裂的应力值;应力松弛:在规定温度和初始应力条件下,金属材料中的应力随时间增加而减少的现象;2、简答a. 列出至少四个提高金属蠕变性能的措施解:错误!加入合金元素,形成固溶强化错误!采用正火加高温回火工艺进行热处理;错误!控制晶粒尺寸错误!控制应力水平b. 高温蠕变变形的机理有哪几种解:主要有位错滑移蠕变机理、扩散蠕变机理、晶界滑动蠕变机理、粘弹性机理;3、计算:稳态蠕变即蠕变第二阶段的本构方程ε=A·σn·exp-Q/RT,某耐热钢538℃下的蠕变系数A=×10-24,n=8,激活能Q=100kcal/mol,R为摩尔气体常数mol·K,试计算该钢在500℃时应力150MPa下的蠕变速率;解:由ε=A·σn·exp-Q/RT得=第八章耐腐蚀性能1、名词解释:电化学腐蚀缝隙腐蚀电偶腐蚀钝化解:电化学腐蚀:金属表面与电解质溶液发生电化学反应而引起的破坏;缝隙腐蚀:金属部件在腐蚀介质中,结合部位的缝隙内腐蚀加剧的现象;电偶腐蚀:异种金属在同一种介质中,由于腐蚀电位不同而产生电偶电流的流动使电极电位较低的金属溶解增加造成的局部腐蚀;钝化:电化学腐蚀的阳极过程在某些情况下受到强烈阻滞,使腐蚀速率急剧下降的现象;2、简答a. 为什么说材料的腐蚀是一个自发过程解:因为腐蚀是物质由高能态向低能态转变的过程,所以腐蚀是一个自发的过程;b. 原电池和腐蚀原电池的区别是什么解:原电池可以是化学能转化为电能,有电流通过并能对外做功;腐蚀原电池是能进行氧化还原反应,但并不能对外做功的短路原电池;c. 应力腐蚀断裂的条件和特征是什么解:应力腐蚀具有以下特点:错误!应力;必须有拉应力存在才能一起应力腐蚀,压应力一般不发生应力腐蚀;错误!介质;一定的材料必须和一定的介质的相互组合,才会发生腐蚀断裂;错误!速度;应力腐蚀断裂的速度远大于没有应力时的腐蚀速度;错误!腐蚀断裂形态;应力腐蚀断裂时仅在局部区域出现从表及里的裂纹;d. 简述材料氧化腐蚀的测量方法和仪器;解:测量方法有:错误!质量法错误!容量法测量仪器:质量法采用热重分析仪;容量法采用量气管及及其他装置;e. 列出至少四种防止金属材料腐蚀的措施;解:错误!金属电化学保护法错误!介质处理错误!缓蚀剂保护法错误!表面覆盖法错误!合理选材第九章电性能1、名词解释:电介质、极化强度、铁电体、压电效应、热释电效应、热电效应解:电介质:电场下能极化的材料;极化强度:电介质材料在电场作用下的极化程度,单位体积内的感生电偶极矩;铁电体:就有铁电性的晶体;热释电效应:晶体因温度均匀变化而发生极化强度改变的现象称为晶体的热释电效应;热电效应:温度作用改变材料的电性能参数;贝塞克效应、帕尔帖效应、汤姆逊效应;压电效应:没有电场作用,有机械应力作用而使电介质晶体产生极化并形成晶体表面电荷的现象;2、填空题a. 从极化的质点类型看,电介质的总极化一般包括三部分:__位移极化__、__松弛极化__、__转向极化__ ;从是否消耗能量的角度看,电介质的极化分为____弹性极化____和____非弹性极化____两类,其中___位移极化___是弹性的、瞬时完成的极化,不消耗能量;而___松弛极化___的完成需要一定的时间,是非弹性的,消耗一定的能量;b. 电介质在电场作用下产生损耗的形式主要有__电导损耗____和____电离损耗___两种;当外界条件一定时,介质损耗只与tg有关,而tg仅由___δ____决定,称为____介质损耗角____;c. 电介质材料在电场强度超过某一临界值时会发生介质的击穿,通常击穿类型可分为___电击穿____、__化学击穿___、___热击穿___三类;d. 铁电体具有__电滞回线__、居里点和__临界特性___三大特征;e. 测量电阻常用的方法有双电桥法、电位差计法、安培—伏特计法和直流四探针法;f. 金属的热电现象包括贝塞克效应、帕帖效应和汤姆逊效应三个基本热电效应;3、简答题:a. 简述电介质、压电体、热释电体、铁电体之间的关系;解:电解质包括压电体、热释电体、铁电体;压电体和热释电体都是不具有对称中心的晶体;热释电体和铁电体都能在一定的温度范围内自发极化;b. 为什么金属的电阻随温度升高而增大,半导体的电阻随温度升高减小解:金属属于电子到电机制,温度升高,电子运动自由程减小,散射几率增大导致电阻增大;半导体导电取决于电子-空穴对数量多少,温度升高,电子-空穴对数增多,导电阻减小;c. 表征超导体性能的三个主要指标是什么目前氧化物高温超导体应用的主要弱点是什么解:三个指标是:错误!临界转变温度T错误!临界磁场C H错误!临界C电流密度目前氧化物高温超导体应用的主要弱点是错误!超导体材料的氧化物制备困难错误!材料加工困难错误!临界温度难以维持e. 一般来说金属的电导率要高于陶瓷和聚合物,请举例说明这个规律并不绝对正确;解:PAN、第十章磁性能1、名词解释:磁化强度矫顽力饱和磁化强度磁导率和磁化率剩余磁感应强度磁畴趋肤效应解:磁化强度:物质在磁场中被磁化的程度,单位体积内磁矩的大小;矫顽力:去掉剩磁的临界外磁场;饱和磁化强度:磁化强度的饱和值;磁导率:表征磁介质磁性的物理量;磁化率:表征物质本身的磁化特性的物理量;剩余磁感应强度:去掉外加磁场后的磁感应强度;磁畴:磁矩方向相同的小区域;趋肤效应:交变磁化时产生感生电动势,使得磁感应强度和磁场强度沿样品界面严重不均匀,好像材料内部的磁感应强度被。
大连理工大学精品课程-材料力学性能-第五章-影响疲劳强度的因素

2020年8月3日星 期一
第五章 金属的疲劳
影 响 因 素
3
工作条件
载荷条件 载荷频率 环境温度 环境介质
表面状态及 尺寸因素
尺寸效应 表面粗糙度 缺口效应
应 应 过次平
力 力 载载均
状 比 情情应
态
况况力
表面处理 材料因素
表面喷丸及滚压
表面热处理
表面涂层 化学成分 组织结构 各向异性 内部缺陷
26
2020年8月3日星 期一
第五章 金属的疲劳
喷丸只对承受弯曲、扭转疲劳的机件有用, 对拉压疲劳机件虽可阻止裂纹在表面萌生, 但却助长了裂纹在次表面的萌生,不仅不 利于提高疲劳强度,甚至有害。
滚压和喷丸类似,不过其压应力层深度较 大,适用于大工件,表面粗糙度低时强化 效果更好,但要求工件形状相对简单。提 高疲劳寿命的程度比喷丸要高1倍以上。
第五章 金属的疲劳
试验表明,加载应力低于并接近疲劳极限时,间歇提高疲 劳寿命比较明显,而间歇过载加载对疲劳寿命不但无益,甚至有害。 因为次载时有疲劳强化,间歇有应变时效强化,故能提高疲劳寿命。 而过载造成损伤累积有疲劳弱化,间歇没有效果。次载间歇有一个 最佳的间歇时间,与加载应力的大小有关,应力高,最佳间歇期短, 应力低,最佳间歇期长。间歇间隔周次也有一个最佳值,只有用合 适的间歇时间和最佳的间隔周次进行间歇加载,才会有效提高疲劳 强度和寿命。
27
2020年8月3日星 期一
第五章 金属的疲劳
表面热处理及表面化学热处理:
整体加热(低淬透性钢、薄壳件)
利 表面淬火 火焰加热
用组织
相变获得表
感应加热
面强化,可使机
件获得表硬心韧的 表面化学热处理
材料的疲劳性能

应力范围△σ越大 ,则裂纹扩展越快 , Np、ac越小。
40
材料旳疲劳裂纹扩展速率与Δσ和a 有关。 将应力范围△σ与a复合定义为应力 强度因子范围△K :
K Kmax Kmin Ymax a Ymax a Y a
△K:控制裂纹扩展旳复合力学参量
(1)将a-N曲线上各点旳da/dN 值用图 解微分法或递增多项式计算法计算出来; (2)利用应力强度因子幅(ΔKⅠ)公式将 相应各点旳ΔKⅠ值求出, (3)在双对数坐标系上描点连接即得
在变动载荷作用下,随机件尺寸增大使疲劳强度下降旳现象,称为 尺寸效应,可用尺寸效应系数ε来表达
48
三、表面强化及残余应力旳影响
机理:提升机件表面塑变抗力,降低表面旳有效拉应力,即可 克制材料表面疲劳裂纹旳萌生和扩展,有效提升承受弯曲与扭 转循环载荷下材料旳疲劳强度
lgda/dN-lgΔKⅠ曲线。
41
lg(da/dN)-lgΔKⅠ曲线:
I区是疲劳裂纹旳初始扩展阶段:
da/dN = 10-8~10-6 mm/周次;
从ΔKth开始,ΔKⅠ↑, da/dN迅 速提升,但ΔKⅠ范围较小,裂纹扩 展有限。
Ⅱ区是疲劳裂纹扩展旳主要阶段,占据亚稳扩展旳绝大部分,是决 定疲劳裂纹扩展寿命旳主要构成部分,da/dN = 10-5~10-2 mm/周次,
第五章 材料旳疲劳性能
§5-1疲劳破坏旳一般规律 §5-2疲劳破坏旳机理 §5-3疲劳抗力指标 §5-4影响材料及机件疲劳强度旳原因 §5-5热疲劳
1
机械零件总是处于不断运动状态
曲轴
连杆
2
第一节 疲劳破坏旳一般规律
一、疲劳破坏旳变动应力
疲劳:工件在变动载荷和应变长久作用下,因累积 损伤而引起旳断裂现象。
金属材料的耐磨性与疲劳性能分析

金属材料的耐磨性与疲劳性能分析在工业生产中,金属材料的耐磨性和疲劳性能是重要的性能指标。
耐磨性是指金属材料在摩擦和磨损的作用下能够保持良好的表面质量和机械性能的能力。
而疲劳性能则是指金属材料在受到交替载荷作用下,能够保持一定的力学性能和寿命的能力。
本文将对金属材料的耐磨性和疲劳性进行分析。
一、耐磨性能分析金属材料的耐磨性是指在磨损环境下,金属的表面不能过度磨损或产生裂纹、麻点、氧化等缺陷。
金属材料的耐磨性能主要是由金属材料的化学组成、金相组织结构、硬度和表面粗糙度等因素决定的。
1.金属材料的化学组成金属材料的化学组成对其耐磨性具有重要影响。
铁基金属在含氧气氛下容易产生氧化层,从而影响材料的耐磨性。
而合金化能使金属获得更好的耐腐蚀性、耐磨性和强度。
2.金相组织结构金相组织结构主要由晶粒尺寸、晶体形状、相的数量和组成、氧化物、夹杂物和缺陷等因素决定。
通常,细小均匀的晶粒、紧密无缺陷的结晶和良好的晶界结合能够提高金属材料的耐磨性。
3.硬度金属材料硬度高的话,摩擦面之间的接触压力也会增加,这样对于磨损接触面的微观垫层和垫层上形成的氧化物、夹杂物的剪切和破裂所需的引致力也会增加。
所以,金属材料的硬度越高耐磨性能越好。
4.表面粗糙度金属材料的表面粗糙度也对其耐磨性能有影响。
通常,表面粗糙度越小,表面的揉合层和磨损层也会越小,摩擦阻力也会减小,从而提高了金属材料的耐磨性。
二、疲劳性能分析一般情况下,金属材料的机械件在使用过程中都会遭到交替载荷的作用,这些载荷也就是往复拉伸和压缩的力,造成了所谓的“疲劳断裂”。
疲劳性能是指金属材料在长期使用过程中承受交替载荷作用下,能够保持一定的力学性能和寿命的能力。
金属材料的疲劳性能主要取决于材料的组织结构、载荷的频率、幅值和材料的应力水平。
1.金属材料的组织结构金属材料的组织结构对其疲劳性能有很大影响。
疲劳寿命是一种热态性能,组织结构中的组织成分、晶粒大小、晶界等都会对疲劳寿命产生影响。
材料力学性能第五章-金属的疲劳

材料力学性能第五章-金属的疲劳一、前言金属是工业中广泛使用的材料之一,而疲劳是金属失效的常见原因。
疲劳现象是指材料在循环加载下,由于应力的交变和变形的累积,导致材料最终发生断裂的失效现象。
由于疲劳是材料失效的高发期之一,因此疲劳强度及其寿命评估在工程实践中极其重要。
本文将对金属疲劳相关的概念、实验方法、疲劳表征和机理等方面进行详细介绍。
二、疲劳相关概念2.1 疲劳应力和疲劳极限疲劳应力是指材料在循环加载下,在一个给定的时间内重复加载的最大应力,其值通常低于材料的屈服强度。
疲劳极限是指材料在循环加载下,在一个给定的时间内可以承受的最大应力,其值也低于材料的屈服强度。
2.2 疲劳曲线疲劳曲线通常是由应力-amplitude循环次数(N)图给出,包括S-N曲线和e-N 曲线。
其中S-N曲线是指材料应力振幅和循环次数之间的关系曲线,其垂直轴是应力振幅,水平轴是循环次数(N)。
e-N曲线是指材料应变振幅和循环次数之间的关系曲线,其垂直轴是应变振幅,水平轴也是循环次数(N)。
三、疲劳实验方法3.1 疲劳试验机疲劳试验机一般分为拉伸疲劳试验机、弯曲疲劳试验机和转子疲劳试验机等。
其中拉伸疲劳试验机主要用于金属杆件、薄壁件等线性部件的疲劳试验。
弯曲疲劳试验机主要用于梁疲劳试验,其挠度和载荷均可调节。
转子疲劳试验机主要用于模拟飞机、发动机等转子叶片的疲劳试验。
3.2 疲劳试验方法常用的疲劳试验方法包括:恒振幅疲劳试验、逐渐增加振幅疲劳试验、多级疲劳试验和积累损伤疲劳试验等。
其中恒振幅疲劳试验是常见的疲劳试验方法,以波形、频率和振幅不变的周期周次循环载入,记录疲劳寿命。
逐渐增加振幅疲劳试验是从小到大逐渐增加载荷振幅的疲劳试验,称为低对高试验。
多级疲劳试验则是将恒定载荷振幅的疲劳试验进行多个不同振幅载荷循环,记录没个载荷级的疲劳寿命,绘制多级S-N曲线。
四、疲劳表征4.1 疲劳极限疲劳极限是材料在循环加载下允许承受的最大应力,疲劳极限的单位是MPa(N/mm^2)。
复合材料的疲劳性能及其测试方法

复合材料的疲劳性能及其测试方法在现代工程领域中,复合材料因其出色的性能而得到了广泛的应用。
从航空航天到汽车制造,从体育器材到医疗器械,复合材料的身影无处不在。
然而,要确保这些材料在长期使用中的可靠性和安全性,了解其疲劳性能以及掌握有效的测试方法就显得至关重要。
复合材料的疲劳性能是指材料在反复加载和卸载的循环作用下,抵抗破坏的能力。
与传统的单一材料相比,复合材料的疲劳性能具有一些独特的特点。
首先,复合材料通常由两种或两种以上不同性质的材料组成,如纤维增强树脂基复合材料中的纤维和树脂。
这种多相结构使得其疲劳损伤的机理更加复杂。
在疲劳加载过程中,不仅存在纤维的断裂、拔出,还可能有树脂的开裂、分层等多种损伤形式同时发生,并且这些损伤之间相互影响,相互作用。
其次,复合材料的疲劳性能受到多种因素的影响。
纤维的类型、含量、排列方向,树脂的性能,以及纤维与树脂之间的界面结合强度等都会对其疲劳性能产生显著的影响。
例如,高强度的纤维可以提高复合材料的疲劳强度,但如果纤维与树脂的界面结合不良,就容易在疲劳加载过程中发生脱粘,从而降低材料的疲劳寿命。
再者,复合材料的疲劳性能还具有明显的各向异性。
由于纤维的定向排列,使得材料在不同方向上的力学性能存在差异,进而导致其疲劳性能也呈现出各向异性。
这就要求在设计和使用复合材料时,必须充分考虑材料的方向性,以避免在疲劳载荷作用下发生意外的破坏。
了解了复合材料疲劳性能的特点,接下来我们来探讨一下其测试方法。
常见的复合材料疲劳测试方法主要包括拉伸拉伸疲劳测试、弯曲疲劳测试和扭转疲劳测试等。
拉伸拉伸疲劳测试是最常用的方法之一。
在这种测试中,试样在轴向受到周期性的拉伸载荷。
通过控制加载的频率、应力幅值和应力比等参数,来模拟实际使用中的疲劳工况。
测试过程中,需要实时监测试样的应变、位移以及裂纹的扩展情况等,以评估材料的疲劳性能。
弯曲疲劳测试则是将试样置于三点弯曲或四点弯曲的加载方式下进行疲劳试验。
工程材料力学性能第五章 金属的疲劳

第一节 第二节 第三节 第四节 第五节 第六节
金属疲劳现象及特点 疲劳曲线及基本疲劳力学性能 疲劳裂纹扩展速率及疲劳门槛值 疲劳过程及机理 影响疲劳强度的因素 低周疲劳
第一节 金属疲劳现象及特点
一、变动载荷和循环应力 1、变动载荷和变动应力 变动载荷:载荷大小、甚至方向均随时间变化的载荷。 变动应力:变动载荷在单位面积上的平均值。分规则周 期变动应力和无规则随机变动应力两种。 2、循环应力 规则周期性变化的应力称循环应力,表征应力循环特征的几个 参量: 最大应力 σmax 最小应力 σmin 平均应力 σm=(σmax+σmin)/2 应力幅 σa=(σmax-σmin)/2
三、疲劳宏观断口特征
典型的疲劳断口按照断裂过程可分为三个 区域,疲劳源、疲劳区和瞬断区。
1、疲劳源
疲劳源(或称疲劳核心),疲劳裂纹萌生的策源地,一 般总是产生在构件表面层的局部应力集中处,但如果构件 内部存在冶金缺陷或内裂纹,也可在构件内部或皮下产生 疲劳源。 疲劳源区光亮度最大,在断口上常能看到一个明显的亮斑。 疲劳源有时不止一个,尤其在低周疲劳下,其应力幅值较 大,断口上常有几个不同位臵的疲劳源。可以根据源区的 光亮度、相邻疲劳区的大小,贝纹线的密度去确定各个疲 劳源的产生顺序。 源区光亮度↑;相邻疲劳区越大;贝纹线越多越密者→疲 劳源越先产生。
如认为疲劳裂纹扩展的每一微小过程类似 是裂纹体小区域的断裂过程,ΔK就是裂纹 尖端控制疲劳裂纹扩展的复合力学参量。
3、da/dN--Δk ( lgda/dN-- lgΔk)曲线 将a-N曲线可转化为由Δk控制 的疲劳裂纹扩展速率曲线: da/dN -Δk 或 lgda/dNlgΔk 由曲线可知,可分为三个区: I区:疲劳裂纹初始扩展阶段 da/dN很小。 随Δk↑→da/dN快速提高,但 Δk变化范围很小, da/dN提 高有限,所占扩展寿命不长。
《材料性能学》课程教学大纲

《材料性能学》课程教学大纲一、《材料性能学》课程说明(一)课程代码:(二)课程英文名称:Introductions of Materials Properties(三)开课对象:材料物理专业(四)课程性质:《材料性能学》属于材料科学与工程一级学科主干专业课(五)教学目的:使学生掌握材料各种主要性能的基本概念物理本质化学变化律以及性能指标的工程意义,了解影响材料性能的主要因素及材料性能与其化学成分,组织结构之间的关系,基本掌握提高材料性能的主要途径。
(六)教学内容:本课程包括金属材料力学性能,金属物理性能分析,无机材料无论性能,高分子材料力学材料性能、材料的腐蚀与老化、性能指标的工程意义、指标的测试与评价及应用为主线贯穿始终,让学生对材料性能知识有一个完整的了解,以便达到举一反三、触类旁通的效果。
(七)教学时数:学时数:72 学时分数: 4 学分(八)教学方式:以粉笔、黑板为主要形式的课堂教学(九)考核方式和成绩记载说明考核方式为考试。
严格考核学生出勤情况达到学籍管理规定的旷课量取消考试资格,综合成绩根据平时成绩和期末成绩评定,平时成绩占40%,期末成绩占60%。
.二、讲授大纲与各章的基本要求第一章材料的单向静拉伸的力学性能教学要点:让学生了解材料在静载作用下的应力应变关系及常见的三种失败形式的特点和基本规律,这些性能指标的物理概念和工程意义,探讨提高材料性能指标的途径和方向1、使学生了解力—拉伸曲线和应力——应变曲线。
2 、使学生了解材料的弹性变形以及性能指标3、非理想弹性与内耗的概念4、非理想弹性的几种类型及工程应用5、掌握塑性变形的实质以及指标测方法6、了解断裂的机理教学时数: 8 学时教学内容:第一节力——伸长曲线和应力——应变曲线一、力——伸长曲线(低碳钢曲线,决定因素)二、应力——应变曲线中有实力与工程应力的关系式、曲线第二节弹性形变及其性能指标一、弹性形变本质二、弹性模数三、影响弹性模数的因素(键合方式和原子结构、晶体结构、化学成分、微观组织、温度、加载条件的负荷持续时间)四、比例极限与弹性极限五、弹性比功第三节非理想弹性与内耗一、滞弹性二、粘弹性三、伪弹性四、包申格效应五、内耗第四节塑性变形及其性能指标一、塑性变形机理(金属材料的塑性变形、陶瓷材料的塑性变形、高分子的塑性变形)二、屈服观象与屈服强度三、影响金属材料屈服强度的因素(晶体结构、晶界与亚结构、溶质元素、第二相、温度应变速率与应力状态)四、应变硬化(机理、指数、意义)五、抗拉强度与缩颈条件六、塑性与塑性指标七、超塑性第五节断裂一、断裂的类型及断口特征(韧性断裂与脆性断裂、穿晶断裂与沿晶断裂、洁切断裂与解理断裂、高分子材料的断裂、断口分析)二、裂纹形裂的位错模型(佤纳——斯特罗理论、断裂强度的裂纹理论)三、断裂强度四、真实断裂强度与静力韧度考核要求:1、力—伸长曲线和应力——应变曲线1.1力—伸长曲线(低碳钢曲线、决定因素)(识记)1.2应力—应变曲线中有实力与工程应力的关系式(识记)2、弹性形变及其性能指标2.1弹性形变本质(领会)2.2弹性模数(识记)2.3影响弹性模数的因素(键合方式和原子结构、晶体结构、化学成分、微观组织、温度、加载条件的负荷持续时间)(领会)2.4比例极限与弹性极限(领会)2.5弹性比功(领会)3、非理想弹性与内耗3.1滞弹性(领会)3.2粘弹性(领会)3.3伪弹性(领会)3.4包申格效应(识记)3.5内耗(识记)4、塑性变形及其性能指标4.1塑性变形机理(识记)4.2屈服观象与屈服强度(领会)4.3影响金属材料屈服强度的因素(识记)4.4应变硬化(领会)4.5抗拉强度与缩颈条件(识记)4.6塑性与塑性指标(识记)4.7超塑性(识记)第五节断裂5.1断裂的类型及断口特征(识记)5.2裂纹形裂的位错模型(领会)5.3断裂强度(领会)5.4真实断裂强度与静力韧度(领会)第二章材料在其他静载下的力学性能教学要点:让学生了解扭转、弯曲、压缩与带缺口试样的静拉伸以及材料硬度实验的方法、应用范围、力学性能指标。
精品 课后习题及参考答案-材料性能学课后习题与解答

材料性能学课后习题与解答绪论1、简答题什么是材料的性能?包括哪些方面?[提示] 材料的性能定量地反映了材料在给定外界条件下的行为;解:材料的性能是指材料在给定外界条件下所表现出的可定量测量的行为表现。
包括○1力学性能(拉、压、、扭、弯、硬、磨、韧、疲)○2物理性能(热、光、电、磁)○3化学性能(老化、腐蚀)。
第一章单向静载下力学性能1、名词解释:弹性变形塑性变形弹性极限弹性比功包申格效应弹性模量滞弹性内耗韧性超塑性韧窝解:弹性变形:材料受载后产生变形,卸载后这部分变形消逝,材料恢复到原来的状态的性质。
塑性变形:微观结构的相邻部分产生永久性位移,并不引起材料破裂的现象。
弹性极限:弹性变形过度到弹-塑性变形(屈服变形)时的应力。
弹性比功:弹性变形过程中吸收变形功的能力。
包申格效应:材料预先加载产生少量塑性变形,卸载后再同向加载,规定残余应力(弹性极限或屈服强度)增加;反向加载,规定残余应力降低的现象。
弹性模量:工程上被称为材料的刚度,表征材料对弹性变形的抗力。
实质是产生100%弹性变形所需的应力。
滞弹性:快速加载或卸载后,材料随时间的延长而产生的附加弹性应变的性能。
内耗:加载时材料吸收的变形功大于卸载是材料释放的变形功,即有部分变形功倍材料吸收,这部分被吸收的功称为材料的内耗。
韧性:材料断裂前吸收塑性变形功和断裂功的能力。
超塑性:在一定条件下,呈现非常大的伸长率(约1000%)而不发生缩颈和断裂的现象。
韧窝:微孔聚集形断裂后的微观断口。
2、简答(1) 材料的弹性模量有那些影响因素?为什么说它是结构不敏感指标?解:○1键合方式和原子结构,共价键、金属键、离子键E高,分子键E低原子半径大,E小,反之亦然。
○2晶体结构,单晶材料在弹性模量在不同取向上呈各向异性,沿密排面E大,多晶材料为各晶粒的统计平均值;非晶材料各向E同性。
○3化学成分,○4微观组织○5温度,温度升高,E下降○6加载条件、负载时间。
对金属、陶瓷类材料的E没有影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在变动载荷下工作的工件(如曲轴、连杆、齿轮、弹簧、辊子、 叶片及桥梁等),其失效形式主要是疲劳断裂。据统计,疲 劳破坏在整个失效中约占80%左右。
机械疲劳—外加应力/应变波动造 成的。
疲劳破坏的形式:
蠕变疲劳—循环载荷与高温联合 作用下的疲劳。
热机械疲劳—循环受载部件的温 度变动时材料的疲劳。
腐蚀疲劳、接触疲劳、微动疲劳、 电致疲劳等。
故有明显的裂纹萌生和缓慢亚稳扩展阶段,相应的断口上 有明显的疲劳源和疲劳扩展区,这是疲劳断裂的主要断口 特征。
10
4、疲劳宏观断口分析
1)、典型疲劳断口具有3个特征区 —疲劳源、疲劳裂纹扩展区(疲劳区)、瞬断区。
2)、疲劳源特点: ✓ 多出现在机件表面,常和缺口、裂纹等缺陷及内部冶金缺陷
(夹杂、白点等)有关。 ✓ 疲劳源区比较光亮,该区表面硬度有所提高。 ✓ 疲劳源可以是一个,也可以是多个。
循环应力:周期性变化的应力,变化的波形有正弦波、 矩形波、三角波等 ;
循环应力分为对称循环(旋转轴)、不对称循环(发动机 连杆、螺栓)、脉动循环(齿轮齿根、压力容器)、波动 循环(发动机气缸盖、螺栓);
随机应力:随机变化,如因道路气候因素,运行时的
汽车、拖拉机、飞机的零件,工作应力随时间随机变
1945年,由Miner提出的线性累计损伤理论问世。 1960年,Manson-Coffin提出了塑性应变与疲劳寿命的关系。 1961年,Paris提出了疲劳裂纹扩展速率的概念。 1974年美国军方采用了损伤容损设计方法。 目前,材料的疲劳研究方兴未艾,断裂力学、损伤力学和材料
物理学结合,已从宏观、细观和微观领域对疲劳问题进行着 广泛的研究。
§引 言
1998年6月3日上午11时,一辆由德国慕尼黑开往汉堡的 ICE1型884次高速列车,在行驶至距莱比锡东北方约60公里 的小镇埃舍德(Eschede)附近时,列车脱轨并以200公里时 速撞断一座立交桥后解体,事故造成101人死亡,88人重伤, 酿成世界高速铁路历史上最为惨重的事故。 德国铁路机构经过调查后认为:事故因列车第一节车厢后部 的一个车轮轮箍由于金属疲劳断裂引起,轮箍在断裂后变形 成一根弧形钢条,一头戳破车厢地板,另一头随着200公里 时速高速运行的列车,与钢轨产生剧烈摩擦,并发出刺耳的 尖啸。3分钟后,列车在行经一个道岔钢轨接口处时,轮箍 钢条又铲断一组道岔护轨,使之插入车厢。巨大的冲击力导 致第一节车厢后轮脱轨,并与车头脱钩,连带着将后面两节 车厢甩离轨道。虽然列车采取了紧急制动措施,但强大的惯 性依然推动车厢向前滑行,最终在撞断了300多米外的一座 混凝土立交桥墩后完全解体。就这样,一个并不起眼的轮箍 夺走了上百条人命。
5
§目 录
§5.1 疲劳破坏的一般规律 §5.2 疲劳破坏的机理 §5.3 疲劳性能指标和测试 §5.4 影响疲劳断裂的因素 §5.5 热疲劳
6
§5.1 疲劳破坏的一般规律
一、疲劳破坏的变动应力
工件在变动载荷和应变长期作用下,因累计损伤而引 起的断裂现象。
变动载荷:载荷大小方向随时间变化;
变动应力:变动载荷除以单位面积的平均值;分为循 环应力和随机应力;
7
化。
图5-1 应力循环特性表征参数
表征应力循环特征的参量
①最大循环应力σmax, 最小循环应力σmin; ②平均应力 σm=(σmax+σmin)/2; ③应力幅σα或应力范围Δσ: σα=Δσ/2= (σmax-σmin)/2; ④应力比 r=σmin/σmax。 ⑤载荷谱: 载荷-时间历程曲线
按接触和环境情况不同:分大气疲劳、腐蚀疲劳、高温疲劳、接触疲劳、 热疲劳等。
按断裂寿命和应力高低不同:分高周疲劳(Nf﹥105 ,σ﹤σs,也称低应力 疲劳);低周疲劳(Nf=102~105,σ≧ σs,有塑性应变发生, 也称高应 力疲劳.
9
3、疲劳破坏的特点: (1) 一种潜藏的突发性破坏,呈脆性断裂。 (2) 疲劳破坏属低应力循环延时断裂, 是具有寿命的断裂。 (3) 对缺陷(缺口、裂纹等)具有高度的敏感性。 (4) 疲劳断裂也是裂纹萌生和扩展过程,但因应力水平低,
8
二、疲劳破坏的概念和特点
1、疲劳破坏的概念: 疲劳的破坏过程: 变动应力→薄弱区域的组织→逐渐发生变化和损伤累积、开裂→裂纹
扩展→突然断裂。 疲劳破坏:
循环应力引起的延时断裂,其断裂应力水平往往低于材料的抗拉强 度,甚至低于其屈服强度。 疲劳寿命: 机件疲劳失效前的工作时间。
2、疲劳的分类 按应力状态不同:弯曲疲劳、扭转疲劳、拉压疲劳及复合疲劳;
14
§5.2 疲劳破坏的机理
一、金属材料疲劳破坏的机理
——疲劳裂纹的萌生和扩展Crack Initiation and Propagation
1、疲劳微裂纹由不均匀滑移和显微开裂引起。 ①表面滑移带开裂;第二相、夹杂物与基体相界面或夹杂物本
图5-3 疲劳断口的疲劳区和贝纹线
12
瞬断区特点 1) KⅠ≥KⅠc时,裂纹就失稳快速扩展, 导致机件瞬时断裂.断口粗糙,脆性断 口呈结晶状;韧性断口在心部平面应变 区呈放射状或人字纹状,边缘平面应力 区则有剪切唇区存在。 2) 瞬断区一般应在疲劳源对侧。
图5-4 疲劳断口的瞬断区和形貌
13
图5-5 各类疲劳断口的示意图
图5-2 疲劳断口的示意图和旋转弯曲 Nhomakorabea劳断口形貌
11
疲劳区特点
1) 断口较光滑并分布有贝纹线(或海 滩花样),有时还有裂纹扩展台阶。 2) 断口光滑是疲劳源区的延续,其 程度随裂纹向前扩展逐渐减弱; 3) 贝纹线是疲劳区的最典型特征, 一般认为是因载荷变动引起的。
每组贝纹线好像一簇以疲劳源为 圆心的平行弧线,凹侧指向疲劳源, 凸侧指向裂纹扩展方向。
3
1850-1860,Wöhler先生用试验方法研究了车轴的断裂事故,提 出了应力-寿命图(S-N)和疲劳极限概念。
1870-1890,Gerber研究了平均应力对寿命的影响,Goodman提 出了完整的平均应力影响理论。
1920,Griffith用能量法研究了含裂纹体的有关材料强度理论, 初步奠定了事隔20年后由Irwin发展起来的断裂力学理论基础。