高中物理选修3-2电磁感应讲义
高中物理选修3-2优质课件2:电磁感应
2.导体在安培力及其他力的共同作用下做非匀变速 直线运动,最终趋于稳定状态,这类问题的基本分析方法: 做好受力情况、运动情况的动态分析,导体运动产生 感应电动势→产生感应电流→通电导体受安培力→合外力 变化→加速度变化→速度变化→感应电动势变化,周而复 始循环,最终加速度等于零,导体达到稳定的状态; 导体达到稳定状态时的平衡方程往往是解答该类问题 的突破口.
【变式】 如图4-T-4所示,电阻r=0.3 Ω、质量m=0.1 kg的金属棒CD静止在位于水平面上的两条平行光滑的金 属导轨上,棒与导轨垂直且接触良好,导轨的电阻不计, 导轨的左端接有阻值为R=0.5 Ω的电阻,有一个理想电压 表接在电阻R的两端,垂直导轨平面的匀强磁场向下穿过 导轨平面.现给金属棒加一个水平向右的恒定外力F,观 察到电压表的示数逐渐变大,最后稳定在1.0 V,此时导 体棒的速度为2 m/s.
[点评] 应用楞次定律判断感应电流方向的关键是确 定原磁场的方向及磁通量的变化.四个步骤可灵活运用, 可以逆过来根据感应电流的方向确定引起感应电流的原 因.
【变式】 (多选)如图4-T-2所示,通电直导线L通有 向上的电流,闭合导体框abcd与直导线L在同一平面内, 当通电导线L运动时,以下说法正确的是( )
AD [解析] 当导线L向左平移时,闭合导体框abcd中 磁场减弱,磁通量减少,abcd回路中产生的感应电流的磁 场将阻碍磁通量的减少,由于导线L在abcd中磁场方向垂 直纸面向里,所以abcd中感应电流的磁场方向应为垂直纸 面向里,由安培定则可知感应电流的方向为 a→b→c→d→a,选项A正确;当导线L向右平移时,闭合 回路abcd中磁场增强,磁通量增加,abcd回路中产生的感 应电流的磁场将阻碍磁通量的增加,可知感应电流的磁场 为垂直纸面向外,再由安培定则可知感应电流的方向为 a→d→c→b→a,选项D正确.
教科版高中物理选修3-2同步课件第一章电磁感应的发现感应电流产生的条件
实验现象(有无电流) 无 无
有
分析论证
闭合电路包围的磁场面积 变化时,电路中有电流产 生;包围的磁场面积不变 时,电路中无电流产生
目标导航
知识梳理
重难聚焦
典例透析
当闭合电路的一部分导体在磁场中做切割磁感线运动时,电路中 有感应电流产生.
目标导航
知识梳理
重难聚焦
典例透析
(2)探究通过闭合回路的磁场变化时是否产生感应电流(如图所 示).
目标导航
知识梳理
重难聚焦
典例透析
解析:选项A,因I减小而引起导线周围的磁场减弱,使穿过线框的 磁通量减少,故有感应电流产生.选项B,因远离直导线,磁感线分布 变疏(如图甲所示),因此线框向右平动时,穿过线框的磁通量减少,线 框中有感应电流产生.选项C,当线框在如图甲所示位置时,穿过线框 的磁通量较大,线框以ab边为轴转动时磁通量一定变化,有感应电 流产生.选项D,先画出俯视图如图乙所示,由图可看出线框绕直导 线ef转动时,在任何一个位置穿过线框的磁感线的条数均不变,因此 无感应电流产生.
线框平面按顺时针方向转动时,穿过线框的磁通量减少,当转动θ时,
穿过线框的磁通量减少为零,继续转动至90°时,磁感线从另一面穿
过,磁通量变为“负”值,Φ2=-BScos θ.所以,此过程中磁通量的变化量
为
ΔΦ=Φ2-Φ1=-BScos θ-BSsin θ=-BS(cos θ+sin θ).
目标导航
知识梳理
目标导航
知识梳理
重难聚焦
典例透析
探究一 探究二
磁通量的分析、计算
1.匀强磁场中磁通量的计算
(1)B与S垂直时:Φ=BS.B指匀强磁场的磁感应强度,S为线圈的面
最新人教版高中物理(选修3-2)电磁感应第3节楞次定律教学讲义ppt
解:画出磁场的分布情况如图示:
ad
I
开始运动到A位置,向外的磁
通量增加,I 的方向为顺时针;
v
当dc边进入直导线右侧,直到线
框在正中间位置B时,向外的磁通量 b c
减少到0,I 的方向为逆时针;
A BC
接着运动到C,向里的磁通量增加,I 的方向为逆时针;
ab边离开直导线后,向里的磁通量减少,I 的方向为顺时针。
故此可知,线圈是向左移动的!
楞次定律的几种表述方式
表述一:感应电流的磁场总要阻碍引起感应电 流的磁通量的变化。(即增“反”减“同”)
巩固练习1、2、3
1、如图所示,一水平放置的圆形通电线圈I固定,
有另一个较小的线圈II从正上方下落,在下落过程
中线圈II的平面保持与线圈I的平面平行且两圆心同
在一竖直线上,则线圈II从正上方下落到穿过线圈I
所以,感应电流的方向先是顺时针,接着为逆时针,然后 又为顺时针。
3、在同一铁芯上绕着两个线圈,单刀双掷开关原来
接在点1,现把它从1扳向2,试判断在此过程中,在
电阻R上的电流方向是:(如图所示) ( C )
(A) 先由PQ,再由QP;
A
B
(B) 先由QP,再由PQ;
(C) 始终由QP; (D) 始终由PQ。
N
N
S
S
S
S
N
G
G
G
G
S
N
N
S
移近时 移去时
斥力 引力
阻碍相互靠近 阻碍相互远离
楞次定律表述二: 感应电流的效果总是阻碍导体和引 起感应电流的磁体间的相对运动
思考问题:当闭合导体的一部分做切割磁感线的运动 时,能否用楞次定律判断感应电流的方向?
【高中物理课件】选修3-2_感应电动势电磁感应定律_课件
复习回顾:
1、在电磁感应现象中,产生感应电流的条件是什么?
闭合电路中的磁通量发生变化
2、在电磁感应现象中,磁通量的变化的方式有哪些?
ΔΦ = Φ2 - Φ1 = B ΔS ΔΦ = Φ2 - Φ1 = ΔBS ΔΦ = Φ2 - Φ1 = ΔB ΔS
电路中产生持续电流的条件是什么?
(1)电路闭合 (2)有电源
E=B(Lsinθ )V
a
θ
v b
有效长度: 导线在垂直速度方向上的投影长度
练习:半径为R的半圆形导线在匀强磁场B
中,以速度V向右匀速运动时,E=?
×××××
E = B·2R·V
×××××
× ×O × × V×
×××××
× R× × × ×
×××××
有效长度: 弯曲导线在垂直速度方向上 的投影长度
不一定
(2)△Φ 越大, 一定越大;
不一定
反馈练习
1、下列说法正确的是( D) A.线圈中磁通量变化越大,线圈中产生的 感应电动势一定越大 B.线圈中的磁通量越大,线圈中产生的感 应电动势一定越大 C.线圈处在磁场越强的位置,线圈中产生 的感应电动势一定越大 D.线圈中磁通量变化得越快,线圈中产生 的感应电动势越大
图1-2-7
(2)法一:当磁感应强度B竖直向上时,此时v与B 的夹角θ=90°+α,我们可直接套用公式写出此时的 感应电动势E2=BLvsin(90°+α)=BLvcos α.
法二:将棒的速度v分解为垂直于B和平行于B的两 个分量,只有垂直于B的速度分量v⊥=vcos α才对产生 感应电动势有贡献,所以感应电动势E2=BLv⊥= BLvcos α.
第二节 感应电动势 和电磁感应定律
复习回顾:
人教版高中物理选修3-2课件-探究电磁感应的产生条件-PPT优秀课件
人教版高中物理选修3-2课件:4.2探 究电磁 感应的 产生条 件【PPT 优秀课 件】- 精美版
例与练 6、在一根铁棒P上套两个线圈A、B,如果给线圈 A通以如图所示的甲、乙、丙、丁4种电流,在t1 到t2这段时间内,哪种情况可以在线圈B中产生 感应电流?为什么?
人教版高中物理选修3-2课件:4.2探 究电磁 感应的 产生条 件【PPT 优秀课 件】- 精美版
探究电磁感应的产生条件
操作
开关闭合瞬间
开关断开瞬间
开关闭合时, 滑动变阻器不动 开关闭合时, 迅速移动变阻器滑片
表针是否摆动 摆动 摆动 静止 摆动
请大家换一种方式思考?
通过以上几个产生感应电流 的实验,我们能否寻找它们之 间的共同之处,并从本质上概 括出产生感应电流的条件?
(学生分别讨论3个实验)
流I逐渐增大或减小时,线圈中有没有感应电流?为什么?
(注意:长直导线中电流越大,它产生的磁场越强;离长直导线越 远,它的磁场越弱。)
人教版高中物理选修3-2课件:4.2探 究电磁 感应的 产生条 件【PPT 优秀课 件】- 精美版
人教版高中物理选修3-2课件:4.2探 究电磁 感应的 产生条 件【PPT 优秀课 件】- 精美版 人教版高中物理选修3-2课件:4.2探 究电磁 感应的 产生条 件【PPT 优秀课 件】- 精美版
B 、θ不变,S变化
b
B、S不变, θ变化
a
B、S、 θ都变化
新 西 兰 地 热 发 电 站
人类是如何获得电能的
???
1831年8月29日,法拉第用软铁做成一个外 径6英寸,厚7/8英寸的环,其上绕有A、B 两组线圈。B线圈接检流计,A线圈电池连 接。当接通和断开电源时,发现电流计指 针摆动。
高中物理选修3-2讲义
第一章 电磁感应一、知识点睛1.电磁感应现象 只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流;如果电路不闭合只会产生感应电动势。
这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。
问题为什么会发生电磁感应? 2.感应电流的产生条件① 回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化∆φ可由面积的变化∆S 引起;可由磁感应强度B 的变化∆B 引起;可由B 与S 的夹角θ的变化∆θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。
② 闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势, ③ 产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。
3.法拉第电磁感应定律① 电磁感应规律:感应电动势的大小由法拉第电磁感应定律确定。
ε=BLv ——当长L 的导线,以速度v ,在匀强磁场B 中,垂直切割磁感线,其两端间感应电动势的大小为ε。
如图所示。
设产生的感应电流强度为I ,MN 间电动势为ε,则MN 受向左的安培力F BIL =,要保持MN 以v 匀速向右运动,所施外力F F BIL '==,当行进位移为S 时,外力功W BI L S BILv t ==···。
t 为所用时间。
而在t 时间内,电流做功W I t '=··ε,据能量转化关系,W W '=,则I t BILv t ···ε=。
∴ε=BIv ,M 点电势高,N 点电势低。
此公式使用条件是B I v 、、方向相互垂直,如不垂直,则向垂直方向作投影。
② 公式一 εφ=n t ∆∆/。
注意☆:◆ 该式普遍适用于求平均感应电动势。
◆ ε只与穿过电路的磁通量的变化率∆∆φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。
选修3-2 第四章 电磁感应(全章教案上课ppt)
【例2】 如图6所示,两根足够长的平行导轨处在 与水平方向成θ=37°角的斜面上,导轨电阻不计 ,间距L=0.3 m,导轨两端各接一个阻值R0=2 Ω 的电阻;在斜面上加有磁感应强度B=1 T、方向垂 直于导轨平面的匀强磁场.一质量为m=1 kg、电 阻r=2 Ω的金属棒横跨在平行导轨间,棒与导轨 间的动摩擦因数μ=0.5.金属棒以平行于导轨向上 、v0=10 m/s的初速度上滑,直至上升到最高点的 过程中,通过上端电阻的电荷量Δq=0.1 C,求上 端电阻R0产生的焦耳热Q.(g取10 m/s2)
思考:a、b哪端电势高?
注意:引起感应电动势那部分导体 视为电源,电源电流由-流向+
第四节 法拉第电磁感应定律 一、法拉第电磁感应定律 纽曼和韦伯先后指出: 闭合电路中感应电动势的大小, 跟穿过这一电路的磁通量的变化 率成正比 公式:
匝数n=100匝,面积S=0.10m2,磁场向里为 正方向,变化如图,线圈内阻r=1Ω,R=3Ω, 求: (1) MN那端电势高(2)电压UMN=?
第三节 楞次定律
一、楞次定律(I感方向):感应电流的 磁场总要阻碍源磁通量的变化 (引起感应电流的磁通量变化)
源磁通量变化
感应电流
右手螺 旋定则
阻碍
附加磁场
源磁通 向里减 当磁场在减弱 量变化 弱 阻碍
顺时 感应 针 电流
右手 螺旋 定则
附加磁场 向里
磁铁向?能产生图 示感应电流
当s闭合时画出 AB中感应电流 方向
选修 3-2 第四章 电磁感应
第一节 划时代
回忆磁通量φ: φ=Bs⊥ 单位:韦伯wb 物理意义:表示穿过磁场 中某个面的磁感线条数
一、视频(二中教师版) 奥斯特梦圆“电生磁” 法拉第心系“磁生电”
高二物理选修32电磁感应定律ppt课件
闭合电路中有感应电流,这个电路中 就一定有感应电动势.
产生感应电动势的那部分导体相当于电源.
2、产生条件:只要穿过闭合电路的磁通量 发生变化,电路中就产生感应电动势。
问题1:在实验中,电流表指针偏转原 因是什么?
Φ变化
产生E
产生I
问题2:电流表指针偏转程度跟感应电 动势的大小有什么关系?
动势。 25V
例2 一个100匝的线圈,在0.5s内穿过它 的磁通量从0.01Wb增加到0.09Wb。
求线圈中的感应电动势。 16V
例3
如图,半径为r的金属环绕通过某直径的 轴00‘以角速度ω作匀速转动,匀强磁场 的磁感应强度为B,从金属环面与磁场方 向重合时开始计时,则在金属环转过900角 的过程中,环中产生的电动势的平均值是 多大?
斜率表示Φ 的变化率
1 0 ABD
t/s 0.1
3、理解:Φ、△Φ、ΔΦ/Δt的意义
物理意义
与电磁感应关系
磁通量Ф 磁通量变化△Ф
穿过回路的磁感 线的条数多少
穿过回路的磁通 量变化了多少
无直接关系
产生感应电动 势的条件
磁通量变化率
ΔΦ/Δt
穿过回路的磁通 决定感应电动
量变化的快慢
势的大小
4、应用:用公式 E n Φ 求E的两
磁通量变化越快,感应电动势越大。
越大?
Φ
磁磁通通量量的的变变化化快率慢
t
二、法拉第电磁感应定律
1.内容:电路中感应电动势的大小,跟穿过
这一电路的磁通量的变化率成正比。
2.公式: E Φ E n Φ
t
t
n为线圈的匝数
注意:公式中Δφ取绝对值,不涉及
高二物理 选修3-2 第一章 电磁感应【精品课件】
进出磁场的转折点是解决问题的关键.
例:如图所示,一个由导体做成的矩形线圈,
以恒定速率v运动,从无场区进入匀强磁场区,
然后出来,若取逆时针方向为电流的正方向,那
么图中的哪一个图线正确地表示回路中电流对时
间的函数关系?
(C)
I
I
I
I
0
t0
t0
t0
t
A
B
C
D
例:一闭合线圈放在匀强磁场里,若通过 线圈平面的磁感应强度随时间的变化如图甲所 示,则线圈的感应电动势为图乙中哪个图象所 示?(线圈面积不变) (A)
1.解决电磁感应电路问题的基本方法:
(1)确定电源:用法拉第电磁感应定律 和楞次定律确定感应电动势的大小和 方向;确定内阻。 (2)画等效电路图; (3)运用闭合电路欧姆定律,串并联电 路性质,电功率等公式联立求解.
电磁感应与电路结合——画等效电路图
等效电路
等效电路
不考虑带电粒子的重力
不考虑带电粒子的重力,粒子做直线运动
度大小为B、方向垂直于导轨平面向上的匀强磁场中。左侧是水平放置、
间距为d的平行金属板。一光滑绝缘水平轨道与一半径为r的光 滑绝缘圆弧轨道平滑连接,并使整个圆弧轨道竖直置于两板 之间。R和Rx分别表示定值电阻和滑动变阻器的阻值,不计其它电阻。
(重力加速度为g) (1)调节Rx=R,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电 流I及棒的速率v。
1.图象问题可以综合法拉第电磁感应定律、楞
次定律、右手定则、安培定则和左手定则,还
有与之相关的电路知识和力学知识等.
2.图象问题的特点:考查方式比较灵活,有
时根据电磁感应现象发生的过程,确定图象的
正确与否,有时依据不同的图象,进行综合计
高二物理人教版选修3-2课件:第四章电磁感应
“阻碍”的表现:增反减同、增缩减扩、增离减靠、来拒去留.
03
“阻碍”并不是“阻止”,而是“延缓”,电路中的磁通量还是在变化,只不过变化得慢了.
02
感应电流的磁场不一定与原磁场方向相反,只在磁通量增大时两者才相反,而在磁通量减少时两者是同向的.
01
线圈a中将产生俯视顺时针方向的感应电流穿过线圈a的磁通量变小线圈a有扩张的趋势线圈a对水平桌面的压力FN将增大例1 圆形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成如图1所示的电路.若将滑动变阻器的滑片P向下滑动,下列表述正确的是 ( )
图8
D
5
1
2
3
4
4.(电磁感应中的能量问题)如图9所示,一粗糙的平行金属轨道平面与水平面成θ角,两轨道上端用一电阻R相连,该装置处于匀强磁场中,磁场方向垂直轨道平面向上.质量为m的金属杆ab以初速度v0从轨道底端向上滑行,滑行到某高度h后又返回到底端.若运动过程中金属杆始终保持与导轨垂直且接触良好,轨道与金属杆的电阻均忽略不计.则下列说法正确的是 ( )
电磁感应
PLEASE ENTER YOUR TITLE HERE
汇报人姓名
学案10 章末总结
PLEASE ENTER YOUR TITLE HERE
汇报人姓名
网络构建
电磁感应
电磁感应现象
现象
闭合电路一部分导体做 的运动闭合电路的 发生变化
图7
5
1
2
3
4
解析 线框abcd向右匀速运动,穿过线框的磁通量均匀增加,由法拉第电磁感应定律知线框中产生恒定电流,由楞次定律知产生顺时针方向的电流,选项A正确.答案 A
人教版高中物理选修3-2讲义 11知识讲解 电磁感应定律的应用
电磁感应定律应用 编稿: 审稿:【学习目标】1.了解感生电动势和动生电动势的概念及不同。
2.了解感生电动势和动生电动势产生的原因。
3.能用动生电动势和感生电动势的公式进行分析和计算。
【要点梳理】要点一、感生电动势和动生电动势由于引起磁通量的变化的原因不同感应电动势产生的机理也不同,一般分为两种:一种是磁场不变,导体运动引起的磁通量的变化而产生的感应电动势,这种电动势称作动生电动势,另外一种是导体不动,由于磁场变化引起磁通量的变化而产生的电动势称作感生电动势。
1.感应电场19世纪60年代,英国物理学家麦克斯韦在他的电磁场理论中指出,变化的磁场会在周围空间激发一种电场,我们把这种电场叫做感应电场。
静止的电荷激发的电场叫静电场,静电场的电场线是由正电荷发出,到负电荷终止,电场线不闭合,而感应电场是一种涡旋电场,电场线是封闭的,如图所示,如果空间存在闭合导体,导体中的自由电荷就会在电场力的作用下定向移动,而产生感应电流,或者说导体中产生感应电动势。
要点诠释:感应电场是产生感应电流或感应电动势的原因,感应电场的方向也可以由楞次定律来判断。
感应电流的方向与感应电场的方向相同。
2.感生电动势(1)产生:磁场变化时会在空间激发电场,闭合导体中的自由电子在电场力的作用下定向运动,产生感应电流,即产生了感应电动势。
(2)定义:由感生电场产生的感应电动势成为感生电动势。
(3)感生电场方向判断:右手螺旋定则。
3、感生电动势的产生由感应电场使导体产生的电动势叫做感生电动势,感生电动势在电路中的作用就是充当电源,其电路是内电路,当它和外电路连接后就会对外电路供电。
变化的磁场在闭合导体所在的空间产生电场,导体内自由电荷在电场力作用下产生感应电流,或者说产生感应电动势。
其中感应电场就相当于电源内部所谓的非静电力,对电荷产生作用。
例如磁场变化时产生的感应电动势为cos BE nSt∆θ∆= .要点二、洛伦兹力与动生电动势导体切割磁感线时会产生感应电动势,该电动势产生的机理是什么呢?导体切割磁感线产生的感应电动势与哪些因素有关?他是如何将其他形式的能转化为电能的?1、动生电动势(1)产生:导体切割磁感线运动产生动生电动势 (2)大小:E BLv =(B 的方向与v 的方向垂直) (3)动生电动势大小的推导:ab 棒处于匀强磁场中,磁感应强度为B ,垂直纸面向里,棒沿光滑导轨以速度v 匀速向右滑动,已知导轨宽度为L ,经过时间t 由M 运动导N ,如图所示,由法拉第电磁感应定律可得:ФBS B L vtE BLv t t t∆∆⋅⋅====. 故动生电动势大小为 E BLv =.2、动生电动势原因分析导体在磁场中切割磁感线时,产生动生电动势,它是由于导体中的自由电子受到洛伦兹力的作用而引起的。
人教版高中物理课件:选修32《电磁感应》+(共19张PPT)
注意各种说法:
如(2)图:电容器放电完毕瞬间;电 容器充电开始;电场能向磁场能转化完毕; 磁场能向电场能转化开始。
再如(1)→(2):电容器放电过程; 电容器极板电量减小过程;电路电流增大过 程;电场能向磁场能转化过程。
三、阻尼振荡和无阻尼振荡 1. 无阻尼振荡(理想)
播放视频: 无阻尼振荡.
•1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” •2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、好的教师是让学生发现真理,而不只是传授知识。 •5、数学教学要“淡化形式,注重实质.
•8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/92021/11/92021/11/92021/11/9
三、阻尼振荡和无阻尼振荡 1. 无阻尼振荡(理想)
i
O
t
三、阻尼振荡和无阻尼振荡 1. 无阻尼振荡(理想)
i
i
O
tO
t
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/92021/11/92021/11/911/9/2021
•7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/92021/11/9November 9, 2021
四、电磁振荡的周期和频率
1.周期和频率:电磁振荡完成一次周期性 变化所需的时间叫做周期,一秒钟内完成周期 变化的次数叫做频率。
人教版高中物理选修3-2电磁感应讲义.docx
高中物理学习材料(灿若寒星**整理制作)电磁感应讲义班级 学号 姓名 知识结构重点难点1.电磁感应现象:(1)产生感应电流的条件是:穿过闭合电路的磁通量发生变化.(2)起磁通量变化的类型:2.楞次定律:⑴适用范围:适用于由磁通量变化引起感应电流的各种情况.⑵内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化.⑶对“阻碍”的进一步理解:①阻碍原磁通量的变化或原磁场的变化.“增则反减则同”②阻碍导体的相对运动,可理解为“来则拒去则留”(由磁体相对运动而引起感应电流的情况).③使线圈面积有扩大或缩小的趋势.④阻碍原电流的变化(自感现象). 电磁感应产生 条件自感与 互 感 导体切割磁感线运动 穿过闭合电路所围面积中磁通量发生变化 法拉第电磁感应定律㈠ 法拉第电磁感应定律㈡ 大小:ε=BLV方向:右手定则 大小:ε=n t ∆∆φ 方向:楞次定律 自感现象 互感现象 变压器 21U U =21n n P 出=P 入(理想变压器) 交变电流 即时值 U=U m sin ωt I=I m sin ωt 有效值 U=2m U I= 2m I 周期、频率、角频率 T=ωπ21=f⑷楞次定律判断感应电流方向的一般步骤:①明确所研究的闭合回路中原磁场的方向;②明确穿过闭合回路的磁通量是增加还是减少;③楞次定律判定感应电流的磁场方向;④由安培定则根据感应电流的磁场方向判断出感应电流的方向.3.右手定则:4.法拉第电磁感应定律:(1)感应电动势:感生电动势:由感生电场产生的感应电动势.动生电动势:由于导体运动而产生的感应电动势.(2)公式:E n t ∆Φ=∆ 当△仅由B 引起时,则t B nS E ∆∆=;当△Φ仅由S 引起时,则t SnB E ∆∆=.(3)注意:区分磁通量Φ、磁通量的变化量△Φ和磁通量的变化率t ∆Φ∆磁通量Φ等于磁感应强度B 与垂直于磁场方向的面积S 的乘积,即Φ=BS ,它的意义可以形象地用穿过面的磁感线的条数表示.磁通量的变化量△Φ是指回路在初末两个状态磁通量的变化量,△Φ=Φ2-Φ1.△Φ与某一时刻回路的磁通量Φ无关,当△Φ≠0时,回路中要产生感应电动势,但是△Φ却不能决定感应电动势E 的大小. 磁通量的变化率t ∆Φ∆表示的是磁通量变化的快慢,它决定了回路中感应电动势的大小.t ∆Φ∆的大小与Φ、△Φ均无关.(4)部分导体切割磁感线产生的感应电动势的大小:E=BLVsin θ.①若切割磁感线的导体是弯曲的,L 应理解为有效切割长度,即导体在垂直于速度方向上的投影长度.②公式E=BLV 一般适用于在匀强磁场中导体各部分切割速度相同的情况,对一段导体的转动切割,导体上各点线速度不等,取其平均切割速度12L υω=,得212E BL BL υω==.5.互感两个相互靠近的线圈中,有一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感生电动势,这种现象叫做互感,这种电动势叫做互感电动势.变压器就是利用互感现象制成的.6.自感:对自感要搞清楚通电自感和断电自感两个基本问题,尤其是断电自感,特别模糊的是断电自感中“小灯泡在熄灭之前是否要闪亮一下”的问题,如图9-2-10所示,原来电路闭合处于稳图9-2-10B A I (a )(b)itt2t1定状态,L与A并联,其电流分别为IL和IA,都是从左向右.在断开K的瞬时,灯A中原来的从左向右的电流IA立即消失.但是灯A与线圈L组成一闭合回路,由于L的自感作用,其中的电流IL不会立即消失,而是在回路中逐渐减弱维持短暂的的时间,这个时间内灯A中有从右向左的电流通过.这时通过A的电流是从IL开始减弱,如果原来IL>IA,则在灯A熄灭之前要闪亮一下;如果原来IL≤IA,则灯A逐渐熄灭不再闪亮一下.原来的IL和IA哪一个大,要由L的直流电阻RL与A的电阻RA的大小来决定.如果RL≥RA,则IL≤IA;如果RL<RA,则IL>IA.7.感应电量.回路中发生磁通量变化时,由于感应电场的作用使电荷发生定向移动而形成感应电流,在△t内迁移的电量(感应电量)q:8.电磁感应现象中的综合问题⑴电磁感应中的力学问题:在电磁感应的力学问题中,由于感应电流与导体切割磁感线运动的加速度有着相互制约的关系,故导体一般不是做匀变速运动,而是经历一个动态变化过程再趋于一稳定状态.分析这一动态过程进而确定最终状态是解决这类问题的关键所在.分析顺序一般为:①首先分析导体最初在磁场中的运动状态和受力情况;②再分析由于运动状态变化,导体受到的磁场力、合外力的变化;③再分析由于合外力的变化,导体的加速度、速度又会怎样变,从而又引起感应电流、磁场力、合力怎么变;④最终明确导体所能达到的是何种稳定状态.⑵电磁感应中的电路问题:在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势而成为电源,将它们跟电阻、电容等构成回路即为电磁感应中的电路问题.解决这类问题时,找准电源、正确判断感应电动势的方向(即电源的正负极)是关键.分析求解的一般步骤为:①确定电源,求出电动势(或其表达式);②分析电路结构,明确内、外电路;③正确运用稳恒电流求解.⑶电磁感应中的能量转化问题:导体切割磁感线或磁通量发生变化在回路中产生感应电流,则有机械能或其他形式的能量转化为电能,通过安培力做功,电能最终又转化为内能或机械能.因此,电磁感应过程问题伴随着能量转化.功是能量转化的量度,做功与能量转化的形式相对应,所以从能量转化的观点出发,结合动能定理、能量守恒定律、功能关系来分析导体的动能、势能、电能的变化,就可以建立相应的能量方程.⑷电磁感应中的图像问题:电磁感应教学中涉及的图像一般有以下两种:①各物理量随时间t变化的图像,即B—t图线、Φ--t图线、E--t图线、I--t图线等.②各物理量随线圈或导体的位移x变化的图线.常有E--x图线、I--x图线等.图像问题大致可分为两类:由给定的电磁感应过程选出或画出正确的图像或由给定的图像分析电磁感应过程.电磁感应中的图像问题一般需利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解决.例题精选1.如图(a)所示,两个闭合圆形线圈A、B的圆心重合,放在同一水平面内,线圈A 中通以如图(b)所示的变化电流,t=0时电流方向为顺时针(箭头所示)。
【人教版】高中物理选修3-2精品讲义:第4章电磁感应 1~2
1划时代的发现2探究感应电流的产生条件[学习目标] 1.理解什么是电磁感应现象及产生感应电流的条件.2.会使用线圈以及常见磁铁完成简单的实验.3.了解磁通量的定义及变化.一、电磁感应的发现[导学探究](1)在一次讲演中,奥斯特在南北方向的导线下面放置了一枚小磁针,当接通电源时小磁针为什么转动?(2)法拉第把两个线圈绕在同一个铁环上,一个线圈接到电源上,另一个线圈接入“电流表”,在给一个线圈通电或断电的瞬间,观察电流表,会看到什么现象?说明了什么?答案(1)电流的周围产生磁场,小磁针受到磁场力的作用而转动.(2)电流表的指针发生摆动,说明另一个线圈中产生了电流.[知识梳理]电流的磁效应及电磁感应现象的发现:(1)丹麦物理学家奥斯特发现载流导体能使小磁针转动,这种作用称为电流的磁效应,揭示了电现象与磁现象之间存在密切联系.(2)英国物理学家法拉第发现了电磁感应现象,即“磁生电”现象,他把这种现象命名为电磁感应.产生的电流叫做感应电流.[即学即用]判断下列说法的正误.(1)若把导线东西放置,当接通电源时,导线下面的小磁针一定会发生转动.()(2)奥斯特发现了电流的磁效应;法拉第发现了电磁感应现象.()(3)小磁针在通电导线附近发生偏转的现象是电磁感应现象.()(4)通电线圈在磁场中转动的现象是电流的磁效应.( )答案 (1)× (2)√ (3)× (4)×二、磁通量及其变化[导学探究] 如图1所示,闭合导线框架的面积为S ,匀强磁场的磁感应强度为B .图1(1)分别求出B ⊥S (图示位置)和B ∥S (线框绕OO ′转90°)时,穿过闭合导线框架平面的磁通量.(2)由图示位置绕OO ′转过60°时,穿过框架平面的磁通量为多少?这个过程中磁通量变化了多少?答案 (1)BS 0 (2)12BS 减少了12BS [知识梳理] 磁通量的定义及公式:(1)定义:闭合回路的面积与垂直穿过它的磁感应强度的乘积叫做磁通量.(2)公式:Φ=BS ,其中的S 应为平面在垂直于磁场方向上的投影面积.大小与线圈的匝数无关(填“有”或“无”).ΔΦ=Φ2-Φ1.[即学即用] 判断下列说法的正误.(1)磁感应强度越大,线圈面积越大,则磁通量越大.( )(2)穿过线圈的磁通量为零,但磁感应强度不一定为零.( )(3)磁通量发生变化,一定是磁场发生变化引起的.( )(4)利用公式Φ=BS ,可计算任何磁场中某个面的磁通量.( )答案 (1)× (2)√ (3)× (4)×三、感应电流产生的条件 [导学探究] 如图2所示,导体AB 做切割磁感线运动时,线路中有电流产生,而导体AB 顺着磁感线运动时,线路中无电流产生.(填“有”或“无”)图2如图3所示,当条形磁铁插入或拔出线圈时,线圈中有电流产生,但条形磁铁在线圈中静止不动时,线圈中无电流产生.(填“有”或“无”)图3如图4所示,将小螺线管A插入大螺线管B中不动,当开关S闭合或断开时,电流表中有电流通过;若开关S一直闭合,当改变滑动变阻器的阻值时,电流表中有电流通过;而开关一直闭合,滑动变阻器的滑动触头不动时,电流表中无电流通过.(填“有”或“无”)图4[知识梳理]产生感应电流的条件是:只要穿过闭合导体回路的磁通量发生变化,闭合导体回路中就会产生感应电流.[即学即用]判断下列说法的正误.(1)只要闭合电路内有磁通量,闭合电路中就有感应电流产生.()(2)穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生.()(3)穿过闭合线圈的磁通量变化时,线圈中有感应电流.()(4)闭合正方形线框在匀强磁场中垂直磁感线运动,必然产生感应电流.()答案(1)×(2)×(3)√(4)×一、磁通量Φ的理解与计算1.匀强磁场中磁通量的计算(1)B与S垂直时,Φ=BS.(2)B与S不垂直时,Φ=B⊥S,B⊥为B垂直于线圈平面的分量.如图5甲所示,Φ=B⊥S=(B sin θ)·S.也可以Φ=BS⊥,S⊥为线圈在垂直磁场方向上的投影面积,如图乙所示,Φ=BS⊥=BS cos θ.图52.磁通量的变化大致可分为以下几种情况:(1)磁感应强度B不变,有效面积S发生变化.如图6(a)所示.(2)有效面积S不变,磁感应强度B发生变化.如图(b)所示.(3)磁感应强度B和有效面积S都不变,它们之间的夹角发生变化.如图(c)所示.图6例1如图7所示,有一垂直纸面向里的匀强磁场,B=0.8 T,磁场有明显的圆形边界,圆心为O,半径为1 cm.现于纸面内先后放上圆线圈A、B、C,圆心均处于O处,线圈A的半径为1 cm,10匝;线圈B的半径为2 cm,1匝;线圈C的半径为0.5 cm,1匝.问:图7(1)在B减为0.4 T的过程中,线圈A和线圈B中的磁通量变化了多少?(2)在磁场转过90°角的过程中,线圈C中的磁通量变化了多少?转过180°角呢?答案(1)A、B线圈的磁通量均减少了1.256×10-4 Wb(2)减少了6.28×10-5 Wb减少了1.256×10-4 Wb解析(1)A、B线圈中的磁通量始终一样,故它们的变化量也一样.ΔΦ=(B2-B)·πr2=-1.256×10-4 Wb即A、B线圈中的磁通量都减少1.256×10-4 Wb(2)对线圈C,Φ1=Bπr′2=6.28×10-5 Wb当转过90°时,Φ2=0,故ΔΦ1=Φ2-Φ1=0-6.28×10-5 Wb=-6.28×10-5 Wb当转过180°时,磁感线从另一侧穿过线圈,若取Φ1为正,则Φ3为负,有Φ3=-Bπr′2,故ΔΦ2=Φ3-Φ1=-2Bπr′2=-1.256×10-4 Wb.1.磁通量与线圈匝数无关.2.磁通量是标量,但有正、负,其正、负分别表示与规定的穿入方向相同、相反.针对训练1磁通量是研究电磁感应现象的重要物理量,如图8所示,通有恒定电流的导线MN与闭合线框共面,第一次将线框由位置1平移到位置2,第二次将线框绕cd边翻转到位置2,设先后两次通过线框的磁通量变化分别为ΔΦ1和ΔΦ2,则()图8A.ΔΦ1>ΔΦ2 B.ΔΦ1=ΔΦ2C.ΔΦ1<ΔΦ2 D.无法确定答案 C二、感应电流产生条件的理解及应用1.感应电流产生条件的理解不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化.2.注意区别ΔΦ与Φ:感应电流的产生与Φ无关,只取决于Φ的变化,即与ΔΦ有关.ΔΦ与Φ的大小没有必然的联系.例2如图所示,用导线做成圆形或正方形回路,这些回路与一直导线构成几种位置组合(彼此绝缘),下列组合中,切断直导线中的电流时,闭合回路中会有感应电流产生的是()答案 C解析利用安培定则判断直线电流产生的磁场,其磁感线是一些以直导线为轴的无数组同心圆,即磁感线所在平面均垂直于导线,且直线电流产生的磁场分布情况是靠近直导线处磁场强,远离直导线处磁场弱.所以,A中穿过圆形线圈的磁场如图甲所示,其有效磁通量为ΦA=Φ出-Φ进=0,且始终为0,即使切断导线中的电流,ΦA也始终为0,A中不可能产生感应电流.B中线圈平面与导线的磁场平行,穿过B中线圈的磁通量也始终为0,B中也不能产生感应电流.C中穿过线圈的磁通量如图乙所示,Φ进>Φ出,即ΦC≠0,当切断导线中电流后,经过一定时间,穿过线圈的磁通量减小为0,所以C中有感应电流产生.D中线圈的磁通量如图丙所示,其有效磁通量为ΦD=Φ出-Φ进=0,且始终为0,即使切断导线中的电流,ΦD也始终为0,D中不可能产生感应电流.针对训练2(多选) 如图9所示装置,在下列各种情况中,能使悬挂在螺线管附近的铜质闭合线圈A中产生感应电流的是()图9A.开关S闭合的瞬间B.开关S闭合后,电路中电流稳定时C.开关S闭合后,滑动变阻器触头滑动的瞬间D.开关S断开的瞬间答案ACD例3金属矩形线圈abcd在匀强磁场中做如图所示的运动,线圈中有感应电流的是()答案 A解析在选项B、C中,线圈中的磁通量始终为零,不产生感应电流;选项D中磁通量始终最大,保持不变,也没有感应电流;选项A中,在线圈转动过程中,磁通量做周期性变化,产生感应电流,故A正确.判断部分导体做切割磁感线运动产生感应电流时应注意:(1)导体是否将磁感线“割断”,如果没有“割断”就不能说切割.如例3中,A图是真“切割”,B、C图中没有切断,是假“切割”.(2)是否仅是闭合电路的一部分导体在磁场内做切割磁感线运动,如例3 D图中ad、bc边都切割磁感线,由切割不容易判断,则要回归到磁通量是否变化上去.1.在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是() A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接.往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化答案 D解析电路闭合和穿过电路的磁通量发生变化,同时满足这两个条件,电路中才会产生感应电流,本题中的A、B选项都不会使得电路中的磁通量发生变化,并不满足产生感应电流的条件,故都不正确.C选项中磁铁插入线圈时,虽有短暂电流产生,但未能及时观察,C项错误.在给线圈通电、断电瞬间,会引起闭合电路磁通量发生变化,产生感应电流,因此D 项正确.2. 如图10所示,a、b是两个同平面、同心放置的金属圆环,条形磁铁穿过圆环且与两环平面垂直,则穿过两圆环的磁通量Φa、Φb的大小关系为()图10A.Φa>ΦbB.Φa<ΦbC.Φa=ΦbD.不能比较答案 A解析条形磁铁磁场的磁感线的分布特点是:①磁铁内外磁感线的条数相同;②磁铁内外磁感线的方向相反;③磁铁外部磁感线的分布是两端密、中间疏.两个同心放置的同平面的金属圆环与磁铁垂直且磁铁在中央时,通过其中一个圆环的磁感线的俯视图如图所示,穿过该圆环的磁通量Φ=Φ进-Φ出,由于两圆环面积S a<S b,两圆环的Φ进相同,而Φ出a<Φ出b,所以穿过两圆环的有效磁通量Φa>Φb,故A正确.3.(多选)下图中能产生感应电流的是()答案BD解析根据产生感应电流的条件:A选项中,电路没有闭合,无感应电流;B选项中,面积增大,闭合电路的磁通量增大,有感应电流;C选项中,穿过线圈的磁感线相互抵消,Φ恒为零,无感应电流;D选项中,磁通量发生变化,有感应电流.4.(多选)如图11所示,开始时矩形线框与匀强磁场的方向垂直,且一半在磁场内,一半在磁场外,若要使线框中产生感应电流,下列办法中可行的是()图11A.将线框向左拉出磁场B.以ab边为轴转动C.以ad边为轴转动(小于60°)D.以bc边为轴转动(小于60°)答案ABC解析将线框向左拉出磁场的过程中,线框的bc部分切割磁感线,或者说穿过线框的磁通量减少,所以线框中将产生感应电流.当线框以ab边为轴转动时,线框的cd边的右半段在做切割磁感线运动,或者说穿过线框的磁通量在发生变化,所以线框中将产生感应电流.当线框以ad边为轴转动(小于60°)时,穿过线框的磁通量在减小,所以在这个过程中线框内会产生感应电流.如果转过的角度超过60°(60°~300°),bc边将进入无磁场区,那么线框中将不产生感应电流.当线框以bc边为轴转动时,如果转动的角度小于60°,则穿过线框的磁通量始终保持不变(其值为磁感应强度与矩形线框面积的一半的乘积).一、选择题(1~6题为单选题,7~10题为多选题)1.许多科学家在物理学发展中做出了重要贡献,下列表述中正确的是()A.牛顿测出引力常数B.法拉第发现电磁感应现象C.安培提出了磁场对运动电荷的作用力公式D.奥斯特总结并确认了真空中两个静止点电荷之间的相互作用规律答案 B2.如图所示实验装置中用于研究电磁感应现象的是()答案 B解析选项A是用来探究影响安培力大小因素的实验装置.选项B是研究电磁感应现象的实验装置,观察闭合线框在磁场中做切割磁感线运动时电流表是否会产生感应电流.选项C是用来探究安培力的方向与哪些因素有关的实验装置.选项D是奥斯特实验装置,证明通电导线周围存在磁场.3. 如图1所示,大圆导线环A中通有电流,方向如图中箭头所示,另在导线环所在平面画一个圆B,它的一部分面积在A环内,另一部分面积在A环外,则穿过圆B的磁通量()图1A.为0B.垂直纸面向里C.垂直纸面向外D.条件不足,无法判断答案 B解析因为通电导线环的磁场中心密集,外部稀疏,所以,穿过圆B的净磁感线为垂直纸面向里.4. 如图2所示,半径为R的圆形线圈共有n匝,其中心位置处半径为r(r<R)的范围内有匀强磁场,磁场方向垂直线圈平面,若磁感应强度为B,则穿过线圈的磁通量为()图2A.πBR2 B.πBr2C.nπBR2 D.nπBr2答案 B解析由磁通量的定义式知Φ=BS=πBr2,故B正确.5. 如图3所示,一矩形线框从abcd位置移到a′b′c′d′位置的过程中,关于穿过线框的磁通量情况,下列叙述正确的是(线框平行于纸面移动) ()图3A.一直增加B.一直减少C.先增加后减少D.先增加,再减少到零,然后再增加,然后再减少答案 D解析离导线越近,磁场越强,当线框从左向右靠近导线的过程中,穿过线框的磁通量增大,当线框跨在导线上向右运动时,磁通量减小,当导线在线框正中央时,磁通量为零,从该位置向右,磁通量又增大,当线框离开导线向右运动的过程中,磁通量又减小;故A、B、C 错误,D正确,故选D.6. 如图4所示,闭合圆形导线圈平行地放置在匀强磁场中,其中ac、bd分别是平行、垂直于磁场方向的两直径.试分析线圈做以下哪种运动时能产生感应电流()图4A.使线圈在其平面内平动或转动B.使线圈平面沿垂直纸面方向向纸外平动C.使线圈以ac为轴转动D.使线圈以bd为轴稍做转动答案 D解析线圈在匀强磁场中运动,磁感应强度B为定值,由ΔΦ=B·ΔS知:只要回路中相对磁场的正对面积改变量ΔS≠0,则磁通量一定改变,回路中一定有感应电流产生.当线圈在其平面内平动或转动时,线圈相对磁场的正对面积始终为零,即ΔS=0,因而无感应电流产生,A错;当线圈平面沿垂直纸面方向向纸外平动时,同样ΔS=0,因而无感应电流产生,B错;当线圈以ac为轴转动时,线圈相对磁场的正对面积改变量ΔS仍为零,回路中仍无感应电流产生,C错;当线圈以bd为轴稍做转动时,线圈相对磁场的正对面积发生了改变,因此在回路中产生了感应电流.故选D.7.如图5所示,电流表与螺线管组成闭合电路,以下能使电流表指针偏转的是()图5A.将磁铁插入螺线管的过程中B.磁铁放在螺线管中不动时C.将磁铁从螺线管中向上拉出的过程中D.磁铁静止而将螺线管向上移动答案ACD解析只要是螺线管中的磁通量发生变化,回路中有感应电流,指针便会偏转;只要是螺线管中的磁通量不发生变化,回路中无感应电流,指针便不会偏转.在磁铁插入、拉出过程中螺线管中的磁通量均发生变化,能产生感应电流,电流表指针偏转.故A、C正确;磁铁放在螺线管中不动时,螺线管中的磁通量不发生变化,无感应电流产生,故B错误;由于磁铁静止而螺线管向上移动,螺线管中的磁通量发生变化,有感应电流产生,电流表指针偏转,故D正确.8.闭合线圈按如图所示的方式在磁场中运动,则穿过闭合线圈的磁通量发生变化的是()答案AB解析A图中,图示状态Φ=0,转至90°过程中Φ增大,因此磁通量发生变化;B图中离直导线越远磁场越弱,磁感线越稀,所以当线圈远离导线时,线圈中磁通量不断变小;C图中一定要把条形磁铁周围的磁感线空间分布图弄清楚,在图示位置,线圈中的磁通量为零,在向下移动过程中,线圈的磁通量一直为零,磁通量不变;D图中,随着线圈的转动,B与S 都不变,B又垂直于S,所以Φ=BS始终不变,故正确答案为A、B.9.如图6所示,在匀强磁场中有两条平行的金属导轨,磁场方向与导轨平面垂直.导轨上有两条可沿导轨自由移动的金属棒ab、cd,与导轨接触良好.这两条金属棒ab、cd的运动速度分别是v1、v2,若井字形回路中有感应电流通过,则可能()图6A.v1>v2 B.v1<v2C.v1=v2 D.无法确定答案AB10. 如图7所示,导线ab和cd互相平行,则下列四种情况中,导线cd中有电流的是()图7A.开关S闭合或断开的瞬间B.开关S是闭合的,滑动触头向左滑C.开关S是闭合的,滑动触头向右滑D.开关S始终闭合,滑动触头不动答案ABC解析开关S闭合或断开的瞬间;开关S闭合,滑动触头向左滑的过程;开关S闭合,滑动触头向右滑的过程都会使通过导线ab段的电流发生变化,使穿过cd回路的磁通量发生变化,从而在cd导线中产生感应电流.正确选项为A、B、C.二、非选择题11.在研究电磁感应现象的实验中,所用器材如图8所示.它们是①电流表;②直流电源;③带铁芯的线圈A;④线圈B;⑤开关;⑥滑动变阻器(用来控制电流以改变磁场强弱).试按实验的要求在实物图上连线(图中已连好一根导线).图8答案连接电路如图所示12.如图9所示,线圈Ⅰ与电源、开关、滑动变阻器相连,线圈Ⅱ与电流计相连,线圈Ⅰ与线圈Ⅱ绕在同一个铁芯上,在下列情况下,电流计中是否有示数?图9(1)开关闭合瞬间;(2)开关闭合稳定后;(3)开关闭合稳定后,来回移动滑动变阻器的滑片;(4)开关断开瞬间.答案(1)有(2)无(3)有(4)有解析(1)开关闭合时线圈Ⅰ中电流从无到有,电流的磁场也从无到有,穿过线圈Ⅱ的磁通量也从无到有,线圈Ⅱ中产生感应电流,电流计有示数.(2)开关闭合稳定后,线圈Ⅰ中电流稳定不变,电流的磁场不变,此时线圈Ⅱ中虽有磁通量但磁通量稳定不变,线圈Ⅱ中无感应电流产生,电流计无示数.(3)开关闭合稳定后,来回移动滑动变阻器的滑片,电阻变化,线圈Ⅰ中的电流变化,电流形成的磁场也发生变化,穿过线圈Ⅱ的磁通量也发生变化,线圈Ⅱ中有感应电流产生,电流计有示数.(4)开关断开瞬间,线圈Ⅰ中电流从有到无,电流的磁场也从有到无,穿过线圈Ⅱ的磁通量也从有到无,线圈Ⅱ中有感应电流产生,电流计有示数.。
选修3-2 电磁感应1-5 课件
磁场中,该磁场为匀强磁场,强度为B,且S⊥B,
(1)穿过平面的磁通量为 BS/2 ;
D
(2)若线圈绕CD转过60°,磁通量为 BS/2;
OA
(3)若线圈绕CD转过90°,磁通量为 (4)若线圈绕CD转过180°,磁通量为
-0BS;C;
O’
B
全程的磁通量变化为 -3BS/2;
(1) Φ 与匝数无关 (2) S —— 有效面积 (3) 磁通量是标量,但有正负
I
四指 :感应电流的方向 果
例 同一平面内的三条平行导线串有两个电阻R和r,
导体棒PQ与三条导线接触良好;匀强磁场的方向
垂直纸面向里,导体棒的电阻可忽略.当导体棒
向左滑动时,下列说法正确的是(
)B
A) 流过R的电流为由d到c,流过r的电流为由b到a
B) 流过R的电流为由c到d,流过r的电流为由b到a
第一、二节 电磁感应现象
讲师:关老师
一. 磁通量
B = Φ /S 磁通密度
• 定义:
Φ=BS
S: 有效面积
单位:韦伯 Wb
S⊥B Φ = B S
•意义:
穿过某个 面积的磁感线 条数
S∥B Φ = 0
S和B Φ =BS sinβ 成夹角 =BS cosα
β
αห้องสมุดไป่ตู้
例. 如图,比较S1与S2的磁通量
例. 如图,匝数为n的线圈面积为S,线圈的一半在
C) 流过R的电流为由d到c,流过r的电流为由a到b
D) 流过R的电流为由c到d,流过r的电流为由a到b
方法二:楞次定律 判断整个回路中电流方向
果 感应电流的磁场 总要阻碍
引因起感应原电磁流通的量的磁变通化量的变化
高中物理选修3-2讲义
励志长廊:真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。
第四章电磁感应4.1划时代的发现教学目标(一)知识与技能1.知道与电流磁效应和电磁感应现象的发现相关的物理学史。
2.知道电磁感应、感应电流的定义。
(二)过程与方法领悟科学探究中提出问题、观察实验、分析论证、归纳总结等要素在研究物理问题时的重要性。
(三)情感、态度与价值观1.领会科学家对自然现象、自然规律的某些猜想在科学发现中的重要性。
2.以科学家不怕失败、勇敢面对挫折的坚强意志激励自己。
教学重点、难点教学重点知道与电流磁效应和电磁感应现象的发现相关的物理学史。
领悟科学探究的方法和艰难历程。
培养不怕失败、勇敢面对挫折的坚强意志。
教学难点领悟科学探究的方法和艰难历程。
培养不怕失败、勇敢面对挫折的坚强意志。
教学方法教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。
教学手段计算机、投影仪、录像片教学过程一、奥斯特梦圆“电生磁”------ 电流的磁效应引导学生阅读教材有关奥斯特发现电流磁效应的内容。
提出以下问题,引导学生思考并回答:(1)是什么信念激励奥斯特寻找电与磁的联系的?在这之前,科学研究领域存在怎样的历史背景?(2)奥斯特的研究是一帆风顺的吗?奥斯特面对失败是怎样做的?(3)奥斯特发现电流磁效应的过程是怎样的?用学过的知识如何解释?(4)电流磁效应的发现有何意义?谈谈自己的感受。
学生活动:结合思考题,认真阅读教材,分成小组讨论,发表自己的见解。
二、法拉第心系“磁生电”------ 电磁感应现象教师活动:引导学生阅读教材有关法拉第发现电磁感应的内容。
提出以下问题,引导学生思考并回答:( 1)奥斯特发现电流磁效应引发了怎样的哲学思考?法拉第持怎样的观点?(2)法拉第的研究是一帆风顺的吗?法拉第面对失败是怎样做的?(3)法拉第做了大量实验都是以失败告终,失败的原因是什么?(4)法拉第经历了多次失败后,终于发现了电磁感应现象,他发现电磁感应现象的具体的过程是怎样的?之后他又做了大量的实验都取得了成功,他认为成功的“秘诀”是什么?(5)从法拉第探索电磁感应现象的历程中,你学到了什么?谈谈自己的体会。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理选修3-2电磁感应复习一、电磁感应现象及其发生条件1、电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生,这种现象叫做电磁感应,产生的电流叫做感应电流.2.电磁感应的条件(1)产生感应电流的条件为:①电路为闭合电路;②回路中磁通量发生变化。
(2)感应电动势产生的条件:穿过电路的磁通量发生变化。
这里不要求闭合.无论电路闭合与否,只要磁通量变化了,就会有感应电动势产生。
例1.现将电池组、滑动变阻器、带铁芯的线圈A、线圈B、电流计及电键如图连接.下列说法中正确的是()A.电键闭合后,线圈A插入或拔出都会引起电流计指针偏转B.线圈A插入线圈B中后,电键闭合和断开的瞬间电流计指针均不会偏转C.电键闭合后,滑动变阻器的滑片P匀速滑动,会使电流计指针静止在中央零刻度D.电键闭合后,只有滑动变阻器的滑片P加速滑动,电流计指针才能偏转例2.如图2所示,矩形线框abcd的一边ad恰与长直导线重合(互相绝缘).现使线框绕不同的轴转动,能使框中产生感应电流的是[ ]A.绕ad边为轴转动B.绕oo′为轴转动C.绕bc边为轴转动D.绕ab边为轴转动例3.如图6所示,一有限范围的匀强磁场宽度为d,若将一个边长为l的正方形导线框以速度v匀速地通过磁场区域,已知d>l,则导线框中无感应电流的时间等于[ ]例4.条形磁铁竖直放置,闭合圆环水平放置,条形磁铁中心线穿过圆环中心,如图7所示。
若圆环为弹性环,其形状由Ⅰ扩大为Ⅱ,那么圆环内磁通量变化情况是[ ]A.磁通量增大B.磁通量减小C.磁通量不变D.条件不足,无法确定二、楞次定律(来句去留、增反减同、增缩减扩)1.楞次定律:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化.2.应用楞次定律判断感应电流方向的四个步骤。
(1)明确原磁场的方向;(2)明确穿过回路的磁通量是增加还是减少;(3)根据楞次定律确定感应电流的磁场方向;(4)利用安培定则,判断感应电流的方向。
3.右手定则:伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线从掌心进入,拇指指向导体切割磁感线的运动方向,其余四指指的就是感应电流的方向.例1.如图6所示,光滑导轨MN水平放置,两根导体棒平行放于导轨上,形成一个闭合回路,当一条形磁铁从上方下落(未达导轨平面)的过程中,导体P、Q的运动情况是:[ ]A.P、Q互相靠拢B.P、Q互相远离C.P、Q均静止D.因磁铁下落的极性未知,无法判断例2.如图7所示,一个水平放置的矩形线圈abcd,在细长水平磁铁的S极附近竖直下落,由位置Ⅰ经位置Ⅱ到位置Ⅲ。
位置Ⅱ与磁铁同一平面,位置Ⅰ和Ⅲ都很靠近Ⅱ,则在下落过程中,线圈中的感应电流的方向为[ ]A .AbcdaB .AdcbaC .从abcda 到adcbaD .从adcba 到abcda例3.如图24所示,导线圈A 水平放置,条形磁铁在其正上方,N 极向下且向下移近导线圈的过程中,导线圈A 中的感应电流方向是____,导线圈A 所受磁场力的方向是____。
若将条形磁铁S 极向下,且向上远离导线框移动时,导线框内感应电流方向是____,导线框所受磁场力的方向是____。
例4.如图8所示,要使Q 线圈产生图示方向的电流,可采用的方法有[ ]A .闭合电键KB .闭合电键K 后,把R 的滑动方向右移C .闭合电键K 后,把P 中的铁心从左边抽出D .闭合电键K 后,把Q 靠近P三、法拉第电磁感应定律1.应用法拉第电磁感应定律时应注意:(1)公式E n t∆Φ=∆计算的是在t ∆时间内的平均电动势。
(2)公式E n t∆Φ=∆中涉及到磁通量的变化量∆Φ的计算,对于∆Φ的计算,有三种情况: ①回路与磁场垂直的面积S 不变,磁感应强度发生变化,则S B ⋅∆=∆Φ,此时B E nS t ∆=⋅∆,此式中的t B ∆∆叫磁感应强度的变化率,若tB ∆∆是恒定的,即磁场是均匀变化的,那么产生的感应电动势就是恒定电动势。
②磁感应强度B 不变,回路在垂直磁场方向的射影的面积S 发生变化,则S B ∆⋅=∆Φ。
线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属于这种情况。
③磁感应强度B 和回路在垂直磁场方向的面积S 均发生变化,则2211B S B S ∆Φ=-例1.一个矩形线圈长L l =0.2 m ,宽L 2=0.1 m ,共100匝,匀强磁场垂直线圈平面向里,磁感强度B 随时间t 变化的规律是B =0.4t +0.2,式中t 的单位是秒,B 的单位是特。
当t =2 s 时,穿过矩形线圈的磁通量中Φ=________Wb ,线圈中感应电动势ε=_______V 。
例2.穿过闭合回路的磁通量Φ随时间t 变化的图像分别如图甲、乙、丙、丁所示,下列关于回路中产生的感应电动势的论述,正确的是( )甲乙丙丁A .图甲中回路产生的感应电动势恒定不变B .图乙中回路产生的感应电动势一直在变大C .图丙中回路在0~t 1时间内产生的感应电动势大于在t 1~t 2时间内产生的感应电动势D .图丁中回路产生的感应电动势先变小再变大2.导体切割磁感线产生感应电动势(1)E =对E =BLv 的理解:(1)上式只适用于导体各点以相同速度在匀强磁场中切割磁感线的情况,且:B v ⊥,L v ⊥;L 所在处B 相同(匀强磁场)。
(2)当L 垂直B 、L 垂直v ,而v 与B 成θ角时,导体切割磁感线产生的感应电动势大小为E =BLv sin θ.(3)若导线是曲折的,或L 与v 不垂直时,则L 应为导线的有效切割长度,即导线两端点v 、B 所决定平面的垂线上的投影长度,如右图所示,三种情况下感应电动势大小相同.(4)公式E =BLv 中,若v 为一段时间内的平均速度,则E 为平均感应电动势,若v 为某时刻的切割速度,则E 为瞬时感应电动势.【电磁感应与电路综合】方法:用右手定则判断电源正负极,画出等效电路图,找出内外电路例1.如图所示,水平放置的平行金属导轨,相距L =0.50 m ,左端接一电阻R =0.20 Ω,磁感应强度B =0.40 T ,方向垂直于导轨平面的匀强磁场,导体棒ab 垂直放在导轨上,并能无摩擦地沿导轨滑动,导轨和导体棒的电阻均可忽略不计,当ab 以v =4.0 m/s 的速度水平向右匀速滑动时,求:(结果保留两位有效数字)(1)ab 棒中感应电动势的大小,并指出a 、b 哪端电势高;(2)回路中感应电流的大小;(3)维持ab 棒做匀速运动的水平外力F 的大小.例2.如图所示,虚线框内有方向垂直纸面向里、磁感应强度为B 的匀强磁场,导线框的三条竖直边的电阻均为r ,长均为L ,两横边电阻不计,线框平面与磁场方向垂直。
当导线框以恒定速度v 水平向右运动,ab 边进入磁场时,ab 两端的电势差为U 1,当cd 边进入磁场时,ab 两端的电势差为U 2,则( )A .U 1=BLvB .U 1=31BLvC .U 2= BLvD .U 2=23BLv例3.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同的方向平移出磁场,如图所示,则在移出过程中线框的一边a 、b 两点间电势差绝对值最大的是( )例4.如图所示,MN 、PQ 为两平行金属导轨,M 、P 间连有一阻值为R 的电阻,导轨处于匀强磁场中,磁感应强度为B ,磁场方向与导轨所在平面垂直,图中磁场垂直纸面向里.有一金属圆环沿两导轨滑动,速度为v ,与导轨接触良好,圆环的直径d 与两导轨间的距离相等.设金属环与导轨的电阻均可忽略,当金属环向右做匀速运动时( )A.有感应电流通过电阻R ,大小为RdBv B.有感应电流通过电阻R ,大小为RdBv C.有感应电流通过电阻R ,大小为R dBv 2 D.没有感应电流通过电阻R3.转动产生感应电动势(1)转动轴与磁感线平行如图,磁感应强度为B 的匀强磁场方向垂直于纸面向外,长L 的金属棒oa 以o 为轴在该平面内以角速度ω逆时针匀速转动。
求金属棒中的感应电动势。
在应用感应电动势的公式时,必须注意其中的速度v 应该指导线上各点的平均速度,在本题中应该是金属棒中点的速度,因此有E =12BωL 2。
例1.如图所示,金属圆环圆心为O,半径为L,金属棒Oa以O点为轴在环上转动,角速度为ω,与环面垂直的匀强磁场磁感应强度为B,电阻R接在O点与圆环之间,求通过R的电流大小。
例2.在磁感应强度为B=0.4 T的匀强磁场中放一个半径r0=50 cm的圆形导轨,上面搁有互相垂直的两根导体棒,一起以角速度ω=103rad/s逆时针匀速转动.圆导轨边缘和两棒中央通过电刷与外电路连接,若每根导体棒的有效电阻为R 0=0.8Ω,外接电阻R=3.9 Ω,如图所示,求:(1)每半根导体棒产生的感应电动势.(2)当电键S接通和断开时两电表示数(假定R V→∞,R A→0).(2)转动轴与磁感线垂直例1.如图,矩形线圈的长、宽分别为L1、L2,所围面积为S,向右的匀强磁场的磁感应强度为B,线圈绕图示的轴以角速度ω匀速转动。
线圈的ab、cd两边切割磁感线,产生的感应电动势相加可得E=BSω。
如果线圈由n匝导线绕制而成,则E=nBSω。
从图示位置开始计时,则感应电动势的瞬时值为。
该结论与线圈的形状和转动轴的具体位置无关(但是轴必须与B垂直),这就是交流发电机产生的交流电的瞬时电动势。
例2.如图所示,矩形线圈abcd的边长分别是ab=L,ad=D,线圈与磁感应强度为B的匀强磁场平行,线圈以ab 边为轴做角速度为ω的匀速转动,下列说法正确的是(从图示位置开始计时)()A.t=0时线圈的感应电动势为零B.转过90°时线圈的感应电动势为零C .转过90°的过程中线圈中的平均感应电动势为12ωBLDD .转过90°的过程中线圈中的平均感应电动势为2ωBLD π4.感应电量的计算例1.有一面积为S =100cm 2的金属环,电阻为R =0.1Ω,环中磁场变化规律如图所示,磁场方向垂直环面向里,则在t2-t1时间内通过金属环某一截面的电荷量为________C .例2.物理实验中,常用一种叫做“冲击电流计”的仪器测定通过电路的电量.如图所示,探测线圈与冲击电流计串联后可用来测定磁场的磁感应强度.已知线圈的匝数为n ,面积为s ,线圈与冲击电流计组成的回路电阻为R .若将线圈放在被测匀强磁场中,开始线圈平面与磁场垂直,现把探测圈翻转180°,冲击电流计测出通过线圈的电量为q ,由上述数据可测出被测磁场的磁感应强度为( )A .qR/SB .qR/nsC .qR/2nSD .qR/2S【电磁感应与图像综合】一、i -t 图像1.如图所示,一个导体做成的矩形线圈,以恒定速率v 运动,从无场区进入匀强磁场区,然后出来,若取逆时针方向为电流的正方向,那么图乙中所示的哪个图象能正确地表示回路中的电流随时间的函数关系( )2.如图所示的异形导线框,匀速穿过一匀强磁场区,导线框中的感应电流i随时间t变化的图象是(设导线框中电流沿abcdef为正方向)()3.如图所示,一宽40cm的匀强磁场区域,磁场方向垂直纸面向里。