高中数学极点极线及高中圆锥曲线必备公式

合集下载

圆锥曲线极点极线定理

圆锥曲线极点极线定理

圆锥曲线极点极线定理圆锥曲线极点极线定理1. 引言圆锥曲线是平面解析几何中的重要概念之一,它包括椭圆、双曲线和抛物线三种类型。

在研究圆锥曲线的性质时,极点和极线是不可避免的概念。

本文将介绍圆锥曲线的极点极线定理,该定理是描述圆锥曲线中极点和极线之间关系的重要结论。

2. 极点和极线的定义在平面直角坐标系中,设有一条直线L和一个点P(x0,y0)。

若从P到L上每一点所引的直线与L垂直,则称P为L的极点,L为P的极线。

3. 圆锥曲线的定义设有一个平面内固定点F(称为焦点)和一条固定直线d(称为准线)。

对于任意一点P,分别以PF和PD(D为d上任意一点)为半径作两个圆,并将这两个圆相切于P处。

则所有这样的P所构成的集合称为圆锥曲线。

4. 圆锥曲线中极点与极轴间关系对于任意一条圆锥曲线,设其焦点为F,准线为d,P为任意一点,则有以下结论:(1)若P在焦点F上,则其极线为准线d;(2)若P在准线d上,则其极线为过该点且垂直于准线的直线;(3)若P不在焦点F和准线d上,则其极轴为PF的中垂线。

5. 圆锥曲线中极轴与极径间关系对于任意一条圆锥曲线,设其焦点为F,准线为d,O为坐标系原点,则有以下结论:(1)若O在焦点F上,则其极径是任意一条过O的直线;(2)若O在准线d上,则其极径是与准线垂直且经过O的直线;(3)若O不在焦点F和准线d上,则其极径是从O出发经过圆锥曲线上任意一点P的直线。

6. 圆锥曲线中两个互异的定理对于任意一条圆锥曲线,设其焦点为F,准线为d,P(x,y)为任意一点。

则有以下两个互异的定理:(1)以FP和PD分别为半径的两个圆相交于点P,则P在圆锥曲线上;(2)以FP和PD分别为半径的两个圆相切于点P,则P在圆锥曲线上。

7. 结论综上所述,圆锥曲线极点极线定理是描述圆锥曲线中极点和极线之间关系的重要结论。

在研究圆锥曲线的性质时,该定理具有重要意义。

一点一线一世界——高考命题中圆锥曲线的极点与极线

一点一线一世界——高考命题中圆锥曲线的极点与极线

线犾 上任一点作抛物线的两条切线 , 则直 犕, 犖 为切 点 , 线 犕犖 恒过定点 . 解析 : 因为 抛 物 线 的 准 线 和 焦 点 刚 好 是 一 对 极 点 和极线 , 由定理第 ( ) 条知直线 犕犖 恒过焦点 犉( ) 4 1, 0 .
, 动 直 线犾 与 椭 圆 犫>0) 只有一个公共 点 犘, 且 犆 点 犘 在第一象限 . ( Ⅰ )已 知 直 线 犾 的 斜率为犽, 用 犪, 犫, 犽表示 点 犘 的坐标 ; 图1
) 所对应的准线 . 对于双曲线和抛物线结论类似 . 犉( 犮, 0 焦点与准线 是 圆 锥 曲 线 的 统 一 定 义 , 我们很多人 只知道它的存在 , 却不知道 它 们 内 在 的 联 系 , 教材中潜 形匿迹 , 但 我 们 也 不 能 对 此 视 而 不 见, 我们也可借此 解题 .
2 例 2 已知抛物线 狔 过直 =4 狓 和 直 线犾: 狓= -1,
1 1 2 2 ) 即2 犕犖 的方程为 ( 狋 = ·2 狋 狓+1, 狋 狓-狔- 狋 狔+ 2 2
2 2 2 4 狋 - 狋 +2- 狋 | 于是 犱=| +2=0, =2 2 1+4 狋 槡 2 ( ) , 则 犱= =1+4 狋 狊 ≥1

2 2 ( ) 1+ 狋 令 2 . 狊 1+4 狋
— —极 点 与 极 线 在 高 考 解 题 中 的 3 洗 尽 铅 华 — 应用
在近年的各地 高 考 模 拟 试 题 中 , 有关圆锥 事实上 , 曲线的极点与 极 线 问 题 也 屡 见 不 鲜 . 用普通方法可以
·6 4·
数学教育研究
2 0 1 5 年第 1 期
求解 , 但过程相对繁杂 , 如果 用 极 点 和 极 线 的 视 角 看 问 题, 则事半功倍 . 定值问题 3. 1 可以解决圆锥曲线中的定点 、 例 3 ( 2 0 1 4稽阳联谊 学校 高 三 数 学 联 考 2 1 题)

高考★圆锥曲线★的基本公式推导(学长整合版)

高考★圆锥曲线★的基本公式推导(学长整合版)

圆锥曲线的几大大题特征公式:焦半径、准线、弦长、切线方程、弦中点公式、极线方程/*另外,针对“计算不好”的同学,本人提供“硬解定理”供大家无脑使用。

具体的请参考本目录下的【硬解定理的推导和使用】文章。

*/圆锥曲线的切线方程在历年高考题中出现,但是在高中教材及资料都涉及较少。

本文主要探索圆锥曲线的切线方程及其应用。

从而为解这一类题提供统一、清晰、简捷的解法。

【基础知识1:切线方程、极线方程】【1-0】公式小结:x 2换成xx 0,y 2换成yy 0,x 换成(x+x 0)/2,y 换成(y+y 0)/2.【1-1】椭圆的切线方程: ①椭圆12222=+y x上一点),(00y x P 处的切线方程是12020=+yy xx 。

(【1-2【1-3 【1-41、第入原始式,最后得切线方程式1)()(2202202020=+=+by a x b yy a xx (注:k 的表达式可以在草稿中巧用点差法求,具体见下)2、第2种证明思路:点差法(求斜率,其余跟第一种方法一样)证明:设某直线与曲线C 交于M 、N 两点坐标分别为),(11y x 、),(22y x ,中点P ),(00y x则有⎪⎪⎩⎪⎪⎨⎧=+=+)2(.1)1(,1222222221221 b y a x b y a x ⇒)2()1(-,得.022********=-+-b y y a x x2212121212ab x x y y x x y y -=++⋅--∴又.22,000021211212x y x y x x y y x x y y k MN ==++--= 2200a b x y k MN -=⋅∴(弦中点公式的椭圆基本表达式。

双曲线则是2200ab x y k MN =⋅) 当M 、N 无限趋近时,P 在椭圆C 上。

即得切线斜率0022y x a b k ⋅-= 3、第三种证明思路(注意:仅供理解,考试使用可能分证明:由2(圆锥曲线切线证明)(同一目录下文章)可知圆上一点的切线方程。

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式一、圆锥曲线的极坐标方程椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹.以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系.椭圆、双曲线、抛物线统一的极坐标方程为: θρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 .当0<e <1时,方程表示椭圆;当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线;当e=1时,方程表示开口向右的抛物线.二、圆锥曲线的焦半径公式设F 为椭圆的左焦点(双曲线的右焦点、抛物线的焦点),P 为椭圆(双曲线的右支、抛物线)上任一点,则 ∵PQ e PF =,∴)cos (p PF e PF +=θ,其中FH p =,=θ〈x 轴,FP 〉 ∴焦半径θcos 1e ep PF -=. 当P 在双曲线的左支上时,θcos 1e ep PF +-=. 推论:若圆锥曲线的弦MN 经过焦点F ,则有ep NF MF 211=+.三、圆锥曲线的焦点弦长若圆锥曲线的弦MN 经过焦点F ,1、椭圆中,cb c c a p 22=-=,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=. 2、双曲线中,若M 、N 在双曲线同一支上,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=; 若M 、N 在双曲线不同支上,2222cos 2cos 1cos 1a c ab e ep e ep MN -=--+-=θθθ. 3、抛物线中,θθπθ2sin 2)cos(1cos 1p p p MN =--+-=. 四、直角坐标系中的焦半径公式设P (x,y )是圆锥曲线上的点,1、若1F 、2F 分别是椭圆的左、右焦点,则ex a PF +=1,ex a PF -=2;2、若1F 、2F 分别是双曲线的左、右焦点,当点P 在双曲线右支上时,a ex PF +=1,a ex PF -=2;当点P 在双曲线左支上时,ex a PF --=1,ex a PF -=2;3、若F 是抛物线的焦点,2p x PF +=.。

圆锥曲线公式及知识点总结(详解)

圆锥曲线公式及知识点总结(详解)

圆锥曲线公式及知识点总结(详解)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如小学资料、初中资料、高中资料、大学资料、文言文、中考资料、高考资料、近义词、反义词、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides you with various types of practical materials, such as primary school materials, junior high school materials, senior high school materials, university materials, classical Chinese, senior high school examination materials, college entrance examination materials, synonyms, antonyms, other materials, etc. If you want to know different data formats and writing methods, please pay attention!圆锥曲线公式及知识点总结(详解)圆锥曲线的统一概念:到定点的距离与到定直线的距离的商是常数e的点的轨迹。

高中数学圆锥曲线知识点总结及公式大全

高中数学圆锥曲线知识点总结及公式大全

高中数学圆锥曲线知识点总结及公式大全一、圆锥曲线的基本概念圆锥曲线包括椭圆、双曲线和抛物线,它们是高中数学中重要的知识点之一。

圆锥曲线是由平面与圆锥的交线所形成的曲线,其基本概念包括焦点、准线和离心率等。

1. 焦点:圆锥曲线的焦点是到曲线的两个顶点距离相等的点,焦点到曲线的顶点的距离称为焦距。

椭圆和双曲线的焦点位于其对称轴上,而抛物线的焦点则位于其准轴上。

2. 准线:圆锥曲线的准线是与焦点垂直的直线,准线与曲线有两个交点。

在椭圆和双曲线中,准线是与主轴垂直的直线,而在抛物线中,准线是与主轴平行的直线。

3. 离心率:圆锥曲线的离心率是焦点到顶点的距离与准线到顶点的距离之比,离心率的大小可以反映曲线的形状。

椭圆的离心率在0和1之间,双曲线的离心率大于1,抛物线的离心率等于1。

二、圆锥曲线的公式1. 椭圆的标准方程及性质标准方程:$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ (a>b>0)性质:椭圆的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。

2. 双曲线的标准方程及性质标准方程:$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =1$ (a>0, b>0)性质:双曲线的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。

3. 抛物线的标准方程及性质标准方程:$y^{2} = 2px$ ($p > 0$)或$x^{2} = 2py$ ($p > 0$) 性质:抛物线的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。

三、圆锥曲线的应用1. 椭圆的应用:椭圆在光学、机械、工程等领域有着广泛的应用。

例如,椭圆镜片可以纠正近视和远视,椭圆形状的机械零件可以减少振动和提高稳定性。

2. 双曲线应用:双曲线在热学、光学、工程等领域有着广泛的应用。

例如,双曲线冷却塔可以优化散热效果,双曲线形状的桥梁可以增强承受能力。

2024高考数学专项复习圆锥曲线专题:调和点列-极点极线

2024高考数学专项复习圆锥曲线专题:调和点列-极点极线

圆锥曲线专题:调和点列-极点极线一、问题综述(一)概念明晰(系列概念):1.调和点列:如图,在直线l上有两基点A,B,则在l上存在两点C,D到A,B两点的距离比值为定值,即AC BC =ADBD=λ,则称顺序点列A,C,B,D四点构成调和点列(易得调和关系2AB=1AC+1AD)。

同理,也可以C,D为基点,则顺序点列A,C,B,D四点仍构成调和点列。

所以称A,B和C,D称为调和共轭。

2.调和线束:如图,若A,C,B,D构成调和点列,O为直线AB外任意一点,则直线OA,OC,OB,OD称为调和线束。

若另一直线截调和线束,则截得的四点A ,C ,B ,D 仍构成调和点列。

3.阿波罗尼斯圆:如图,A,B为平面中两定点,则满足APBP=λ(λ≠1)的点P的轨迹为圆O,A,B互为反演点。

由调和点列定义可知,圆O与直线AB交点C,D满足A,C,B,D四点构成调和点列。

4.极点极线:如图,A,B互为阿圆O反演点,则过B作直线l垂直AB,则称A为l的极点,l为A的极线.2024高考数学专项复习5.极点极线推广(二次曲线的极点极线):(1).二次曲线Ax 2+By 2+Cxy +Dx +Ey +F =0极点P (x 0,y 0)对应的极线为Ax 0x +By 0y +Cx 0y +y 0x 2+D x 0+x2+E y 0+y 2+F =0x 2→x 0x ,y 2→y 0y ,xy →x 0y +y 0x 2,x →x 0+x2,y →y 0+y 2(半代半不代)(2)圆锥曲线的三类极点极线(以椭圆为例):椭圆方程x 2a 2+y 2b 2=1①极点P (x 0,y 0)在椭圆外,PA ,PB 为椭圆的切线,切点为A ,B 则极线为切点弦AB :x 0xa 2+y 0yb 2=1;②极点P (x 0,y 0)在椭圆上,过点P 作椭圆的切线l ,则极线为切线l :x 0x a 2+y 0y b 2=1;③极点P (x 0,y 0)在椭圆内,过点P 作椭圆的弦AB ,分别过A ,B 作椭圆切线,则切线交点轨迹为极线x 0xa 2+y 0yb 2=1;(3)圆锥曲线的焦点为极点,对应准线为极线.(二)重要性质性质1:调和点列的几种表示形式如图,若A ,C ,B ,D 四点构成调和点列,则有AC BC =AD BD =λ⇔2AB =1AD +1AC⇔OC 2=OB ⋅OA ⇔AC ⋅AD =AB ⋅AO ⇔AB ⋅OD =AC ⋅BD性质2:调和点列与极点极线如图,过极点P作任意直线,与椭圆及极线交点M,D,N则点M,D,N,P成调和点列(可由阿圆推广)性质3:极点极线配极原则若点A的极线通过另一点D,则D的极线也通过A.一般称A、D互为共轭点.推广:如图,过极点P作两条任意直线,与椭圆分别交于点MN,HG,则MG,HN的交点必在极线上,反之也成立。

高中数学圆锥曲线之极点极线微专题一

高中数学圆锥曲线之极点极线微专题一

PART ONE
01 典 例 导 引
高考真题
曲线的极点极线理论
设椭圆 C :
x2 a2
y2 b2
1(a
b
0) 过点 M (
2,1) ,且着焦点为 F1(
2, 0)
(1)求椭圆 C 的方程;
(2)当过点 P(4,1) 的动直线 l 与椭圆 C 相交与两不同点 A, B 时,在线段 AB 上取点 Q ,
则 PA QA ;反之,若 PA QA 成立,则称点 P 与 Q 关于 调和共轭.
PB QB
PB QB
P 关于圆锥曲线 的调和共轭点的轨迹是一条直线,这条直线就是点 P 的极线.
推论 1 设点 P 关于圆锥曲线 的调和共轭点为点 Q ,则有 2 1 1 PQ PA PB
反之,若 2 1 1 成立,则点 P 与 Q 关于 调和共轭. PQ PA PB
推论 2: P,Q 是圆锥曲线 的一条对称轴 l 上两点(不在 上),若 P,Q 关于是圆锥 曲线 调和共轭,过 Q 任作 的一条割线,交 于点 A, B ,则 APQ BPQ
推论 3:设点 P 关于有心圆锥曲线 (设其中心为 O )的调和共轭点为点 Q ,直线 PQ 经过 圆锥曲线的中心,则有 OR2 OP OQ ,反之若有 OR2 OP OQ ,则点 P 与 Q 关于 有心圆锥曲线 调和共轭.
PB QB
又 A,P,B,Q 四点共线,从而 AP PB, AQ QB
于是 4 x1 x2 , 1 y1 y2 ; x x1 x2 , y y1 y2
1
1
1
1
从而 x12 2 x22 4x ,

y12
2y2
2
y

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式good

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式good

圆锥曲线的极坐标方程知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹.以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系.椭圆、双曲线、抛物线统一的极坐标方程为: θρcos 1e ep-=.其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆;当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线;当e=1时,方程表示开口向右的抛物线.引论(1)若 1+cos epe ρθ=则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线 (2 )若1-sin epe ρθ=当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线 当 e >1时!方程表示极点在上焦点的双曲线 (3)1+sin epe ρθ=当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线当 e >1时!方程表示极点在下焦点的双曲线(2)圆锥曲线弦长问题若圆锥曲线的弦MN 经过焦点F ,1、椭圆中,cb c c a p 22=-=,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=.2、双曲线中,(注释:双曲线问题比较特殊,很多参考书上均有误解。

)若M 、N 在双曲线同一支上,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=; 若M 、N 在双曲线不同支上,2222cos 2cos 1cos 1a c ab e ep e ep MN -=--+-=θθθ.3、抛物线中,θθπθ2sin 2)cos(1cos 1pp p MN =--+-=例1过双曲线22x y -145=的右焦点,引倾斜角为3π的直线,交双曲线与A 、B 两点,求AB ||解:根据题意,建立以双曲线右焦点为极点的极坐标系 即得 所以 又由得 注释:求椭圆和抛物线过焦点的弦长时,无需对 v 加绝对值,但求双曲线的弦长时,一定要加绝对值,这是避免讨论做好的方法。

圆锥曲线 基础知识 技巧套路 题型结论 极点极线

圆锥曲线 基础知识 技巧套路 题型结论 极点极线

圆锥曲线基础知识技巧套路题型结论极点极线圆锥曲线是解析几何中的重要组成部分,它包括椭圆、双曲线和抛物线。

掌握圆锥曲线的基本知识和解题技巧,对提高数学素养和解题能力具有重要意义。

本文将为您详细介绍圆锥曲线的基础知识、技巧套路、题型结论以及极点极线的应用。

一、基础知识1.定义:圆锥曲线是平面与圆锥面的交线。

根据平面与圆锥面的相对位置关系,可分为椭圆、双曲线和抛物线三种类型。

2.标准方程:- 椭圆:x^2/a^2 + y^2/b^2 = 1(a > b > 0)- 双曲线:x^2/a^2 - y^2/b^2 = 1(a > 0, b > 0)- 抛物线:y^2 = 2px(p > 0)或x^2 = 2py(p > 0)3.基本性质:- 椭圆:对称性、有界性、顶点、焦点、准线等;- 双曲线:对称性、无界性、顶点、焦点、准线等;- 抛物线:对称性、有界性、顶点、焦点、准线等。

二、技巧套路1.椭圆:- 求解椭圆上的点P(x, y)到焦点F1、F2的距离之和:|PF1| + |PF2| = 2a(椭圆的长轴)- 椭圆的切线方程:y = kx + m,代入椭圆方程,求解k和m。

2.双曲线:- 求解双曲线上的点P(x, y)到焦点F1、F2的距离之差:|PF1| - |PF2| = 2a(双曲线的实轴)- 双曲线的切线方程:y = kx + m,代入双曲线方程,求解k和m。

3.抛物线:- 抛物线的焦点:F(p/2, 0)(对于y^2 = 2px)或F(0, p/2)(对于x^2 = 2py)- 抛物线的切线方程:y = kx + m,代入抛物线方程,求解k和m。

三、题型结论1.椭圆:- 线段长度的最大值和最小值:与椭圆的长轴和短轴有关;- 面积的最大值和最小值:与椭圆的长轴和短轴有关。

2.双曲线:- 线段长度的最大值和最小值:与双曲线的实轴和虚轴有关;- 面积的最大值和最小值:与双曲线的实轴和虚轴有关。

圆锥曲线中的极点极线问题(学生版)-高中数学

圆锥曲线中的极点极线问题(学生版)-高中数学

圆锥曲线中的极点极线问题考情探究命题规律及备考策略【命题规律】本节内容是新高考卷的选考内容,设题不定,难度中等或偏难,分值为5-17分【备考策略】1.理解、掌握圆锥曲线极点极线的定义2.理解、掌握圆锥曲线的极点极线问题及其相关计算【命题预测】本节内容是新高考卷的常考内容,小题和大题都会作为载体命题,同学们要会结合公式运算,需强化训练复习知识讲解1.极点极线的定义如图,设P 是不在圆雉曲线上的一点,过P 点引两条割线依次交圆锥曲线于四点E ,F ,G ,H ,连接EH ,FG 交于N ,连接EG ,FH 交于M ,则直线MN 为点P 对应的极线.若P 为圆雉曲线上的点,则过P 点的切线即为极线.同理,PM 为点N 对应的极线,PN 为点M 所对应的极线.因而将△MNP 称为自极三点形.设直线MN 交圆锥曲线于点A ,B 两点,则P A ,PB 恰为圆锥曲线的两条切线.2.其他定义对于圆锥曲线C :Ax 2+Bxy +Cy 2+Dx +Ey +F =0,已知点P x 0,y 0 (非中心)及直线l :Ax 0x +B ⋅x 0y +y 0x 2+Cy 0y +D ⋅x +x 02+E ⋅y 0+y 2+F =0,则称点P x 0,y 0 是直线l 关于圆锥曲线C 的极点,直线l 称为点P 关于圆锥曲线C 的极线。

配极原则:共线点的极线必共点,共点线的极点必共点。

3.替换原则x0x →x 2,x 0y +y 0x 2→xy ,y 0y →y 2,x +x 02→x ,y +y 02→y .4.极点极线的几何意义(以椭圆为例)已知椭圆方程:x2a2+y2b2=1,设点P x0,y0的极线l:x0xa2+y0yb2=1.(1)当点P x0,y0在椭圆上时,极线l是以点P为切点的切线。

(极点在极线上)(2)当点P在椭圆外时,极线l与椭圆相交,且为由P点向椭圆所引切线的切点弦所在直线。

(3)当点P在椭圆内时,极线l与椭圆相离,极线l为经过点P的弦在两端点处的切线交点的轨迹,且极线l与以点P为中点的弦所在的直线平行。

高中数学极点极线及高中圆锥曲线必备公式

高中数学极点极线及高中圆锥曲线必备公式

极点极线定义已知圆锥曲线С: Ax +By +Cx+Dy+E=0与一点P(x0,y 0) [ 其中 A +B x0+x≠0,点.P.不.在.曲.线.中.心.和.渐.近.线.上.]. 则称点P 和直线L:A?x0x+B?y0y+C? 2 +D?y2+y+E=0是圆锥曲线С的一对极点和极线x0+x y0+y 即在圆锥曲线方程中, 以x0x 替换x ,以2替换x,以y0y 替换y , 以2替换y 则可得到极点P(x0,y 0) 的极线方程L.特别地:(1) 对于圆(x-a) +(y-b) =r , 与点P(x 0 ,y 0) 对应的极线方程为(x 0-a)(x-a)+(y 0-b)(y-b)=r ;x y x0x y0y(2) 对于椭圆+ =1,与点P(x0,y 0)对应的极线方程为0 + 0 =1 ;a b a bx y x 0x y 0y(3) 对于双曲线 a -b =1,与点 P(x 0,y 0)对应的极线方程为 a 0 -b 0 =1 ;(4) 对于抛物线 y =2px ,与点 P(x 0,y 0) 对应的极线方程为 y 0y=p(x 0+x) ; 性质 一般地,有如下性质 [焦.点.所.在.区.域.为.曲.线.内.部. ]: ① 若极点 P 在曲线С上,则极线 L 是曲线С在P 点的切线;② 若极点 P 在曲线С外,则极线 L 是过极点 P 作曲线С的两条切线的切点连线;③ 若极点 P 在曲线С内,则极线 L 在曲线С外且与以极点 P 为中点的弦平行 [仅是 斜率相 等 ]( 若是 圆 , 则此时中 点 弦的 方程 为(x 0-a)(x-a)+(y 0-b)(y-b)=x 0x y 0y x 0 y 0;若是椭圆,则此时中点弦的方程为 a x x +b y y =x a +y bx 0x y 0y x 0 y 0双曲线,则此时中点弦的方程为 a x0x -b y0y =x a 0 -y b 0 ;若是抛物线 ,则此时中点弦的 方程为 y 0y-p(x 0+x)=y 0 -2px 0) ;(x 0-a) +(y 0-b) 若是④当P(x0,y 0)为圆锥曲线的焦点F(c,0) 时,极线恰为该圆锥曲线的准线..;⑤极点极线的对偶性:Ⅰ.已知点P和直线L是关于曲线С的一对极点和极线,则L上任一点Pn对应的极线Ln必过点P,反之亦然,任意过点P的直线Ln对应的极点Pn必在直线L上[图.Ⅱ.过点P作曲线C的两条割线L1、L2,L1交曲线C于AB,L2交曲线C于MN,则直线AM、BN的交点T,直线AN、BM的交点S必都落在点P 关于曲线C的极线L 上[ 图.中.点.P.与.直.线.S..T是.一.对.极.点.极.线.;.点.T.与.直.线.S..P是.一.对.极.点.极.线.] ;即OP = OR OROQⅢ. 点 P 是曲线 C 的极点,它对应的极线为 L ,则有 :1)若C 为椭圆或双曲线,O 是C 的中心,直线 OP 交C 与R ,交L 于Q ,则OP?OQ=OR如图中学数学中极点与极线知识的现状与应用虽然中学数学中没有提到极点极线,但事实上,它的身影随处可见,只是没有点破而已.教材内改名换姓,“视”而不“见” .由④可知椭圆x a +y b =1的焦点的极a线方程为: x= . 焦点与准线是圆锥曲线一章中的核心内容, 它揭示了圆锥曲线c的统一定义, 更是高考的必考知识点. 正是因为它太常见了, 反而往往使我们“视”而不“见” .圆锥曲线基础必备1、长轴短轴与焦距,形似勾股弦定理长轴=2“,短轴= 2b,焦距= 2c.则:a2 =b2 -^c2 1、准线方程准焦距.〃方、"方涂以r..& 0・ 刁2sm —cos — sm 0_ 2 2 1 +cos0 2 cos 2—2 & 所以:椭圆的焦点三角形的面积为S 胚恶=b tail-.4.焦三角形计面积"半角正切進乘焦三角形:以椭圆的两个焦点巧・耳为顶点,另一个顶点」 在椭圆上的三角形称为焦三角形•半角是指—Z 与P 巧的一半. 则焦三角形的面积为: 证明:设阿| =小|昭| = S 由余弦定理:m 2 +n 2 - 2mn cos^= 4c 2=4a即:-2mn - = 2mn - 4b 2,故: Sgf =-m n sin0 =-』+ cos& l + cos0又:0 =tan —三、椭圆的相关公式 切线平分焦周角, 切点连线求方程, 弦与中线斜率积, 细看中点弦方程,称为弦切角定理① 极线屯理须牢记② 准线去除准焦距③ 恰似弦中点轨迹④艮卩:2D = (1+ cos0)mn .1、 切线平分焦周角,称为弦切角定理弦切角定理:切线平分椭圆焦周角的外角,平分双 曲线的焦周角.焦周角是焦点三角形中,焦距所对应的角.弦切角是指椭圆的弦与其切线相交于椭圆上时它 们的夹角,当弦为焦点弦时(过焦点的弦),那么切 线是两个焦点弦的角平 分线.第6页2. 切点连线求方程,圾线定理须牢记若旳(X05)在椭圆卡+$ = 1外,则过昨作椭圆的两 条切线,切点、为P 』,巧,则点耳和切点弦马•勺分别称 为椭圆的极点和极线.切点弦耳乃的直线方程即极线方程是笫?页3、弦与中线斜■率积.准线去涂准焦距|弦指椭圆内的一弦•中线指弦AB 的中点M 与 原点O 的连线,即2AB 得中线•这两条直线的斜率的VY - Q 2於乘积,等于准线距离去除准焦^p= — .其k k_ p 结杲是:0M = T =~V第8页(称为极线定理)4、细看中点弦方程,恰似弦中点、轨迹|中点、弦AB 的方程:在椭圆中,若弦的中点、为弦仙称为中点弦,则中点弦的方程就是弦中点M 的轨迹方程:在椭圆中,过椭圆内点 p 皿、m 的弦AB , 其中点、M 的方程就是 S . y o y … /( y 2. 一7*+矿二正+歹,仍为椭圆.这两个方程有些相似,要擦亮眼睛,千万不要搞 混了.第9页是直线方程.圆锥曲线必背口诀(红字为口诀)-双曲线一、双曲线定义双曲线有四定义.差比交线反比何1、定义1:(差)平面内,到两个定点唇码的距离之差的绝对值为定值2“(小于这两个定点间的距离冈砂)的点的轨迹称为双曲线。

数学复习:极点极线

数学复习:极点极线

通俗来讲:对于圆锥曲线Γ外或内一点K 来说,其对应的极线即为:过点K 作Γ的两条割线所交的四个点两两相连再延长后,形成的除K 以外的两个交点所在的直线. 注1:若点K 在圆锥曲线Γ上,则在点K 处的切线即为极线注2:若FH//EG ,即交不到点M ,则点K 对应的极线过点N 且与FH 或EG 平行. 第二几何定义:(i)P (x 0,y 0)在圆锥曲线上,极线即为点P 处的切线;(ii)P (x 0,y 0)在圆锥曲线外,极线即为过点P 处的两条切线的切点弦;(iii)点P (x 0,y 0)在圆锥曲线Γ内,其极线l 是曲线Γ过点P 的割线两端点处的切线交点的轨迹 代数定义:已知圆锥曲线C:Ax 2+Cy 2+Dx +Ey +F =0,一点P (x 0,y 0), 直线l:Ax 0x +Cy 0y +Dx 0+x 2+Ey 0+y 2+F =0,则l 为P 关于C 的极线,P 为l 关于C 的极点.P (x 0,y 0)是平面上任一点,点P (x 0,y 0)对应的极线为数学复习:极点极线第一几何定义:如图过圆锥曲线Γ外一点上P 作两条割线依次交圆锥曲线Γ于E,F,G,H 四点,且EH ∩FG =N ,延长FH,EG 交于M ,则直线MN 即为点P 对应的极线,同理,极点M 对应的极线为NP ,极点N 对应的极线为PM,ΔMNP 称为自极三点形.l(1)椭圆x2a 2+y 2b2=1,极线l:x 0x a 2+y 0y b 2=1(2)双曲线:x 2a 2−y 2b2=1,极线l:x 0x a 2−y 0y b 2=1(3)抛物线:y 2=2px ,极线l:y 0y =p (x 0+x )特殊的极点与极线(1)椭圆:x 2a 2+y 2b 2=1(a >b),点M(m,0)在椭圆中对应的极线方程为x =a 2m(2)双曲线:x 2a 2−y 2b 2=1,点M(m,0)对应的极线方程为x =a 2m(3)抛物线:y 2=2px ,点M(m,0)对应的极线方程为x =−m更特别地,圆锥曲线的焦点与其相应的准线是该圆锥曲线的一对极点与极线 (1)对于椭圆x 2a 2+y 2b 2=1(a >b),焦点F(±c,0)对应的极线方程为x =±a 2c (2)对于双曲线x 2a 2−y 2b 2=1,焦点F(±c,0)对应的极线方程为x =±a 2c(3)对于抛物线y 2=2px ,焦点F (p 2,0)对应的极线方程为x =−p 2核心性质1:配极原理给定平面内一圆锥曲线 C ,若点 P 关于 C 的极线过点 Q ,则点 Q 关于 C 的极线也过点 P ,如所示 .配极原则的一个等价命题:已知一圆锥曲线C,如果平面内有一直线d,直线d上有一动点P,P点关于C的极线为l,如图所示 .核心性质2:调和点列给定圆锥曲线T,点P(不在T上)对应的极线为lp ,过点P任意作一条直线1交lp于点Q,交r于A,B,则点P,A,Q,B为调和点列.调和点列定义已知点P,A,Q,B为直线上依次四点,且满足|AP||PB|=|AQ||QB|(等价于2|PQ|=1 |PA|+1|PB|或者2|QP|=1|QA|−1|QB|), 则称P,A,Q,B为调和点列。

备战高考数学复习常用圆锥曲线公式

备战高考数学复习常用圆锥曲线公式

备战2019高考数学复习常用圆锥曲线公式圆锥曲线包括圆,椭圆,双曲线,抛物线。

以下是常用圆锥曲线公式,请考生及时学习。

抛物线:y = ax *+ bx + c就是y等于ax 的平方加上bx再加上ca 0时开口向上a 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F0常用圆锥曲线公式的全部内容就是这些,查字典数学网预祝考生取得优异的成绩。

语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。

如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。

现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。

结果教师费劲,学生头疼。

分析完之后,学生收效甚微,没过几天便忘的一干二净。

造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。

常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。

久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。

一般说来,“教师”概念之形成经历了十分漫长的历史。

圆锥曲线极点与极线的一组性质

圆锥曲线极点与极线的一组性质

上 ,所 以有 + Cy +2Dx。+2Ey。+F一 0,代
入 切 线 方 程 ,化 简 得 切 线 方 程 为 。z+ Cy。 +
D(x+ 。)+E(y+y。)+ F一 0,极线 z就是 曲线
C 在 点 P 处 的 切 线 ;
(2)设 M( ,Y )、N(x2,Y2),由(1)得 曲线在点
b> 0)、抛物线 Y 一 2px(P> 0))的一个极 点 ,
它对 应 的极 线为 L. (1)若 r为椭 圆或双 曲线 ,OP(0为中心 )或
0P 的 延 长 线 交 r 于 R,交 L 于 点 Q,则 l(_)P l·l∞ l— l OR l ;
(2)若 I1为抛 物线 ,l是 r在顶 点 0处 的切 线 (即 Y轴 ),过 点 P 作 f的 垂 线 ,交 L于 Q,交 r于 R,则 l PR l— l QR 1.
一 0,又 点 Q( ,Y )在 直 线 z上 ,所 以 Ax。z +
Cy 0Yl+ D(xl 4-z。)+ E(yl+ Y。)+ F 一 0,由 以
上两 式 知 点 Q( ,y )在 直 线 MN 上 ,即 直 线
MN 必 过 极 点 P.
例 1 已 知 圆 + Y 一 1和 圆 外 一 点 P(2,
直 线 MN 过 点 P,所 以 有 Alnx。+ Cny o十 D(xo+
)+E(Y。+ )+F— O,故 曲线 C在 M 、N 两 点
处 的 两 条 切 线 的 交 点 Q 在 极 线 z上 .
(4)设 点 Q( ,Y ),由 (2)知 直 线 MN 的 方
程 为 Axl + CylY+ D( + 1)+ E(y+ y1)+ F
(4)若 过极 线 上一点 Q 可作 C的两条 切线 , M 、.N 为切点 ,则直线 MN 必过 极点 P.

圆锥曲线的极坐标方程 焦半径公式 焦点弦公式

圆锥曲线的极坐标方程 焦半径公式 焦点弦公式

椭圆、 曲线、抛物线统一的极坐标方程为
ρ = ep . 1 − e cosθ
其中 p 是定点 F 到定直线的距离,p>0 .
当 0 e 1 时,方程表示椭圆
当 e>1 时,方程表示 曲线,若ρ>0,方程只表示 曲线右支,若允
许ρ 0,方程就表示整个 曲线
当 e=1 时,方程表示开口向右的抛物线.
二、圆锥曲线的焦半径公式
推论 若圆锥曲线的弦 MN 过焦点 F,则有 1 + 1 = 2 . MF NF ep
、圆锥曲线的焦点弦长 若圆锥曲线的弦 MN 过焦点 F,
1、椭圆中, p = a 2 − c = b2 , MN = ep +
ep
= 2ab2 .
c
c
1− ecosθ 1− ecos(π −θ) a2 − c2 cos2 θ
圆锥曲线的极坐标方程、焦半径公式、焦点弦公式
湖北省天门中学 薛德斌
一、圆锥曲线的极坐标方程
椭圆、 曲线、抛物线可以统一定义为 一个定点(焦点)的距离和一条定
直线(准线)的距离的比等于常数 e 的点的轨迹.
以椭圆的左焦点( 曲线的右焦点、抛物线的焦点)为极点,过点 F 作相
应准线的垂线,垂足为 K,以 FK 的 向延长线为极轴建立极坐标系.
3、抛物线中, MN = p +
p
= 2p .
1 − cosθ 1 − cos(π − θ ) sin 2 θ
四、直角坐标系中的焦半径公式 设 P x,y 是圆锥曲线 的点,
1、若 F1、F2 分别是椭圆的左、右焦点,则 PF1 = a + ex ,、 F2 分别是 曲线的左、右焦点,
设 F 为椭圆的左焦点( 曲线的右焦点、抛物线的焦点),P 为椭圆( 曲线 的右支、抛物线) 任一点,则

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式 湖北省天门中学 薛德斌一、圆锥曲线的极坐标方程椭圆、 曲线、抛物线可以统一定义为 一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹.以椭圆的左焦点( 曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K,以FK 的 向延长线为极轴建立极坐标系.椭圆、 曲线、抛物线统一的极坐标方程为 θρcos 1e ep −=. 其中p 是定点F 到定直线的距离,p>0 .当0 e 1时,方程表示椭圆当e>1时,方程表示 曲线,若ρ>0,方程只表示 曲线右支,若允许ρ 0,方程就表示整个 曲线当e=1时,方程表示开口向右的抛物线.二、圆锥曲线的焦半径公式设F 为椭圆的左焦点( 曲线的右焦点、抛物线的焦点),P 为椭圆( 曲线的右支、抛物线) 任一点,则 PQ e PF =, )cos (p PF e PF +=θ,其中FH p =,=θ x 轴,FP 焦半径θcos 1e ep PF −=. 当P 在 曲线的左支 时,θcos 1e ep PF +−=. 推论 若圆锥曲线的弦MN 过焦点F,则有epNF MF 211=+.、圆锥曲线的焦点弦长若圆锥曲线的弦MN 过焦点F, 1、椭圆中,cb c c a p 22=−=,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN −=−−+−=. 2、 曲线中,若M、N 在 曲线同一支 ,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN −=−−+−= 若M、N 在 曲线 同支 ,2222cos 2cos 1cos 1a c ab e ep e ep MN −=−−+−=θθθ. 3、抛物线中,θθπθ2sin 2)cos(1cos 1p p p MN =−−+−=. 四、直角坐标系中的焦半径公式设P x,y 是圆锥曲线 的点,1、若1F 、2F 分别是椭圆的左、右焦点,则ex a PF +=1,ex a PF −=22、若1F 、2F 分别是 曲线的左、右焦点,当点P 在 曲线右支 时,a ex PF +=1,a ex PF −=2 当点P 在 曲线左支 时,ex a PF −−=1,ex a PF −=23、若F 是抛物线的焦点,2p x PF +=.。

极点与极线法解高中圆锥曲线

极点与极线法解高中圆锥曲线

极点与极线法解高中圆锥曲线极点与极线在高等几何中是重要的概念,虽然不是《高中数学课程标准》规定的研究内容,也不属于高考考查的范围,但由于极点与极线是圆锥曲线的一种基本特征,因此在高考试题中必然会有所涉及,自然也会成为高考试题的命题背景。

从几何角度来看,极点与极线的定义如下:设P是不在圆锥曲线上的一点,过P点引两条割线依次交圆锥曲线于四点E、F、G、H,连接EH、FG交于N,连接EG、FH交于M,则直线MN为点P对应的极线。

若P为圆锥曲线上的点,则过P点的切线即为极线。

由图1同理可知,PM为点N对应的极线,PN为点M所对应的极线。

因此,将MNP称为自极三点形。

设直线MN交圆锥曲线于点A、B两点,则PA、PB 恰为圆锥曲线的两条切线。

定理1如图1,当P在圆锥曲线上时,则点P的极线是曲线在P点处的切线;当P在圆锥曲线外时,过点P作圆锥曲线的两条切线,设其切点分别为A、B,则点P的极线是直线AB(即切点弦所在的直线);当P在圆锥曲线内时,过点P任作一割线交圆锥曲线于A、B,设圆锥曲线在A、B处的切线交于点Q,则点P的极线是动点Q的轨迹。

定理2如图2,设点P关于圆锥曲线的极线为l,过点P任作一割线交圆锥曲线于A、B,交l于Q,则①成立;反之,若有①成立,则称点P、Q调和分割线段AB,或称点P与Q关于圆锥曲线的调和共轭,或称点P(或点Q)关于圆锥曲线的调和共轭点为点Q(或点P)。

点P关于圆锥曲线的调和共轭点是一条直线,这条直线就是点P的极线。

推论1如图2,设点P关于圆锥曲线的调和共轭点为点Q,则有②成立;反之,若有②成立,则点P与Q关于圆锥曲线调和共轭。

可以证明,①与②是等价的。

事实上,由①可得到②,由②可得到①。

特别地,我们还有推论2如图3,设点P关于有心圆锥曲线(其中心为O)的调和共轭点为点Q,PQ连线经过圆锥曲线的中心,则有OR²=OP×OQ,反之若有此式成立,则点P与Q关于圆锥曲线调和共轭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极点极线
定义 已知圆锥曲线С: A x
+B y
+C x +D y +E=0与一点P(x 0,y 0) [其中A
+B ≠0,点.P .不在曲线中心和渐近线上...........].则称点P 和直线L: A ∙x 0x +B ∙y 0y +C ∙x 0+x 2
+D ∙y 0+y 2+E=0是圆锥曲线С的一对极点和极线.
即在圆锥曲线方程中,以x 0x 替换x
,以x 0+x 2
替换x ,以y 0y 替换y
,以
y 0+y
2
替换y 则可得到极点P(x 0,y 0)的极线方程L.
特别地:
(1)对于圆(x-a)
+(y-b)
=r ,与点P(x 0,y 0)对应的极线方程为
(x 0-a)(x-a)+(y 0-b)(y-b)=r ;
(2)对于椭圆
x a +y b
=1,与点P(x 0,y 0)对应的极线方程为x 0x a +y 0y
b
=1 ;
(3)对于双曲线x
a
-
y
b
=1,与点P(x0,y0)对应的极线方程为
x0x
a
-
y0y
b
=1;
(4)对于抛物线y=2px,与点P(x0,y0)对应的极线方程为y0y=p(x0+x);
性质一般地,有如下性质[焦点所在区域为曲线内部
...........]:
①若极点P在曲线С上,则极线L是曲线С在P点的切线;
②若极点P在曲线С外,则极线L是过极点P作曲线С的两条切线的切点连线;
③若极点P在曲线С内,则极线L在曲线С外且与以极点P为中点的弦平行[仅是斜率相等]( 若是圆,则此时中点弦的方程为(x0-a)(x-a)+(y0-b)(y-b)=
(x0-a)+(y0-b);若是椭圆,则此时中点弦的方程为x0x
a +
y0y
b
=
x0
a
+
y0
b
;若是
双曲线,则此时中点弦的方程为x0x
a
-
y0y
b
=
x0
a
-
y0
b
;若是抛物线,则此时中点弦的
方程为y0y-p(x0+x)=y0-2px0);
④当P(x0,y0)为圆锥曲线的焦点F(c,0)时,极线恰为该圆锥曲线的准线
..;
⑤极点极线的对偶性:
Ⅰ.已知点P和直线L是关于曲线С的一对极点和极线,则L上任一点Pn对应的极线Ln必过点P,反之亦然,任意过点P的直线Ln对应的极点Pn必在直线L上[图.
中点
..Ln..是一对极点极线
.......];
..P.n.与.直线
Ⅱ.过点P作曲线C的两条割线L1、L2,L1交曲线C于AB,L2交曲线C于MN,则直线AM、BN的交点T,直线AN、BM的交点S必都落在点P关于曲线C的极线L
上 [图中点
.......] ;
...SP..是一对极点极线...P.与.直线
..ST..是一对极点极线;点
.........T.与直线
Ⅲ. 点P 是曲线C 的极点,它对应的极线为L ,则有: 1)若C 为椭圆或双曲线,O 是C 的中心,直线OP 交C 与R ,交L 于Q ,则OP ∙OQ=OR 即OP OR = OR OQ 椭圆如图
双曲线如图
2) 若曲线为抛物线,过点P 作对称轴的平行线交C 于R ,交L 于Q ,则PR=QR 如图
中学数学中极点与极线知识的现状与应用
虽然中学数学中没有提到极点极线,但事实上,它的身影随处可见,只是没有点破
而已.教材内改名换姓,“视”而不“见”.由④可知椭圆x
a
+
y
b
=1的焦点的极
线方程为: x=a
c
.焦点与准线是圆锥曲线一章中的核心内容,它揭示了圆锥曲线
的统一定义,更是高考的必考知识点.正是因为它太常见了,反而往往使我们“视”而不“见”.
圆锥曲线基础必备
极点极线例题。

相关文档
最新文档