离散信号的产生及运算

合集下载

实验1 常见离散信号产生和实现

实验1 常见离散信号产生和实现

(clf;--clc;clear;)实验1 常见离散信号产生和实现一、实验目的:1、加深对常用离散信号的理解;2、掌握matlab 中一些基本函数的建立方法。

二:matlab 使用1)创建M 文件 File-→New-→M-file 2)运行 Debug->run注:在试验过程中若有某些函数不懂,可以通过Help->search->输入要查询的函数名即可二、实验原理:1.单位抽样序列⎩⎨⎧=01)(n δ≠=n n 在MATLAB 中可以利用zeros()函数实现。

;1)1();,1(==x N zeros x如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ≠=n kn 2.单位阶越序列⎩⎨⎧01)(n u00<≥n n 在MATLAB 中可以利用ones()函数实现。

);,1(N ones x = %一个长度为N 的零矩阵3.正弦序列)/2sin()(ϕπ+=Fs fn A n x在MATLAB 中)/***2sin(*1:0fai Fs n f pi A x N n +=-=4.复指数序列n j e r n x ϖ⋅=)(在MATLAB 中)**exp(1:0n w j r x N n ⋅=-=5.指数序列n a n x =)(在MATLAB 中na x N n .^1:0=-=三、实验内容实现和图形生成1、五种基本函数的生成程序如下:(1)、单位抽样序列% 单位抽样序列和延时的单位抽样序列 clf; % Clear current figure window n=0:10;x1=[1 zeros(1,10)];x2=[zeros(1,5) 1 zeros(1,5)]; subplot(1,2,1);stem(n,x1);xlabel ('时间序列n');ylabel('振幅');title('单位抽样序列x1'); subplot(1,2,2);stem(n,x2); xlabel('时间序列n');ylabel('振幅');title('延时了5的单位抽样序列');(2)、单位阶越序列clf;n=0:10;u=[ones(1,11)];stem(n,u);xlabel ('时间序列n');ylabel('振幅');title('单位阶越序列');所得的图形如下所示:(3)正弦函数clf;n=1:30;x=2*sin(pi*n/6+pi/3);stem(n,x); xlabel ('时间序列n');ylabel('振幅');title('正弦函数序列x=2*sin(pi*n/6+pi/3)');(4)、复指数序列clf;n=1:30;x=2*exp(j*3*n);stem(n,x); xlabel ('时间序列n');ylabel('振幅');title('复指数序列x=2*exp(j*3*n)'); 图形如下:(5)指数序列 clf; n=1:30; x=1.2.^n;stem(n,x); xlabel ('时间序列n');ylabel('振幅');title('指数序列x=1.2.^n');2、绘出信号zne n x =)(,当6)12/1(πjz +-=、6)12/1(πjz +=时、121=z 、62πjz +=、6πjz =时的信号实部和虚部图;程序如下: clf;z1=-1/12+j*pi/6;z2=1/12+j*pi/6;z3=1/12;z4=2+j*pi/6;z5=j*pi/6; n=0:20;x1=exp(z1*n);x2=exp(z2*n); x3=exp(z3*n);x4=exp(z4*n); x5=exp(z5*n); subplot(5,2,1);stem(n,real(x1)); xlabel ('时间序列n');ylabel('实部');title('复指数z1=-1/12+j*pi/6时序列实部'); subplot(5,2,2);stem(n,imag(x1)); xlabel ('时间序列n');ylabel('虚部');title('复指数z1=-1/12+j*pi/6时序列虚部'); subplot(5,2,3);stem(n,real(x2)); xlabel ('时间序列n');ylabel('实部');title('复指数z2=1/12+j*pi/6时序列实部');subplot(5,2,4);stem(n,imag(x2)); xlabel ('时间序列n');ylabel('虚部');title('复指数z2=1/12+j*pi/6时序列虚部'); subplot(5,2,5);stem(n,real(x3)); xlabel ('时间序列n');ylabel('实部');title('复指数z3=1/12时序列实部'); subplot(5,2,6);stem(n,imag(x3)); xlabel ('时间序列n');ylabel('虚部');title('复指数z3=1/12时序列虚部'); subplot(5,2,7);stem(n,real(x4)); xlabel ('时间序列n');ylabel('实部');title('复指数z4=2+j*pi/6时序列实部'); subplot(5,2,8);stem(n,imag(x4)); xlabel ('时间序列n');ylabel('虚部');title('复指数z4=2+j*pi/6时序列虚部'); subplot(5,2,9);stem(n,real(x5)); xlabel ('时间序列n');ylabel('实部');title('复指数z5=j*pi/6时序列实部'); subplot(5,2,10);stem(n,imag(x5)); xlabel ('时间序列n');ylabel('虚部');title('复指数z5=j*pi/6时序列虚部');由上图的实部部分可以看出,Z=pi/6时,序列周期为12。

数字信号处理复习 (3)

数字信号处理复习 (3)

式。
4、正弦型序列
x(n) sin(n )
要求:会判断正弦型序列的周期性
四、正弦序列的周期性
x(n) sin(n ) 的周期有三种情况:
2 1 、 N 是整数,则x(n)是周期序列,周期为N;
2 P 2、 是有理数,(其中P、Q为互质整数), Q
则x(n)是周期序列,周期为P;
m
x ( m) h ( n m)

上式中,若序列x(n)和h(n)的长度分别是M和L,
则y(n)的长度为L+M-1。
三、几种常用序列 1、单位抽样序列δ(n) (1)定义式
1 (n 0) ( n) 0 (n 0)
1 (n m) ( n m) 0 (n m)
n
1.2 线性、移不变(LSI)系统 一、线性系统: 若y1(n)=T[x1(n)]、y2(n)=T[x2(n)], 则a1 y1(n)+ a2y2(n)=T[a1x1(n)+ a2x2(n)]
例:判断下列系统是否线性系统。
y(n)=x(n)+1 y(n)=x(n+5) y(n)=x(3n)
二、移不变系统:
当n<0时,h(n)=0,则系统是因果系统。
例:下列单位抽样响应所表示的系统是否因果系统? A.h(n)=δ(n) C.h(n)= R10(n) B.h(n)=u(n) D.h(n)=e-20nu(n)
五、稳定系统 1、稳定系统的定义: 稳定(BIBO)系统是指当输入有界时,输出也有界的系统。 例:判断下列系统是否稳定系统。 y(n)=x(n-2)
二、掌握用留数法求Z反变换的方法
例:已知
X( z) 1 (1 2 z 1 )(1 1.2 z 1 )

使用matlab来实现 时域离散信号的产生实验心得

使用matlab来实现 时域离散信号的产生实验心得

使用matlab来实现时域离散信号的产生实验心得【标题】使用Matlab实现时域离散信号的产生实验心得【导语】在信号与系统课程的学习中,时域离散信号的产生是一个重要的实验内容。

本文将结合个人实验经验,探讨如何使用Matlab来实现时域离散信号的产生,以及实验心得体会。

【主体内容】一、时域离散信号的概念时域离散信号是指信号在时域上是离散的,其取样时间是离散的。

与连续信号相对应,离散信号具有一些独特的特性和处理方法。

在实际应用中,我们经常需要生成各种形式的时域离散信号,用于系统模拟、滤波器设计等方面。

二、Matlab在时域离散信号产生中的应用1. 生成简单的离散信号在Matlab中,可以利用基本的数学函数和操作符来生成简单的离散信号。

可以利用sin、cos等函数来生成正弦信号、余弦信号,利用随机数函数来生成随机信号等。

Matlab还提供了丰富的绘图函数,可以直观地展示生成的离散信号。

2. 生成复杂的离散信号除了基本的数学函数外,Matlab还提供了丰富的信号处理工具箱,可以用于生成各种复杂的离散信号。

可以利用波形合成函数生成有限长序列、周期序列等特殊形式的信号;还可以利用滤波器设计函数生成特定频率特性的信号等。

三、实验心得与体会在实验中,我深切体会到Matlab在时域离散信号生成方面的强大功能和便捷性。

通过Matlab,我能够快速生成各种形式的离散信号,并对其进行分析、处理和展示。

Matlab的直观、交互式界面也使得实验过程更加高效和愉悦。

在实践中,我也发现了一些问题和经验总结。

在生成复杂离散信号时,需要深入理解各种信号处理工具箱的使用方法,以及不同函数的参数设置;在展示离散信号时,需要注意选择合适的绘图方式,清晰地展现信号的特点和规律。

【总结与回顾】本文通过介绍时域离散信号的概念和Matlab在信号生成中的应用,共享了个人的实验心得和体会。

希望能够对读者有所启发,开拓视野,加深对时域离散信号的理解和掌握。

离散信号的产生、显示及离散序列的卷积和matlab实现

离散信号的产生、显示及离散序列的卷积和matlab实现

离散信号的产生、显示及离散序列的卷积和matlab实现离散信号的产生可以通过一个生成离散序列的函数来实现。

Matlab提供了一些内置的函数来生成常见的离散信号,例如单位阶跃函数(heaviside)、单周期方波(square)、正弦信号(sin)、脉冲(impulse)等。

离散信号的显示可以使用Matlab的plot函数来实现。

将离散序列作为函数的输入参数,然后使用plot函数绘制出序列的图像。

离散序列的卷积可以使用conv函数来实现。

conv函数接受两个输入信号,并返回它们的离散卷积结果。

下面是一个示例代码演示离散信号的产生、显示和离散序列的卷积:```matlab% 产生离散信号n = 0:1:9; % 定义离散点的范围x1 = heaviside(n-2); % 单位阶跃函数x2 = square(n); % 单周期方波x3 = sin(n); % 正弦信号% 显示离散信号figure;subplot(3,1,1);stem(n, x1);title('单位阶跃函数');subplot(3,1,2);stem(n, x2);title('单周期方波');subplot(3,1,3);stem(n, x3);title('正弦信号');% 离散序列的卷积h = [1, 2, 1]; % 卷积核y = conv(x3, h); % 卷积运算figure;subplot(2,1,1);stem(x3);title('输入信号');subplot(2,1,2);stem(y);title('卷积结果');```在上面的代码中,首先定义了离散序列的范围n,然后使用内置函数生成了三个不同的离散信号x1、x2和x3。

接下来,使用subplot函数将三个离散信号的图像显示在一个图形窗口中。

最后,定义了一个卷积核h,并使用conv函数对x3进行卷积运算,得到卷积结果y。

信号与系统-离散信号与系统

信号与系统-离散信号与系统

(1)
y (k + 3) − 2 2 y (k + 2) + y (k + 1) + 0 y (k ) = f (k ) 1 y (k + 2) − y (k + 1) + y (k ) = f (k ) 4
(2)
解:用转移算子法求。
1 (1) H ( E ) = 3 2 E − 2 2E + E 1 = E ( E − 2 − 1)( E − 2 + 1) 1 1 1 2( 2 + 1) 2( 2 − 1) = + − E E − 2 −1 E − 2 + 1
f ( n )= ∑ i=-∞ f(i) ∗ δ (k-i)=f(n) ∗ δ (n)

四 离散信号的卷积和
l 定义
f1 (n) ∗ f2 (n)=∑i=-∞ f1 (i) ∗ f2 (k-i)=∑i=-∞ f2 (i) ∗ f1 (k-i)
∞ ∞
l 上下限范围
– 当f1(n), f2(n)均为因果序列
yh (n) =
l
l

K
N i =1
A iα
n i
i −1 n yh (n) = ∑i =+1 An α1 + ∑i=k +1 Aiαin i N
l l l
将所求得的强迫解和自由解相加,即可得到全响应 将给定的全响应的初始值代入到方程中,已确定待定系数 将所求得的待定系数带入到全响应方程中
例:求下列差分方程所 描述的系统的单位响应 h(k)
1 故h(k) =δ (k −1) +[ ( 2 +1)k−1 − 2( 2 +1) 1 k−1 ( 2 −1) ]U(k −1) 2( 2 −1) 1 k−2 1 k−2 =δ (k −1) +[ ( 2 +1) − ( 2 −1) ]U(k −2) −δ (k −1) 2 2 1 k−2 k−2 = [( 2 +1) −( 2 −1) ]U(k −2) 2

时域离散信号的产生与基本运算

时域离散信号的产生与基本运算

实验一 时域离散信号的产生与基本运算一、实验目的1、了解常用的时域离散信号及其特点。

2、掌握MATLAB 产生常用时域离散信号的方法。

3、掌握时域离散信号简单的基本运算方法。

二、实验内容1、自己设定参数,分别表示并绘制单位抽样序列、单位阶跃序列、正弦序列、 实指数序列、随机序列。

2、自己设定参数,分别表示并绘制信号移位、信号相加、信号相乘、信号翻转、 信号和、信号积、信号能量。

3、已知信号(1) 描绘)(n x 序列的波形。

(2) 用延迟的单位脉冲序列及其加权和表示)(n x 序列。

(3) 描绘以下序列的波形:)2()(),2(2)(),2(2)(321n x n x n x n x n x n x -=+=-=三、实现步骤1、自己设定参数,分别表示并绘制单位抽样序列、单位阶跃序列、正弦序列、 实指数序列、随机序列。

(1)单位抽样序列程序:x=zeros(1,10);x(2)=1;stem(x,'filled')axis([0,10,-0.2,1]);title('µ¥Î»³éÑùÐòÁÐ');-0.200.20.40.60.8图1 (2)单位阶跃序列程序:N=10;u=ones(1,N);stem(u,'filled')axis([-10,10,0,1]);title('µ¥Î»½×Ô¾ÐòÁÐ');00.10.20.30.40.50.60.70.80.91单位阶跃序列图2 (3)正弦序列程序:x=-20:1:20;y=sin(0.2*pi.*x+0.5*pi);stem(x,y,'filled');axis([-20,20,-2,2]);title('ÕýÏÒÐòÁÐ');正弦序列-20-15-10-505101520图3 (4)实指数序列a=1/2程序:n=0:10;a1=1/2;y1=a1.^n;stem(n,y1,'filled');axis([0,10,0,1]);title('ʵָÊýÐòÁУ¬a=1/2');实指数序列,a=1/2图4 5实指数序列a=2程序:n=0:10;a2=2;y2=a2.^n;stem(n,y2,'filled');title('ʵָÊýÐòÁÐ,a=2');实指数序列,a=2图5 6 随机序列程序:y=rand(1,20);stem(y,'filled');title('Ëæ»úÐòÁÐ');0246810121416182000.10.20.30.40.50.60.70.80.91随机序列图62、自己设定参数,分别表示并绘制信号移位、信号相加、信号相乘、信号翻转、 信号和、信号积、信号能量。

常见离散信号产生和实现实验报告

常见离散信号产生和实现实验报告

常见离散信号产生和实现实验报告实验1常见离散信号产生和实现学院信息科学与工程学院专业通信工程1班姓名学号一、实验目的1、加深对常用离散信号的理解;2、熟悉使用MATLAB在时域中产生一些基本的离散时间信号。

二、实验原理MATLAB语言提供了一系列函数用来产生信号,如exp,sin,cos, square,sawtooth,ones,zeros等函数。

1.基本信号序列1)单位抽样序列???=01)(nδ≠=n n在MATLAB中可以利用zeros()函数实现。

x=[1zeros(1, n-1)]程序:clear all;n=-20:20;u=[zeros(1,20)ones(1,21)];stem(n,u)xlabel('Time index n');ylabel('Amplitude'); title('p21');axis([-20200 1.2]);图形:Request1:编写一个)(k n-δ的函数。

???=-01)(k nδ≠=n kn程序:clear all;n=-20:20;k=5;u=[zeros(1,20+k)ones(1,21-k)];stem(n,u)xlabel('Time index n');ylabel('Amplitude'); title('p22');axis([-20200 1.2]);图形:(2)单位阶跃序列???01)(n u00<≥n n在MATLAB中可以利用ones()函数实现。

);,1(N ones x=Request2:编写一个)(k n u-的函数。

程序:clf;n=-20:20;u=[zeros(1,20)1zeros(1,20)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence p10');axis([-20200 1.2]);图形:Request2:编写一个)(k n u-的函数。

时域离散信号实验报告(3篇)

时域离散信号实验报告(3篇)

第1篇一、实验目的1. 理解时域离散信号的基本概念和特性。

2. 掌握时域离散信号的表示方法。

3. 熟悉常用时域离散信号的产生方法。

4. 掌握时域离散信号的基本运算方法。

5. 通过MATLAB软件进行时域离散信号的仿真分析。

二、实验原理时域离散信号是指在时间轴上取离散值的一类信号。

这类信号在时间上不连续,但在数值上可以取到任意值。

时域离散信号在数字信号处理领域有着广泛的应用,如通信、图像处理、语音处理等。

时域离散信号的基本表示方法有:1. 序列表示法:用数学符号表示离散信号,如 \( x[n] \) 表示离散时间信号。

2. 图形表示法:用图形表示离散信号,如用折线图表示序列。

3. 时域波形图表示法:用波形图表示离散信号,如用MATLAB软件生成的波形图。

常用时域离散信号的产生方法包括:1. 单位阶跃信号:表示信号在某个时刻发生突变。

2. 单位冲激信号:表示信号在某个时刻发生瞬时脉冲。

3. 正弦信号:表示信号在时间上呈现正弦波形。

4. 矩形脉冲信号:表示信号在时间上呈现矩形波形。

时域离散信号的基本运算方法包括:1. 加法:将两个离散信号相加。

2. 乘法:将两个离散信号相乘。

3. 卷积:将一个离散信号与另一个离散信号的移位序列进行乘法运算。

4. 反褶:将离散信号沿时间轴翻转。

三、实验内容1. 实验一:时域离散信号的表示方法(1)使用序列表示法表示以下信号:- 单位阶跃信号:\( u[n] \)- 单位冲激信号:\( \delta[n] \)- 正弦信号:\( \sin(2\pi f_0 n) \)- 矩形脉冲信号:\( \text{rect}(n) \)(2)使用图形表示法绘制以上信号。

2. 实验二:时域离散信号的产生方法(1)使用MATLAB软件生成以下信号:- 单位阶跃信号- 单位冲激信号- 正弦信号(频率为1Hz)- 矩形脉冲信号(宽度为2)(2)观察并分析信号的波形。

3. 实验三:时域离散信号的基本运算(1)使用MATLAB软件对以下信号进行加法运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(2)使用MATLAB软件对以下信号进行乘法运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(3)使用MATLAB软件对以下信号进行卷积运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(4)使用MATLAB软件对以下信号进行反褶运算:- \( u[n] \)4. 实验四:时域离散信号的仿真分析(1)使用MATLAB软件对以下系统进行时域分析:- 系统函数:\( H(z) = \frac{1}{1 - 0.5z^{-1}} \)(2)观察并分析系统的单位冲激响应。

离散时间信号的时域描述及基本运算

离散时间信号的时域描述及基本运算

[例] 画出信号f (t) 的奇、偶分量 画出信号f
解:
f(t) 2 1
-1
0
f(t) 2 1
1
t
-1
0
1
t
3.信号分解为实部分量与虚部分量 信号分解为实部分量 实部分量与
连续时间信号
f (t ) = f r (t ) + j f i (t )
实部分量 虚部分量
f * (t ) = f r (t ) j f i (t )
在序列2点之间插入 个点 在序列 点之间插入M1个点 点之间插入
4. 序列相加
指将若干离散序列序号相同的数值相加
y[k ] = f1[k ] + f 2 [k ] + … + f n [k ]
f1 [ k ]
1 k 0 1
f1[k ] + f 2 [k ]
2
f 2 [k ]
k
1 k
0
0
5. 序列相乘
1 f o (t ) = [ f (t ) f (t )] 2 f o (t ) = f o (t )
离散时间信号
f [k ] = f e [k ] + f o [k ] 1 f o [k ] = { f [k ] f [ k ]} 2
1 f e [k ] = { f [k ] + f [k ]} 2
1. 翻转
f [k] → f [k]
以纵轴为中心作180度翻转 将 f [k] 以纵轴为中心作 度翻转
f [k] 2 1 1 0 1 2 3 k
2 1 0 1
3 2
f [k] 2
3 2 1 2 k
2. 位移 f [k] → f [k±n]

MATLAB离散信号的产生和频谱分析实验报告

MATLAB离散信号的产生和频谱分析实验报告

MATLAB离散信号的产⽣和频谱分析实验报告实验⼀离散信号的产⽣和频谱分析⼀、实验⽬的仿真掌握采样定理。

学会⽤FFT 进⾏数字谱分析。

掌握FFT 进⾏数字谱分析的计算机编程实现⽅法。

培养学⽣综合分析、解决问题的能⼒,加深对课堂内容的理解。

⼆、实验要求掌握采样定理和数字谱分析⽅法;编制FFT 程序;完成正弦信号、线性调频信号等模拟⽔声信号的数字谱分析;三、实验内容单频脉冲(CWP )为)2e xp()()(0t f j T t rec t t s π=。

式中,)(Ttrect 是矩形包络,T 是脉冲持续时间,0f 是中⼼频率。

矩形包络线性调频脉冲信号(LFM )为)]21(2exp[)()(20Mt t f j Ttrect t s +=π。

式中,M 是线性调频指数。

瞬时频率Mt f +0是时间的线性函数,频率调制宽度为MT B =。

设参数为kHz f 200=,ms T 50=,kHz B 10=,采样频率kHz f s 100=。

1.编程产⽣单频脉冲、矩形包络线性调频脉冲。

2.编程实现这些信号的谱分析。

3.编程实现快速傅⽴叶变换的逆变换。

四、实验原理1、采样定理所谓抽样,就是对连续信号隔⼀段时间T 抽取⼀个瞬时幅度值。

在进⾏模拟/数字信号的转换过程中,当采样频率fs ⼤于信号中最⾼频率f 的2倍时(fs>=2f),采样之后的数字信号完整地保留了原始信号中的信息,⼀般实际应⽤中保证采样频率为信号最⾼频率的5~10倍;采样定理⼜称奈奎斯特定理。

2、离散傅⾥叶变换(FFT )长度为N 的序列()x n 的离散傅⽴叶变换()X k 为:10()(),0,....,1N nkN n X k x n W k N -===-∑N 点的DFT 可以分解为两个N/2点的DFT ,每个N/2点的DFT ⼜可以分解为两个N/4点的DFT 。

依此类推,当N 为2的整数次幂时(2MN =),由于每分解⼀次降低⼀阶幂次,所以通过M 次的分解,最后全部成为⼀系列2点DFT 运算。

离散时间信号与离散时间系统

离散时间信号与离散时间系统

§7-1 概述一、 离散时间信号与离散时间系统离散时间信号:只在某些离散的时间点上有值的信号。

离散时间系统:处理离散时间信号的系统。

混合时间系统:既处理离散时间信号,又处理连续时间信号的系统。

二、 连续信号与离散信号连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理:三、 离散信号的表示方法:1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。

例如:)1.0sin()(k k f =2、 (有序)数列:将离散信号的数值按顺序排列起来。

例如:f(k)={1,0.5,0.25,0.125,……,}时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。

四、 典型的离散时间信号1、 单位样值函数:⎩⎨⎧==其它001)(k k δ下图表示了)(n k -δ的波形。

连续信号离散信号 数字信号 取样量化这个函数与连续时间信号中的冲激函数)(t δ相似,也有着与其相似的性质。

例如:)()0()()(k f k k f δδ=, )()()()(000k k k f k k k f -=-δδ。

2、 单位阶跃函数:⎩⎨⎧≥=其它001)(k k ε这个函数与连续时间信号中的阶跃函数)(t ε相似。

用它可以产生(或表示)单边信号(这里称为单边序列)。

3、 单边指数序列:)(k a k ε比较:单边连续指数信号:)()()(t e t e t a at εε=,其底一定大于零,不会出现负数。

4、 单边正弦序列:)()cos(0k k A εφω+(a) 0.9a = (d) 0.9a =-(b) 1a = (e) 1a =-(c) 1.1a = (f) 1.1a =-双边正弦序列:)cos(0φω+k A五、 离散信号的运算1、 加法:)()()(21k f k f k f +=<—相同的k 对应的数相加。

信号理论知识点总结

信号理论知识点总结

信号理论知识点总结一、信号的基本概念信号是指随时间变化的某种物理量,它可以是电压、电流、声音、光、视频等形式。

信号可以分为连续信号和离散信号两种。

1. 连续信号:连续信号是指在给定的时间间隔内连续地变化的信号,例如模拟电路中的声音信号、电压信号等都是连续信号。

2. 离散信号:离散信号是指在一定的时间间隔内发生变化的信号,例如数字电路中的数字信号就是离散信号。

二、信号的分类1. 按时间变量分类:(1) 静态信号:信号在不同时间点的取值不发生变化,称为静态信号。

(2) 动态信号:信号在不同时间点的取值会发生变化,称为动态信号。

2. 按频率分布分类:(1) 短时信号:信号在频率上的分布相对较窄,信号在时间上的变化较快。

(2) 长时信号:信号在频率上的分布相对较宽,信号在时间上的变化较慢。

3. 按能量分布分类:(1) 有限能量信号:信号的总能量在有限时间内是有限的,通常用在瞬态信号中。

(2) 无限能量信号:信号的总能量在有限时间内是无限的,通常用在周期信号中。

三、信号的基本运算1. 信号的加法:(1) 连续信号的加法:两个连续信号相加的运算可以简单地通过将两个信号的函数表达式相加进行。

(2) 离散信号的加法:两个离散信号相加的运算也可以通过将两个信号在各个时间点上的取值加起来。

2. 信号的乘法:(1) 连续信号的乘法:两个连续信号相乘的运算可以通过将两个信号的函数表达式逐个相乘得到。

(2) 离散信号的乘法:两个离散信号相乘的运算同样可以通过将两个信号在各个时间点上的取值逐个相乘得到。

3. 信号的卷积:信号的卷积是一种重要的信号运算,它描述了两个信号之间的相互作用。

卷积的计算涉及到信号的积分,可以用于分析系统的输出响应等。

四、信号的频谱分析1. 连续信号的频谱分析:(1) 傅里叶变换:傅里叶变换是一种将连续信号从时间域变换到频率域的方法,通过傅里叶变换可以得到信号的频率特性。

(2) 傅里叶级数:对于周期信号,可以使用傅里叶级数将其分解为一系列正弦和余弦函数的和。

实验一 离散时间信号的产生

实验一  离散时间信号的产生

实验一 离散时间信号的产生1. 实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号处理的基本所在。

而要研究离散时间信号,首先需要产生各种离散时间信号。

使用MATLAB 软件 很方便的产生各种常见的离散时间信号,而且它还有强大的绘图功能,便于用户直接地处理输出结果。

2. 实验原理离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。

离散序列通常用x(n)来表示,自变量必须是整数,常见的离散时间信号如下:(1) 单位冲激序列⎩⎨⎧=01)(n δ 00≠=n n如果)(n δ在时间轴上延迟了k 个单位,)(k n -δ即:⎩⎨⎧=-01)(k n δ 0≠=n k n长度为N 的单位冲激序列δ(n)可以通过下面的MATLAB 命令获得。

n=-(N-1):N-1x=[zeros(1,N-1) 1 zeros(1,N-1)];setm(n,x)延迟K 个采样点的长度为N 的单位冲激序列δ(N-k )(k<N)可以用下面的命令获得: n=-(N-1):N-1x=[zeros(1,M) 1 zeros(1,N-M-1)];setm(n,y)(2)单位阶跃序列⎩⎨⎧01)(n u 00<≥n n 长度为N 的单位阶跃序列u (n)可以通过下面的MA TLAB 命令获得。

n=-(N-1):N-1x=[zeros(1,N-1) ones(1,N)];setm(n,x)延迟的单位阶跃序可以用类似于单位冲激信号的方法产生。

(3)矩形序列R N =u(n)-u(n-N)(4)正弦序列x (n ) = A cos(ωn +φ).这里A ,ω,φ都是实数分别为正弦信号的振幅,角频率,和初始相位,可以用下面的命令获得:n=0:N-1x=A*cos(2*pi*f*n/Fs+phase)(5) 单边指数序列:n a n x =)(u (n) 长度为N 的单边指数序列可以通过下面的MA TLAB 命令实现n a x N n .^1:0=-=setm(n,x)(6)复指数序列3实验内容(1)绘制程序产生单位冲激序列⎩⎨⎧=01)(n δ00≠=n n 及δ(n-“学号后两位”)并绘出其图形>> n=-10:10;>> x=[zeros(1,10),1,zeros(1,10)];>> stem(n,x)>> title('单位冲激序列'); >> xlabel('n');ylabel('x(n)');>> n=0:50;>> y=[zeros(1,40),1,zeros(1,10)];>>stem(n,y);>> title('单位冲激采样后的序列');>> xlabel('n');ylabel('y(n)');(2)绘制程序产生单位阶跃信号⎩⎨⎧01)(n u 00<≥n n 及u(n-“学号后两位”)及u(n)- u(n-“学号后两位”),并绘出其图形。

《数字信号处理》第二章 离散信号和抽样定理

《数字信号处理》第二章 离散信号和抽样定理
性延拓,因而采样信号xs(t)就包含了的原信号x(t)全部
信息。
重要结论
第三节 抽样定理
*带限信号抽样定理:
要想连续信号抽样后能够不失真的还原 出原信号,则抽样频率必须大于或等于两 倍原信号频谱的最高频率(2fm≤ fs),这就是 奈奎斯特抽样定理。
第三节 抽样定理
二、如何从抽样信号恢复出带限信号x(t)
n
其中
1 g (t)
0
t
2
t


2
Ts
第二节 连续信号的离散化
xa (t)
抽样器
(电子开关) P(t)
T
xa (t)
xˆs (t)
fs

1 T
xˆs (t)
第二节 连续信号的离散化
理想抽样:当τ 趋于零的极限情况时,抽样脉冲
方波p(t)变成了冲激函数序列δT(t),这些冲击函数 的强度准确地为采样瞬间的xa(t)幅值,这样的抽 样称为理想抽样。
余弦与正弦序列示意图如下:
第一节 离散时间信号
5、 用单位脉冲序列表示任意序列
任意序列x(n)都可用单位脉冲序列δ(n)表示成 加权和的形式,即

x(n) x(m) (n m) m
如:
a n x(n)
可表示为 0
10 n 10 其他
10
x(n) am (n m)
样品集合可以是本来就存在的,也可以是由模拟 信号通过采样得来的或者是用计算机产生的。
第一节 离散时间信号
离散时间信号的时域表示 1) 表示离散时间信号可采用枚举的方式。例如
{x(n)}={…,-1.5,-8.7,2.53,0.0,6,7.2, …}

离散信号的产生及运算

离散信号的产生及运算

离散信号的产生及运算实验一离散信号的产生及运算一.实验目的:1.复习和巩固数字信号处理中离散信号的产生和运算2.学习和掌握用MATLAB 产生离散信号的方法3.学习和掌握用MATLAB 对离散信号进行运算二.实验原理1.用MATLAB 函数产生离散信号信号是数字信号处理的最基本内容。

没有信号,数字信号处理就没了工作对象。

MATLAB7.0 内部提供了大量的函数,用来产生常用的信号波形。

例如,三角函数(sin,cos), 指数函数(exp),锯齿波函数(sawtooth), 随机数函数(rand)等。

⑴产生被噪声污染的正弦信号用随机数函数产生污染的正弦信号。

⑵产生单位脉冲序列和单位阶跃序列按定义,单位脉冲序列为0 0 0 1, ( ) 0,n n n n n n单位阶跃序列为。

0 0 0 1, ( ) 0,n n u n n n n⑶矩形脉冲信号:在MATLAB 中用rectpuls 函数来表示,其调用形式为:y=rectpuls(t,width),用以产生一个幅值为1,宽度为width,相对于t=0 点左右对称的矩形波信号,该函数的横坐标范围由向量t 决定,是以t=0 为中心向左右各展开width/2 的范围,width 的默认值为1。

例:以t=2T(即t-2×T=0)为对称中心的矩形脉冲信号的MATLAB 源程序如下:(取T=1)t=0:0.001:4;T=1;ft=rectpuls(t-2*T,2*T);plot(t,ft);grid on; axis([0 4 –0.5 1.5]);⑷周期性矩形波(方波)信号在MATLAB 中用square 函数来表示,其调用形式为:y=square(t,DUTY),用以产生一个周期为2π、幅值为±1 的周期性方波信号,其中的DUTY 参数表示占空比,即在信号的一个周期中正值所占的百分比。

例如频率为30Hz 的周期性方波信号的MATLAB 参考程序如下:t=-0.0625:0.0001:0.0625;y=square(2*pi*30*t,75);plot(t,y);axis([-0.0625 0.0625 –1.5 1.5]);grid on ;2.MATLAB 中信号的运算乘法和加法:离散信号之间的乘法和加法,是指它的同序号的序列值逐项对应相乘和相加。

实验一 常见离散信号的MATLAB产生和图形显示

实验一  常见离散信号的MATLAB产生和图形显示

实验一 常见离散信号的MATLAB 产生和图形显示授课课时:2学时一、实验目的:(1)熟悉MATLAB 应用环境,常用窗口的功能和使用方法。

(2)掌握MATLAB 在时域内产生常用离散时间信号的方法。

(3)掌握离散信号的基本运算。

(4)掌握简单的绘图命令。

二、实验原理:(一)信号的表示和产生① 单位抽样序列⎩⎨⎧=01)(n δ 00≠=n n如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ≠=n k n 参考程序:例1-1:)2010(()(<<-=n n n x )δclear all n1=-10;n2=20;n0=0;%在起点为n1,终点为n2的范围内,于n0处产生冲激。

n=n1:n2;%生成离散信号的时间序列x=[n==n0];%生成离散信号x(n)stem(n,x);%绘制脉冲杆图xlabel(' n');ylabel('x(n)');%横坐标和纵坐标的标注说明。

title('Unit Sample Sequence');%图形上方标注图名axis([-10 20 0 1.2]);%确定横坐标和纵坐标的取值范围② 单位阶跃序列⎩⎨⎧=01)(n u 00<≥n n 例1-2:)202((u )(<<-=n n n x )clear alln1=-2;n2=20;n0=0;n=n1:n2;%生成离散信号的时间序列x=[n>=n0];%生成离散信号x(n)stem(n,x,'filled');xlabel('n');ylabel('x(n)');title('Unit step Sequence');axis([-2 20 0 1.2]);③ 正弦序列)sin()(ϕ+=wn A n x例1-3:一正弦信号的频率为1HZ ,振幅值幅度A 为1V ,在窗口显示2个周期的信号波形,并对该信号的一个周期进行32点采样获得离散信号并显示该连续信号和离散信号的波形。

信号与系统离散信号的卷积公式

信号与系统离散信号的卷积公式

信号与系统离散信号的卷积公式
离散信号的卷积公式是信号与系统理论中的重要概念之一。

卷积运算是将两个序列进行混合操作,以得到新的序列。

在信号处理和系统分析中,离散信号的卷积公式可以通过以下方式表示:
设有两个离散信号序列x[n]和h[n],其中n为整数。

若卷积结果为y[n],则其数学表达式为:
y[n] = Σ(x[k]·h[n-k])
其中,Σ表示求和符号,k为累加范围。

该公式表示在离散时间下,输出序列y[n]的每个元素由输入序列x[n]和h[n]的乘积累加得出。

信号的卷积可用于系统响应的计算、滤波器设计、图像处理等领域。

它可以帮助我们理解信号在系统中的传递和转换过程。

离散信号的卷积公式是信号与系统理论中的基础,为我们研究和分析离散时间系统提供了有效的数学工具。

需要注意的是,在实际应用中,离散信号的卷积计算可以通过离散傅里叶变换(DFT)等方法进行高效计算。

此外,离散信号的卷积还涉及卷积定理、卷积的性质以及快速卷积算法等相关概念。

通过学习和应用离散信号的卷积公式,我们可以更好地理解和分析离散时间系统的行为和特征。

总之,离散信号的卷积公式是信号与系统领域的重要概念,它描述了输入序列之间通过卷积运算生成输出序列的关系。

通过应用该公式,我们可以更好地理解和分析离散时间系统的特性,并在实际应用中进行信号处理和系统设计。

《数字信号处理》实验讲义(信息计算)

《数字信号处理》实验讲义(信息计算)

《数字信号处理》实验指导书实验一 常见离散信号的产生一、实验目的1. 加深对离散信号的理解。

2. 掌握典型离散信号的Matlab 产生和显示。

二、实验原理及方法在MATLAB 中,序列是用矩阵向量表示,但它没有包含采样信息,即序列位置信息,为此,要表示一个序列需要建立两个向量;一是时间序列n,或称位置序列,另一个为取值序列x ,表示如下: n=[…,-3,-2,-1,0,1,2,3,…]x=[…,6,3,5,2,1,7,9,…]一般程序都从0 位置起始,则x= [x(0), x(1), x(2),…]对于多维信号需要建立矩阵来表示,矩阵的每个列向量代表一维信号。

数字信号处理中常用的信号有指数信号、正弦信号、余弦信号、方波信号、锯齿波信号等,在MATLAB 语言中分别由exp, sin, cos, square, sawtooth 等函数来实现。

三、实验内容1. 用MATLAB 编制程序,分别产生长度为N(由输入确定)的序列:①单位冲击响应序列:()n δ可用MATLAB 中zeros 函数来实现; ②单位阶跃序列:u(n)可用MATLAB 中ones 函数来实现; ③正弦序列:()sin()x n n ω=; ④指数序列:(),nx n a n =-∞<<+∞⑤复指数序列:用exp 函数实现()0()a jb nx n K e+=,并给出该复指数序列的实部、虚部、幅值和相位的图形。

(其中00.2,0.5,4,40a b K N =-===.)参考流程图:四、实验报告要求1. 写出实验程序,绘出单位阶跃序列、单位阶跃序列、正弦序列、指数序列的图形以及绘 出复指数序列的实部、虚部、幅值和相位的图形。

2. 序列信号的实现方法。

3. 在计算机上实现正弦序列0()sin(2)x n A fn πϕ=+。

实验二 离散信号的运算一、实验目的1. 掌握离散信号的时域特性。

2. 用MATLAB 实现离散信号的各种运算。

离散时间信号的表示及运算

离散时间信号的表示及运算

第2章 离散时间信号的表示及运算2.1 实验目的● 学会运用MATLAB 表示的常用离散时间信号;● 学会运用MATLAB 实现离散时间信号的基本运算。

2.2 实验原理及实例分析2.2.1 离散时间信号在MATLAB 中的表示离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。

离散序列通常用)(n x 来表示,自变量必须是整数。

离散时间信号的波形绘制在MATLAB 中一般用stem 函数。

stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。

如果要实心,需使用参数“fill ”、“filled ”,或者参数“.”。

由于MATLAB 中矩阵元素的个数有限,所以MATLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。

类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。

1. 单位取样序列单位取样序列)(n δ,也称为单位冲激序列,定义为)0()0(01)(≠=⎩⎨⎧=n n n δ (12-1)要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n =0处是取确定的值1。

在MATLAB 中,冲激序列可以通过编写以下的impDT .m 文件来实现,即function y=impDT(n)y=(n==0); %当参数为0时冲激为1,否则为0调用该函数时n 必须为整数或整数向量。

【实例2-1】 利用MATLAB 的impDT 函数绘出单位冲激序列的波形图。

解:MATLAB 源程序为>>n=-3:3;>>x=impDT(n);>>stem(n,x,'fill'),xlabel('n'),grid on>>title('单位冲激序列')>>axis([-3 3 -0.1 1.1])程序运行结果如图12-1所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验离散信号的产生及运算实验报告一实验任务
二实验程序及结果
n=0 :20;
x=3*sin(pi*n/4+4/pi);
subplot(2, 2, 1), stem(n,x);
title(' x=3*sin(pi*n/4+4/pi)');
n=-20*pi:20*pi;
f=sinc(n/pi);
subplot(2,2,2), stem(n,f);
title(' f=sinc(n/pi)');
n1 = -5; n2 = 5; n0= 0;
n = n1:n2;
x =[n>=n0];
n1 = -5; n2 = 5; n0= 0;
n = n1:n2;
f =[ n >= n0];
subplot(2,2,3), stem(n, f,'filled'); title('f(n)=u(n)');
n1 = -5; n2 = 5; n01 = -3; n02 = 4;
n = n1:n2;
x1 = [(n-n01) == 0];
x2 = [(n-n02) == 0];
x=x1+2*x2;
subplot(3,1,1);stem(n,x1,'filled','k');
ylabel('n+3')
subplot(3,1,2);stem(n,x2,'filled','k');
ylabel('n-4')
subplot(3,1,3);stem(n,x,'filled','k');
ylabel('x(n)');
n=0:24;
x1=exp(-n/16);
x2=5*sin(2*pi*n/10);
x=x1.*x2;
subplot(3,1,1);stem(n,x1,'filled','k'); title('x1=exp(-n/16)');
subplot(3,1,2);stem(n,x2,'filled','k'); title(' x2=5*sin(2*pi*n/10)');
subplot(3,1,3);stem(n,x,'filled','k'); title('x(n)=x1*x2');
n=0:20;
x=n.*sin(n);
subplot(3,2,1),stem(n,x,'filled','k'); title('原函数:x(n)=nsin(n)');
y1=(n-3).*sin(n-3);
subplot(3,2,2),stem(n,y1,'filled','k'); title('序列移位:y1=x(n-3)');
y2= fliplr(x);
n1 = -fliplr(n);
subplot(3,2,3),stem(n1,y2,'filled','k'); title('序列反折:y2=x(-n)');
y3=-x;
subplot(3,2,4),stem(n,y3,'filled','k'); title('序列倒相:y3=-x(n)');
y4=fliplr(y1);
n2=-fliplr(n);
subplot(3,2,5),stem(n2,y4,'filled','k'); title('序列移位+反折:y4=x(-n+3)');
y5=(n/2).*sin(n/2);
subplot(3,2,6),stem(n,y5,'filled','k'); title('序列的尺度变换:y5=x(n/2)');
三实验过程中出现的问题及解决方法
1、安装的MATLAB是2013英文版,用起来很不顺利,查了部分单词,多加联系掌握基本用法即可。

2、方程式中遗漏‘.’,出错。

仔细检查,改正方程式。

四实验总结
1、一个点可能就是程序成败的关键,认真仔细,细节决定成败。

2、尽可能是图形看起来有对比性、简洁。

既能让做的人思考,又能让看的人易发现规律性。

相关文档
最新文档