初等数学研究试卷
初等数学研究作业
10、解下列无理方程。
(1)236x x ++=(2)2660x x --+=(3=(4=(1)(1)236x x ++=解:令232(0)t x x t =+-≥则则方程转化为26t ++=即40t +=1)0=4=-所以1t =,将1t =代回232t x x =+-中,解得32x =-±(2)2660x x --+=解:设y =22320y xy x --=解得32y x =-或y x =当32y x =-时,2x =-两边同时平方得:2518180x x --= 解得95x ±=当y x =x =两边同时平方得:2222x x x --= 解得1x =-经检验,1x =-,x =所以原方程的解为x =(3=解:两边平方得5327x x x ++++=+整理得 1=-即 12=-012=-矛盾,即该题无解(4=解:原式1=422x ----22=-+0=20、将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形。
要使这两个正方形的面积之和等于17 2cm ,那么这段铁丝剪成两段后的长度分别是多少? 解:设其中一个正方形的边长为x cm,则另一个正方形的边长为(5)x -cm ,依题意得:22(5)17x x +-=整理得,2540x x -+=即(4)(1)0x x --=解得121,4x x ==所以1×4=4 (cm ), 20-4=16(cm )答:这段铁丝剪成两段后的长度分别为4cm 和16cm 。
21、益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(35010)a -件,但物价局定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?解:依题意得:(21)(35010)400a a --=整理得,2567750a a -+=解得 1225,31a a ==∵21120%25.2⨯+=()∴231a =不符合题意,舍去 即350103*********a -=-⨯=(件)答:需要进货100件,每件商品应定价25元。
《初等代数研究》试卷(A)和试卷(B)
铜仁学院2008级数学本科班 《初等代数研究》期末考试卷(A )一,填空题:每题4分,共40分1、已知实数y x ,满足1≤+≤22y x 4,则22y xy x u ++=的最大值是2、方程22)6(117236-=-+-x x x 的解是3、函数的值域是x x y -+=14、设=+=++141421,01xx x x 则5、设=⨯=+=+n n n n a a a a 则通项,23,0116、方程 012sin 22=+-xx x π的所有实数根是7,的值域是则是实数已知2222,3,,y xy x z y xy x y x +-==++8,已知数列{n a }的前n 项之和n S 满足11log 2+=+n S n ,则通项n a =9,若恒成立,则是正数,且y x a y x y x a +≤+,,的最小值为a10,若且R p ∈p x x p x p +>++<2222log 21log log ,2)不等式(恒成立,则实数x 的取值范围是二、解答题(每题10分,共70分 )班级________________ 姓 名1,设,,+∈N b a 证明:2在a b 与ba b a ++2之间。
2,⎪⎩⎪⎨⎧+=+=+x y xy x x 100lg8lg 268)(lg 42解方程组3,已知.2,,=++∈+c b a R c b a 且(1) 求证:;964)2(≤-a a (2) 求S=的最大值。
333222c b a c b a ---++4考虑以下数列{n a },*∈N n(1) n a =1ln)3(;12)2(;12+=+=++n n a n a n n n n . 其中满足性质“对任意的正整数都成立122,++≤+n nn a a a n ”的数列有_____(写出所有满足条件的序号);若数列{n a }满足上述性质,且,11=a ,5820=a 求10a 的最小值5已知()()().111,,,,2≤≤≤-+=++=x f x b ax x g c bx ax x f c b a 时,当是实数,函数(1),证明:当1≤c(2),证明:当.2)(11≤≤≤-x g x 时,(3),当).(2)(11,0x f x g x a ,求的最大值为时,≤≤-> 、6,已知函数[]且同时满足,的定义域为,10)(x f ①,对任意[];2)(1,0≥∈x f x 总有 ②,;3)1(=f③,若2)()()(1.0,021212121-+=+≤+≥≥x f x f x x f x x x x ,则有且 (1),求的值;)0(f (2),试求的最大值;)(x f(3),设数列{n a }的前n 项和为n S ,满足,11=a n S +∈--=N n a n ),3(21。
《初等数学研究》期末试卷
数学与应用数学专业《 初等数学研究 》一、证明题(本题共3小题,每小题8分,共24分)1. 任何无限集A 必有一子集B 与自然数集N 一一对应。
2、证明:c ab c b c a ab +=++3、在100个连续自然数1,2,3……..99,100中任取51个数,证明在这51个数中,一定有两个数,其中一个是另一个的倍数。
二、计算题(本题共5小题,4、5每小题8分,6、7、8每小题10分,共46分)4、今天是周日,问20035天后是星期几?5、求221365n H H H n n n =++--的特解。
6、在楼房内两层楼梯中间设置一照明灯L,要求在两层的楼梯口各设置一开关x与y同时控制此灯。
具体地说,当上楼时拉开关x使灯L亮,上楼后再拉开关y使灯L灭。
此后又有人上(下)楼,再拉开关x(或y),灯L又亮,此人通过楼梯后,再拉开关y(或x),灯L又灭。
试问开关x与y应如何连接才能实现上述要求。
7、数学系在某次运动会上参加团体操,参加者4人一排,余下一人;5人一排,余下2人;7人一排,余下3人,则该系有多少人参加了团体操。
8、求线性非齐次差分方程组的通解,并求其在初值条件0010,9x y==下的特解。
11224,229.n n nn n nx x yy x y++++=⎧⎨+-=⎩三、解答题(本题共2小题,每小题15分,共30分)9、简述RMI 原则的基本思想,并利用该思想分析解决:在复数集内解方程0653856234=++-+x x x x10、(兔子-狐狸生态模型)如果没有狐狸,假设兔子每年增长10%,但是狐狸的出现使兔子减少,假设兔子减少的数量和狐狸数量成正比,比例系数为0.15。
另一方面,在没有兔子的情况下,假定狐狸数量每年减15%,但是兔子的出现使狐狸数量增长,假设狐狸增加的数量和兔子数量成正比,比例系数为0.1。
假设现有兔子数10个,狐狸数8个,问若干年后兔子与狐狸的数量如何?。
初等数学研究_习题集(含答案)
《初等数学研究》课程习题集一、单选题 1. 已知αβ、是方程22(2)(35)0x k x kk --+++=的两实数根,则221αβ++的最大值是( )..20.19.21.18A B C D2. 设()lg (101)2xxxb f x a x x a b -=+++4是偶函数,g ()=是奇函数,则的值为( )11..1.1..22A B C D --3. 设432()f x xa xb xc xd =++++,其中a b c d 、、、为常数,如果(1)1,f =[]1(2)2,(3)3,(4)(0)4f f f f ==+=则( ).5.3.7.11A B C D4. 若不等式2lo g 0m x x -<在区间(0,2)内恒成立,则实数m 的取值范围是( )A .1116m ≤< B.1016m <≤ C.104m <<D.116m ≥5. 已知()()(,),(7)7f x y f x y x y R f +=∈=且, 则(49)f 等于( )A.7B. 14C.49D. 16. 设33,(5)2003(5)1,(4)2003(4)1,x y xx y y -+-=--+-=为实数,满足则().x y +=A.1B. 9C. -1D. -97. 实数x y 、满足关系式[][]21yx x =+--和[]1y x =+,则x y +的值一定是( )1012.1516.910.A B C D .与之间与之间与之间一个整数8. 对每一个自然数n, 抛物线22()(21)1,n yn n x n x x A =+-++与轴交于n B 两点,||n n A B 以表示该两点的距离,则1122||||A B A B ++ 20022002||A B +等于( )2001200220032004.....2002200320042003A B C D9. 已知多项式2(),4(1)1,1(2)5,(3)f x a x c f f f =--≤≤--≤≤则满足()3825.4(3)15.1(3)20.(3)33f B f C f D f ≤≤-≤≤-≤≤-≤≤A .7(3)2610. 若2222,260,2x y x x yx yx -+=++实数满足则的最大值为( )A.15B. 14C. 17D. 1611.设2250,320,a x x b x x +=-+=是一元二次方程的较大的一根是的较小的一根那么a b +的值是( )A.-4B. -3C. 1D. 312. 2320x x -+=方程的最小一个根的负倒数是()A.1B. 12C. 2D. 413. 在,A B C G ∠022直角中,A =90为重心,且G A =2, 则G B +G C =( )A . 25 B. 10 C. 20 D. 1514. 圆锥的侧面展开图的圆心角等于0120,该圆锥的侧面积与表面积之比值为( )A.23B.45C.12D.3415. ∠∠0A B -A C 在A B C 中,C =90,A 的平分线A D 交B C 于D ,则C D等于( ).tan .sin .co s .co t .A AB AC AD A16. 在A B C 中,A B A C =,,,D B C B E A C E ⊥为中点且于交A D P 于,已知3B P =, 1P E =,则P A =( )A B C D ....17.已知梯形A中,//,,A B CA B C DA DBC BD A B C B D D C S S∠⊥=梯形平分且则,3A B C D .:1. 2.5:1.2:1. 1.5:118. 已知A D是直角三角形A B C斜边上的高,43A B A C ==,,:()A B CA C DS S=则,5A B C D .:3.25:9.4:3.16:919. 已知直角三角形的周长为2+斜边上的中线为1,则这个三角形的面积为( )14A B C D 1..1..220. 若一个正三角形和一个正六边形的面积相等,则他们的边长之比为( )11113A B C D ....二、填空题1 21. 集合2{1,2,31},{1,3},{3}A mm B AB =--=-=,实数m 的值是 _______22. 若函数2()1f x x a x =-+能取得负值,则实数a 的取值范围为23. 设x y z 、、为实数,1()2x y z =++,则23x y z=24. 函数sin ()yA x b =ω+ϕ+在同一周期内有最高点(,312π),最底点(7,512π-),则它的解析式为25. 若函数[]2(2)1,()2x f xf -+∞的定义域为,则的定义域为26. 在等差数列{}n a 中,已知前20项的和n S =170,则691116a a a a +++ =27. 已知:1ta n 11ta n +α=-α,则sin 2α的值=28. 设11(0),()f x f x x x ⎛⎫=-<= ⎪⎝⎭则29. 2,120nn S n =数列的前项和那么这个数列的前项中所有奇数项的和是30. 2006!的末尾的“0”的个数是 31. 已知:12()()3f x f x x x+-=+,则()___________f x =32. 不等式20a x a b x b ++>的解集是{23}M x =<<,则_____,______a b ==33. 以三角形的三条中线长为边作三角形,则它的面积与原三角形面积之比为34. P 是正方形ABCD 内一点,PA=2, PB=1, PD=3, 则A P B ∠的度数为 35. 1E F GA EB F A BC A E B F G S=,是的中线,与交于,若,则A B CS=36. 在A B C 中,5B C M I A B C =,与分别是的重心与内心,若//M I B C则A B A C +的值为37. 在A B C 中,90C ∠=,I IE A B E ⊥为内心,于,若2B C =,A C =3, 则A E E B ⋅=38. 设直角三角形的斜边为C, 其内切圆的半径为r, 则内切圆的面积与三角形面积之比是39. 若等腰梯形的两条对角线互相垂直, 高为8cm ,则上、下底之和为40. 凸n 边形的n 个内角与某一个外角的和为1350°,则n 等于三、计算题41. 121212{}1,2,,n n n n n n n a a a a a a a a a ++++===++已知数列中,且121,n n a a ++≠求20031.n n a =∑42. 求函数332s in 3s inc o s 3c o s s in 2c o s 2x x x xy x x+=+的最小值。
湖二师初等数学研究期末考试试题
湖二师初等数学研究期末考试试题一、仔细审题,正确填空。
(每空1分,计20分)1、八千五百亿零二万六千三百写作(),把它“万”后面的尾数省略,约是(),写成用亿作单位的近似数是()。
2.两个完全一样的梯形上底是2厘米,下底是6厘米,高是3厘米,把这两个梯形拼成一个平行四边形,拼成的平行四边形的底是()厘米,高是()厘米。
3、丁丁在班级座位是第2列第四行,用数对表示是(),小明座的位置用数对表示(3,6),他坐在第()列第()行。
4、在○里填上“<” “>”或“=”。
3000000○3万840÷8+16○840÷(8+16)(32+16)×25○32+16×2563000÷300○630÷35、一个等腰三角形的底角是65°,那么它的顶角是(),这个三角形也是()三角形。
6、从12时开始,时针按顺时针方向旋转180°后是()时,时针从3时到7小时,按()时针方向旋转了()°。
7.小军比小华多8张邮票,小军给()张小华,他们俩人的邮票就一样多了。
8、从一张长25厘米,宽20厘米的彩纸上剪下一个最大正方形,剪下的正方形的周长是()厘米,面积是()平方厘米。
二、认真分析,判断是非。
(正确的画“√”错误的画“×”)(10分)1.根据37÷4=9……1,所以370÷40=9……1。
()2.最大的八位数比最小的七位数多九千万。
( )3.长方形和正方形都是特殊的平行四边形。
( )4.(25×16)×4=25×4+16×4。
()5.三根长度分别是6厘米、6厘米、9厘米的小棒能拼成一个等腰三角形。
()三、反复比较,慎重选择。
(每题2分,计10分)1、一个三角形被遮住了两个角,露出的角是锐角,这个三角形是()三角形。
① 锐角② 钝角③不能确定2、哪道算式的得数与240÷6÷2相等?①240 ÷(6×2)② 240×(6÷2)③ 240÷(6÷2)3、67500万中的“7”表示()① 7亿②7千③ 7千万4、下面三组小棒不能围成三角形的是()。
最新初等数学研究试卷
一,填空题:(每题 3 分,共 24 分)
1, 求函数 y=
的值域_______
2, 用不等号( >,<,≥,≤)连接两个解析式所得的式子 叫做不等式,其一般形式为_______
3, 由基本初等函数经过有限次的四则运算及函数复合,并且 只能用一个解析式表示的函数叫做______Байду номын сангаас_
A、是奇函数不是偶函数 B、是奇函数也是偶函数 C、是偶函数不是奇函数 D、既不是奇函数也不是偶函数
2,有限集的基数叫( )
A、实数 B、虚数 C、有理数 D、正整数
3,只用 1,2,3 三个数字组成一个四位数,规定这三个数必须同
时使用,且同一数字不能相邻出现,这样的四位数有( )
A.6 个
B.9 个 C.18 个
4, 用运算符号和括号把数和表示数的字母连接而成的式子叫 做________
5, 二元一次不定方程 ax+by=c(a,b,c∈Z 且 ab≠0)有整数 解的充要条件是________
6, 数列 1, 8, 27, 64, 125, 216,…, ,…是 ________阶等差数列
7, N 个不同元素的环状排列数为________
四,综合题 (每题 8 分,共 16 分)
1,若数列{an}(n∈N*)满足:①an≥0;②an﹣2an+1+an+2≥0;③ a1+a2+…+an≤1,则称数列{an}为“和谐”数列.
(1)已知数列{an}, 谐”数列,说明理由;
(n∈N*),判断{an}是否为“和
(2)若数列{an}为“和谐”数列,证明:
初等几何研究试卷5
第 1 页 (共 2 页)5一、填空题(本大题共 9题,每空 2 分,共 20分)1、当欲证某图形具有某种性质而又不易直接证明时,可以先作出具有所示性质的图形,然后证明所作的图形跟所给的图形就是同一个,这种证法叫做 ;2、在ABC ∆中,,BE AC CF AB ⊥⊥,若AB AC >,则BE 与CF 的大小关系是 ;3、已知ABC ∆的三边分别为5cm,8cm,11cm ,则ABC ∆的面积S= ;4、从圆O 外一点P 引这个圆的两条切线,其夹角为60º,如果PO=6,那么圆的半径等于 ;5、圆内接四边形ABCD 中,已知AB=6cm,BC=CD=4cm,AD=8cm ,则对角线AC ·BD= ;6、在一些作图题中,解题的关键在于一些线段的算出,这种利用代数解作图题的方法称为 ;7、设点C 在线段AB 上且满足关系式2AC AB CB =⋅,则点C 称为线段AB 的 ; 8、设一线段在互垂三平面上的射影为123,,r r r ,则此线段的长为 ; 9、到两定点A 、B 的距离的平方差为定值k 的点的轨迹是垂直于AB 的一条直线,称为 ,点A 到垂足H 的距离AH= . 二、计算题(本大题共 2 题,第1小题8 分,第2小题10分,共 18 分) 1、在ABC ∆中,AD 是BC 边上的中线,E 是AD 的中点,连接BE 与AC交于点P,求:BE EP 的值。
2、已知Rt ABC ∆所在平面外一点P 到直顶角C 的距离为24,到两直角边的距离为求PC 与平面ABC 所成的角。
三、证明题(本大题共 4 题,每小题10 分,共40 分)1、 圆的两弦AB 与CD 相交于一点E ,由E 引AD 的平行线与直线BC 交于F ,过F 作圆的切线FG ,G 为切点,证明EF=FG.2、设梯形ABCD 的两底之和AD+BC=CD ,求证D ∠与C ∠的平分线交于AB 的中点处。
CE第 2 页 (共 2 页)3、AD 、BE 、CF 是ABC ∆的高线,从垂足D 引DM BE ⊥于M ,引DN CF ⊥于N ,求证MNFE4、证明三角形的中线小于夹此中线两边的半和,而大于这半和与第三边一半的差。
初等数学研究试题答案
习题一1、数系扩展的原则是什么有哪两种扩展方式(P9——P10) 答:设数系A 扩展后得到新数系为B ,则数系扩展原则为:(1)B A ⊂(2)A 的元素间所定义的一些运算或几本性质,在B 中被重新定义。
而且对于A 的元素来说,重新定义的运算和关系与A 中原来的意义完全一致。
(3)在A 中不是总能实施的某种运算,在B 中总能施行。
(4)在同构的意义下,B 应当是A 的满足上述三原则的最小扩展,而且有A 唯一确定。
数系扩展的方式有两种:(1)添加元素法。
(2)构造法。
2、对自然数证明乘法单调性:设,,,a b c N ∈则(1),;a b ac bc ==若则(2),;a b ac bc <<若则(3),a b ac bc >>若则;证明:(1)设命题能成立的所有C 组成集合M 。
a b,a a 1,b b 1,P13(1),(1)a 111,a ac a c ac a bc b c bc b b Mc M c bc==⋅=⋅=+=+=+=+''∴⋅=⋅∴∈∈= (规定)假设即ac ,ac a c .bc a ba bcbc bc M ==∴+=+∴=''∴∈'又 由归纳公理知,,N M =所以命题对任意自然数成立。
(2),,.a b b a k k N <=+∈若则有 (P17定义9)由(1)有()bc a k c =+a c kc =+ac bc ∴< (P17.定义9)或:,,.a b b a k k N <=+∈若则有 bc ()a k c ac kc =+=+ ()ac ac kc a k c bc ∴<+=+=.ac bc ∴=(3),,.a b a b k k N >=+∈若则有a ().cb kc bc kc =+<+ac bc ∴>3、对自然数证明乘法消去律:,,,a b c N ∈设则(1),;ac bc a b ==若则(2)ac bc a b <<若,则;(3)ac bc a b >>若,则。
初等数学研究试卷B
襄樊学院10~11学年度上学期《初等数学研究》试卷参考答案与评分标准一、单项选择题(从下列各题4个备选答案中选出一个正确答案,并将其代号写在题干后面的括号内,答案选错、不选、多选者,该题不得分。
每小题3分,共27分)1.实数域上的一切有逆的n n ⨯阶矩阵对于矩阵乘法来说作成一个( A )。
A 群B 环C 域D 除环2.( C )是有理数域Q 的扩张。
3.如果48234+-++x Bx Ax x 是D Cx x ++2的完全平方,若A>0,则A 、 B 、C 、D 分别为( C )。
A.-4,8,-2,2B.4,8,-2,2C.4,0,2,-2D.-4,0,2,-24.如果d cx bx ax +++23能被22h x +整除,则a ,b ,c ,d 满足( D )。
A.ab=cdB.Ac=bdC.ad=-bcD.ad=bc5. 二圆外切于点P. AB 是一条外公切线(A ,B 为切点).则∠PAB=( B ).A.75°B.90°C.120°D.150°6. 平行四边形ABCD 的底边BC 固定,另一边AB 长为a ,则其对角线交E 的轨迹为一圆,圆心是BC 中点,则圆的半径为( B ).A.aB. 2aC. 3aD. 4a 7.函数),(2+∞-∞-=-在xx e e y 内的反函数具有( A )性质。
A 奇函数 增函数 B 奇函数 减函数C 偶函数 增函数D 偶函数 减函数8.消去方程023183234=+--+x x x x 中的二次项,则原方程变为( A )。
9. 多面体中,发出奇数条棱的定点数必为( B ).A.奇数B.偶数C.任意点D.不存在二、填空题(每小题3分,共18分)1. 已知:设M 为平面α外一点,A 、B 为α内两点.MA=51CM ,MB=30CM ,MO ⊥平面α,垂足为O.且AO=BO=5:2,求MO=126CM 。
小学初等数学研究大学试卷
1. 1的平方根是__________,2的立方根是__________。
2. (-3)×(-5)=__________,3×(-2)+4=__________。
3. (3a+b)²=__________,(a-2b)×(a+2b)=__________。
4. 在直角坐标系中,点A(2,3)关于x轴的对称点是__________。
5. 等差数列1,4,7,10的公差是__________。
二、选择题(每题3分,共15分)1. 下列各数中,是平方数的是()A. 16B. 15C. 18D. 192. 下列各数中,是立方数的是()A. 27B. 26C. 28D. 293. 下列各式中,正确的是()A. (a+b)²=a²+2ab+b²B. (a-b)²=a²-2ab+b²C. (a+b)³=a³+3a²b+3ab²+b³D. (a-b)³=a³-3a²b+3ab²-b³4. 在直角坐标系中,点B(-2,1)关于原点的对称点是()A. (2,-1)B. (-2,-1)C. (-2,1)D. (2,1)5. 等差数列3,6,9,12的公差是()A. 3B. 6C. 9D. 12三、解答题(每题10分,共30分)1. (1)计算下列各式的值:(1)(-3)²×(-2)³(2)(a+b)²-(a-b)²(3)(x-2y)²+2xy(2)已知等差数列的第一项为3,公差为2,求第10项的值。
2. (1)在直角坐标系中,点C(-1,-2)关于y轴的对称点是D,求D的坐标。
(2)在直角坐标系中,点E(3,4)关于原点的对称点是F,求F的坐标。
3. (1)求下列各式的值:(1)(a+b)²+(a-b)²(2)(x+y)²-2xy(2)已知等差数列的第一项为-5,公差为3,求第8项的值。
初等几何研究试卷4
第 1 页 (共 2 页)4一、填空题(本大题共 8 题,每空 2 分,共 20分)1、当结论的反面只有一款时,否定了这一款便完成证明,这种较单纯的反证法叫做; 2、设CM 是ABC ∆的中线,则当12CM AB >时,C ∠是 角; 3、两个平行平面的距离等于12cm ,一条直线和它们相交成60,则这条直线夹在两平面间的线段长为 ;4、一些作图题中,往往可先作成图形的一个三角形,其余部分可由此三角形陆续作出,这种作图方法称为 ,此三角形称为 ;5、在ABC ∆中,若AB AC >,CD BE 、分别是C ∠和B ∠的平分线,则CD 与BE 的大小关系是 ;6、已知ABC ∆的三边分别为3cm ,5cm ,6cm ,则ABC ∆的内切圆半径r= ;7、到两定点A 、B 的距离之比为定比k 的点的轨迹是 和 ;8、设圆内接正五、六、十边形的边长分别为5a 、6a 、10a ,则它们之间的关系为 。
二、计算题(本大题共 2 题,每题8 分,共 16 分)1、在直二面角的棱上有两点A 、B ,AC 和BD 各在这个二面角的一个面内,并且都垂直于棱AB ,设8,6,24AB cm AC cm BD cm ===,求CD 的长。
2、设正方形ABCD 内接于O ,P 为DC 上一点,2PA PC ==,求P B P D ⋅的值。
三、证明题(本大题共 4 题,每小题10 分,共40 分)1、四边形ABCD 中,设AB CD =,M ,N 分别是AD 、BC的中点,证明直线MN 与AB 、CD 所成的交角相等。
2、证明:梯形两腰的中点,两对角线的中点,四点共线。
C第 2 页 (共 2 页)3、设BE 、CF 是ABC ∆的高,在射线BE 上截取BP AC =,在射线CF 上截取CQ AB =,证明AP 与AQ 相等且垂直。
4、在圆内接四边形ABCD 中,BC CD =,求证:22AB AD BC =AC ⋅+四、轨迹(本大题共 1 题, 12 分)1、设定圆中互相垂直的两弦的平方和是常数,则此两弦所在直线交点的轨迹是一圆。
初等数学研究题库
选择题一.函数与方程1.(全国新课标卷,第9题)已知0ω>,函数()sin 4f x x πω=+()在(,)2ππ单调递增,则ω的取值范围是( )A.1524⎡⎤⎢⎥⎣⎦, B.13,24⎡⎤⎢⎥⎣⎦ C.10,2⎛⎤ ⎥⎝⎦D.(]0,22.(全国新课标卷,第10题)已知函数1()ln(1)f x x x=+-,则()y f x =的图象大致为( )3.(全国大纲卷,第9题)已知125ln ,log 2,x y z eπ-===,则( )A.x y z <<B.z x y <<C.z y x <<D.y z x <<4.(全国大纲卷,第10题)已知函数33y x x c =-+的图象与x 轴恰有两个公共点,则c =( )A.-2或2B.-9或3C.-1或1D.-3或1 5.(湖南,第8题)已知两条直线1:l y m =和28:(0)21l y m m =>+,1l 与函数2log y x =的图象从左至右相交于点A ,B ,2l 与函数2log y x =的图象从左至右相交于点C ,D .J 记线段AC 和BD 在x 轴上的投影长度分别为a ,b .当m 变化时,ba的最小值为 ( ) A.162 B.82 C.384 D.3446.(江西,第2题)下列函数中,与函数31y x=定义域相同的函数为( ) A.1sin y x =B.ln x y x =C.xy xe = D.sin x y x= 7.(江西,第3题)若函数21,1()lg 1x x f x x x ⎧+≤=⎨>⎩,则((10))f f =( )A.lg101B.2C.1D. 08.(福建,第7题)设函数1,()0,x D x x ⎧=⎨⎩为有理数,为无理数,则下列结论错误的是( )A.()D x 的值域为{}0,1B.()D x 是偶函数C.()D x 不是周期函数D.()D x 不是单调函数9.(福建,第9题)若函数2xy =的图象上存在点(,)x y 满足约束条件30230x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩,则实数m 的最大值为( ) A.12 B,1 C.32D.2 10.(福建,第10题)函数()f x 在[],a b 上有定义,若对任意[]12,,x x a b ∈,有[]12121()()()22x x f f x f x +≤+,则称()f x 在[],a b 上具有性质P .设()f x 在[]1,3上具有性质P ,现给出如下命题: ①()f x 在[]1,3上的图象是连续不断的;②2()f x 在1,3⎡⎤⎣⎦上具有性质P ;③若()f x 在2x =处取得最大值1,则[]()1,1,3f x x =∈; ④对任意[]1234,,,1,3x x x x ∈,有[]123412341()()()()()44x x x x f f x f x f x f x +++≤+++其中真命题的序号是( )A.①②B.①③C.②④D.③④11.(广东,第4题)下列函数中,在区间()0,+∞上为增函数的是( )A.(2)y ln x =+B.1y x =-+C.1()2xy = D.1y x x=+12.(陕西,第2题)下列函数中,既是奇函数又是增函数的为( )A.1y x =+B.3y x =- C.1y x=D.y x x = 13.(湖北,第3题)已知二次函数()y f x =的图象如图所示,则它与x 轴所围成的面积为( ) A.25π B.43 C.32 D.2π14.(湖北,第7题)定义在()(),00,-∞+∞ 上的函数()f x ,如果对于任意给定的等比数列{}n a ,{}()n f a 仍是等比数列.则称()f x 为“保等比数列函数”.现有定义()(),00,-∞+∞ 上的如下函数:①2()f x x =;②()2xf x =;③()f x x =;④()ln f x x =.则其中是“保等比数列函数”的()f x 的序号为( ) A.①② B.③④ C.①③ D.②④15.(湖北,第9题)函数2()cos f x x x =在区间[]0,4上的零点个数为( )A.4B.5C.6D.716.(天津,第4题)函数3()22xf x x =+-在区间()0,1内的零点个数是( )A.0B.1C.2D.317.(四川,第3题)函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限( )A.不存在B.等于6C.等于3D.等于0 18.(四川,第5题)函数()10,1xy a a a a=->≠的图象可能是( )y-1 O x1119.(山东,第3题)设0a >且1a ≠,则“函数()xf x a =在R 上是减函数”是“函数3()(2)g x a x =-在R 上是增函数”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D. 既不充分也不必要条件 20.(山东,第8题)定义在R 上的函数()f x 满足(6)()f x f x +=.当31x -≤<-时,()2()2f x x =-+;当13x -≤<时,()f x x =.则(1)(2)(3)(2012)f f f f ++++=( )A.335B.338C.1678D.2012 21.(山东,第12题)设函数1()f x x=,()2(),,0g x ax bx a b R a =+∈≠,若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点11(,)A x y ,22(,)B x y ,则下列判断正确的是( )A.当0a <时,12120,0x x y y +<+>B.当0a <时,12120,0x x y y +>+<C.当0a >时,12120,0x x y y +<+<D.当0a >时,12120,0x x y y +>+>22.(辽宁,第11题)设函数()()f x x R ∈满足()(),()(2)f x f x f x f x -==-,且当[]0,1x ∈时,3()f x x =.又函数()cos()g x x x π=,则函数()()()h x g x f x =-在13,22⎡⎤-⎢⎥⎣⎦上的零点个数为( )A.5B.6C.7D.823.(辽宁,第12题)若[)0,x ∈+∞,则下列不等式恒成立的是( ) A.21xe x x ≤++ B.21111241x x x≤-++1O 1 xB.y y x1O 1 A.1O 1 xC.y xD.y1O 1C.21cos 12x x ≥-D.21ln(1)8x x x +≥- 24.(重庆,第5题)设tan ,tan αβ是方程2320x x -+=的两根,则()tan +αβ的值为( ) A.-3 B.-1 C.1 D.325.(重庆,第7题)已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[]0,1上的增函数”是“()f x 为[]3,4上的减函数”的( ) A.既不充分也不必要条件 B.充分也不必要条件C.必要而不充分条件D.充要条件26.(重庆,第8题)设函数()f x 在R 上可导,其导函数为'()f x ,且函数'(1)()y x f x =-的图象如图所示,则下列结论中一定成立的是( ) A.函数()f x 有极大值(2)f 和极小值(1)f B.函数()f x 有极大值(2)f -和极小值(1)f C.函数()f x 有极大值(2)f 和极小值(2)f - D.函数()f x 有极大值(2)f -和极小值(2)f27.(安徽,第2题)下列函数中,不满足(2)f x 等于2()f x 的是( )A.()f x x =B.()f x x x =- C ()1f x x =+. D.()f x x =- 28.(浙江,第9题)设0,0a b >> ( )A.若2223aba b +=+,则a b > B.若2223aba b +=+,则a b < C.若2223aba b -=-,则a b > D.若2223aba b -=-,则a b <二.数列1.(全国新课标卷,第5题)已知{}n a 为等比数列,47562,8a a a a +==-,则110a a +=( )A.7B.5C.-5D.-72.(全国大纲卷,第5题)已知等差数列{}n a 的前n 项和为n S ,555,15a S ==,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前100项和为( ) -2 yx2 1 OA.100101 B.99101 C.99100 D.1011003.(江西,第6题)观察下列各式:1a b +=,223a b +=,334a b +=,447a b +=,5511a b +=,···,则1010a b +=( ) A.28 B.76 C.123 D.1994.(福建,第2题)等差数列{}n a 中,15410,7a a a +==,则数列{}n a 的公差为( ) A.1 B.2 C.3 D.45.(辽宁,第6题)在等差数列{}n a 中,已知4816a a +=,则该数列前11项和11S =( ) A.58 B.88 C.143 D.1766.(上海,第18题)设121sin ,25n n n n a S a a a n π==+++ ,在12100,,S S S 中,正数的个数是( )A.25B.50C.75D.1007.(重庆,第1题)在等差数列{}n a 中,241,5a a ==,则n a 的前5项和5S =( ) A.7 B.15 C.20 D.258.(安徽,第4题)公比为2的等比数列{}n a 的各项都是正数,且31116a a =,则210log a =( )A.4B.5C.6D.79.(浙江,第7题)设n S 是公差为(0)d d ≠的无穷等差数列{}n a 的前n 项和,则下列命题错误的是( )A.若0d <,则数列{}n S 有最大项B.若数列{}n S 有最大项,则0d <C.若数列{}n S 是递增数列,则对任意n N *∈,均有0n S > D.若对任意n N *∈,均有0n S >,则数列{}n S 是递增数列三.不等式1.(北京,第1题)已知集合{}|320A x R x =∈+>,{}|(1)(3)0B x R x x =∈+->,则A B = ( )A.(),1-∞-B.21,3⎧⎫--⎨⎬⎩⎭C.2,33⎛⎫-⎪⎝⎭D.()3,+∞ 2.(福建,第5题)下列不等式一定成立的是( )A.()21lg lg 04x x x ⎛⎫+>> ⎪⎝⎭ B.()1sin 2,sin x x k k Z xπ+≥≠∈ C. ()212x x x R +≥∈ D.()2111x R x >∈+ 3.(湖北,第5题)设a Z ∈,且013a ≤<,若200251a +能被13整除,则a =( )A.0B.1C.11D.124.(湖北,第6题)设,,,,,a b c x y z 是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=,则a b cx y z++=++( )A.14 B. 13 C. 12 D. 345. (重庆,第2题)不等式1021x x -≤+的解集为( )A.1,12⎛⎤- ⎥⎝⎦B.1,12⎡⎤-⎢⎥⎣⎦C.[)1,1,2⎛⎫-∞-+∞ ⎪⎝⎭D.[)1,1,2⎛⎤-∞-+∞ ⎥⎝⎦四.排列与组合1.(全国新课标卷,第2题)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1个名教师和2名学生组成,不同的安排方案共有( ) A.12种 B.10种 C.9种 D.8种2.(全国大纲卷,第11题)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( ) A.12种 B.18种 C.24种 D.36种3.(全国大纲卷,第12题)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==,动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( )A.16B.14C.12D.10 4.(北京,第6题)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A.24B.18C.12D.65.(陕西,第8题)两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(个人输赢局次的不同视为不同情形)共有( ) A.10种 B.15种 C.20种 D.30种6.(天津,第5题)在5212x x ⎛⎫- ⎪⎝⎭的二项展开式中,x 的二项系数为( )A.10B.-10C.40D.-40 7.(四川,第1题)()71x +的展开式中2x 的系数是( )A.42B.35C.28D.218.(山东,第11题)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( ) A.232 B.252 C.472 D.4849.(辽宁,第5题)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( )A.33!⨯B.()333!⨯ C.()43! D. 9!10.(重庆,第4题)312x x ⎛⎫+ ⎪⎝⎭的展开式中常数项为( )A.3516 B.358 C.354D.105 11.(安徽,第7题)()522121x x ⎛⎫+- ⎪⎝⎭的展开式的常数项是( )A.-3B.-2C.2D.312.(浙江,第6题)若从1,2,3,,9 这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A.60种B.63种C.65种D.66种填空题一、函数与方程1. (全国大纲卷,第14题)当函数()π20cos 3sin <≤-=x x x y 取得最大值时,=x ______2. (北京卷,第14题)已知()()().22)(,32-=++-=xx g m x m x m x f 若同时满足条件:①R x ∈∀,()0<x f 或()0<x g ;②()0)()(,4,<-∞-∈∃x g x f x .则m 的取值范围是__3.(湖北卷,第13题)回文数是指从左往右读与从右往左读都一样的正整数。
初等数学研究期末试题及答案A
初等数学研究期末试题及答案A延安大学西安创新学院期末考试命题专用纸课程名称: 初等数学研究任课教师姓名: 左晓虹卷面总分: 100 分考试时长: 100 分钟考试类别:闭卷 ? 开卷 ? 其他 ? 注:答题内容请写在答题纸上,否则无效(一、单选题(4*10=40分),,,,,,1(设,是向量,命题“若,则”的逆否命题是 ( ) ||||ab,abab,,,,,,,,,,,则 (B)若,则 (A)若||||ab,||||ab,ab,,ab,,,,,,,,,,(C)若,则 (D)若,则 ||||ab,||||ab,ab,,ab,,x,,22(设抛物线的顶点在原点,准线方程为,则抛物线的方程是 ( )2222(A) (B) (C) (D) yx,,4yx,4yx,,8yx,8fx()fxfx()(),,fxfx(2)(),,yfx,()3(设函数(R)满足,,则函数的图像x, 是 ( )xx,64((R)展开式中的常数项是 ( ) (42),x,,20,15(A) (B) (C)15 (D)205(某几何体的三视图如图所示,则它的体积是 ( )2,(A) ,83,(B) 8,382,,(C)2,(D) 3[0,),,6(函数在内 ( ) fxxx()cos,,(A)没有零点 (B)有且仅有一个零点第 1 页共 6 页延安大学西安创新学院期末考试命题专用纸 (C)有且仅有两个零点 (D)有无穷多个零点227(设集合, MyyxxxR,,,,{||cossin|,}1MN:},为虚数单位,R,则为( ) ix,Nxx,,,{|||2i1](0(A)(0,1) (B),1][01)[0(C), (D),xxx1238(右图中,,,为某次考试三个评阅人对同一道题的x,6x,9p,8.5p12独立评分,为该题的最终得分,当,,x3时,等于( )(A)11 (B)10 (C)8 (D)7l9(设,…,是变量和的个样本点,直线是由这些样本点y(,),(,)xyxy(,)xyxn112233通过最小二乘法得到的线性回归方程(如右图),以下结论中正确的是 ( )l(A)和的相关系数为直线的斜率 yx(B)和的相关系数在0到1之间 yxl(C)当为偶数时,分布在两侧的样本点的个数一定相同 nl(D)直线过点 (,)xy10(甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是 ( )1151(A) (B) (C) (D) 363696二、解答题(10*5=50分,选做5道题目即可), ,,ACD90AEBC,1(如右图,?B=?D,,,且AB=6,AC=4,AD=12,求BE的长度(第 2 页共 6 页延安大学西安创新学院期末考试命题专用纸1,,fx()(0,),,f(1)0,gxfxfx()()(),,2( 设函数定义在上,,导函数,( fx(),xgx()(1)求的单调区间;1gx()(2)讨论与的大小关系; g()x3(植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米(开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,求这个最小值( 4(叙述并证明余弦定理(((1)作出相应图像,叙述“三垂线定理”及其逆定理的内容; 5(2)请至少列出与三角形相关的5个性质命题(6(就感兴趣的某节课,请设计出你认为最好的开课语及结束语( 三、证明题(10分)ABACD,,如图,直三棱柱中,、分别为、的中点,EDE,ABCABC,BCAA11111ABAC,平面,求证:( BCC1一、选择题(4*10=40分)1(C 2( B 3( B 4( C 5( A6( B 7( C 8( C 9( D 10( D二、解答题(10*5=50分,选做5道题目即可),,,ACD90AEBC,1.如图,?B=?D,,,且AB=6,AC=4,AD=12,求BE(AEBC,解:因为,,,,ACD90,所以?AEB=又因为?B=?D,所以?AEB??ACD,……5分ACAD所以, ,AEABABAC,,64所以, AE,,,2AD122222BEABAE,,,,,6242在Rt?AEB中,(………………………5分第 3 页共 6 页延安大学西安创新学院期末考试命题专用纸1,,fx()(0,),,f(1)0,gxfxfx()()(),,2. 设函数定义在上,,导函数,( fx(),xgx()(1)求的单调区间;1gx()(2)讨论与的大小关系; g()x1,fxxc()ln,,f(1)0,ln10,,cc,0解:(1)?,?(为常数),又?,所以,即,cfx(),x1fxx()ln,?;, gxx()ln,,xx,1x,1,,gx()0,x,1?,令,即,解得,…………2分 ,0gx(),22xx,gx()0,gx()(0,1)gx()x,(0,1)当时,,是减函数,故区间在是函数的减区间;,x,,,(1,)gx()0,gx()(1,),,gx()当时,,是增函数,故区间在是函数的增区间;…………3分111(2),设, gxx()ln,,,hxgxgxx()()()2ln,,,,,xxx2(1)x,,则, hx(),,2x1h(1)0,x,1当时,,即, gxg()(),x,,x,,,(0,1)(1,):hx()0,h(1)0,当时,,,(0,),,hx()因此函数在内单调递减,1hxh()(1),01,,x当时,=0,?; gxg()(),x1hxh()(1),x,1当时,=0,?( ………………5分 gxg()(),x3.植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米(开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,求这个最小值为(解:(方法一)设树苗放在第个树坑旁边(如图), i1 2 … i … 19 20 那么各个树坑到第i个树坑距离的和是siiiiiii,,,,,,,,,,,,,,,,,,(1)10(2)10()10[(1)]10(20)10??iiii(1)(20)(120),,,, ,,,,,,,,10[(20)]iiii22第 4 页共 6 页延安大学西安创新学院期末考试命题专用纸2,…………………………8分 ,,,10(21210)iii,10所以当或时,的值最小,最小值是1000,所以往返路程的最小值是2000米. 11s……………………2分(方法二)根据图形的对称性,树苗放在两端的树坑旁边,所得路程总和相同,取得一个最值;所以从两端的树坑向中间移动时,所得路程总和的变化相同,最后移到第10个和第11个树坑旁时,所得的路程总和达到另一个最值,所以计算两个路程和即可。
(完整版)初等数学研究(补充版)
初等数学研究1.(P383例4)在△ABC 中,∠C=90°,∠A=30°,在△ABC 的外侧分别以AB 、AC 为一边作正△ABE,正△ACD,如图,连接DE 交AB 于F.求证:EF=FD 。
证明:作EH ⊥AB 交AB 于H 点。
∵∠CAD=60°,∠BAC=30° ∴∠EHF=∠DAF=90° 设BC=a ,则AC=EH=3a又∵∠EFH=∠DFA (对顶角) ∴△EFH ≌△DFA (AAS) ∴EF=FD2.(P395例6)已知设H 是△ABC 的垂心,O 是外心。
OD ⊥BC 于D 。
如图,求证:AH=2OD 。
证明:取AB 、H 的中点M 、N ,连接OM ,MN,DN则MN ∥AH ∥OD ND ∥CH ∥OM ∴四边形MNDO 是平行四边形。
∴OD=MN=12AH即AH=2OD 3。
(P423例21)在△ABC 的三边AB 、BC 、和CA 上分别取点M 、K 和L ,使MK ∥AC ,ML ∥BC;设BL 、MK 交于P ,AK 、ML 交于Q 。
如图,求证:PQ ∥AB 。
证明:∵ML ∥BC MK ∥AC ∴KP BP PMPL= BM KQ MAQA= BP BM PL MA=∴KP BP BM KQPM PL MA QA===因此PQ ∥AM 即PQ ∥AB4。
(P430例26)设A 、B 为平面上的二定点,C 为平面位于直线AB 同侧的一动点,各以AC 、AB 为边,在△ABC 之外作正方形CADI 、CBEJ,如图。
求证:无论C 点取在直线AB 同侧的任何位置,DE 的中点M 的位置不变。
证明:自D 、E 、C 和M 分别作AB 的垂线,设其垂足依次为G 、H 、K 和N.∵AD=AC ∠1=∠2 ∠CKA=∠AGD=90° ∴△ADG ≌△CAK (AAS ) ∴AG=CK DG=AK同理: CK=BH EH=BK ∴AG=BH∵N 平方HG (MN 是梯形中位线) ∴N 平分AB∵EH+DG=BK+AK=AB∴MN=12(EH+DG )=12AB又∵MN ⊥AB ∴DE 的中点M 是定点.5.(P437例28)在任一三角形中,外心、垂心和重心共线. 证明:∵G 为三角形重心 ∴AG=2DG又由P395例6知AH=2DO 又∵OD ∥AH∴∠1=∠2∴△DOG ∽△AHG ∴∠OGD=∠HGA∴H 、G 、O 三点共线 6。
《初等数学研究》试题
《初等数学研究》试题题目一:计算题1. 请计算:7 × 9 = ______2. 请计算:48 ÷ 6 = ______3. 请计算:25 - 17 = ______4. 请计算:3 × 4 + 2 = ______5. 请计算:10 ÷ (5 - 3) = ______题目二:填空题1. 一个正方形的一条边长为5厘米,计算它的周长和面积分别为______厘米和______平方厘米。
2. 两个角相加等于180度,如果一个角为70度,那另一个角度数为______度。
3. 20 ÷ 4 × 3 = ______4. 一个矩形的长为7厘米,宽为4厘米,计算它的周长和面积分别为______厘米和______平方厘米。
5. 若一个数字逆序排列得到新的数字,例如:321的逆序排列为123,如果一个三位数的逆序排列是它的2倍,求这个三位数。
题目三:选择题1. 用1只兔子和1只鸽子构成一个集合,它们的总腿数是:A. 2腿B. 4腿C. 6腿D. 8腿2. 表示“六乘以一个正整数”的算式是:A. 6 + dB. d - 6C. 6 ×dD. 6 ÷d3. 一个立方体有六个面,正方形有四个边,三角形有______个边。
A. 2B. 3C. 4D. 54. 一个正方形和一个长方形的周长相等,它们的边长比应满足的关系是:A. 边长相等B. 边长小于C. 边长大于D. 无法确定5. 下列哪个数字是素数?A. 10B. 15C. 23D. 30题目四:解答题1. 小明有一个圆形的蛋糕,周长为36厘米。
请问它的直径是多少厘米?2. 一个矩形的长和宽之比是3:1,它的周长是36厘米,求它的长和宽。
3. 一个三位数的十位数比个位数大1,十位数比百位数小2,百位数是5,求这个数。
注意:请在答题纸上写下你的答案,并将试卷交给监考老师。
祝你考试顺利!。
初等数学研究复习题
初等数学研究复习题一、 选择题1、中学数学的证明方法,按选证命题形式的不同可分为:( C )A :综合法与分析法B :演绎法与归纳法C :直接证法与间接证法D :具体方法、一般方法和数学思想方2、不等式22x x x x-->的解集是( A ) A. (02), B. (0)-∞, C. (2)+∞, D. (0)∞⋃+∞(-,0),3、函数sin 1tan tan 2x y x x ⎛⎫=+⋅ ⎪⎝⎭的最小正周期为 ( B )A πB 2π C2π D 32π4、已知)(x f 不是常数函数,对于R x ∈,有)8()8(x f x f -=+,且)4()4(x f x f -=+,则)(x f ( C )A 、是奇函数不是偶函数B 、是奇函数也是偶函数C 、是偶函数不是奇函数D 、既不是奇函数也不是偶函数5、已知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围:(B )A (0,1)B (1,2)C (0,2)D [2,+∞) 法6、下列定理能作为证明“点共线”的依据的是:( B )A 西姆松定理B 梅涅劳斯定理C 塞瓦定理D 斯蒂瓦尔特定理 7.下列关于平移的说法中正确的是 ( A )。
A.以原图形中的一点为端点,且经过它的对应点的射线的方向是平移的方向;B.平移后的两个图形中两个顶点连成的线段长是平移的距离;C.原图形中两个顶点连成的线段长是平移的距离;D.以对应点中的一点为端点的射线是平移的方向8.若一个四边形既是轴对称图形,又是中心对称图形,则这个四边形是( D )。
A.直角梯形;B.等腰梯形;C.平行四边形;D.矩形。
9、已知)2(),1(3)(2f f x x x f ''+=则=( B ) A .-1 B . 0C .2D .410、设1z i =+(i 是虚数单位),则22z z+=( D ) A .1i -- B .1i -+ C .1i - D . 1i +11、函数f (x )=sin(2x -π6)的图象可以通过以下哪种变换得到函数g (x )=cos(2x +π3)的图象( D )A.向右平移π个单位B.向左平移π个单位C.向右平移π3D.向左平移π2个单位12、函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )为增函数,当x∈(-∞,-2]时,函数f (x )为减函数,则m 等于( B )A .-4B .-8C .8D .无法确定9、4.若tan α=2,则2sin α-cos αsin α+2cos α的值为( B )A . 0B .34C . 1D .5413.已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB→+AC→=mAM →成立,则m =( B ) A .2 B .3 C .4 D .5二、 填空题;1、已知函数f (x )=⎩⎪⎨⎪⎧-2,x >0,-x 2+bx +c ,x ≤0,若f (0)=-2,f (-1)=1,则函数g (x )=f (x )+x 的零点的个数为____3____.2、函数y =f (x )的图像与函数y =e x 的图像关于直线y =x 对称,将y =f (x )的图像向左平移2个单位,得到函数y =g (x )的图像,再将y =g (x )的图像向上平移1个单位,得到函数y =h (x )的图像,则函数y =h (x )的解析式是_____ y =ln(x +2)+1___.3、在⊿ABC 中,E 是AB 的中点,D 是AC 上一点,且AD:DC=2:3,BD 与CE 交于F ,40ABCS=,则AEFD S 四边形=__11_____。
初等数学研究(一)
《初等数学研究》课程期末考试复习题(一)一、选择题,1.“()24x k k Z ππ=+∈”是“tan 1x =”成立的 ( )A.充分不必要条件.B.必要不充分条件.C.充分条件.D.既不充分也不必要条件. 2.函数y=1+ln(x-1)(x>1)的反函数是 ( )A.y=1x e +-1(x>0)B. y=1x e -+1(x>0)C.y=1x e +-1(x ∈R)D.y=1x e -+1 (x ∈R)3.log 510+log 50.25= ( )A.0B.1C. 2D.44.设25a b m ==,且112a b+=,则m = ( )5.如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++=A.14B.21C.28D.356.等比数列{}n a 中,12a =,8a =4,函数()128()()()f x x x a x a x a =---,则()'0f =( )A .62 B. 92 C. 122 D. 1527若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABCA.一定是锐角三角形.B.一定是直角三角形.C.一定是钝角三角形.D.可能是锐角三角形,也可能是钝角三角形. 8为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像 A.向左平移4π个长度单位 B.向右平移4π个长度单位 C.向左平移2π个长度单位 D.向右平移2π个长度单位9.在△ABC 中,内角A,B,C 的对边分别是c b a ,,,若22a b -=,sin C B =,则A=A.030B.060C.0120D.015010.在△ABC 中,角A ,B ,C 所对的边长分别为c b a ,,,若∠C=120°c =,则A.b a >B.b a <C.b a =D.b a 与的大小关系不能确定二、填空题1.已知α为第二象限的角,3sin 5a =,则tan 2α= 。
初等数学研究试卷
一,填空题:(每题3分,共24分)1,求函数y=的值域_______2,用不等号(>,<,≥,≤)连接两个解析式所得的式子叫做不等式,其一般形式为_______3,由基本初等函数经过有限次的四则运算及函数复合,并且只能用一个解析式表示的函数叫做________4,用运算符号和括号把数和表示数的字母连接而成的式子叫做________5,二元一次不定方程ax+by=c(a,b,c∈Z且ab≠0)有整数解的充要条件是________6,数列 1, 8, 27, 64, 125, 216,…,,…是________阶等差数列7,N个不同元素的环状排列数为________8,的展开式有________项。
二,选择题(每题5分,共30分)1,已知)(x f 不是常数函数,对于R x ∈,有)8()8(x f x f -=+,且)4()4(x f x f -=+,则)(x f ( )A 、是奇函数不是偶函数B 、是奇函数也是偶函数C 、是偶函数不是奇函数D 、既不是奇函数也不是偶函数2,有限集的基数叫( )A 、实数B 、虚数C 、有理数D 、正整数3,只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( )A .6个B .9个C .18个D .36个4,=x 的结果( )A 1B 2C 3D 05,不等式22x x x x-->的解集是( ) A. (02), B. (0)-∞, C. (2)+∞, D. (0)∞⋃+∞(-,0),6,若tan α=2,则2sin α-cos αsin α+2cos α的值为( )A . 0B .34C . 1D .54三,计算题(每题6分,共30分)1x xy y.2,求函数321=-.y x x3,解方程5432251313520+--++=.x x x x x4,求44444+++++的值.1234n5,2个教师和6个学生围着一张圆桌就坐.(1)共有多少种坐法?(2)两位教师相邻,有多少种坐法?(3)两位教师不相邻,有多少种坐法?四,综合题(每题8分,共16分)1,若数列{a n}(n∈N*)满足:①a n≥0;②a n﹣2a n+1+a n+2≥0;③a1+a2+…+a n≤1,则称数列{a n}为“和谐”数列.(1)已知数列{a n},(n∈N*),判断{a n}是否为“和谐”数列,说明理由;(2)若数列{a n}为“和谐”数列,证明:.(n∈N*)2,观察下列各式的特点:﹣1>﹣,﹣>2﹣,2﹣>﹣2,…(1)请根据以上规律填空﹣﹣(2)请根据以上规律写出第n(n≥1)个不等式,并证明你的结论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一,填空题:(每题3分,共24分)
1, 求函数y=1
x 2+x ―3的值域_______
2, 用不等号( >,<,≥,≤)连接两个解析式所得的式子
叫做不等式,其一般形式为_______
3, 由基本初等函数经过有限次的四则运算及函数复合,并且
只能用一个解析式表示的函数叫做________
4, 用运算符号和括号把数和表示数的字母连接而成的式子叫
做________
5, 二元一次不定方程ax+by=c (a,b,c ∈Z 且ab ≠0)有整数
解的充要条件是________
6, 数列 1, 8, 27, 64, 125, 216,…,n 3,…是
________阶等差数列
7, N 个不同元素的环状排列数为________
8, (x +y +z)n 的展开式有________项。
二,选择题(每题5分,共30分)
1,已知)(x f 不是常数函数,对于R x ∈,有)8()8(x f x f -=+,
且)4()4(x f x f -=+,则)(x f ( )
A 、是奇函数不是偶函数
B 、是奇函数也是偶函数
C 、是偶函数不是奇函数
D 、既不是奇函数也不是偶函数
2,有限集的基数叫( )
A 、实数
B 、虚数
C 、有理数
D 、正整数
3,只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( )
A .6个
B .9个
C .18个
D .36个 4,2222=++++x x 的结果( )
A 1
B 2
C 3
D 0
5,不等式22
x x x x -->的解集是( )
A. (02),
B. (0)-∞,
C. (2)+∞,
D. (0)∞⋃+∞(-,0),
6,若tan α=2,则2sin α-cos αsin α+2cos α的值为(
) A . 0 B .34 C . 1 D .54
三,计算题(每题6分,共30分)
1x xy y .
2,求函数321y x x =-.
3,解方程5432251313520x x x x x +--++=.
4,求44444
+++++的值.
1234n
5,2个教师和6个学生围着一张圆桌就坐.
(1)共有多少种坐法?
(2)两位教师相邻,有多少种坐法?
(3)两位教师不相邻,有多少种坐法?
四,综合题(每题8分,共16分)
1,若数列{a n}(n∈N*)满足:①a n≥0;②a n﹣2a n+1+a n+2≥0;③a1+a2+…+a n≤1,则称数列{a n}为“和谐”数列.
(1)已知数列{a n},(n∈N*),判断{a n}是否为“和谐”数列,说明理由;
(2)若数列{a n}为“和谐”数列,证明:.(n∈N*)
2,观察下列各式的特点:﹣1>﹣,﹣>2﹣,2﹣>﹣2,…
(1)请根据以上规律填空﹣﹣
(2)请根据以上规律写出第n(n≥1)个不等式,并证明你的结论.。