《列方程解题(一)》习题

合集下载

初一上数学真题专题练习---一元一次方程的应用(一)

初一上数学真题专题练习---一元一次方程的应用(一)

一元一次方程的应用(一)【真题精选】1.《九章算术》是中国古代的数学专著,奠定了中国传统数学的基本框架.方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”译文:“假设有若干人共同出钱买羊,如果每人出5钱,那么还差45钱;如果每人出7钱,那么仍旧差3钱,求买羊的人数和羊的价钱.”设羊是x钱,可列方程为()A.=B.=C.=D.=2.《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中记载:“以绳测井,若将绳三折测之,绳多4尺,若将绳四折测之,绳多1尺,绳长井深各几何?”译文:“用绳子测水井深度,如果将绳子折成三等份,井外余绳4尺;如果将绳子折成四等份,井外余绳1尺.问绳长、井深各是多少尺?”设井深为x尺,根据题意列方程,正确的是()A.3(x+4)=4(x+1)B.3x+4=4x+1C.3(x﹣4)=4(x﹣1)D.3.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60B.12(x+10)=13x+60C.D.4.一辆客车和一辆卡车同时从A地出发沿同一公路同向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早2h到达B地.若设A、B两地间的路程是xkm,可列方程()A.B.C.70x﹣60x=2D.5.用长为24cm的绳子围成一个封闭的长方形(绳子不重合),长方形的长是宽的两倍.设长方形的宽为xcm,根据题意可列方程为()A.x•2x=24B.x+2x=24C.2(x+2)=24D.2(x+2x)=24 6.如图,表中给出的是某月的月历,任意选取“U”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是()A.70B.78C.161D.1057.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km的两地同时出发,相向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相遇后又相距20km?③甲乙两人从相距60km的两地相向而行,甲的速度是4km/h,乙的速度是6km/h,如果甲先走了20km后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km的两地同时出发,背向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相距60km?其中可以用方程4x+6x+20=60表述题目中对应数量关系的应用题序号是()A.①②③④B.①③④C.②③④D.①②8.小王、小李和小张,同时各做120个同样的机器零件,当小王做完时,小李做了100个,小张做了80个,照这样计算,小李做完时,小张还差个没做.9.一部书稿,甲打字员打完全书要20天,乙打字员用同样的时间只能完成书稿的,两人合打这部书稿要天完成.10.甲、乙两城相距750千米,一辆大客车从甲城开往乙城共用15小时,一辆小轿车从乙城开往甲城10小时可以到达.两车同时从两城出发相向而行,小时可以相遇.11.清代文言小说集《笑笑录》记载,清代诗人徐子云曾写过一首诗:巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧?设寺内有x名僧人,则列出一元一次方程为.12.小华和小明周末到北京三山五园绿道骑行.他们按设计好的同一条线路同时出发,小华每小时骑行18km,小明每小时骑行12km,他们完成全部行程所用的时间,小明比小华多半小时.设他们这次骑行线路长为xkm,依题意,可列方程为.13.《九章算术》是我国古代数学名著,卷七“盈不足”中题目译文如下:“今有人合伙买羊,每人出5钱,还差45钱;每人出7钱,还差3钱.问合伙人数、羊价各是多少?”设合伙人数为x人,根据题意可列一元一次方程为.14.一件商品的标价是100元,进价是50元,打八折出售后这件商品的利润是元.15.《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”.《九章算术》大约成书于公元前200年~公元前50年,是以应用问题解法集成的体例编纂成书的,全书按题目的应用范围与解题方法划分为“方田”、“粟米”、“衰分”等九章.《九章算术》中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱.问人数、金价各是多少?如果设有x个人,那么可以列方程为.16.一项工程,甲单独做10天完成,乙单独做15天完成.两人合作,天可以完成.17.在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为40?如果能,求出这三个数;如果不能,请说明理由.18.列方程解应用题十一期间,张老师从北京出发走京津高速到天津.去时在京津高速上用了1.2小时,返回时在京津高速上比去时多用18分钟,返回时平均速度降低了22千米/小时.求张老师去时在京津高速上开车的平均速度.19.列方程解应用题:某学校组织初一年级学生参加公益劳动在甲处劳动的有16人,在乙处劳动的有12人,现在另调20人去甲乙两处支援,使得在甲处劳动的人数比在乙处劳动的人数的2倍少6人,问应调往甲、乙两处各多少人?20.一项工程,甲队单独施工需要15天完成,乙队单独施工需要9天完成.现在由甲队先工作3天,剩下的由甲、乙两队合作,还需要几天才能完成任务?21.今年,小楠和哥哥的年龄之和是21岁,小楠的年龄只有哥哥的一半,小楠和哥哥各多少岁?(用方程解)22.某商场从厂家购进100个整理箱,按进价的1.5倍进行标价.当按标价卖出80个整理箱后,恰逢元旦,剩余的部分以标价的九折出售完毕,所得利润共1880元,求每个整理箱的进价.23.2020年9月的日历如图所示.(1)用1×3的长方形框出3个数,如果任意圈出一横行左右相邻的三个数,设最小的数为x,用含x的式子表示这三个数的和为;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,用含y的式子表示这三个数的和为.(2)用一个2×2的正方形在此日历中框出4个数,被框住的4个数的和为84,则这四个数中最小的数为;(3)用一个3×3的正方形框在此日历中框出9个数,在框出的9个数中,记前两行共6个数的和为a1,最后一行3个数的和为a2,若|a1﹣a2|=15,请求出正方形框中位于最中心的数字m的值.24.甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?25.列方程解应用题:2019年年底某高铁即将开通.以前小红回老家只能坐绿皮车,车速才60km/h,但某高铁开通之后,车速可以达到240km/h.这样就能早到4.5小时.请问提速后小红回老家需要多长时间?26.某商场进了一批豆浆机,按进价的180%标价,春节期间,为了能吸引消费者,打7折销售,此时每台豆浆机仍可获利52元,请问每台豆浆机的进价是多少元?27.列一元一次方程解应用题6月15日,新机场线一期工程正式开始试运行,轨道交通新机场线一期全长约42.75千米,全线从草桥站出发,途经磁各庄站,终到新机场北航站楼站,新机场线车辆首次采用基于城际平台的市域车型,全线行驶需20分钟(不含起始站和终点站停靠时间),若列车的平均时速为135千米,则列车在磁各庄站停靠的时间是多少分钟?28.整理一批图书,由一个人做要40h完成.现计划由一部分人先做4h,再增加2人和他们一起做8h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?一元一次方程的应用(一)参考答案与试题解析一.试题(共28小题)1.《九章算术》是中国古代的数学专著,奠定了中国传统数学的基本框架.方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”译文:“假设有若干人共同出钱买羊,如果每人出5钱,那么还差45钱;如果每人出7钱,那么仍旧差3钱,求买羊的人数和羊的价钱.”设羊是x钱,可列方程为()A.=B.=C.=D.=【分析】设羊是x钱,根据买羊的人数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设羊是x钱,根据题意得:=.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.2.《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中记载:“以绳测井,若将绳三折测之,绳多4尺,若将绳四折测之,绳多1尺,绳长井深各几何?”译文:“用绳子测水井深度,如果将绳子折成三等份,井外余绳4尺;如果将绳子折成四等份,井外余绳1尺.问绳长、井深各是多少尺?”设井深为x尺,根据题意列方程,正确的是()A.3(x+4)=4(x+1)B.3x+4=4x+1C.3(x﹣4)=4(x﹣1)D.【分析】用代数式表示井深即可得方程.此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺.【解答】解:根据将绳三折测之,绳多四尺,则绳长为:3(x+4),根据绳四折测之,绳多一尺,则绳长为:4(x+1),故3(x+4)=4(x+1).故选:A.【点评】此题主要考查了由实际问题抽象出一元一次方程,不变的是井深,用代数式表示井深是此题的关键.3.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60B.12(x+10)=13x+60C.D.【分析】首先理解题意,找出题中存在的等量关系:实际12小时生产的零件数=原计划13小时生产的零件数+60,根据此等式列方程即可.【解答】解:设原计划每小时生产x个零件,则实际每小时生产(x+10)个零件.根据等量关系列方程得:12(x+10)=13x+60.故选:B.【点评】列方程解应用题的关键是找出题目中的相等关系.4.一辆客车和一辆卡车同时从A地出发沿同一公路同向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早2h到达B地.若设A、B两地间的路程是xkm,可列方程()A.B.C.70x﹣60x=2D.【分析】首先根据题意,设A、B两地间的路程是xkm,然后根据:卡车行驶时间﹣客车行驶时间=2,列出方程即可.【解答】解:设A、B两地间的路程是xkm,可得:,故选:B.【点评】此题主要考查了由实际问题抽象出一元一次方程,解答此题的关键是:审题找出题中的未知量和所有的已知量,然后用含x的式子表示相关的量,找出之间的相等关系列方程.5.用长为24cm的绳子围成一个封闭的长方形(绳子不重合),长方形的长是宽的两倍.设长方形的宽为xcm,根据题意可列方程为()A.x•2x=24B.x+2x=24C.2(x+2)=24D.2(x+2x)=24【分析】根据题意用x的代数式表示出长方形的长,进而利用矩形周长公式求出即可.【解答】解:设这个长方形的宽为xcm,则长为2xcm,则可列方程:2(x+2x)=24,故选:D.【点评】此题主要考查了由实际问题抽象出一元一次方程,利用矩形周长公式得出方程是解题关键.6.如图,表中给出的是某月的月历,任意选取“U”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是()A.70B.78C.161D.105【分析】设“U”型框中的正中间的数为x,则其他6个数分别为x﹣15,x﹣8,x﹣1,x+1,x﹣6,x﹣13,表示出这7个数之和,然后分别列出方程解答即可.【解答】解:设“U”型框中的正中间的数为x,则其他6个数分别为x﹣15,x﹣8,x﹣1,x+1,x﹣6,x﹣13,这7个数之和为:x﹣15+x﹣8+x﹣1+x+1+x﹣6+x﹣13=7x﹣42.由题意得:A、7x﹣42=70,解得x=16,能求出这7个数,不符合题意;B、7x﹣42=78,解得x=,不能求出这7个数,符合题意;C、7x﹣42=161,解得x=29,能求出这7个数,不符合题意;D、7x﹣42=105,解得x=21,能求出这7个数,不符合题意;故选:B.【点评】此题考查一元一次方程的实际运用,掌握“U”型框中的7个数的数字的排列规律是解决问题的关键.7.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km的两地同时出发,相向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相遇后又相距20km?③甲乙两人从相距60km的两地相向而行,甲的速度是4km/h,乙的速度是6km/h,如果甲先走了20km后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km的两地同时出发,背向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相距60km?其中可以用方程4x+6x+20=60表述题目中对应数量关系的应用题序号是()A.①②③④B.①③④C.②③④D.①②【分析】①设两人开始工作x小时后还有20个零件没有加工,根据甲生产的零件数+乙生产的零件数+未加工的零件数=计划加工零件的总数,即可得出关于x的一元一次方程;②设经过x小时后两人相遇后又相距20km,根据甲的路程+乙的路程+相遇后又间隔的距离=两地间的距离,即可得出关于x的一元一次方程;③设乙出发后x小时两人相遇,根据甲的路程+乙的路程=两地间的距离,即可得出关于x的一元一次方程;④设经过x小时后两人相距60km,根据甲的路程+乙的路程+20=两人间的间距,即可得出关于x的一元一次方程.综上即可得出结论.【解答】解:①设两人开始工作x小时后还有20个零件没有加工,依题意,得:4x+6x+20=60,∴①可以用方程4x+6x+20=60来表述;②设经过x小时后两人相遇后又相距20km,依题意,得:4x+6x﹣20=60,∴②不可以用方程4x+6x+20=60来表述;③设乙出发后x小时两人相遇,依题意,得:4x+20+6x=80,∴③方程4x+6x+20=60来表述;④设经过x小时后两人相距60km,依题意,得:4x+6x+20=60,∴④可以用方程4x+6x+20=60来表述.故选:B.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.8.小王、小李和小张,同时各做120个同样的机器零件,当小王做完时,小李做了100个,小张做了80个,照这样计算,小李做完时,小张还差24个没做.【分析】设当小李做完时,小张还差x个没做,根据两人的工作效率不变且工作时间相同,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设当小李做完时,小张还差x个没做,依题意得:=,解得:x=24.故答案为:24.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.9.一部书稿,甲打字员打完全书要20天,乙打字员用同样的时间只能完成书稿的,两人合打这部书稿要12天完成.【分析】由两打字员打字效率之间的关系可求出乙打字员打完全书所需时间,设两人合打这部书稿要x天完成,根据两人合作一天的工作量×工作时间=总工作量,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:乙打字员打完全书所需时间为20÷=30(天).设两人合打这部书稿要x天完成,依题意得:(+)x=1,解得:x=12.故答案为:12.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.10.甲、乙两城相距750千米,一辆大客车从甲城开往乙城共用15小时,一辆小轿车从乙城开往甲城10小时可以到达.两车同时从两城出发相向而行,6小时可以相遇.【分析】根据题意相遇问题中“两车路和等于750千米”列方程求解即可.【解答】解:设两车x小时可以相遇,由题意得:x+x=750,解得:x=6.答:两车同时从两城出发相向而行,6小时可以相遇.故答密为:6.【点评】本题考查了一元一次方程的应用,解题的关键是找等量关系.11.清代文言小说集《笑笑录》记载,清代诗人徐子云曾写过一首诗:巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧?设寺内有x名僧人,则列出一元一次方程为+=364.【分析】设寺内有x名僧人,根据题意列出方程即可求出答案.【解答】解:设寺内有x名僧人,由题意得+=364,故答案为:+=364.【点评】本题考查一元一次方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.12.小华和小明周末到北京三山五园绿道骑行.他们按设计好的同一条线路同时出发,小华每小时骑行18km,小明每小时骑行12km,他们完成全部行程所用的时间,小明比小华多半小时.设他们这次骑行线路长为xkm,依题意,可列方程为.【分析】根据“完成全部行程所用的时间,小明比小华多半小时”列出方程即可.【解答】解:设他们这次骑行线路长为xkm,依题意,可列方程为,故答案为:.【点评】本题考查了由实际问题抽象出一元一次方程,正确的理解题意是解题的关键.13.《九章算术》是我国古代数学名著,卷七“盈不足”中题目译文如下:“今有人合伙买羊,每人出5钱,还差45钱;每人出7钱,还差3钱.问合伙人数、羊价各是多少?”设合伙人数为x人,根据题意可列一元一次方程为5x+45=7x+3.【分析】设合伙人数为x人,根据买羊需要的钱数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设合伙人数为x人,依题意,得:5x+45=7x+3.故答案为:5x+45=7x+3.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.14.一件商品的标价是100元,进价是50元,打八折出售后这件商品的利润是30元.【分析】设打八折出售后这件商品的利润是x元,根据题意列出方程即可求出答案.【解答】解:设打八折出售后这件商品的利润是x元,x=0.8×100﹣50=30,故答案为:30【点评】本题考查一元一次方程,解题的关键是正确找出题中的等量关系,本题属于基础题型.15.《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”.《九章算术》大约成书于公元前200年~公元前50年,是以应用问题解法集成的体例编纂成书的,全书按题目的应用范围与解题方法划分为“方田”、“粟米”、“衰分”等九章.《九章算术》中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱.问人数、金价各是多少?如果设有x个人,那么可以列方程为400x﹣3400=300x﹣100.【分析】设有x个人,根据金的价钱不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有x个人,依题意,得:400x﹣3400=300x﹣100.故答案为:400x﹣3400=300x﹣100.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.16.一项工程,甲单独做10天完成,乙单独做15天完成.两人合作,6天可以完成.【分析】甲、乙合作完成工程的时间=工作总量÷甲乙工效之和,没有工作总量,可设其为1.【解答】解:设工作量为1,甲乙的工作效率分别为、,故甲、乙合作完成工程的时间为1÷()=1÷=6天.故答案为:6.【点评】此题考查了一元一次方程的应用,解决问题的关键是找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.17.在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为40?如果能,求出这三个数;如果不能,请说明理由.【分析】联系已知条件,设中间的数为x,则其它两个为x﹣7与x+7,再根据等量关系:三个日期之和能否为40,即可列出方程.【解答】解:设中间的数为x,其它两个为x﹣7与x+7,根据题意得:x﹣7+x+x+7=40,解得:x=,则不存在.【点评】此题解题关键在于表示出三个数,列出等量关系,即可得到解答.18.列方程解应用题十一期间,张老师从北京出发走京津高速到天津.去时在京津高速上用了1.2小时,返回时在京津高速上比去时多用18分钟,返回时平均速度降低了22千米/小时.求张老师去时在京津高速上开车的平均速度.【分析】设张老师去时在京津高速上开车的平均速度是x千米/小时,则返回时在京津高速上开车的平均速度是(x﹣22)千米/小时,根据路程=速度×时间结合往返路程相同,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设张老师去时在京津高速上开车的平均速度是x千米/小时,则返回时在京津高速上开车的平均速度是(x﹣22)千米/小时,依题意,得:1.2x=(1.2+)(x﹣22),解得:x=110.答:张老师去时在京津高速上开车的平均速度是110千米/小时.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.19.列方程解应用题:某学校组织初一年级学生参加公益劳动在甲处劳动的有16人,在乙处劳动的有12人,现在另调20人去甲乙两处支援,使得在甲处劳动的人数比在乙处劳动的人数的2倍少6人,问应调往甲、乙两处各多少人?【分析】设应调往甲、乙两处的人数分别为x人和(20﹣x)人.根据甲处劳动的人数比在乙处劳动的人数的2倍少6人,构建方程即可解决问题.【解答】解:设应调往甲、乙两处的人数分别为x人和(20﹣x)人.由题意:16+x=2[12+(20﹣x)]﹣6,解得x=14,则20﹣x=6.答:调往甲、乙两处的人数分别为14人和6人.【点评】本题考查一元一次方程,解题的关键是理解题意,正确寻找等量关系构建方程解决问题,属于中考常考题型.20.一项工程,甲队单独施工需要15天完成,乙队单独施工需要9天完成.现在由甲队先工作3天,剩下的由甲、乙两队合作,还需要几天才能完成任务?【分析】设设还需x天才能完成任务,根据题意可得等量关系:甲的工作量+乙的工作量=总工作量,由等量关系可列出方程,解方程即可.【解答】解:设还需x天才能完成任务,根据题意得,解得x=4.5.答:甲、乙两队合作还需4.5天才能完成任务.【点评】此题主要考查了一元一次方程的应用,关键是表示出甲和乙的工作量,用到的公式是:工作量=工作效率×工作时间.21.今年,小楠和哥哥的年龄之和是21岁,小楠的年龄只有哥哥的一半,小楠和哥哥各多少岁?(用方程解)【分析】首先根据题意,设哥哥的年龄为x岁,则小楠的年龄为x岁,然后根据:哥哥的年龄+小楠的年龄=21,列出方程,求出x的值是多少,再用哥哥的年龄减去14,求出小楠的年龄即可.【解答】解:设哥哥的年龄为x岁,则小楠的年龄为x岁,则x+x=21,解得x=14.21﹣14=7(岁)答:今年小楠7岁,哥哥14岁.【点评】此题主要考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.22.某商场从厂家购进100个整理箱,按进价的1.5倍进行标价.当按标价卖出80个整理箱后,恰逢元旦,剩余的部分以标价的九折出售完毕,所得利润共1880元,求每个整理箱的进价.【分析】可设每个整理箱的进价为x元,则标价为1.5x元,根据该商店获得的利润一共是1880元这个等量关系列方程求解.【解答】解:设每个整理箱的进价为x元,则标价为1.5x元,标价的九折为(1.5x×0.9)元.根据题意列方程,得:80(1.5x﹣x)+20(1.5x×0.9﹣x)=1880.解方程得:x=40.答:每个整理箱的进价为40元.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.2020年9月的日历如图所示.(1)用1×3的长方形框出3个数,如果任意圈出一横行左右相邻的三个数,设最小的数为x,用含x的式子表示这三个数的和为3x+3;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,用含y的式子表示这三个数的和为3y+21.(2)用一个2×2的正方形在此日历中框出4个数,被框住的4个数的和为84,则这四个数中最小的数为17;(3)用一个3×3的正方形框在此日历中框出9个数,在框出的9个数中,记前两行共6个数的和为a1,最后一行3个数的和为a2,若|a1﹣a2|=15,请求出正方形框中位于最。

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习题1(含答案) (60)

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习题1(含答案) (60)

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习题1(含答案)x 等于__________数时,代数式323x -的值比414x -的值的2倍小1. 【答案】56 【解析】【分析】由题意列出方程求解即可得出答案.【详解】 解:根据题意可得:32412134x x --=⨯-, 整理得:641236x x -=-- 解得:56x =故答案为:56 【点睛】本题考查了一元一次方程,能根据题意列出方程是本题的关键.92.对于有理数a b c d ,,,规定一种运算a bad bc c d =-,如111(2)12422=⨯--⨯=--.若04835x -=--,则x =________.【答案】1【解析】【分析】 根据a bad bc c d =-,列出关于x 的一元一次方程,即可求解.【详解】∵04835x -=--,∴0(5)(4)(3)8x ⨯----=,即:4(3)8x -=,解得:x=1,故答案是:1.【点睛】本题主要考查解一元一次方程,根据新定义,列出一元一次方程,是解题的关键.93.若式子96x +与式子()319x +-的值相等,那么x =______.【答案】-2【解析】【分析】根据值相等得到一个一元一次方程,解方程即可求解.【详解】解:根据题意得:96x +=()319x +-,移项、合并同类项得:6x=-12,解得:x=-2故答案为:-2.【点睛】本题主要考查了一元一次方程的解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.94.当x =_____时,式子2x-1与x+2的值互为相反数.【答案】-1.3【解析】【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.【详解】根据题意得:2x-1+x+2=03x+1=03x=-1x=-13.故答案为:-13【点睛】此题考查了含字母式子的求值,关键是利用互为相反数两数之和为0列出方程.95.已知方程2017x+86=84x+2018的解为x=a,则方程20.17x+86=0.84x+2018的解为_____(用含a的式子表示).【答案】x=100a.【解析】【分析】根据方程的未知数的系数缩小100倍,未知数的值扩大100倍,则方程不变,可得答案.【详解】∵2017x+86=84x+2018的解为x=a,得2017a+86=84a+2018.∴20.17×100a+86=0.84×100a+2018,20.17x+86=0.84x+2018的解为x=100a,故答案为:x=100a.【点睛】本题考查了一元一次方程的解,利用方程的解满足方程是解题关键.96.数学中有很多奇妙现象,比如:关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”.例如:2x=4的解为2,且2=4﹣2,则该方程2x=4是差解方程.若关于x的一元一次方程5x﹣m+1=0是差解方程,则m=_____..【答案】294【解析】【分析】m-,由定义可知:将方程化为ax=b形式即:5x=m﹣1,解方程可得x=15m-,解关于m的方程即可m﹣1﹣5=15【详解】∵5x﹣m+1=0,∴5x=m﹣1,m-,解得:x=15∵关于x的一元一次方程5x﹣m+1=0是差解方程,m-,∴m﹣1﹣5=15,解得:m=294故答案为:29.4【点睛】本题考查了一元一次方程的解的应用,能理解差解方程的意义是解此题的关键.97.已知a:b:c=2:3:4,a+b+c=27,则a﹣2b﹣3c=_____.【答案】﹣48.【解析】【分析】利用方程的思想解题,设a=2x,则b=3x,c=4x,由a+b+c=27得到2x+3x+4x=27,解得x=3,于是a=6,b=9,c=12,然后把它们代入a-2b-3c 计算即可.【详解】∵a:b:c=2:3:4,∴可以假设a=2k,b=3k,c=4k,∵a+b+c=27,∴9k=27,∴k=3,∴a=6,b=9,c=12,∴a﹣2b﹣3c=6﹣18﹣36=﹣48故答案为﹣48.【点睛】本题考查了代数式求值,涉及了解方程,利用参数求出a、b、c的值是解题的关键.98.若方程2x +1=﹣3和203a x --=的解相同,则a 的值是_____. 【答案】4【解析】【分析】先求已知方程的解,再利用解相同,确定含字母系数方程的解,把解代入方程,可求字母系数a .【详解】2x +1=﹣3,解得:x =﹣2,将x =﹣2代入203a x --=,得2203a +=:﹣, 解得:a =4.故答案为:4.【点睛】本题考查了一元一次方程的解,关键是正确解一元一次方程,理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.99.(1)解方程:12x +-1=2+2x 4- (2)用方程解答:x 与4之和的1.2倍等于x 与14之差的3.6倍,求x.【答案】(1)4x =;(2)23.【解析】【分析】(1)这是一道带分母的一元一次方程,先去分母,再去括号,最后移项合并同类项,系数化为1,得出方程的解;(2)根据题意列出方程并求解即可.【详解】解:(1)121224x x +--=+ 去分母:2(x+1)-4=8+(2-x)去括号:2x+2-4=8+2-x合并同类项:2x -2=10-x移项:2x+x=10+2合并同类项:3x=12化系数为1:x=4(2)列方程得,1.2(x+4)=3.6(x -14)解这个方程得,x=23.答:所求x 的值为23.【点睛】本题考查的知识点主要是解一元一次方程以及一元一次方程的应用,熟记解方程的步骤是解本题的关键.100.已知关于x 的方程2(x+a)=5x -1的解是3,则a 的值为_______.【答案】4【解析】【分析】将x=3代入原方程,化为关于a 的一元一次方程,再解方程即可.【详解】解:把x=3代入原方程得:()+=-23a151化简得:6+2a=14解方程得:a=4,故答案为:4.【点睛】本题考查的知识点是解一元一次方程,属于基础性题目,易于掌握.。

人教版五年级数学第一单元《分段计费解决问题》专项练习题1

人教版五年级数学第一单元《分段计费解决问题》专项练习题1

五年级数学上册第五单元《列方程解决问题》专项练习题学校:___________姓名: ___________班级: ___________考号: ___________周日下午, 赵阿姨在这个停车场连续停车4小时40分钟, 需缴纳多少元停车费?9.某市自来水公司为鼓励节约用水, 采取按月分段计费的方式收取水费。

12吨以内的每吨2.5元;超过12吨的部分, 每吨3.8元。

(1)小云家上个月的用水量为11吨, 应缴水费多少元?(2)小可家上个月的用水量为18吨, 应缴水费多少元?13. 为了鼓励节约用电, 我市电力公司规定以下电费计算方法: 每月用电不超过180千瓦时, 按每千瓦时0.52元收费, 超过部分按每千瓦时0.6元收费, 芸芸家八月份用电量为260千瓦时, 需交多少电费?18. 五年级48个同学合影, 照相定价10元, 给3张相片, 另外加洗每张0.8元,如果全班同学每人各要一张, 平均每人应付多少钱?(得数保留两位小数)19. 合影价格表, 定价:27.5元(含5张照片), 加印一张2.5元. 五(1)班35名师生照相合影. 每人一张照片, 一共需付多少钱?20.五(1)班56名师生照集体照, 照相馆的收费标准是:拍照一次, 并送4张照片, 收费15元, 加印一张2.5元.现在要保证每人有一张照片, 一共要付多少钱?1. 16.4元【分析】出租车行驶12千米, 首先需要收起步价8元, 另外超过5千米的部分(即7千米), 需收费(7×1.2)元。

据此, 利用加法求出一共需要收费多少元。

【详解】8+(12-5)×1.2=8+7×1.2=8+8.4=16.4(元)答: 出租车行驶12千米, 收费16.4元。

【点睛】本题考查了小数乘法应用题, 解决本类题型的方法是先求出各段的收费, 再利用加法求出总收费。

2. 24元【分析】根据单价×数量=总价求出超出2千米的收费, 再加上6元即可解答。

五年级第一学期数学练习(第十一周)列方程解决问题

五年级第一学期数学练习(第十一周)列方程解决问题

五年级第一学期数学第十一周练习列方程解决问题一、计算:班级______姓名_________学号_____1、解方程8x+2=30 2(x+4)=245x-15×7=45 (2x-6)÷3=102.8×4-16x=3.2 x-3+2.4=7.518.8-4x=1.2 1.5(6-x)+3.3=9.92x÷3+5=20 3(x+1)-2(x+2)=102、根据条件列出方程(1)学校买来60只足球和篮球,其中足球x只,篮球42只。

(2)长方形的长是32厘米,宽是x厘米,面积是480平方厘米。

(3)一张办公桌450元,一把办公椅x元,一张办公桌的价钱比3把办公椅的价钱少30元。

(4)一本故事书x元,一本连环画的价钱比一本故事书贵3.5元,两本连环画一共36.8元。

(5)y的6倍加上4乘0.7的积,和是11.8。

二、找等量关系列方程解应用题1、小巧和小亚一起做口算题,小巧做了240道,小亚再做25道就与小巧做的一样多了。

问:小亚做了多少道题?2、书架的下层放着1200本书,是上层放书本数的1.5倍,问:上层放书多少本?3、小丁丁去文具店买了4支相同的水笔,他付给营业员50元,找回6.8元,问:每支水笔多少元?4、学校今年绿化面积800平方米,比去年绿化面积的2倍还多40平方米。

去年的绿化面积是多少平方米?5、五年级学生去苗圃种树苗,共种364棵,如果再多种11棵,那么平均每人种3棵,问:五年级种树苗的学生有多少人?6、王师傅加工一批零件,原计划每小时做45个,18小时完成,而实际只用了15小时就完成了,问:王师傅实际每小时比计划多做几个零件?7、体育用品商店出售一些足球、篮球和排球,其中6个足球的价钱等于4个篮球的价钱等于10个排球的价钱,问:(1)如果每只足球x元,那么每只篮球、每只排球各是多少元?(2)小胖用100元买了2只篮球,还找回10元,那么每只篮球多少元?(3)小丁丁花了72元买来4只排球,那么每只足球多少元?。

五年级下数学试题—第5讲-列方程解应用题(一)(沪教版)有答案

五年级下数学试题—第5讲-列方程解应用题(一)(沪教版)有答案

学员姓名:学科教师:年级:辅导科目:授课日期时间主题第5讲—列方程解应用题(一)学习目标1、学会列方程解应用题;2、学会数字问题和年龄问题以及和差倍类问题的应用题解题方法。

教学内容1、上次课课后巩固作业处理,建议让学生互批互改,个别错题可以让学生进行分享,针对共性的错题教师讲解为主。

2、上节课预习内容,教师检查正确率,根据学生做题情况,有适当的积分激励,并且进行讲解。

案例:如图,天平的两个盘内分别盛有51g、45g盐,问该从A盘内拿出多少盐到B盘内,才能使两者所盛盐的质量相等?【分析】方法:列方程关键:设未知数、找等量关系(1)设应从A盘拿出xg放到B盘(2)分析数量盘A盘B原有盐(g)5145现有盐(g)51-x45+x【解答】解:设应从A盘拿出xg放到B盘内则根据题意得51-x=45+x解方程得x=3经检验符合题意答:应从A盘拿出3g放到B盘列方程解应用题的一般步骤是:(1)审:审请题意,弄清题目中的数量关系;(2)设:用字母表示题目中的一个未知数;(3)找:找出题目中的等量关系;(4)列:根据所设未知数和找出的等量关系列方程;(5)解:解方程,求未知数;(6)答:检验所求解,写出答案。

实际问题中,设未知数的方法可能不唯一,要寻找最简捷的设法;解题时,检验过程不可少,但可不写在书面上。

用列方程解应用题的几个注意事项:(1)先弄清题意,找出相等关系,再按照相等关系来选择未知数和列代数式,比先设未知数,再找出含有未知数的代数式,再找相等关系更为合理.(2)所列方程两边的代数式的意义必须一致,单位要统一,数量关系一定要相等.(3)要养成“验”的好习惯,即所求结果要使实际问题有意义.(4)不要漏写“答”,“设”和“答”都不要丢掉单位名称.(5)分析过程可以只写在草稿纸上,但一定要认真.【知识梳理1】数字问题数字问题是常见的数学问题。

这种列方程解应用题中的数字问题多是整数,要注意数位、数位上的数字、数值三者间的关系:两位数=10a+b;三位数帽一样多说明男孩数目比女孩多一个,以此设未知数。

2020版四年级数学下册五认识方程4解方程(一)习题课件北师大版

2020版四年级数学下册五认识方程4解方程(一)习题课件北师大版

【对点训练】 3.看图填一填。
1把香蕉=( 3 )个苹果
1头猪=( 3 )只羊
【基础题】 1.填空。 (1)因为40+30=70,所以40+30-30=70-( 30 )。 (2)因为90-60=30,所以90-60+60=30+( 60 )。 (3)因为x+y=50,所以x+y-y=50-( y )。
4. 解方程(一)
【对点训练】 1.在 里填运算符号,在
- 15 - 13
里填数。
+ 40 + 46
2.解方程。
x+14=21
y-15=124
解:x+14-14=21-14 解:y-15+15=124+15
x=7
y=139
b+45=65 解:b+45-45=65-45
b=20
教材练一练P69 T4
x=1.4 ( ×)
改正:
x+19=23
解:x+19-19=23-19பைடு நூலகம்
x=4
改正:
x-1.5=2.9
解:x-1.5+1.5=2.9+1.5
x=4.4
6.解方程。 x-13=28
解:x-13+13=28+13 x=41
m+2.5=7.3 解:m+2.5-2.5=7.3-2.5
m=4.8
【能力题】 7.看图列方程并解答。
看图列方程,并解方程。
【示范解答】 x+4=19
解:x+4-4=19-4 x=15
x-62=486 解:x-62+62=486+62

七年级数学上册第三单元《一元一次方程》-解答题专项经典复习题(含答案)(1)

七年级数学上册第三单元《一元一次方程》-解答题专项经典复习题(含答案)(1)

一、解答题1.某市水果批发欲将A 市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其它主要参考数据如下:(1) 如果汽车的总支出费用比火车费用多1100元,你知道本市与A 市之间的路程是多少千米吗?请你列方程解答.(总支出包含损耗、运费和装卸费用)(2) 如果A 市与B 市之间的距离为S 千米,你若是A 市水果批发部门的经理,要想将这种水果运往B 市销售,试分析以上两种运输工具中选择哪种运输方式比较合算呢?解析:(1) x =400;(2) 当s >200时,选择火车运输;当s <200时,选择汽车运输;当s =200时,两种方式都一样【分析】(1)设路程为x 千米,题中等量关系是:汽车的总支出费用比火车费用多1100元,列出方程解答;(2)根据(1)中结论分别算出火车和汽车所需的运费,再进行比较即可求解.【详解】(1) 设本市与A 市之间的路程是x 千米200•20015200011002090010080x x x x +++=++, 解得x =400(2) 火车的运输费用为•200152000172000100s s s ++=+ 汽车运输的费用为•2002090022.590080s s s ++=+ 当17s +2000=22.5s +900,解得s =200当s >200时,选择火车运输当s <200时,选择汽车运输当s =200时,两种方式都一样【点睛】本题主要考查了一元一次方程的应用,根据题意列出方程是解答本类问题的关键. 2.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?解析:10个家长,5个学生【分析】设小明他们一共去了x 个家长,则有(15﹣x )个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可.【详解】解:设小明他们一共去了x 个家长,(15﹣x )个学生,根据题意得:100x +100×0.8(15﹣x )=1400,解得:x =10,15﹣x =5,答:小明他们一共去了10个家长,5个学生.【点睛】本题考查了一元一次方程的应用.3.全班同学去划船,如果减少一条船,每条船正好坐9个同学,如果增加一条船,每条船正好坐6个同学,问原有多少条船?解析:原有5条船.【分析】首先设原有x 条船,根据“减少一条船,那么每条船正好坐9名同学;增加一条船,那么每条船正好坐6名同学”得出等式方程,求出即可.【详解】设原有x 条船,如果减少一条船,即(x -1)条,则共坐9(x -1)人.如果增加一条船,则共坐6(x +1)人,根据题意,得9(x -1)=6(x +1).去括号,得9x -9=6x +6.移项,得9x -6x =6+9.合并同类项,得3x =15.系数化为1,得x =5.答:原有5条船.【点睛】此题主要考查了一元一次方程的应用,根据题意利用全班人数列出等量关系式是完成本题的关键.4.设a ,b ,c ,d 为有理数,现规定一种新的运算:a bad bc c d =-,那么当35727x-=时,x 的值是多少? 解析:x =-2【分析】 根据新定义的运算得到关于x 的一元一次方程,解方程即可求解.【详解】解:由题意得:21 - 2(5 - x )=7即21-10+2x =7x =-2.【点睛】本题考查了新定义,解一元一次方程,根据新定义的运算列出方程是解题关键. 5.a ※b 是新规定的这样一种运算法则:a ※b=a 2+2ab ,例如3※(-2)=32+2×3×(-2)=-3 (1)试求(-2)※3的值(2)若1※x=3,求x 的值(3)若(-2)※x=-2+x ,求x 的值.解析:(1)-8;(2)1;(3)65. 【分析】(1)根据规定的运算法则求解即可.(2)(3)将规定的运算法则代入,然后对等式进行整理从而求得未知数的值即可.【详解】(1)(-2)※3=(-2)2+2×(-2)×3=4-12=-8;(2)∵1※x=3,∴12+2x=3,∴2x=3-1,∴x=1;(3)-2※x=-2+x ,(-2)2+2×(-2)x=-2+x ,4-4x=-2+x ,-4x-x=-2-4,-5x=-6, x=65. 【点睛】此题考查有理数的混合运算,解一元一次方程,解题关键在于掌握运算法则.6.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?” 解析:x =60【分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x 个客人,则 65234x x x ++=解得:x=60;∴有60个客人.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.7.图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为 a(如图2).(1)请用含a的代数式表示框内的其余4个数;(2)框内的5个数之和能等于 2015,2020 吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)解析:(1)详见解析;(2)详见解析.【分析】(1)上下相邻的数相差18,左右相邻的数相差是2,所以可用a表示;(2)根据等量关系:框内的5个数之和能等于2015,2020,分别列方程分析求解.【详解】(1)设中间的数是a,则a的上一个数为a−18,下一个数为a+18,前一个数为a−2,后一个数为a+2;(2)设中间的数是a,依题意有5a=2015,a=403,符合题意,这5个数中最小的一个数是a−18=403−18=385,2n−1=385,解得n=193,193÷9=21…4,最小的这个数在图1数表中的位置第22排第4列.5a=2020,a=404,404是偶数,不合题意舍去;即十字框中的五数之和不能等于2020,能等于2015.【点睛】本题考查一元一次方程的应用,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.8.如图A 在数轴上所对应的数为﹣2.(1)点B 在点A 右边距A 点4个单位长度,求点B 所对应的数;(2)在(1)的条件下,点A 以每秒2个单位长度沿数轴向左运动,点B 以每秒2个单位长度沿数轴向右运动,当点A 运动到﹣6所在的点处时,求A ,B 两点间距离.(3)在(2)的条件下,现A 点静止不动,B 点沿数轴向左运动时,经过多长时间A ,B 两点相距4个单位长度.解析:(1)B 所对应的数为2;(2)A ,B 两点间距离是12个单位长度;(3)经过4秒或8秒长时间A ,B 两点相距4个单位长度.【分析】(1)根据左减右加可求点B 所对应的数;(2)先根据时间=路程÷速度,求出运动时间,再根据路程=速度×时间求解即可; (3)分两种情况:运动后的B 点在A 点右边4个单位长度;运动后的B 点在A 点左边4个单位长度;列出方程求解即可.【详解】解:(1)﹣2+4=2.故点B 所对应的数为2;(2)(﹣2+6)÷2=2(秒),4+(2+2)×2=12(个单位长度).故A ,B 两点间距离是12个单位长度.(3)运动后的B 点在A 点右边4个单位长度,设经过x 秒长时间A ,B 两点相距4个单位长度,依题意有2x =12﹣4,解得x =4;运动后的B 点在A 点左边4个单位长度,设经过x 秒长时间A ,B 两点相距4个单位长度,依题意有2x =12+4,解得x =8.故经过4秒或8秒长时间A ,B 两点相距4个单位长度.【点睛】本题考查了数轴,行程问题的数量关系的运用,解答时根据行程问题的数量关系列出方程是解决问题的关键.9.某同学在给方程21133x x a -+=-去分母时,方程右边的-1没有乘3,因而求得方程的解为2x =,试求a 的值,并正确地解方程.解析:2a =,0x =【分析】根据方程的定义,把2x =代入211x x a -=+-,求得a ,把a 代入原方程,去分母、去括号、移项、合并同类项得出议程的解.【详解】把2x =代入211x x a -=+-,得:2a =∴原方程为:212133x x -+=- 去分母得:2123x x -=+-移项得:2231x x -=-+合并同类项得:0x =【点睛】本题考查了解分数系数的一元一次方程,熟练掌握解方程的一般步骤是解题的关键. 10.列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服. 下面是某服装厂给出的运动服价格表:已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元. 问七年级一班和七年级二班各有学生多少人?解析:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【分析】首先根据题中表格数据得出有一个班的人数大于35人,接着设大于35人的班有学生x 人,根据等量关系列出方程,求解即可.【详解】解:∵67604020⨯=40203650>∴所以一定有一个班的人数大于35人.设大于35人的班有学生x 人,则另一班有学生(67-x )人,依题意得5060(67)3650x x +-=6730x -=答:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.11.一项工程,甲队独做10h 完成,乙队独做15h 完成,丙队独做20h 完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6h ,问甲队实际工作了几小时?解析:3【分析】设三队合作时间为x ,总工程量为1,根据等量关系:三队合作部分工作量+乙、丙两队合作部分工作量=1,列式求解即可得到甲队实际工作时间.【详解】设三队合作时间为xh ,乙、丙两队合作为(6)x h -,总工程量为1, 由题意得:11111()()(6)11015201520x x ++++-=, 解得:3x =,答:甲队实际工作了3小时.【点睛】 本题主要考查了一元一次方程实际问题中的工程问题,准确分析题目中的等量关系以及设出未知量是解决本题的关键.12.对于任意四个有理数a b c d ,,,,可以组成两个有理数对(,)a b 与(,)c d . 我们规定:(,)(,)a b c d bc ad =-★.例如:(1,2)(3,4)23142=⨯-⨯=★.根据上述规定解决下列问题:(1)有理数对(2,3)(3,2)--=★ ;(2)若有理数对(2,31)(1,1)9x x -+-=★,则x = ;(3)当满足等式(3,21)(,)32x k x k k --+=+★的x 是整数时,求整数k 的值. 解析:(1)-5;(2)2;(3)k=0,-1,-2,-3.【分析】(1)原式利用规定的运算方法计算即可求出值;(2)原式利用规定的运算方法列方程求解即可;(3)原式利用规定的运算方法列方程,表示出x ,然后根据k 是整数求解即可.【详解】解:(1)根据题意得:原式=−3×3−2×(−2)=−9+4=−5;故答案为:−5;(2)根据题意得:3x+1−(−2)×(x−1)=9,整理得:5x =10,解得:x =2,故答案为:2;(3)∵等式(−3,2x−1)★(k ,x +k )=3+2k 的x 是整数,∴(2x−1)k−(−3)(x +k )=3+2k ,∴(2k +3)x =3, ∴323x k =+, ∵k 是整数, ∴2k +3=±1或±3,∴k =0,−1,−2,−3.【点睛】此题考查了新运算以及解一元一次方程,正确理解新运算是解题的关键.13.小明解方程26152x x a -++=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此得到方程的解为1x =-,试求a 的值,并正确地求出原方程的解. 解析:2a =-,8x =【分析】先根据错误的做法:“方程左边的1没有乘以10”而得到1x =-,代入错误方程,求出a 的值,再把a 的值代入原方程,求出正确的解.【详解】解:412155x x a -+=+∵1x =-为412155x x a -+=+的解∴16155a -+=-+∴2a =-;∴原方程为:262152x x --+= 去分母得:41210510x x -+=-∴45101012x x -=--+∴8x -=-∴8x =.【点睛】本题考查了解一元一次方程,本题易在去分母、去括号和移项中出现错误.由于看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.14.10.3x -﹣20.5x + =1.2. 解析:4【解析】 试题分析:先将分母化成整数后,再去分母,去括号,移项,系数为1的步骤解方程即可; 试题12 1.20.30.5x x -+-=10103x --10205x +=6550x-50-30x-60=1820 x=128x=6.4 15.如果,a b 为定值,关于x 的方程2236kx a x bk +-=+无论k 为何值时,它的根总是1,求,a b 的值. 解析:a=132,b=﹣4 【分析】 先把方程化简,然后把x =1代入化简后的方程,因为无论k 为何值时,它的根总是1,就可求出a 、b 的值.【详解】解:方程两边同时乘以6得:4kx +2a =12+x−bk ,(4k−1)x +2a +bk−12=0①,∵无论为k 何值时,它的根总是1,∴把x =1代入①,4k−1+2a +bk−12=0,则当k =0,k =1时,可得方程组:12120412120a ab --⎧⎨--⎩+=++=, 解得:a=132,b=﹣4 当a=132,b=﹣4时,无论为k 何值时,它的根总是1. ∴a=132,b=﹣4 【点睛】本题主要考查了一元一次方程的解,理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.本题利用方程的解求未知数a 、b .16.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?解析:(1)商场购进甲种矿泉水300箱,购进乙种矿泉水200箱(2)该商场共获得利润6600元【详解】(1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,由题意得:500{243313800x y x y +=+=, 解得:300{200x y ==, 答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱;(2)300×(36−24)+200×(48−33)=3600+3000=6600(元),答:该商场共获得利润6600元.17.松雷中学原计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天能加工这种校服24件.且单独加工这批校服甲工厂比乙工厂要多用20天在加工过程中,学校每天需付甲工厂费用80元,乙工厂费用120元.(1)这批校服共有多少件?(2)在实际加工过程中,甲、乙两个工厂按原生产效率合作一段时间后,甲工厂停工了,乙工厂每天的生产效率提高25%,乙工厂单独完成剩余部分,且乙工厂的全部工作时间比甲工厂工作时间的2倍还多4天,则乙工厂共加工多少天?(3)经学校研究制定如下方案:方案一:由甲工厂单独完成;方案二:由乙工厂单独完成;方案三:按第(2)问方式完成并且每种方案在加工过程中,每个工厂需要一名工程师进行技术指导,并由学校提供每天10元的午餐补助费,请你通过计算帮学校选择一种既省时又省钱的加工方案.解析:(1)960件(2)28天(3)方案三【分析】(1)由题意设这批校服共有x 件,并根据题意建立一元一次方程进行求解即可;(2)根据题意设甲工厂加工a 天,则乙工厂共加工(24)a +天,并根据题意建立一元一次方程进行求解即可;(3)根据题意分别计算三种方案所需的时间与费用,并进行比较即可得出答案.【详解】解:(1)设这批校服共有x 件. 由题意,得201624x x -=.解得960x =. 答:这批校服共有960件.(2)设甲工厂加工a 天,则乙工厂共加工(24)a +天.依题意得(1624)24(125%)(24)960a a a ++⨯++-=.解得12a =.2424428a +=+=.答:乙工厂共加工28天.(3)①方案一:需要耗时9601660÷=(天),费用为60(1080)5400⨯+=(元); ②方案二:需要耗时9602440÷=(天),费用为40(12010)5200⨯+=(元); ③方案三:甲工厂耗时12天,乙工厂耗时28天,故需要耗时28天, 费用为12(1080)28(10120)4720⨯++⨯+=(元). 综上,方案三既省时又省钱. 【点睛】本题考查一元一次方程的实际应用,读懂题干并依据题干条件建立一元一次方程求解是解题的关键.18.李老师准备购买一套小户型商品房,他去售楼处了解情况得知,该户型商品房的单价是5000元2/m ,如图所示(单位:m ,卫生间的宽未定,设宽为xm ),售楼处为李老师提供了以下两种优惠方案:方案一:整套房的单价为5000元2/m ,其中卫生间可免费赠送一半的面积; 方案二:整套房按原销售总金额的9.5折出售.(1)用含x 的代数式表示该户型商品房的面积及按方案一、方案二购买一套该户型商品房的总金额;(2)当2x =时,通过计算说明哪种方案更优惠,优惠多少元.解析:(1)该户型商品房的面积为2(482)x m +,按方案一购买一套该户型商品房的总金额为(2400005000)x +元,按方案二购买一套该户型商品房的总金额为(2280009500)x +元;(2)当2x =时,方案二更优惠,优惠3000元.【分析】(1)该户型商品房的面积=大长方形的面积-卫生间右侧的长方形,代入计算,也可以利用各间的面积和来求;方案一:(总面积-厨房的12)×单价5000;方案二:总价×0.95; (2)分别把数据代入计算即可; 【详解】解:(1)该户型商品房的面积为:2473(84)2(73)(842)(482)x x m ⨯+⨯-+⨯-+--=+按方案一购买一套该户型商品房的总金额为:147342425000(2400005000)2x x ⎛⎫⨯+⨯+⨯+⨯⨯=+ ⎪⎝⎭元;按方案二购买一套该户型商品房的总金额为:(4734242)500095%(2280009500)x x ⨯+⨯+⨯+⨯⨯=+元.(2)当2x =时,方案一总金额为2400005000250000x +=(元); 方案二总金额为2280009500247000x +=(元). 方案二比方案一优惠2500002470003000-=(元). 所以方案二更优惠,优惠3000元. 【点睛】本题是根据实际应用列代数式,是楼房销售问题,考查了图形面积与销售总额及银行利率的知识;解题的关键是熟练掌握利用代数式表示图形的面积.19.如表是中国电信两种“4G 套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收费,主叫超时和上网流量超出部分加收超时费和超流量费) (1)若小萱某月主叫通话时间为220分钟,上网流量为800MB ,则她按套餐1计费需________元,按套餐2计费需________元;若小花某月按套餐2计费需129元,主叫通话时间为240分钟,则上网流量为________MB .(2)若上网流量为540MB ,是否存在某主叫通话时间t (分),按套餐1和套餐2计费相等?若存在,请求出t 的值;若不存在,请说明理由.(3)若上网流量为540MB ,直接写出当主叫通话时间t (分)满足什么条件时,选择套餐1省钱;当主叫通话时间t (分)满足什么条件时,选择套餐2省钱.解析:(1)143,109,900;(2)若上网流量为540MB ,当主叫通话时间为240分钟时,按套餐1和套餐2计费相等;(3)当240t <时,选择套餐1省钱;当240t >时,选择套餐2省钱. 【分析】(1)根据表中数据分别计算两种计费方式,第三空求上网流量时,可设上网流量为xMB ,列方程求解即可;(2)分0≤t <200时,当200≤t≤250时,当t >250时,三种情况分别计算讨论即可; (3)由(2)中结果直接得出. 【详解】(1)143,109,900 套餐1:490.2(220200)0.3(800500)+⨯-+⨯- 490.2200.3300=+⨯+⨯ 49490=++ 143=(元).套餐2:690.2(800600)+⨯- 690.2200=+⨯ 6940=+109=(元)设上网流量为x MB ,则690.2(600)129x +-=.解得900x =. 故答案为:143;109;900. (2)存在.当0200t 时,490.3(540500)6169+-=≠,所以此时不存在这样的t ,按套餐1和套餐2计费相等; 当200250t <时,490.2(200)0.3(540500)69t +-+-=.解得240t =; 当250t >时,490.2(200)0.3(540500)690.15(250)t t +-+-=+-.解得210t =,不合题意,舍去.综上,若上网流量为540MB ,当主叫通话时间为240分钟时,按套餐1和套餐2计费相等;(3)由(2)可知,当240t <时,选择套餐1省钱;当240t >时,选择套餐2省钱. 【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 20.解方程:32122234x x ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦. 解析:8x =-【分析】先去括号,再按照移项、合并同类项、系数化为1的步骤解答即可. 【详解】解:去括号,得1324xx ---=, 移项、合并同类项,得364x-=, 系数化为1,得8x =-. 【点睛】本题考查了一元一次方程的解法,属于常考题型,熟练掌握解一元一次方程的方法是解题的关键. 21.解方程32324343x x -=-. 解析:1x =【分析】方程去分母,去括号,移项合并,将y 系数化为1即可求出解. 【详解】解:原方程可化为332204433x x ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,即32(1)(1)043x x -+-=. 将(1)x -看作一个整体进行合并,得32(1)043x ⎛⎫+-=⎪⎝⎭,所以10x -=,移项,得1x =.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.22.大明共有4800元,他将一部分钱按活期存了一年,剩下的钱买了企业债券,一年后共获利24.8元,知活期储蓄的年利率是0.35%,企业债券的年利率是0.6%,则大明存活期和买债券各用了多少元?解析:存活期用了1600元,买债券用了3200元 【分析】设存活期用了x 元,则买债券用了(4800)x -元,由题意列式求解即可. 【详解】解:设存活期用了x 元,则买债券用了(4800)x -元由题意,得0.35%0.6%(4800)24.8x x +-=.解得1600x =.48003200x -=.答:大明存活期用了1600元,买债券用了3200元. 【点睛】本题主要考查了实际问题与一元一次方程,根据题意找出未知量,列方程是解题的关键. 23.解方程:(1)3(26)17x x +=--; (2)4(2)13(1)x x --=-;(3)4(1)5(3)11x x +--=; (4)14(1)(26)112x x --+=. 解析:(1)5x =-;(2)6x =;(3)8x =;(4)6x = 【分析】(1)去括号,移项及合并同类项,系数化为1即可求解. (2)去括号,移项及合并同类项,系数化为1即可求解. (3)去括号,移项及合并同类项,系数化为1即可求解. (4)去括号,移项及合并同类项,系数化为1即可求解. 【详解】(1)去括号,得61817x x +=--. 移项及合并同类项,得735x =-. 系数化为1,得5x =-.(2)去括号,得48133x x --=-. 移项,得43381x x -=-++. 合并同类项,得6x =.(3)去括号,得4451511x x +-+=. 移项,得4511415x x -=--. 合并同类项,得8x -=-. 系数化为1,得8x =.(4)去括号,得44311x x ---=. 移项,得41143x x -=++. 合并同类项,得318x =. 系数化为1,得6x =. 【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 24.解下列方程:(1)(1)2(1)13x x x +--=-; (2)30564x x --=; (3)3 1.4570.50.46x x x --=. 解析:(1)1x =-;(2)30x =;(3)0.7x =-. 【分析】(1)去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解; (3)方程整理后,去分母,去括号,移项合并,把x 系数化为1,即可求出解. 【详解】(1)去括号,得12213x x x +-+=-.移项及合并同类项,得22x =-. 系数化为1,得1x =-.(2)去分母,得23(30)60x x --=. 去括号,得290360x x -+=. 移项及合并同类项,得5150x =. 系数化为1,得30x =.(3)原方程可化为757626x x x --=,去分母,得362157x x x -=-. 移项及合并同类项,得107x =-. 系数化为1,得0.7x =-. 【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.25.甲、乙两人骑自行车分别从相距36km 的两地匀速同向而行,如果甲比乙先出发半小时,那么在乙出发后经3小时甲追上乙;如果乙比甲先出发1小时,那么在甲出发后经5小时甲才能追上乙.请问:甲、乙两人骑自行车每小时各行多少千米? 解析:甲骑自行车每小时行18千米,乙骑自行车每小时行9千米 【分析】设甲骑自行车每小时行x 千米,先根据“甲比乙先出发半小时,那么在乙出发后经3小时甲追上乙”用含x 的代数式表示出乙的速度,然后根据甲5小时骑行的路程-乙6小时骑行的路程=36千米即可列出方程,解方程即可求出结果. 【详解】解:设甲骑自行车每小时行x 千米,则乙骑自行车每小时行133623x ⎛⎫+- ⎪⎝⎭千米,即7126x ⎛⎫- ⎪⎝⎭千米. 依题意,得()755112366x x ⎛⎫-+-=⎪⎝⎭,解得18x =. 712211296x -=-=. 答:甲骑自行车每小时行18千米,乙骑自行车每小时行9千米. 【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键. 26.解方程:(1)36156x x -=--;(2)45173x x +=-;(3) 2.57.5516y y y --=-;(4)11481.5533z z +=-. 解析:(1)1x =-;(2)66x =-;(3)56y =;(4)407z =- 【分析】(1)先移项,再合并同类项,最后系数化为1即可. (2)先移项,再合并同类项,最后系数化为1即可. (3)先移项,再合并同类项,最后系数化为1即可. (4)先移项,再合并同类项,最后系数化为1即可. 【详解】(1)移项,得36156x x +=-+. 合并同类项,得99x =-. 系数化为1,得1x =-.(2)移项,得41753x x -=--. 合并同类项,得1223x =-.系数化为1,得66x =-.(3)移项,得 2.57.5165y y y --+=.合并同类项,得65y =. 系数化为1,得56y =. (4)移项,得11841.5533z z -=--. 合并同类项,得7410z =-. 系数化为1,得407z =-.【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键.27.我们知道13写成小数形式为0.3,反过来,无限循环小数0.3也可以转化成分数形式.方法如下:设0.3x =,由0.30.333=,可知10 3.333x =,所以103x x -=.解方程,得13x =,所以10.33=.例如:把无限循环小数0.32化为分数的方法如下: 设0.32x =,由0.320.323232=,可知10032.323232x =,所以10032x x -=,解方程,得3299x =,所以320.3299=.根据上述材料,解答下列问题: (1)把下列无限循环小数写成分数形式:①0.5=________;②2.58=________;③0.518=________.(2)借鉴材料中的方法,从第(1)题的①②③中任选一个,写出你的转化过程. 解析:(1)①59;②25699;③518999;(2)见解析 【分析】(1)根据题目中的转化方法进行转化即可. (2)根据题目中的转化方法进行转化,并写出过程. 【详解】 (1)①59;②25699;③518999. (2)从①②③中任选一个转化即可.①设0.5x =,则10 5.5555x =⋯,所以105x x -=,解方程,得59x =,所以50.59=. ②设0.58x =,则10058.5858x =⋯,所以10058x x -=,解方程,得5899x =,所以58256 2.5829999=+=. ③设0.518x =,则1000518.518518x =⋯,所以1000518x x -=,解方程,得518999x =,所以5180.518999=. 【点睛】 本题考查了一元一次方程的其他实际应用问题,掌握题目中的转化方法、解一元一次方程的方法是解题的关键.28.某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图片,解决下面两个问题:()1求小明原计划购买文具袋多少个?()2学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,合计272元.问小明购买了钢笔和签字笔各多少支?解析:(1)小明原计划购买文具袋17个;(2)小明购买了钢笔20支,签字笔30支. 【分析】(1)设未知数后可以根据等量关系“实际购买文具袋(比原计划多1个)的花费×0.85=原计划购买文具袋的花费-17”列方程求解;(2)设未知数后可以根据等量关系“钢笔和签字笔的总价×0.8(或80%)=272”列方程求解. 【详解】解:()1设小明原计划购买文具袋x 个,则实际购买了()x 1+个,由题意得:()10x 108510x 17+⨯=-.. 解得:x 17=;答:小明原计划购买文具袋17个;()2设小明购买了钢笔y 支,则购买签字笔()50y -支,由题意得:()8y 650y 80%272⎡⎤+-⨯=⎣⎦, 解得:y 20=, 则:50y 30-=.答:小明购买了钢笔20支,签字笔30支. 【点睛】本题考查一元一次方程的应用,根据题目中的等量关系设未知数列方程求解是解题关键. 29.在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与爸爸的对话(如图),请根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生? (2)请你帮他们算算,用哪种方式购票更省钱?解析:(1)他们一共去了8个成人,4个学生;(2)按团体票购票更省钱【分析】(1)本题有两个相等关系:学生人数+成人人数=12人,成人票价+学生票价=400元,据此设未知数列方程组求解即可;(2)计算出按照团体票购买需要的钱数,然后与400元作对比即得答案.【详解】解:(1)设去了x个成人,y个学生,依题意得,1240400.5400x yx y+=⎧⎨+⨯=⎩,解得84xy=⎧⎨=⎩,答:他们一共去了8个成人,4个学生;(2)若按团体票购票,共需16×40×0.6=384(元),∵384<400,∴按团体票购票更省钱.【点睛】本题主要考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.30.一天,某客运公司的甲、乙两辆客车分别从相距380千米的A、B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2小时时甲车先到达服务区C地,此时两车相距20千米,甲车在服务区C地休息了20分钟,然后按原速度开往B地;乙车行驶2小时15分钟时也经过C地,未停留继续开往A地.(友情提醒:画出线段图帮助分析)(l)乙车的速度是千米/小时,B、C两地的距离是千米,A、C两地的距离是千米;(2)甲车的速度是千米/小时;(3)这一天,乙车出发多长时间,两车相距200千米?解析:(1)80,180,200;(2)100(3)乙车出发1小时或11327小时,两车相距200千米【分析】(1)由题意可知,甲车2小时到达C地,休息了20分钟,乙车行驶2小时15分钟也到C 地,这20分钟甲车未动,即乙车15分钟走了20千米,据此可求出乙车的速度,再根据速度求出B、C两地的距离和A、C两地的距离即可解答.(2)根据A、C两地的距离和甲车到达服务区C地的时间可求出甲车的速度;(3)此题分为两种情况,未相遇和相遇以后相距200千米,据此根据题意列出符合题意得方程即可解答.【详解】解:(1)15分钟=14小时,2小时15分=94小时,20分钟=13小时乙车的速度为:20÷14=80(千米/小时);B、C两地的距离是:80×94=180(千米);。

五年级上册列方程解决问题练习题

五年级上册列方程解决问题练习题

五年级上册列方程解决问题练习题1、XXX买了2支钢笔和3本笔记本,共花了29.3元。

如果每支钢笔的价格是12.4元,那么每本笔记本的价格是多少元?2、爸爸和儿子的年龄加起来是40岁,爸爸今年的年龄是儿子的4倍。

那么儿子今年几岁?爸爸比儿子大多少岁?3、甲、乙两辆车从相距388千米的两地同时出发,向对方驶去,4小时后相遇。

甲车每小时行驶45千米,那么乙车每小时行驶多少千米?4、星期天,XXX到超市买了5个笔记本和3支钢笔,共花费了10.20元。

如果每支钢笔的价格是2.40元,那么每本笔记本的价格是多少元?5、果园里种有桃树和杏树两种树,共有430棵。

桃树的数量比杏树的数量多3倍加10棵。

那么果园里有多少棵桃树和杏树?6、奶奶的年龄是XXX的6倍,XXX和奶奶的年龄加起来是84岁。

那么XXX和奶奶各是多少岁?7、甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时后相遇。

甲比乙每小时多骑2.5千米,那么乙每小时骑多少千米?8、钢笔的价格比铅笔的价格贵5倍少0.1元。

如果每支钢笔的价格是4.4元,那么每支铅笔的价格是多少元?9、服装厂有240米的花布,用来做了一批演出服。

每件上衣需要1.1米的布,每条裤子需要0.7米的布。

最后还剩下24米的布。

那么这批演出服一共需要多少米的布?10、学校图书馆里科技书的数量比文艺书的数量多2倍加47本。

如果科技书的数量是495本,那么文艺书的数量是多少本?列方程解决问题(二)1、甲乙两列火车从相距480千米的两地同时出发,3小时后相遇。

如果甲车每小时行驶85千米,那么乙车每小时行驶多少千米?2、用72厘米的铁丝做一个长方形框架,要使长是宽的2倍。

那么这个长方形框架的长和宽分别是多少厘米?3、学校花了300元买了180棵树苗,找回了30元。

那么每棵树苗的价格是多少元?4、XXX五年级有350名学生,比四年级的人数少14人,但是比四年级的人数多1.3倍。

那么四年级有多少名学生?5、买了2支铅笔和3个笔记本,共花费了5.34元。

苏教版六年级数学第一单元列方程解决实际问题(一)

苏教版六年级数学第一单元列方程解决实际问题(一)

苏教版六年级数学——第一单元列方程解决实际问题(一)教学内容:第2-3页练习一第6-13题。

教学目的:1、在解决实际问题的过程中,进一步巩固形如ax+b=c、ax-b=c的方程的解法,同时理解并掌握形如axb=c的方程的解法,会列上述方程解决两步计算的实际问题。

2、提高分析数量关系的能力,培养学生思维的灵活性。

3、在积极参与数学活动的过程中,树立学好数学的信心。

教学重点、难点:引导学生独立分析问题,找出题目中的等量关系。

教学对策:在积极参与数学活动的过程中,树立学好数学的信心。

教学准备:教学光盘教学过程:一、复习准备1、解方程(练习一第6题的第1、3小题)4x+12=50 2.3x-1.02=0.36学生独立完成,再指名学生板演并讲评,集体订正。

二、尝试练习师:刚才的两道题同学们完成得很好,这道题你们还能自己解决吗?试试看。

出示:30x2=360学生独立尝试完成,全班交流。

指名学生说一说,解这个方程是第一步需要做什么?这样做依据了等式的什么性质?三、巩固练习1、出示练习一第7题。

(1)分析数量关系提问:谁来说说三角形的面积公式是怎样的?根据学生回答板书:S=ah2。

联系这个公式你能找出数量之间的相等关系吗?(生独立思考后在小组内交流)指名口答。

你觉得在这些数量关系中,哪一个等量关系适合列方程?根据这个数量关系我们可以列出怎样的方程?板书:1.3x2=0.39。

第⑵题生独立思考并列出方程,在小组内说说自己的思考过程后全班交流。

板书:3x+18=19.8。

(2)学生独立计算,并检验答案是否正确,全班核对。

小结:在一个实际问题中,可能会有几个不同的等量关系,我们应该选择合适的等量关系来列方程。

2、练习一第8题。

学生读题后可用自己喜欢的方法将与杨树和松树有关的信息分别列表整理(如列表,作标记等)学生独立解决后再说说数量之间有怎样的数量关系,是根据什么样的数量关系列出的方程,最后核对解方程的过程。

(提示学生可从得数的合理性来初步检验)3、练习一第9题。

列方程解应用题综合练习题(50道)

列方程解应用题综合练习题(50道)

列方程解应用题综合练习题(50道)1. 题目: 列方程解应用题综合练习题(50道)1. 在一个庆典上,甲、乙、丙三人共卖出了200张门票。

甲卖出的门票数是乙的一半,丙卖出的门票数是甲的一半。

请问甲、乙、丙三人分别卖出了多少张门票?2. 一家公司生产两种产品A和B,产品A每个单位可以卖出100元,产品B每个单位可以卖出150元。

每天生产产品A需要100个单位的原材料,而生产产品B需要200个单位的原材料。

公司每天有50000个单位的原材料可用。

为了获得最大的利润,应生产多少个单位的产品A和产品B?3. 小明想要买一部手机,商店A和商店B都在打折,但他只能在一个商店购买。

商店A的原价是3000元,现在打7折;商店B的原价是3500元,现在打85折。

小明希望以最低价格购买手机,请问他应该在哪个商店购买?4. 甲乙两人一起修剪草地,甲每小时可以修剪3/4个草地,乙每小时可以修剪1/2个草地。

如果他们一起工作4小时,他们一共修剪了多少个草地?5. 甲乙两人一起修建一条路,如果只有甲一个人修建,需要10天完成;如果只有乙一个人修建,需要15天完成。

请问他们一起工作需要多少天才能完成?---------------------------------------------------------1. 在一个庆典上,甲、乙、丙三人共卖出了200张门票。

甲卖出的门票数是乙的一半,丙卖出的门票数是甲的一半。

请问甲、乙、丙三人分别卖出了多少张门票?解题思路:假设甲卖出的门票数为x张,乙卖出的门票数为y张,丙卖出的门票数为z张。

根据题目条件可以得到以下方程:- x + y + z = 200- x = 1/2y- z = 1/2x解题步骤:将x代入第二个方程得到:x = 1/2(2z) = z将x代入第一个方程得到:z + y + z = 200,化简得到:2z + y = 200将y代入第三个方程得到:z = 1/2z,即z=0然而上述结果不满足实际情况,因此该方程无解。

人教版五年级数学下册一简易方程4列方程解决实际问题一课件苏教

人教版五年级数学下册一简易方程4列方程解决实际问题一课件苏教

2021/8/6 星期五
16
(3)某种品牌的洗发水有两种规格:大瓶的容量是750毫升,是小瓶容
量的3.75倍。大瓶的单价是38元/瓶,比小瓶贵26元。求小瓶的容量
和单价。
解: 设小瓶的容量是x升。
3.75x=750
x=200
解: 设小瓶的单价是y元/瓶。
y+26=38
y=12 或38-y=26 y=12
x=36
2021/8/6 星期五
4
教材练习二 P12T12
一种饮料有两种规格的包装。大瓶容量1.5升,是小瓶容量的3倍。小 瓶的单价是1.8元/瓶,比大瓶便宜3.2元/瓶。求小瓶的容量和大瓶的 单价。
2021/8/6 星期五
5
【示范解答】
解:设小瓶的容量是x升。 解:设大瓶的单价是y元/瓶。
3x=1.5
2021/8/6 星期五
18
(5)1路公交车从起点站出发,第1站上车一些人,中间第3站下车10人,
又上来15人,现在车上有30人。在第1站上车多少人?
解: 设在第1站上车x人。
x-10+15=30
x=25
答:在第1站上车25人。
2021/8/6 星期五
19
【小升初】 5.三个连续自然数的和是63,这三个自然数分别是多少? 解: 设中间一个自然数是x,则较小数是(x-1),较大数是(x+1)。 (x-1)+x+(x+1)=63 x=21 x-1=20 x+1=22 答:这三个自然数分别是20、21、22。
2021/8/6 星期五
7
【示范解答】 方法一:(8-5a)÷3=0
解:(8-5a)÷3×3=0×3 8-5a=0

四年级下册数学一课一练试题-5.31列方程解题 浙教版(含答案)

四年级下册数学一课一练试题-5.31列方程解题 浙教版(含答案)

四年级下册数学一课一练-5.31列方程解题(含答案)一、单选题1.水果店运来一些苹果,卖出25.6千克后,还剩下34.9千克,水果店里原来有苹果(用方程解)()A. 9.3千克B. 60.5千克C. 6.05千克D. 25.6千克2.当a值为()时,3a=a+10。

A. 10B. 15C. 53.下列方程,与2x-40=50的解不同的是()。

A. 2x-40+40=50+40B. z-20=25C. 2x=40+50D. 2x-30=404.如果1.4+3x=3.2,那么30-4x=()。

A. 6B. 0.6C. 32.4D. 27.6二、判断题5.4x-4=50中,方程的解是x=13.5.6.如果5x-4=38,那么4x+1.5=35.1。

7. 正方形的周长为4条边长度之和,设其中一条长度为a ,其周长就为C=4a三、填空题8.解方程.8x-32=64x=________9.校园里有松树8棵,杨树的棵数比松树的6倍多3棵,杨树和松树一共________棵.10.某数减去7剩下的再乘以7,所得的结果与先减去11剩下的再乘以11的结果相同,这个数是________ .11.比一个数的4倍多10的数是150,这个数是________?12.解方程.12x-56=124x=________四、解答题13.列出方程,并求出方程的解。

甲数是9.6,是乙数的4倍,乙数是多少?14.列出方程,并求出方程的解。

一个数的3倍加上6与8的积,和是84,求这个数。

五、综合题15.(1)如果★+●=100,那么★×0.081+●×0.081=________;如果★×●=100,那么(★×2.7)×●=________。

(2)如果▲+▲+▲=7.5,■×▲=10,(★+★)÷■=30,则★=________。

六、应用题16.爸爸的年龄比笑笑年龄的3倍大5岁,爸爸今年38岁,笑笑今年多少岁?(列方程解决问题参考答案一、单选题1.【答案】B【解析】【解答】解:设水果店原来有苹果x千克,x-25.6=34.9x-25.6+25.6=34.9+25.6x=60.5故答案为:B.【分析】根据题意可知,设水果店原来有苹果x千克,用原来的苹果质量-卖出的苹果质量=剩下的苹果质量,据此列方程解答.2.【答案】C【解析】【解答】解:3a=a+103a-a=a+10-a2a=102a÷2=10÷2a=5故答案为:C。

七年级上册数学同步练习题库:解一元一次方程(一)——合并同类项与移项(简答题:一般)

七年级上册数学同步练习题库:解一元一次方程(一)——合并同类项与移项(简答题:一般)

解一元一次方程(一)——合并同类项与移项(简答题:一般)1、用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(﹣2)☆3的值;(2)若(☆3)☆(﹣)=8,求a的值;(3)若2☆x=m,(x)☆3=n(其中x为有理数),试比较m,n的大小.2、已知A=2x2+3xy-2x-1,B=-x2+xy-1.若3A+6B的值与x的值无关,求y的值.3、(2015秋•鞍山期末)已知|a﹣3|+(b+1)2=0,代数式的值比的值多1,求m的值.4、已知x=﹣1是关于x的方程8x3﹣4x2+kx+9=0的一个解,求3k2﹣15k﹣95的值.5、若关于的方程的解是,求的值.6、马小哈在解一元一次方程“☉x-3=2x+9”时,一不小心将墨水泼在作业本上了,其中有一个未知数x的系数看不清了,他便问邻桌,邻桌不愿意告诉他,并用手遮住解题过程,但邻桌的最后一步“所以原方程的解为x=-2”(邻桌的答案是正确的)露在手外被马小哈看到了,马小哈由此就知道了被墨水遮住的系数,请你帮马小哈算一算,被墨水遮住的系数是多少?7、如果方程5(x-3)=4x-10的解与方程4x-(3a+1)=6x+2a-1的解互为相反数,求a的值.(1);(2);(3);(4).9、解方程:(1);(2)+1=3-x.10、解方程或解比例.① 5+0.7x =103 ② X ∶= 2 ∶11、已知关于 x 的方程和有相同的解,求 a 的值.12、某中学七年级学生参加一次公益活动,其中10%的同学去做保护环境的宣传,55%的同学去植树,剩下的70名同学去清扫公园内的垃圾,七年级共有多少名同学参加这次公益活动?13、解下列方程:(1)0.25y-0.75y=8+3;(2);(3);(4).(1)7x+6x=39;(2)-2x-4x+5x=7;(3);(4).15、方程2﹣3(x+1)=0的解与关于x的方程的解互为倒数,求k的值.16、方程2-3(x+1)=0的解与关于x的方程-3k-2=2x的解互为倒数,求k的值.17、求未知数①-=10 ②:4 =0.25 ③3∶2.5=2∶18、求未知数①-=10 ②:4 =0.25 ③3∶2.5=2∶19、小明同学在计算60-a时,错把“-”看成是“+”,结果得到-20,那么60-a的正确结果应该是多少?20、求未知数①-=10 ②:4 =0.25 ③3∶2.5=2∶21、若新规定这样一种运算法则:a*b=a2+2ab,例如3*(-2)=32+2×3×(-2)=-3 (1)试求(-1)*2的值;(2)若3*x=2 , 求x的值;(3)(-2)*(1+x)=-x+6,求x的值.22、化简:(1)( x2-7x-2)-(-2x2+4x-1) (2)8x=4x+1(解方程)23、若新规定这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3.(1)试求(﹣2)※3的值;(2)若(﹣5)※x=﹣2﹣x,求x的值.24、“*”是新规定的这样一种运算法则:a*b=a2+2ab.比如3*(﹣2)=32+2×3×(﹣2)=﹣3(1)试求2*(﹣1)的值;(2)若2*x=2,求x的值;(3)若(﹣2)*(1*x)=x+9,求x的值.25、如图,已知∠AOC:∠BOC=1:4,OD平分∠AOB,且∠COD=36°,求∠AOB的度数.26、解下列方程或方程组:(1)(2)(3)(4)27、求当m为何值时,关于x的方程的解比的解多2?28、关于x的方程:3x+m=2的解也是方程:x- (1-x) =1的解,求m的值.29、解方程:⑴(2)(3).(4)(5)30、解下方程(组)。

人教版小学五年级上学期《列方程解应用题》专项训练(附答案)

人教版小学五年级上学期《列方程解应用题》专项训练(附答案)
4.2人
【分析】
根据题干可知,设转来了x人,用原来的人数加转来的人数等于现在的人数,据此列方程解答。
【详解】
解:设转来了x人。
84+x=86
x=86-84
x=2
答:转来了2人。
【点睛】
此题考查的是减法的应用,明确数量间的关系是解题关键。
5.59页
【分析】
设看了x页,用这本书的总页数减去已经看了的页数,即可得出剩下的页数,据此列方程解答。
13.粮店里原有2650千克面粉,卖出100袋后,还剩150千克。每袋面粉重多少千克?
14.果园里有桃树和梨树,其中桃树比梨树的2倍还多20棵,已知桃树比梨树多130颗,求桃树和梨树各有多少颗?
15.奶奶家养了一群鸡和鸭,共有180只,鸡的只数是鸭的4倍,鸡和鸭各有多少只?
16.果园里杏树比梨树多150棵,其中杏树的棵树是梨树的3倍,杏树和梨树各多少棵?
【点睛】
掌握单价、总价、数量之间的关系是解答题目的关键。
9.长是1.2米,宽是0.6米,面积是0.72平方米
【分析】
由题意可知,已知长是宽的2倍,设宽是x米,则长是2x米,然后根据长方形的周长=(长+宽)×2,据此列方程,解方程即可求出长方形的长和宽,然后根据长方形的面积=长×宽,代入数值进行计算即可。
2x-3=97
2x=97+3
x=50
答:小丽藏书50本。
【点睛】
此题考查的是倍数问题,明确数量间关系是解题关键。
7.1.5元
【分析】
根据题干可知,设每支钢笔为x元,根据圆珠笔花的钱数比40枝钢笔少28元,列方程解答。
【详解】
解:设每支钢笔为x元。
40x-28=32
40x=60
x=1.5

完整版)解一元二次方程练习题(配方法)

完整版)解一元二次方程练习题(配方法)

完整版)解一元二次方程练习题(配方法) 一元二次方程解法练题一、用直接开平方法解下列一元二次方程。

1、4x-1=2、(x-3)^2=2、2、(x-1)^2=5、81(x-2)=16二、用配方法解下列一元二次方程。

1、y^2-6y-6=0、3x^2-4x+2=02、x^2-4x-5=0、2x^2+3x-1=03、x^2-4x=9、3x^2+2x-7=04、x^2-4x-5=0、-4x^2-8x=165、2x^2+3x-1=0、(2-3x)^2=46、-4x^2+12x=0三、用公式解法解下列方程。

1、x^2-2x-8=0、4y^2-2y-1=02、2x^2-5x+1=0、-4x^2-8x=16、2x^2-3x-2=0四、用因式分解法解下列一元二次方程。

1、x^2=2x、(x+1)^2-(2x-3)^2=3、x^2-6x+8=02、4(x-3)^2=25(x-2)、(1+2)x^2-(1-2)x=6、(2-3x)^2+(3x-2)^2=1五、用适当的方法解下列一元二次方程。

1、3x/(x-1)=x/(x+5)、2x-3=5x、x-2y+6=22、x^2-7x+10=0、(x-3)(x+2)=6、4(x-3)+x(x-3)=23、(5x-1)^-2=8、3y^2-4y-9=0、x^2-7x-30=24、(y+2)(y-1)=4、x^2-4ax=b^2-4a^2、x^2+(531/36)x=05、4x(x-1)=3、3x^2-9x+2=0一元二次方程解法练题六、用直接开平方法解下列一元二次方程。

1.4x-1=2解:移项得4x=3,两边平方得16x^2=9,即x=±3/4.2.(x-3)^2=2解:展开得x^2-6x+7=0,两边平方得x-3=±√2,即x=3±√2.3.(x-1)^2=5解:展开得x^2-2x-4=0,两边平方得x-1=±√5,即x=1±√5.4.81(x-2)=162解:移项得(x-2)^2=2,两边开平方得x-2=±√2,即x=2±√2.七、用配方法解下列一元二次方程。

第6讲 列方程解应用题(练习)解析版

第6讲 列方程解应用题(练习)解析版

第6讲 列方程解应用题(练习)夯实基础一、单选题1.(2020·上海市第二工业大学附属龚路中学八年级期中)受疫情影响某厂今年第一季度的产值只有200万元,为帮助企业渡过难关,政府出台了很多帮扶政策,在当地政府的暖心相助下,该厂第三季度的总产值提高到500万元.若平均每季度的增产率是x ,则可以列方程( )A .()20012500+=xB .()50012200-=xC .D .【答案】C【分析】若平均每季度的增产率是x ,经过两次增长后应该为()22001x +,建立方程即可.【详解】解:若平均每季度的增产率是x ,则可以列方程 故本题选择C【点睛】本题是一元二次方程的应用问题当中的变化率问题,解题时找到等量关系是关键.2.(2020·上海市静安区实验中学)甲、乙两列车分别从相距300千米的A 、B 两站同时出发相向而行.相遇后,甲车再经过2小时到达B 站,乙车再经过4小时30分到达A 站,求甲、乙两车的速度.若设甲、乙两车的速度分别为x 千米/时和y 千米/时,根据题意列方程组是( ) A . B .C .D .【答案】A【分析】设甲、乙两车的速度分别为x千米/时和y千米/时,根据相遇后从行驶的路程之和等于总距离和相遇时时间相同列出二元一次方程组即可.【详解】设甲、乙两车的速度分别为x千米/时和y千米/时,依题意得故选A.【点睛】此题主要考查二元一次方程的应用,解题的关键是根据题意找到等量关系列方程.3.(2019·上海浦东新区·八年级期末)某特快列车在最近一次的铁路大提速后,时速提高了30千米/小时,则该列车行驶350千米所用的时间比原来少用1小时,若该列车提速前的速度是x千米/小时,下列所列方程正确的是()A.B.C.D.【答案】B【分析】根据题意可得等量关系为原来走350千米所用的时间提速后走350千米所用的时间,根据等量关系列式即可判断.【详解】解:原来走350千米所用的时间为,现在走350千米所用的时间为:,所以可列方程为:.故选:B.【点睛】本题考查分式方程的实际应用,根据题意找到提速前和提速后所用时间的等量关系是解决本题的关键.4.(2020·上海市静安区实验中学)为执行“两免一补”政策,某地区2010年投入教育经费2500万元,预计2011年、2012年两年共投入5775万元.设这两年投入教育经费的年平均增长百分率为x,则下面列出的方程正确的是()A .225005775x =B .()200250015775x +=C .()2250015775x += D .【答案】D【分析】根据题意,该地区投入教育经费的年平均增长百分率为x ,由2010年的2500万元,得出2011年的经费投入和2012年的经费投入,两年共投入5775万元,列出方程式即可.【详解】该地区教育经费的年平均增长率为x ,则可以列方程为 , 故选:D .【点睛】本题考查了方程的实际应用问题,结合年增长率找出等量关系列方程,注意年增长率和年数的关系.5.(2019·上海市田林第三中学)某工厂一月份的产值是100万元,之后每月产值的平均增长率是x,已知第一季度的总产值是331万元,为了求出x,下列方程正确的是( ) A .100(x+1)²=331 B .100(x+1)3=331C .100+100(x+1)²=331D .100+100(x+1)+100(x+1)²=331【答案】D【分析】等量关系为:第一季度的产值y=一月份的产值+二月份的产值+三月份的产值,把相关数值代入即可.【详解】∵一月份的产值为100万元,平均每月增长率为x , ∴二月份的产值为100×(1+x),∴三月份的产值为100×(1+x)×(1+x)= 100(x+1)², 第一季度为:100+100(x+1)+100(x+1)²=331.故选D.【点睛】此题考查由实际问题抽象出一元二次方程,将通过集中理解题意找出等量关系. 6.(2019·上海市闵行区七宝第二中学)一列火车到某站已经晚点8分钟,如果将速度每小时加快10千米,那么继续行驶30千米便可以在下一站正点到达,设火车原来行驶的速度是x千米/小时,求火车原来行驶的速度是()A.B.C.D.【答案】B【分析】设火车原来行驶的速度是x千米/小时,根据时间的等量关系列方程即可.【详解】解:设火车原来行驶的速度是x千米/小时,由题意得:,故选B.【点睛】本题主要考查用分式方程解决行程问题,得到时间的等量关系是解决本题的关键.二、填空题7.(2019·上海市鲁迅初级中学八年级月考)某商场八月份的营业额是100万元,预计十月份的营业额可达到144万元,若九、十月份营业额的月增长率相同为x,那么由题意可列得方程为_______________________【答案】【分析】根据增长后的量=增长前的量×(1+增长率)n,如果平均每月的增长率为x,根据题意即可列出方程.【详解】解:设平均每月的增长率为x,则九月份的营业额为100(1+x),十月份的营业额为100(1+x)2,由此列出方程:100(1+x)2=144.故答案为【点睛】本题主要考查从实际问题中抽象出一元二次方程,掌握复利公式:“a(1+x)n=b”,理解公式是解决本题的关键.8.(2018·上海普陀区·八年级期末)如图,在长为32米、宽为20米的长方形绿地内,修筑两条同样宽且分别平行于长方形相邻两边的道路,把绿地分成4块,这4块绿地的总面积为540平方米.如果设道路宽为x米,由题意所列出关于x的方程是_____.【答案】(32﹣x)(20﹣x)=540.【分析】本题可设道路宽为x米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了(32-x)(20-x)米2,进而即可列出方程,求出答案.【详解】利用平移,原图可转化为右图,设道路宽为x米,根据题意得:(32−x) (20−x) =540,【点睛】本题考查了由实际问题抽象出一元二次方程,可将草坪面积看作一整块的矩形的面积,根据矩形面积=长×宽求解.9.(2018·上海松江区·八年级期末)节能减排,让天更蓝、水更清.已知某企业2015年单位GDP的能耗约为2.5万吨标煤,2017年的能耗降为1.6万吨标煤.如果这两年该企业单位GDP的能耗每年较上一年下降的百分比相同,那么这个相同的百分比是____________.【答案】20%【分析】2017年单位GDP的能耗=2015年单位GDP的能耗×(1-年下降的百分比)2,把相关数值代入即可.【详解】解:设每年比上一年下降的百分比为x,依题意得即所列的方程为2.5(1-x)2=1.6.解,得1120% 5x==,25 4x=(不合题意,舍去)故答案为:20%【点睛】本题考查了从实际问题中抽出一元二次方程,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.10.(2020·上海市静安区实验中学)甲、乙两施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由甲、乙两队合作,一共用10天就完成了全部工程.已知乙队单独完成此项工程所需天数与甲队单独完成此项工程所需天数之比是4:5,求甲、乙两个施工队单独完成此项工程各需多少天.若设甲队单独完成此项工程需5x天,则根据题意可列方程为_________________.【答案】【分析】求的是工效,工作时间明显,一定是根据工作总量来列等量关系.等量关系为:甲8天的工作总量+乙10天的工作总量=1.【详解】设甲施工队单独完成此项工程需5x天,则乙施工队单独完成此项工程需4x天.根据题意得:故答案为:.【点睛】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.三、解答题11.(2019·上海市西延安中学)某农场挖一条长480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,则原计划每天挖多少米?【答案】40米【分析】设原计划每天挖x米,则开工后每天挖(x+20)米.根据实际比原计划提前4天完成任务,列方程求解.【详解】解:设原计划每天挖x米,则开工后每天挖(x+20)米.,2x+20x-2400=0,(x+60)(x-40)=0,x1=-60,x2=40.经检验,它们都是原方程的根,但x=-60不合题意,应舍去,取x=40.答:原计划每天挖40米.故答案为:40米.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.列分式方程解决实际问题的检验分两个方面:①要保证方程有解,②要保证实际问题有意义.12.(2018·上海金山区·八年级期中)为改善生态环境,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种10棵,结果提前5天完成任务.原计划每天种多少棵树?【答案】原计划每天种树40棵.【分析】设原计划每天种树x棵,实际每天植树(x+10)棵,根据实际完成的天数比计划少5天为等量关系建立方程,求出其解即可.【详解】解:设原计划每天种x棵,根据题意得21020000+-=.x x140x =,250x =-经检验,140x =,250x =-都是原方程的根,但50x =-不合题意,舍去 答:原计划每天种树40棵.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键,注意分式方程要进行检验.13.(2019·上海闵行区·八年级期末)今年上海市政府计划年内改造1.8万个分类垃圾箱房,把原有的分类垃圾箱房改造成可以投放“干垃圾、湿垃圾、可回收垃圾、有害垃圾”四类垃圾的新型环保垃圾箱房.环卫局原定每月改造相同数量的分类垃圾箱房,为确保在年底前顺利完成改造任务,环卫局决定每月多改造250个分类垃圾箱房,提前一个月完成任务.求环卫局每个月实际改造分类垃圾箱房的数量. 【答案】环卫局每个月实际改造类垃圾箱房2250个.【分析】设原计划每个月改造垃圾房x 万个,然后根据题意列出分式方程,解方程即可得出答案.【详解】设原计划每个月改造垃圾房x 万个,则实际每月改造()0.025x +万个. .化简得:2200590x x +-=.解得:115x =,2940x =-. 经检验:115x =,2940x =-是原方程的解. 其中115x =符合题意,2940x =-不符合题意舍去.10.0250.2255+=万个,即2250个.答:环卫局每个月实际改造类垃圾箱房2250个.【点睛】本题主要考查分式方程的应用,能够根据题意列出分式方程是解题的关键.14.(2019·上海黄浦区·)学生从学校出发去距离10千米的博物馆参观,一部分学生骑自行车先走,20分钟后,其余同学乘车出发,结果同时到达,已知汽车速度是骑自行车的2倍,求骑自行车的速度.【答案】自行车速度为 15 千米/时【分析】根据题意,找出等量关系即汽车和自行车同时达到,设自信车速度为x千米/时,可列方程:,解方程再检验即可得出答案.【详解】解:设自行车速度为x千米/时,则汽车速度为2x千米/时,20分钟13=小时由题意可得:解得:15x=.经检验15x=是原方程的解且符合题意.答:自行车速度为15千米/时.【点睛】本题考查分式方程的实际应用,根据题意找出等量关系,列出方程是解题关键,注意解分式方程必须要验算,以防出现增根的情况.15.(2020·上海市第二工业大学附属龚路中学八年级期中)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.【答案】(1)4,16(2)不能剪成两段使得面积和为12cm2【详解】(1).设其中一个正方形的边长为xcm,则另一个正方形的边长为(20-4x)÷4=-5x依题意列方程得:x2+(5-x)2=17,解方程得:x1=1,x2=4,两端的铁丝长为4,16.-.(2).设其中一个正方形的边长为xcm,则另一个正方形的边长为(20-4x)÷4=5x依题意列方程得:x2+(5-x)2=12,x无解,故不能.能力提升一、单选题1.(2020·上海市静安区实验中学)张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是()A.B.C.D.【答案】B【分析】设小李每小时走x千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x千米,依题意得:故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.2.(2019·上海市浦东新区进才中学南校)某种产品原来每件价格为875元,经过两次降价,且每次降价的百分率相同,现在每件售价为560元,设每次降价的百分率为x ,依题意可列出关于x 的方程( )A .B .()28751-560x =C .()25601%875x -=D .【答案】B 【分析】根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是,第二次降价后的价格是875,据此可列得方程.【详解】根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是,第二次降价后的价格是875,据此可列得方程:.故选B【点睛】此题考查了一元二次方程的应用,解答本题的关键在于分析降价后的价格,要注意降价的基础,难度一般.3.(2019·上海松江区·八年级期末)过元旦了,全班同学每人互发一条祝福短信,共发了380条,设全班有x 名同学,列方程为( )A .()113802x x -=B .x (x ﹣1)=380C .2x (x ﹣1)=380D .x (x +1)=380 【答案】B【分析】设该班级共有同学x 名,每个人要发(x-1)条短信,根据题意可得等量关系:人数×每个人所发的短信数量=总短信数量.【详解】设全班有x 名同学,由题意得:x (x-1)=380,故选:B .【点睛】此题考查由实际问题抽象出一元二次方程,解题关键是正确理解题意,找出题目中的等量关系,列出方程.4.(2019·上海金山区·八年级期中)甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .B .C .D .【答案】A【详解】甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同, 所以,.故选A.5.(2019·上海嘉定区·八年级期中)等腰ABC ∆的一边长为4,另外两边的长是关于x 的方程2100x x m -+=的两个实数根,则等腰三角形底边的值是( )A .4B .25C .4或6D .24或25 【答案】C【分析】分为两种情况:①腰长为4,②底边为4,分别求出即可.【详解】设底边为a ,分为两种情况:①当腰长是4时,则a+4=10,解得:a=6,即此时底边为6,②底边为4,腰长为10÷2=5,即底边长为4或6,故选C .【点睛】本题考查了一元二次方程的解,根与系数的关系,等腰三角形的性质等知识点,能求出符合的所有情况是解此题的关键.二、填空题6.(2020·上海市静安区实验中学)小王1000元投资理财,他买的股票一年后增值80%,但第二、三年股市低迷出现亏损,第三年后还有资金882元,则这两年的平均亏损率为___________.【答案】30%.【分析】首先求得第一年的钱数,然后利用第二、三年的亏损率相同列出一元二次方程即可.【详解】第二年增值后的钱数为1000(1+80%),设第二、三年的平均亏损率为x,根据题意得,解得x=30%,故答案为:30%.【点睛】本题考查了列一元二次方程求解增长率的问题,注意找到正确的等量关系列出方程式求解.7.(2020·上海市静安区实验中学八年级课时练习)一个两位数,个位上的数字比十位上的数字大3,且十位上的数字的平方比个位上的数字小1,设个位上的数字为x,十位上的数字为y,可列方程组________________________.【答案】【分析】等量关系为:个位上的数字比十位上的数字大3,且十位上的数字的平方比个位上的数字小1,根据个位上的数字为x,十位上的数字为y列方程组即可.【详解】∵个位上的数字为x,十位上的数字为y,∴,故答案为.【点睛】本考查列方程组,根据题意找出等量关系是解题的关键.8.(2020·上海市市西初级中学)一种型号的数码相机,原来每台售价5000元,经过两次降价后,现在每台售价为3200元,假设两次降价的百分率均为x,那么可列方程___________.【答案】5000(1-x)2=3200【分析】设两次降价的百分率均为x,根据原来每台售价为5000元,经过两次降价后,现在每台售价为3200元,可列出方程.【详解】解:设两次降价的百分率均为x,5000(1-x)2=3200.故答案为:5000(1-x)2=3200.【点睛】本题考查理解题意的能力,是个增长率问题,根据两次降价前的结果,和现在的价格,可列出方程.9.(2020·上海市风华初级中学八年级月考)某工厂七月份的产值是200万元,计划九月份的产值要达到288元,那么平均每月的增长率是_____.【答案】20%【分析】根据题意,设每月的增长率为x,则九月份的产值为200(1+x)2,根据题意九月份产值为288元,列方程求解即可.【详解】解:设平均每月增长率为x,根据题意得,200(1+x)2=288解得,x1=0.2=20%,x2= -2.2(不符合题意,舍去)即平均每月增长率为20%.故答案为:20%【点睛】本题考查一元二次方程的实际应用问题,即增长率问题,掌握涨前量和涨后量及增长率之间的关系是解答此题的关键.10.(2020·上海市静安区实验中学)某市为了增强学生体质,开展了乒乓球比赛活动.部分同学进入了半决赛,赛制为单循环式(即每两个选手之间都赛一场),半决赛共进行了6场,则共有__________人进入半决赛.【答案】4【解析】假设共有 x人进入半决赛.∴12x(x-1)=6,解得:x 1=4,x 2=-3(舍去),答:共有 4人进入半决赛.【点睛】本题主要考查了一元二次方程的应用,根据题意得出方程是解决问题的关键.三、解答题11.(2020·上海市静安区实验中学八年级课时练习)如图,有两条互相垂直的公路12,l l ,A 厂离公路1l 的距离为2千米,离公路2l 的距离为5千米;B 厂离公路1l 的距离为11千米,离公路2l 的距离为4千米;现在要在公路2l 上建造一仓库P ,使A 厂到P 仓库的距离与B 厂到P 仓库的距离相等,求仓库P 的位置.【答案】仓库P 在公路2l 上,且在公路1l 的右侧,离公路1l 的距离为6千米处.【分析】以直线12,l l 建立直角坐标系,根据题述可得A 厂,B 厂所在点的坐标,再设仓库P 所在点的坐标为(x ,0),根据“A 厂到P 仓库的距离与B 厂到P 仓库的距离相等”列出方程,求解,根据方程的解可得出仓库P 的位置.【详解】解:12,l l 为两条互相垂直的公路,以12,l l 建立平面直角坐标系,如下图,根据题意可知(2,5),(11,4)A B ,设P(x ,0),则2222(2)5(11)4x x -+=-+整理得:18108x =,解得6x =.故仓库P 在公路2l 上,且在公路1l 的右侧,离公路1l 的距离为6千米处.【点睛】本题考查两点之间的距离公式.能建立合适的直角坐标系,并根据“A 厂到P 仓库的距离与B 厂到P 仓库的距离相等”列出方程是解决此题的关键.12.(2020·上海市静安区实验中学)前年甲厂全年的产值比乙厂多12万元,在其后的两年内,两个厂的产值都有所增加:甲厂每年的产值比上一年递增10万元,而乙厂每年的产值比上一年增加相同的百分数.去年甲厂全年的产值仍比乙厂多6万元,而今年甲厂全年产值反而比乙厂少3.2万元.前年甲乙两车全年的产值分别是多少?乙厂每年的产值递增的百分数是多少?【答案】前年甲厂全年的产值为92万元,乙厂全年的产值为80万元,乙厂每年的产值递增的百分数是20%.【分析】根据题意,设前年乙厂全年的产值为x万元,乙厂每年比上一年递增的百分数为y,则甲厂前年的产值为(x+12)万元,利用甲厂和乙厂的产值关系列出二元二次方程组,解得即可.【详解】设前年乙厂全年的产值为x万元,乙厂每年比上一年递增的百分数为y,根据题意得解得80+12=92(万元),答:前年甲厂全年的产值为92万元,乙厂全年的产值为80万元,乙厂每年的产值递增的百分数是20%,故答案为:92,80,20%.【点睛】本题考查了方程组的列式求解问题,二元二次方程组的求解,根据等量关系列出方程组是解题的关键.13.(2020·上海市静安区实验中学)A、B两个码头相距6千米,一只船从A出发划船逆流而上用了1小时30分钟到达B.回来时,开始的23路程划船前进,余下的13路程让船顺水漂移到达A地,结果来去所用时间相同.求船在静水中的划行速度和水流速度.【答案】船在静水中的划行速度为6千米/小时,水流速度2千米/小时.【分析】设船在静水中的划行速度为x千米/小时,水流速度y千米/小时,根据题意列出方程组即可求解.【详解】设船在静水中的划行速度为x 千米/小时,水流速度y 千米/小时,根据题意得解得或,经检验,是方程组的解且符合实际,是方程组的解但不符合实际,所以,故船在静水中的划行速度为6千米/小时,水流速度2千米/小时.【点睛】此题主要考查列方程组解应用题,解题的关键是根据题意找到等量关系列出方程求解.14.(2019·上海黄浦区·八年级期中)在行驶完某段全程600千米的高速公路时,李师傅对张师傅说:“你的车速太快了,平均每小时比我多跑20千米,比我少用1.5小时就跑完了全程.”(1)若这段高速公路全程限速120千米/小时,两人全程均匀速行驶.那么张师傅超速了吗?请说明理由;(2)张师傅所行驶的车内油箱余油量y (升)与行驶时间t (时)的函数关系如图所示,则行驶完这段高速公路,他至少需要多少升油?【答案】(1)没超速;理由见解析;(2)他至少需要33升油.【分析】(1)设李师傅的速度为x 千米/小时,则张师傅的速度为()20x +千米/小时,根据题意可以列出相应的分式方程,从而可以解答本题;(2)根据函数图象可以求得张师傅每小时的耗油量,从而可以求得行驶完这段高速公路,他至少需要多少升油.【详解】(1)没超速.设李师傅的速度为x 千米/小时,则张师傅的速度为()20x +千米/小时,,∴22080000x x +-=,∴1100x =-,280x =.经检验1100x =-,280x =都为原方程的实数根,但1100x =-不合题意,舍去, ∴张师傅速度为100千米/小时<120千米/小时,没有超速.(2)∵114482÷=, ∴(升).答:他至少需要33升油.【点睛】本题考查分式方程的应用、从函数图像读取信息,解答此类问题的关键是明确题意,找出所求问题需要的条件,列出相应的分式方程解答问题.15.(2019·上海市敬业初级中学)甲、乙两家体育用品商店出售同样的乒乓球和乒乓拍,乒乓球拍每幅定价20元,乒乓球每盒定价5元,现两家商店搞促销活动.甲店:每买一副球拍送一盒乒乓球;乙店:按定价的8折优惠.某班级需购球拍4副,乒乓球若干盒(不少于4盒).(1)设购买乒乓球盒数为x (盒),在甲店购买的付款数为1y (元);在乙店购买的付款数为2y (元),分别写出1y 和2y 与x 的函数关系式,并写出定义域.(2)就乒乓球的盒数讨论去哪家购买合算?【答案】(1),;(2)当x=4时,两家商店一样合算,当4x >时,去乙商店更合算.【分析】(1)根据两家商店的促销方案即可解答;(2)分别当12y y <,12y y =,12y y >时,计算x 的取值范围,即可解答.【详解】解:(1)在甲商店买4副球拍和(x-4)盒乒乓球,∴12045(4)560y x x =⨯+-=+,4x ≥;乙店:按定价的8折优惠,∴2(2045)0.8464y x x =⨯+⨯=+,4x ≥;∴,;(2)当12y y <时,即,解得:4x <,不符合题意;当12y y =时,即560464x x +=+,解得:4x =,当12y y >时,即,解得:4x >,∴当x=4时,两家商店一样合算,当4x >时,去乙商店更合算.【点睛】本题考察了一次函数中的选择方案问题,解题的关键根据题意列出函数关系式.16.(2019·上海市闵行区上虹中学八年级期中)某农场要建一个饲养场(矩形ABCD )两面靠现有墙(AD 位置的墙最大可用长度为27米,AB 位置的墙最大可用长度为15米),另两边用木栏围成,中间也用木栏隔开,分成两个场地及一处通道,并在如图所示的三处各留1米宽的门(不用木栏).建成后木栏总长45米.设饲养场(矩形ABCD )的一边AB 长为x 米.(1)饲养场另一边BC=____米(用含x 的代数式表示).(2)若饲养场的面积为180平方米,求x 的值.【答案】(1)48-3x ;(2)10.【分析】(1)用(总长+3个1米的门的宽度)-3x 即为所求;(2)由(1)表示饲养场面积计算即可,【详解】(1)由题意得:(48-3x )米.故答案是:(48-3x );(2)由题意得:x (48-3x )=180解得x 1=6,x 2=10,,10x =【点睛】此题考查一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.17.(2019·上海民办浦东交中初级中学八年级月考)如图所示,在△ABC 中,∠C=90°,AC=6cm ,BC=8cm ,点P 从点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动.(1)如果P 、Q 同时出发,几秒钟后,可使△PCQ 的面积为8cm 2?(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△PCQ 的面积等于△ABC 的面积的一半?【答案】(1)2s 或4s 后可使△PCQ 的面积为8cm 2;(2)不存在使得△PCQ 的面积等于△ABC 的面积的一半的时刻,理由见解析;【分析】(1)设点P 、Q 同时出发,x 秒钟后,AP=xcm ,PC=(6-x )cm ,CQ=2xcm ,此时△PCQ 的面积为:12×2x (6-x ),令该式=8,由此等量关系列出方程求出符合题意的值; (2)△ABC 的面积的一半等于12×12×AC ×BC=12cm 2,令12×2x (6-x )=12,判断该方程是否有解,若有解则存在,否则不存在.【详解】(1)设xs 后,可使△PCQ 的面积为8cm 2.由题意得,AP=xcm ,PC=(6-x )cm ,CQ=2xcm , 则12•(6−x)•2x =8. 整理,得x 2-6x+8=0,解得x 1=2,x 2=4.所以P 、Q 同时出发,2s 或4s 后可使△PCQ 的面积为8cm 2.(2)由题意得:。

列方程解决问题练习题(总复习)

列方程解决问题练习题(总复习)

列方程解决问题练习题(一)一、基本练习1、水果店运来X箱苹果,每箱重10千克,卖出75千克,还剩下5 千克。

等量关系:_______________________________________________________方程:____________________________ =52、小明有画片45张,送给豆豆和乐乐各X张后,还剩13张。

等量关系:______________________________________________________方程:____________________________ =133、一个长方形长13米,宽X米,周长38米。

等量关系:_______________________________________________________方程:_____________________________ =384、小华拿8元钱去买作业本,每本作业0.75元,买了X本后,找回3.5 元。

等量关系:_______________________________________________________方程:______________________ =3.55、李娟同学买了2支圆珠笔与3本练习本,共付7.2元,每本练习本X 元,每支钢笔Y元。

方程:______________________________ =7.26、水果店运来苹果420千克,每25千克装一箱,装了x箱后还剩下20千克。

方程:______________________________ =4207、洗衣机厂今年每日生产洗衣机260台,比去年平均日产量的2.5 倍少40台,去年平均日产洗衣机多少台?解:设____________________________方程:___________________________8用一根铁丝可以围成一个边长是4厘米的正方形,还用这根铁丝围成一个宽是2厘米的长方形,这个长方形的长是多少厘米?解:设____________________________方程:___________________________9、长方形的周长是112米,长是宽的3倍。

七年级数学上册第三单元《一元一次方程》-解答题专项经典练习题(含答案)(1)

七年级数学上册第三单元《一元一次方程》-解答题专项经典练习题(含答案)(1)

一、解答题1.如果,a b 为定值,关于x 的方程2236kx a x bk +-=+无论k 为何值时,它的根总是1,求,a b 的值. 解析:a=132,b=﹣4 【分析】 先把方程化简,然后把x =1代入化简后的方程,因为无论k 为何值时,它的根总是1,就可求出a 、b 的值.【详解】解:方程两边同时乘以6得:4kx +2a =12+x−bk ,(4k−1)x +2a +bk−12=0①,∵无论为k 何值时,它的根总是1,∴把x =1代入①,4k−1+2a +bk−12=0,则当k =0,k =1时,可得方程组:12120412120a a b --⎧⎨--⎩+=++=, 解得:a=132,b=﹣4 当a=132,b=﹣4时,无论为k 何值时,它的根总是1. ∴a=132,b=﹣4 【点睛】本题主要考查了一元一次方程的解,理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.本题利用方程的解求未知数a 、b .2.解方程:2x 13+=x 24+-1. 解析:x=-2.【分析】 按去分母,去括号,移项,合并同类项,系数化为1的步骤进行求解即可.【详解】去分母得:4(2x+1)=3(x+2)-12,去括号得:8x+4=3x+6-12,移项得:8x-3x=6-12-4,合并同类项得:5x=-10,系数化为1得:x=-2.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解题的关键.3.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.解析:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【解析】试题分析:首先设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,然后根据两本书的售价总和为80元列出一元一次方程,从而求出x的值,得出答案.试题设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,根据题意得:50%x+60%(150﹣x)=80,解得:x=100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.4.全班同学去划船,如果减少一条船,每条船正好坐9个同学,如果增加一条船,每条船正好坐6个同学,问原有多少条船?解析:原有5条船.【分析】首先设原有x条船,根据“减少一条船,那么每条船正好坐9名同学;增加一条船,那么每条船正好坐6名同学”得出等式方程,求出即可.【详解】设原有x条船,如果减少一条船,即(x-1)条,则共坐9(x-1)人.如果增加一条船,则共坐6(x+1)人,根据题意,得9(x-1)=6(x+1).去括号,得9x-9=6x+6.移项,得9x-6x=6+9.合并同类项,得3x=15.系数化为1,得x=5.答:原有5条船.【点睛】此题主要考查了一元一次方程的应用,根据题意利用全班人数列出等量关系式是完成本题的关键.5.某同学在解方程21233x x a-+=-时,方程右边的﹣2没有乘以3,其它步骤正确,结果方程的解为x=1.求a的值,并正确地解方程.解析:a=2,x=-3【分析】由题意可知x=1是方程2x-1=x+a-2的解,然后可求得a 的值,然后将a 的值代入方程求解即可.【详解】解:将x =1代入2x ﹣1=x +a ﹣2得:1=1+a ﹣2.解得:a =2,将a =2代入21233x x a -+=-得:2x ﹣1=x +2﹣6. 解得:x =﹣3.【点睛】 本题主要考查的是一元一次方程的解,明确x=1是方程2(2x-1)=3(x+a )-2的解是解题的关键.6.学校要购入两种记录本,预计花费460元,其中A 种记录本每本3元,B 种记录本每本2元,且购买A 种记录本的数量比B 种记录本的2倍还多20本.(1)求购买A 和B 两种记录本的数量;(2)某商店搞促销活动,A 种记录本按8折销售,B 种记录本按9折销售,则学校此次可以节省多少钱?解析:(1)购买A 种记录本120本,B 种记录本50本;(2)学校此次可以节省82元钱.【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B 种记录本x 本,则购买A 种记录表(2x +20)本,依题意,得:3(2x +20)+2x =460,解得:x =50,∴2x +20=120.答:购买A 种记录本120本,B 种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.【点睛】根据题意中的等量关系列出方程是解决问题的关键7.一种商品每件成本a 元,按成本增加22%标价.(1)每件标价多少元?(2)由于库存积压,实际按标价的九折出售,每件是盈利还是亏损?盈利或亏损多少元? 解析:(1)1.22a ;(2)盈利0.098a【分析】(1)根据:标价=成本()122%⨯+,列出代数式,再进行整理即可;(2)根据:售价=标价0.9⨯,利润=售价-成本,列出代数式,即可得出答案.【详解】(1)∵每件成本a 元,原来按成本增加22%定出价格,∴每件售价为()122% 1.22a a +=(元);(2)现在售价:1.220.9 1.098a a ⨯=(元);每件还能盈利:1.0980.098a a a -=(元);∴实际按标价的九折出售,盈利0.098a (元)【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到等量关系,注意把列出的式子进行整理.8.某同学在给方程21133x x a -+=-去分母时,方程右边的-1没有乘3,因而求得方程的解为2x =,试求a 的值,并正确地解方程.解析:2a =,0x =【分析】根据方程的定义,把2x =代入211x x a -=+-,求得a ,把a 代入原方程,去分母、去括号、移项、合并同类项得出议程的解.【详解】把2x =代入211x x a -=+-, 得:2a =∴原方程为:212133x x -+=- 去分母得:2123x x -=+-移项得:2231x x -=-+合并同类项得:0x =【点睛】本题考查了解分数系数的一元一次方程,熟练掌握解方程的一般步骤是解题的关键. 9.已知关于x 的方程:2(x ﹣1)+1=x 与3(x +m )=m ﹣1有相同的解,求以y 为未知数的方程3332my m x --=的解. 解析:214y =-. 【分析】 根据方程可直接求出x 的值,代入另一个方程可求出m ,把所求m 和x 代入方程3,可得到关于y 的一元一次方程,解答即可.【详解】解:解方程2(x ﹣1)+1=x得:x =1将x =1代入3(x +m )=m ﹣1得:3(1+m )=m ﹣1解得:m=﹣2将x=1,m=﹣2代入33 32my m x --=得:3(2)2332y----=,解得:214y=-.【点睛】本题考查了含分母的一次方程,属于简单题,正确求解方程是解题关键.10.某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+30,-25,-30,+28,-29,-16,-15.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存300吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元、出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费解析:(1)经过这7天,仓库里的水泥减少了57吨;(2)7天前仓库里存有水泥357吨;(3)这7天要付(58a+115b)元装卸费.【分析】(1)根据有理数的加法运算,可得答案;(2)根据有理数的减法运算,可得答案;(3)根据装卸都付费,可得总费用.【详解】(1)∵+30-25-30+28-29-16-15=-57;∴经过这7天,仓库里的水泥减少了57吨;(2)∵300+57=357(吨),∴那么7天前,仓库里存有水泥357吨.(3)依题意:进库的装卸费为:[(+30)+(+28)]a=58a;出库的装卸费为:[|-25|+|-30|+|-29|+|-16|+|-15|]b=115b,∴这7天要付(58a+115b)元装卸费.【点睛】本题考查了正数和负数及列代数式的知识,(1)有理数的加法是解题关键;(2)剩下的减去多运出的就是原来的,(3)装卸都付费.11.为了鼓励市民节约用水,某市水费实行分段计费制,每户每月用水量在规定用量及以下的部分收费标准相同,超出规定用量的部分收费标准相同.下表是小明家1至4月份水量和缴纳水费情况,根据表格提供的数据,回答:)规定用量内的收费标准是 元吨,超过部分的收费标准是 元/吨;(2)问该市每户每月用水规定量是多少吨?(3)若小明家六月份应缴水费50元,则六月份他们家的用水量是多少吨?解析:(1)2;3(2)规定用水量为10吨(3)六月份的用水量为20吨【分析】(1)由小明家1,2月份的用水情况,可求出规定用量内的收费标准;由小明家3,4月份的用水情况,可求出超过部分的收费标准;(2)设该市规定用水量为a 吨,由小明家3月份用水12吨缴纳26元,即可得出关于a 的一元一次方程,解之即可得出结论;(3)设小明家6月份的用水量是x 吨,根据应缴水费=2×10+3×超出10吨部分,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】(1)由表可知,规定用量内的收费标准是2元/吨,超过部分的收费标准为3元/吨 (2)设规定用水量为a 吨;则23(12)26a a +-=,解得:10a =,即规定用水量为10吨;(3)∵2102050⨯=<,∴六月份的用水量超过10吨,设用水量为x 吨,则2103(10)50x ⨯+-=,解得:20x, ∴六月份的用水量为20吨【点睛】本题考查了一元一次方程的应用以及有理数的混合运算,解题的关键是:通过分析小明家1-4月用水量和交费情况,找出结论;找准等量关系,正确列出一元一次方程. 12.列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服. 下面是某服装厂给出的运动服价格表:已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元. 问七年级一班和七年级二班各有学生多少人?解析:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【分析】首先根据题中表格数据得出有一个班的人数大于35人,接着设大于35人的班有学生x 人,根据等量关系列出方程,求解即可.【详解】解:∵67604020⨯=40203650>∴所以一定有一个班的人数大于35人.设大于35人的班有学生x 人,则另一班有学生(67-x )人,依题意得5060(67)3650x x +-=6730x -=答:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.13.由于施工,需要拆除学校图书馆,七年级同学主动承担图书馆整理图书的任务,如果由一个人单独做要用30小时完成,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么先按排整理的人员有多少?解析:6人【分析】设先安排整理的人员有x 人,根据工作效率×工作时间×工作人数=工作总量结合题意,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设先安排整理的人员有x 人, 根据题意得:()1126=13030x x +⨯+, 解得:x =6.答:先安排整理的人员有6人.【点睛】本题考查了一元一次方程的应用,找准等量关系正确列出一元一次方程是解题的关键. 14.解方程:(1)3x ﹣4=2x +5;(2)253164x x --+=.解析:(1)9x = ;(2)13x =【分析】(1)通过移项,合并同类项,便可得解;(2)通过去分母,去括号,移项,合并同类项,进行解答便可.【详解】(1)3x ﹣2x =5+4,解得:x =9;(2)去分母得:2(2x ﹣5)+3(3﹣x )=12,去括号得:4x ﹣10+9﹣3x =12,移项得:4x ﹣3x =12+10﹣9,合并同类项得:x =13.【点睛】本题主要考查了解一元一次方程,熟记解一元一次方程的一般步骤是解题的关键.15.小明解方程21152x x a -++=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为4x =,试求a 的值,并正确求出方程的解. 解析:=1a ,原方程的解为:13x =【分析】首先根据错误的作法“方程左边的1没有乘以10”而得出4x =,代入错误方程,然后求出a 的值,最后进一步解方程即可.【详解】∵去分母时,方程左边的1没有乘以10,∴2(21)15()x x a -+=+,∵此时解得4x =,∴2(241)15(4)a ⨯-+=+,解得:=1a ,∴原方程为:211152x x --+=, 去分母可得:2(21)105(1)x x -+=-, 去括号可得:421055x x -+=-,移项、化简可得:13x -=-,解得:13x =,∴=1a ,原方程的解为:13x =.【点睛】本题主要考查了一元一次方程的求解,熟练掌握相关方法是解题关键.16.在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与爸爸的对话(如图),请根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮他们算算,用哪种方式购票更省钱?解析:(1)他们一共去了8个成人,4个学生;(2)按团体票购票更省钱【分析】(1)本题有两个相等关系:学生人数+成人人数=12人,成人票价+学生票价=400元,据此设未知数列方程组求解即可;(2)计算出按照团体票购买需要的钱数,然后与400元作对比即得答案.【详解】解:(1)设去了x 个成人,y 个学生,依题意得,1240400.5400x y x y +=⎧⎨+⨯=⎩,解得84x y =⎧⎨=⎩, 答:他们一共去了8个成人,4个学生;(2)若按团体票购票,共需16×40×0.6=384(元),∵384<400,∴按团体票购票更省钱.【点睛】本题主要考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.17.依据下列解方程0.30.5210.23x x +-=的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。

初中列方程专题习题附带答案

初中列方程专题习题附带答案

2022年1月10日初中数学周测/单元测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.一辆客车和一辆卡车同时从A 地出发沿同一公路同方向行驶,客车的行驶速度是70km/h ,卡车的行驶速度是60km/h ,客车比卡车早1h 经过B 地.设A 、B 两地间的路程是x km ,由题意可得方程( )A .70x ﹣60x =1B .60x ﹣70x =1C .16070x x -=D .7060x x -=1 【答案】C【解析】【分析】设A 、B 两地间的路程为x km ,根据题意分别求出客车所用时间和卡车所用时间,根据两车时间差为1h 即可列出方程.【详解】解:设A 、B 两地间的路程为x km , 根据题意得16070x x -= 故选C .【点睛】本题主要考查了一元一次方程的应用的知识,解答本题的关键是根据两车所用时间之差为1h 列出方程,此题难度不大.2.一货轮往返于上、下游两个码头,逆流而上38个小时,顺流而下需用32个小时,若水流速度为8千米/时,则下列求两码头距离x 的方程正确的是( )A .883238x x -+= B .883238x x -=+ C .832382x x -=D .21323823238x x x ⎛⎫=+ ⎪+⎝⎭ 【答案】B【解析】【分析】根据题意分别表示出顺流和逆流时船的速度,然后列方程即可.【详解】解:∵逆流而上38个小时,∴逆流时船本身的速度可以表示为38x 千米/时, ∵顺流而下需用32个小时,∴顺流时船本身的速度可以表示为32x 千米/时, ∵静水的速度是不变的,∴可列方程为883238x x -=+. 故选:B .【点睛】 此题考查了一元一次方程中的航行问题,解题的关键是根据题意分析出顺流和逆流时船的速度.3.药店销售某种药品原价为a 元/盒,受市场影响开始降价,第一轮价格下降30%,第二轮在第一轮的基础上又下降10%,经两轮降价后的价格为b 元/盒,则a ,b 之间满足的关系式为( )A .b =(1﹣30%)(1﹣10%)aB .b =(1﹣30%﹣10%)aC .000013010ab =++D .0000(13010)a b =++ 【答案】A【解析】【分析】根据题意直接列方程即可【详解】解:由题意可知b =(1﹣30%)(1﹣10%)a故选:A【点睛】本题考查列二元一次方程,正确理解题意找到等量关系是关键4.《孙子算经》是中国古代重要的数学著作,书中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,则可列方程为( )A .()33100100x x +-=B .()3100100x x +-=C .()131001003x x +-=D .()3100100x x +-=【答案】C【解析】【分析】根据“大马拉瓦+小马拉瓦=100”可以列出方程 .【详解】解:设大马有 x 匹,则由题意可得:()131001003x x +-=,故选C .【点睛】本题考查一元一次方程的应用,熟练掌握列方程的方法是解题关键.5.如图是一个迷宫游戏盘的局部平面简化示意图,该矩形的长、宽分别为5cm,3cm ,其中阴影部分为迷宫中的挡板,设挡板的宽度为cm x ,小球滚动的区域(空白区域)面积为2cm y ,则下列所列方程正确的是( )A .5235y x x =⨯--B .(5)(3)y x x =--C .35y x x =+D .2(5)(3)5y x x x =--+【答案】B【解析】【分析】 设挡板的宽度为x cm ,小球滚动的区域(空白区域)面积为y cm 2,根据题意列出方程解答即可.【详解】解:设挡板的宽度为x cm ,小球滚动的区域(空白区域)面积为y cm 2,根据题意可得:y =(5-x )(3-x ),故选:B .【点睛】此题考查由实际问题抽象出方程,关键是根据面积公式得出方程解答.6.在做科学实验时,老师将第一个量筒中的水全部倒入第二个量简中,如图所示,根据图中给出的信息,得到的正确方程是( ).A .π×(92)2×x =π×(52)2×(x+4) B .π×92×x =π×92×(x+4) C .π×(92)2×x =π×(52)2×(x-4) D .π×92×x =π×92×(x-4)【答案】A【解析】【分析】 根据水的体积不变的性质以及圆柱体体积计算公式,即可列出一元一次方程,从而得到答案.【详解】依题意得:π×(92)2×x =π×(52)2×(x+4) 故选:A .【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质,从而完成求解.7.一个长方形的周长为32cm ,若这个长方形的长减少2cm ,宽增加3cm 就变成了一个正方形,设长方形的长为xcm ,可列方程( ).A .()2323x x +=--B .()2163x x -=-+C .()2323x x -=-+D .()2163x x +=--【答案】B【解析】【分析】根据长方形的长为xcm ,得到长方形的宽,结合题意列方程,即可得到答案.【详解】∵长方形的长为xcm∴长方形的宽为:()16x -cm根据题意得:()2163x x -=-+故选:B .【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质,从而完成求解.8.七年级学生人数为x ,其中男生占52%,女生有150人,下列正确的是( ) A .152%150x -=B .15052%x x =-C .(152%)150x +=D .(152%)150x -= 【答案】D【解析】【分析】根据总人数×女生所占百分比=女生人数列方程即可求解.【详解】解:由题意列方程得(152%)150x -=.故选:D【点睛】本题考查了根据题意列方程,理解题意是解题关键.9.王强参加3000米的长跑,他以8米/秒的速度跑了一段路程后,又以5米秒的速度跑完了其余的路程,一共花了15分钟,他以8米/秒的速度跑了多少米?设以8米/秒的速度跑了x 米,列出的方程是( )A .3000156085x x -+=⨯B .30001585x x -+=C .3000156085x x --=⨯D .30001585x x --= 【答案】A【解析】【分析】设以8米秒的速度跑了x 米,则以5米/秒的速度跑了(3000)x -米,然后再根据题意列一元一次方程即可.【详解】解:设以8米秒的速度跑了x 米,则以5米/秒的速度跑了(3000)x -米, 依题意,得:3000156085x x -+=⨯. 故答案为A .【点睛】本题主要考查了列一元一次方程,审清题意、设出未知数、列出一元一次方程成为解答本题的关键.10.根据“x 的3倍与5的和比x 的13多2”可列方程( ) A .3525x x +=- B .3(5)23x x +=+ C .3(5)23x x +=- D .3352x x =++ 【答案】D【解析】【分析】 根据题意列出方程即可求解.【详解】解:由题意列方程得 3352x x =++. 故选:D【点睛】本题考查了根据题意列方程,正确理解题意是解题关键.11.已知一个长方形的周长为30cm ,若长方形的长减少1cm ,宽扩大为原来的2倍后成为一个正方形,设原来长方形的长为x cm ,则可列方程( )A .x ﹣1=2(15﹣x )B .x ﹣1=2(30﹣x )C .11(15)2x x -=-D .11(30)2x x -=- 【答案】A【解析】【分析】先根据长方形的周长公式用x 表示出长方形的宽,再由正方形的四条边都相等即可列出方程.【详解】解:∵长方形的长为x cm ,长方形的周长为30cm ,∴长方形的宽为(15﹣x )cm ,∵这长方形的长减少1cm ,宽扩大为原来的2倍后成为一个正方形,∴x ﹣1=2(15﹣x ).故答案为A .【点睛】本题主要考查了列一元一次方程,弄清题意、找准等量关系成为解答本题的关键. 12.“双十一”即指每年的11月11日,是指由电子商务代表的在全中国范围内兴起的大型购物促销狂欢日.2017年双十一淘宝销售额达到1682亿元.2019年双十一淘宝交易额达2684亿元,设2017年到2019年淘宝双十一销售额年平均增长率为,x 则下列方程正确的是( )A .()168212684x +=B .()1682122684x +=C .()2168212684x +=D .()()216821168212684x x +++= 【答案】C【解析】【分析】根据一元二次方程增长率问题模型()1n a x b +=列式即可.【详解】由题意,增长前为1682a =,增长后2684b =,连续增长2年,代入得()2168212684x +=;故选:C .【点睛】本题考查了一元二次方程在增长率问题中的应用,熟练掌握基本模型,理解公式,找准各数量是解决问题的关键.13.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1﹣x)2=﹣25 B.36(1﹣2x)=25C.36(1﹣x)2=25 D.36(1﹣x2)=25【答案】C【解析】【分析】根据百分率的意义及方程的意义可以得到解答.【详解】第一次降价后的价格为36×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1﹣x)×(1﹣x),则列出的方程是36×(1﹣x)2=25.故选:C.【点睛】本题考查列方程解应用题,熟练掌握根据题意列方程的方法和步骤是解题关键.14.一个数与253的差是125,设这个数为y,则下面所列方程正确的是()A.215235y-=B.215235y-=C.215235y+=D.122553y-=【答案】A【解析】【分析】根据题意可直接列出方程.【详解】解:由题意得:215235y-=;故选A.【点睛】本题主要考查了分数方程,熟练掌握分数方程是解题的关键.15.根据“x 的3倍与5的和比x 的13多2”可列方程( ) A .()3523x x +=+ B .3523x x +=- C .()3523x x +=- D .3352x x =++ 【答案】D【解析】【分析】 根据题意直接列出方程排除选项即可.【详解】解:由题意得:3352x x =++; 故选D .【点睛】本题主要考查一元一次方程,熟练掌握一元一次方程是解题的关键.16.《孙子算经》是我国古代的重要数学著作,其中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽.问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,则城中有多少户人家,若设城中有x 户人家,则可列方程为( ).A .1003x x += B .3100x x += C .1001003x x -+= D .()3100100x x +-=【答案】A【解析】【分析】根据题意列方程,即可完成求解.【详解】根据题意,每家取一头鹿,即x 头鹿∵每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完∴每3家共取一头的鹿,数量为:3x ∴鹿的总数为3x x +∵今有100头鹿进城 ∴1003x x += 故选:A .【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质,从而完成求解.17.已知某数为x ,比它的34大1的数的相反数是5,则可列出方程( ) A .3154-+=x B .3154⎛⎫-+= ⎪⎝⎭x C .3154-=x D .3154x x ⎛⎫-+= ⎪⎝⎭【答案】B【解析】【分析】先表示出比x 的34大1的数,再表示出这个数的相反数,根据等量关系即可列出方程. 【详解】比某数x 的34大1的数表示为:314x +, 比某数x 的34大1的数的相反数表示为:314x ⎛⎫-+ ⎪⎝⎭, 因此可列方程为:3154x ⎛⎫-+= ⎪⎝⎭. 故选:B .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.特别注意代数式的相反数只需在它的整体前面添上负号.18.根据“x 与y 的差的2倍等于9”的数量关系可列方程为( )A .2(x ﹣y )=9B .x ﹣2y =9C .2x ﹣y =9D .x ﹣y =9×2【答案】A【解析】【分析】首先要理解题意,根据文字表述x 与y 的差的2倍等于9列出方程即可.【详解】解:由文字表述列方程得,2(x-y)=9.故选:A.【点睛】本题考查由实际问题抽象出二元一次方程,比较简单,注意审清题意即可.19.设某数是x,若比它的2倍大4的数是8,则可列方程为()A.1482x+=B.1482x-=C.2x+4=8 D.2x﹣4=8【答案】C【解析】【分析】根据文字表述可得到其等量关系为:x的2倍+4=8,根据此列方程即可.【详解】解:根据题意得:2x+4=8.故选:C.【点睛】本题考查由实际问题抽象出一元一次方程,关键要找出题目中的数量关系,方法是通过题目中所给的关键词,如:大,小,倍等等.二、填空题20.“某数与6的和的一半等于12”,设某数为x,则可列方程________.【答案】612 2x+=【解析】【分析】根据题目中的等量关系列出方程即可求解.【详解】解:∵某数与6的和的一半等于12,∴可列方程为6122x+=.故答案为:6122x+=.【点睛】此题考查了列一元一次方程,解题的关键是找到题目中的等量关系并表示出来. 21.小金老师去西藏游玩时在批发市场购买牛肉,已知一袋牦牛肉和一袋黄牛肉的单价之和为44元,小金老师准备购买牦牛肉和黄牛肉总共不超过120袋,其中黄牛肉至少购买30袋,牦牛肉的数量不少于黄牛肉的2倍,粗枝大叶的小金在预算时将牦牛肉和黄牛肉的价格弄对换了,结果实际购买两种牛肉的总价比预算多了224元,若牦牛肉、黄牛肉的单价和数量均为整数,则小金实际购买这两种牛肉最多需要花费_____元.【答案】2752【解析】【分析】设一袋牦牛肉的单价为x 元,则一袋黄牛肉的单价为(44)x -元,购买牦牛肉和黄牛肉的数量分别为a 袋,b 袋,根据结果实际购买两种牛肉的总价比预算多了224元列方程,再计算实际的价格,根据总共不超过120袋,求最大值即可【详解】设一袋牦牛肉的单价为x 元,则一袋黄牛肉的单价为(44)x -元,购买牦牛肉和黄牛肉的数量分别为a 袋,b 袋,由题意可知:(44)[(44)]224ax b x bx a x +--+-=()22()112a b x a b ∴-=-+实际购买的牛肉的价格为:(44)ax b x +-()44a b x b =-+22()11244a b b =-++22()112a b =++120a b +≤∴当120a b +=时,22()112a b ++有最大值,最大值为:221201122752⨯+=(元)故答案为:2752【点睛】本题考查了一元一次不等式的性质,列方程解应用题;提取题目中的数据,列出等量关系,根据不等关系求最值是解题的关键.22.汽车队运送一批货物若每辆车装4吨,还剩下8吨未装;若每辆车装4.5吨,恰好装完,求这批货物共有多少吨?若设这批货物共有x吨,则所列的方程为_________.【答案】84 4.5 x x -=【解析】【分析】设这批货物共有x吨,根据题意可知等量关系为:两种装法中车辆的数量是一定的,据此列方程.【详解】解:设这批货物共有x吨,由题意得,84 4.5x x-=.故答案为:84 4.5x x-=.【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.23.已知Rt△ABC的两直角边分别是5、12,则Rt△ABC的内切圆的半径为_____.【答案】2【解析】【分析】连接OE、OQ,根据圆O是三角形ABC的内切圆,得到AE=AF,BQ=BF,∠OEC=∠OQC =90°,OE=OQ,推出正方形OECQ,设OE=CE=CQ=OQ=r,得到方程5﹣r+12﹣r=13,求出方程的解即可.【详解】解:如图,∠ACB=90°,AC=5,BC=12,∴AB13,∴∠C=90°,设圆O是三角形ABC的内切圆,连接OE、OQ,∴AE=AF,BQ=BF,∠OEC=∠OQC=∠C=90°,OE=OQ,∴四边形OECQ是正方形,∴设OE=CE=CQ=OQ=r,∵AF+BF=13,∴5﹣r+12﹣r=13,∴r=2,故答案为2.【点睛】本题考查三角形内切圆的应用,熟练掌握三角形内切圆的性质、勾股定理、一元一次方程在几何问题中的应用是解题关键.24.“x的3倍比x的一半多1”用方程表示为______.x+1【答案】3x=12【解析】【分析】根据等量关系为:x的3倍=x的一半+1,即可得出.【详解】x+1,解:∵x的3倍为3x,x的一半多1为:12x+1,∴可列方程为:3x=12x+1.故答案为:3x=12【点睛】本题考查了由实际问题抽象出一元一次方程,根据关键词得到相应的运算顺序是解决本题的易错点.25.一个数与8的和的2倍等于这个数的3倍,设这个数为x ,可列方程_______________.【答案】2(8)3x x +=【解析】【分析】根据“等于”找到等量关系,等式的左边:先计算这个数与8的和即+8x ,再计算和的2倍即2(8)x +,注意添括号作用,等式的右边:3x ,据此列方程即可.【详解】根据题意,设这个数为x ,可列方程:2(8)3x x +=,故答案为:2(8)3x x +=.【点睛】本题考查列一元一次方程,是基础考点,难度较易,掌握相关知识是解题关键. 26.列等式表示“x 的2倍与10的和等于18”为__________.【答案】21018x +=【解析】【分析】先求出倍数,在求和列式即可.【详解】根据题意列式如下:2x +10=18.故答案为:2x +10=18.【点睛】本题考查列一元一次方程.解决问题的关键是读懂题意,找到所求的量的等量关系.27.若2减去345m +的差为6.可列等式表示为______;则可求得m 的值为______. 【答案】 34265m +-= -8 【解析】【分析】根据“2减去345m +的差为6”建立等量关系,得到关于m 的一元一次方程,解方程即可求解. 【详解】 由题意,得34265m +-=, 10-(3m+4)=30,10-3m-4=30,-3m=24,m=-8, 故答案为:34265m +-=,-8 【点睛】此题考查了列方程以及解一元一次方程,理解题意找准等量关系是解答此题的关键. 28.河南卫视推出的大型文化类栏目《中华好诗词》受到广大诗词爱好者的喜爱,2019年度总决赛,第二轮比赛中共有20道选择题,答对一道题得5分,答错或不答一题倒扣2分,选手A 得到了72分设她做对了x 道题,则可列方程为______.【答案】()522072x x --=【解析】【分析】设选手 A 做对了 x 道题,则答错或不答的题目有(20-x )道,由题意可用x 表示出正分和负分,再根据“正分分值减去负分分值等于总分”的关系可以列出方程.【详解】解:设选手 A 做对了 x 道题,则答错或不答的题目有(20-x )道,由题意答对的总分数为5x ,答错或不答的扣分为2(20-x ),∴所列方程为:5x−2(20−x)=72,故答案为:5x−2(20−x)=72.【点睛】本题考查列一元一次方程解应用题,正确找出题中数量关系并用所设未知数表示出各数量关系是解题关键.29.《增删算法统宗》记载:“有个学生资性好,部孟子三日了,每日增添一倍多,问君每日读多少”?其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍问他每天各读多少个字.已知《孟子》一书共有34685个字,设他第一天读x 个字,则列方程为_______.【答案】2434685x x x ++=【解析】【分析】先根据“每天阅读的字数是前一天的两倍”可得他第二天和第三天阅读的字数,再根据“书共有34685个字”列方程即可.【详解】由题意得:他第二天阅读的字数为2x 个字,他第三天阅读的字数为4x 个字,则可列方程为2434685x x x ++=,故答案为:2434685x x x ++=.【点睛】本题考查了列一元一次方程,正确求出他第二天和第三天阅读的字数是解题关键. 30.设某数为x ,它的2倍是它的5倍与3的和,则列出的方程为______________.【答案】2x=5x+3【解析】【分析】首先表示出x 的2倍是2x ,再表示出x 的5倍是5x ,再根据“它的2倍是它的5倍与3的和”可得方程.【详解】解:由题意得:2x=5x+3,故答案为:2x=5x+3.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是理解题意,理清数据之间的关系.31.一个数x 的1 5与2的和等于10的30%,则可列出的方程为____. 【答案】121030%5x +=⨯ 【解析】【分析】根据乘法、加法运算列出方程即可.【详解】 由题意,可列出的方程为121030%5x +=⨯, 故答案为:121030%5x +=⨯. 【点睛】本题考查了列一元一次方程,读懂运算语句是解题关键.32.已知y 除以6所得的商比y 的4倍大8,则列出方程是_____. 【答案】1486y y -= 【解析】【分析】由y 除以6所得的商比y 的4倍大8,可得出关于y 的一元一次方程,此题得解.【详解】 解:依题意,得:1486y y -=. 故答案为:1486y y -=. 【点睛】本题考查一元一次方程,是基础考题,难度容易,根据题意找出等量关系是解题关键. 33.已知某数的相反数与2的差等于某数,如果设这个数为x ,那么可得方程为_________.【答案】2x x --=【解析】【分析】设这个数为x ,则它的相反数与2的差为--2x ,再根据题意建议等量关系即可.【详解】解:设这个数为x ,由题意知:2x x --=,故填:2x x --=.【点睛】本题考查方程的应用,根据题意列出方程式关键.34.长方形场地的面积是80平方米,它的长是宽的2倍多6米,若设长方形的宽是x 米,那么可以列出方程为_______.【答案】()2680x x +=【解析】【分析】先用x 表示出长,再利用长方形面积公式列方程即可得答案.【详解】设长方形的宽是x 米,∵长是宽的2倍多6米,∴长是(2x+6)米,∵长方形的面积为80平方米,∴(2x+6)x=80,故答案为:(2x+6)x=80【点睛】本题考查实际问题与一元一次方程,正确表示出长方形的长是解题关键.35.如果x 与-4的差的3倍为-2,那么可列出的方程为________.【答案】342x【解析】【分析】根据题意,找准等量关系列出方程即可.【详解】解:依题意得:342x ,故答案为:342x. 【点睛】本题考查了由实际问题抽象出一元一次方程:审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程.36.某数的78与-1的差等于10,设某数为x ,依题意,可列方程为_____________.【答案】()71108x --= 【解析】【分析】根据题中的等量关系列方程即可.【详解】 由题意得:()71108x --=, 故答案为:()71108x --=. 【点睛】本题考查了列方程,正确找出等量关系是解题关键.37.根据下列语句列出方程:(1)比a 小4的数是7:_____.(2)3与x 差的一半等于x 的4倍______.【答案】 a-4=7或a-7=4(其相关变形均可) 0.5(3-x)=4x【解析】【分析】根据题目中所描述的数量关系,抓住关键词:小,差,一半、倍等,列出方程即可.【详解】(1)由题意知,可列方程:a -4=7;(2)由题意知,可列方程:0.5(3-x )=4x ;故答案为:a -4=7或a -7=4(其相关变形均可);0.5(3-x )=4x .【点睛】本题考查由题意列出一元一次方程,找出题中包含的数量关系是解题的关键. 38.根据图中给出的信息,可列方程是______.小乌鸦:老乌鸦,我喝不到大量筒中的水.老乌鸦:小乌鸦,你飞到装有相同水量的小量筒,就可以喝到水了!【答案】π×(82)2•x =π×(62)2×(x+5) 【解析】【分析】根据题意可得水的体积是相等的,然后利用圆柱的体积公式即可列出关于x 的方程.【详解】解:由题意可得:π×(82)2•x =π×(62)2×(x+5), 故答案为:π×(82)2•x =π×(62)2×(x+5). 【点睛】本题主要考查列一元一次方程,解此题的关键在于找到题中相等关系的量,然后利用圆柱的体积公式列出方程即可.三、解答题39.按要求列方程(不需要求解)(1)一个方程的解为2x =,请写出一个符合条件的方程(2)根据“x 的3倍与5的和比x 的12少3”列出方程 【答案】(1)2x-1=3(答案不唯一);(2)()13532x x -+= 【解析】【分析】(1)根据方程的解写出方程即可;(2)利用x 的3倍与5的和为3x+5,x 的12为12x ,根据和差关系列出方程. 【详解】解:(1)∵方程的解为x=2,∴符合条件的方程可以为:2x-1=3(答案不唯一);(2)由题意可得: 该方程为:()13532x x -+=. 【点睛】此题主要考查了方程的解,由实际问题抽象出一元一次方程,正确得出等式是解题关键. 40.根据下列条件,设未知数并列出方程:(1)某数的3倍减去3,等于该数的13加5; (2)某商店将进价为2500元的某品牌彩电按标价的8折销售,仍可获得220元的利润,那么该品牌彩电的标价为多少元?【答案】(1)13353x x -=+;(2)80%2500220x -= 【解析】【分析】(1)设该数为x ,这个数乘以3再减去3等于这个数乘以13再加上5; (2)设该品牌彩电的标价为x 元,x 乘以80%得到打折后的售价,减去进价2500元,等于利润220元.【详解】(1)设该数为x ,根据题意,列方程为3x -3=13x +5; (2)设该品牌彩电的标价为x 元,根据题意,列方程为80%x -2500=220.【点睛】本题考查列一元一次方程,解题的关键是找到题目中的等量关系.41.2016元旦期间中国移动推出两种移动手机卡,计费方式如表:设一个月累计通话t 分钟,则:(1)用全球通收费 元,用神州行收费 元(两空均用含t 的式子表示). (2)如果两种计费方式所付话费一样,则通话时间t 等于多少分钟?(列方程解题).【答案】(1)30+0.10t,0.30t;(2)150分钟【解析】【分析】(1)根据题意设通话时间为t,则根据表格中的数据可以分别得到手机卡的费用;(2)如果两种计费方式所付话费一样,根据(1)直接两种手机卡费用相等即可得解.【详解】(1)设通话时间为t分钟,则全球通卡费用:30+0.10t,神州行卡费用:0.30t(2)根据题意可列方程:30+0.10t= 0.30t解得t=150答:通话时间为150分钟时,两种计费方式所付话费一样.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的思想解答.42.一部书分上,下两册,已知上册页数的25%与下册页数的25相等,且下册共有200页,这部书上册有多少页?【答案】这部书上册有320页.【解析】【分析】设这部书的上册有x页,根据题意可得方程225%2005x=⨯,解方程即可求解.【详解】解:设这部书的上册有x页,根据题意得:225%2005x=⨯解得:320x=.故答案为:320.【点睛】本题主要考查的是列方程,解题的关键是能根据题意列出方程.43.现有面值为5元和2元的人民币共32张,币值共计100元,这两种人民币各有多少张?(设未知数,只列方程)【答案】设5元人民币有x 张,()2325100x x -+=【解析】【分析】根据等量关系:5元面值总和+2元面值总和=100,列方程即可.【详解】设5元人民币有x 张,则2元人民币有()32x -张,根据题意,得:()2325100x x -+=【点睛】本题考查简单的方程应用,列方程解应用题关键是找准等量关系.44.根据下列条件,列出方程.(1)x 的倒数减去-5的差为9;(2)5与x 的差的绝对值等于4的平方;(3)长方形的长与宽分别为16、x ,周长为40;(4)y 减去13的差的一半为x 的35. 【答案】(1)()159x --=;(2)254x -=;(3)()21640x +=;(4)()131325y x -= 【解析】【分析】(1)表示出x 的倒数,再表示出这个倒数与-5差等于9,即可得方程;(2)表示出5与x 差,根据差的绝对值等于4的平方,即可得方程;(3)根据长方形周长公式即可得方程;(4)表示出y 与13差,再表示出这个差的一半,以及x 的35,即可得方程. 【详解】(1)根据题意,得:()159x--=, 故答案为:()159x--=; (2)根据题意,得:254x -=,故答案为:254x -=;(3)根据题意,得:()21640x +=,故答案为:()21640x +=;(4)根据题意,得:()131325y x -=, 故答案为:()131325y x -=. 【点睛】本题主要考查由实际问题抽象出方程,建立方程要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的相等关系关系.45.已知点(36,1)P m m -+,试分别根据下列条件,求出点P 的坐标.(1)点P 在y 轴上;(2)点P 的横坐标比纵坐标大2;(3)点P 在过(3,2)A -,且与x 轴平行的直线上.(4)点P 在到两个坐标轴的距离相等.【答案】(1)()0,3P ,(2)()13.5,5.5P ,(3)()15,2P --,(4)()4.5,4.5P 或()2.25,2.25P -【解析】【分析】(1)根据y 轴上的点的横坐标等于零,可得方程,通过解方程,可得答案.(2)根据横坐标比纵坐标大2,可得方程,通过解方程,可得答案.(3)根据平行于x 轴的直线上的所有点的纵坐标相等,可得方程,通过解方程,可得答案.(4)根据到两个坐标轴的距离相等,可得方程,通过解方程,可得答案.【详解】(1)∵点(36,1)P m m -+在y 轴上,∴点(36,1)P m m -+的横坐标为0,即36=0m -,解得=2m ,则()0,3P .(2)∵点(36,1)P m m -+的横坐标比纵坐标大2,∴()36=12m m -++,解得=4.5m ,则()13.5,5.5P .(3)∵点P 在过(3,2)A -,且与x 轴平行的直线上,∴点(36,1)P m m -+的纵坐标等于2-,即1=2m +-,解得=3m -,则()15,2P --.(4)∵点(36,1)P m m -+到两个坐标轴的距离相等,∴36=1m m -+或63=1m m -+,解得=3.5m 或=1.25m ,则()4.5,4.5P 或()2.25,2.25P -.【点睛】本题考查对平面直角坐标系的理解.解题关键是熟练掌握平面直角坐标系中点的坐标特征,将点的坐标关系转化为方程,通过解方程即可得解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《列方程解题(一)》习题
1、两列火车同时从距离536千米的两地相向而行,4小时相遇,慢车每小时行60千米,快车每小时行多少千米?
2、甲乙两个粮仓一共有粮6800包,甲是乙的3倍,两仓各有多少包?
3、化肥厂三月份用水420吨,四月份用水380吨,四月份比三月份节约水费60元,这两个月各付水费多少元?
4、有两桶油,甲桶油重量是乙桶油的2倍,现在从甲桶中取出25.8千克,从乙桶中取出剩下的两桶油重量相等,两桶油原来各有多少千克?
5、两筐苹果,每筐的个数相等,从甲筐卖出150个,从一筐卖出194个后,剩下的苹果甲筐是乙筐的3倍,原来甲筐有多少个?
6、桃树有300棵,杏树比桃树的2倍多30棵,杏树有多少棵?
7、一块三角形地的面积是840平方米,底是140米,高是多少米?
8、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?
9、李师傅买来72米布,凑巧做20件大人衣服和16件儿童衣服。

每件大人衣服用2.4米,每件儿童衣服用布多少米?
10、学校买来10箱粉笔,用去250盒,还剩下550盒,平衡每箱多少盒?
11、四年级共有学生200人,课外活动时,80名女生都去跳绳。

男生分成5组去踢球,平衡每组多少人?
12、食堂运来150千克大米,比运来的面粉的3倍少30千克。

食堂运来面粉多少千克?
《列方程解题(一)》习题答案
1、解:设快车小时行x千米。

4x+60×4=536
4x+240=536
4x=296
x=74
答:快车每小时行驶74千米。

2、解:设乙仓有粮x包,那么甲仓有粮3x包。

x+3x=6800
4x=6800
x=1700
3x=3×1700=5100
答:甲原有粮5100包,乙原有粮1700包。

3、解:设每吨水费x元。

420x一380x=60
40x=60
x=1.5
三月份付水费1.5×420=630(元)
四月份付水费1.5×380=570(元)
答:三月份付水费630元,四月份付水费570元。

4、解:设乙桶油为x千克,那么甲桶油为2x千克。

2x一25.8=x一5.2
2x一x=25.8一5.2
x=20.6
2x=20.6×2=41.2
答:甲桶油重41.2千克,乙桶油重20.6千克。

5、解:设原来每筐x个。

x一150=(x一194)×3
x一150=3x一582
2x=432
x=216
答:原来甲筐有苹果216。

6、解:设杏树为x棵。

2x+30=300
2x=270
x=135
答:杏树有630棵。

7、解:设高是x米。

x×140=840×2
x=12
答:三角形的高是12米
8、解:设女儿今年x岁。

(x-3)×6=33-3
x-3=5
x=8
答:女儿今年8岁。

9、解:设每件儿童衣服用布x米。

x×16+20×2.4=72
x×16=24
x=1.5
答:每件儿童衣服用布1.5米。

10、解:设平衡每箱x盒。

10×x=250+550
x=70
答:平衡每箱70盒粉笔。

11、解:设平衡每组x人。

x×5+80=200 x=24
答:平衡每组24人。

12、解:设食堂运来面粉x千克。

3x-30=150
x=60
答:食堂运来面粉60千克。

相关文档
最新文档