一次函数实际应用(带解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数实际应用(解析版)

1.已知A、B两地之间有一条长270千米的公路.甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A 地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.

(1)乙车的速度为千米/时,a=,b=

(2)求甲、乙两车相遇后y与x之间的函数关系式.

(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.

2.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.

(1)求每分钟向储存罐内注入的水泥量.

(2)当3≤x≤5.5时,求y与x之间的函数关系式.

(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.

3.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中

途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件),甲车间加工的时间为x (时),y 与x 之间的函数图象如图所示.

(1)甲车间每小时加工服装的件数为 件;这批服装的总件数为 件. (2)求乙车间维修设备后,乙车间加工服装的数量y 与x 之间的函数关系式. (3)求甲、乙两车间共同加工完1 000件服装时甲车间所用的时间.

4.实验室里,水平桌面上有甲、乙、丙三个高都是10cm 的圆柱形容器(甲、丙的底面积相同),用两个相同的管子在容器的6cm 高度处连通(即管子底离容器底6cm ,管子的体积忽略不计),、现在三个容器中,只有甲中有水,水位高2cm ,如图①所示,若每分钟同时向乙、丙中注入相同量的水,到三个容器都注满水停止,乙、丙容器中的水位h (cm )与注水时间t (min )的图象如图②所示.

(1)乙、丙两个容器的底面积之比为 . (2)图②中a 的值为 ,b 的值为 . (3)注水多少分钟后,乙与甲的水位相差2cm ?

y (件)

5.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y (米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.

(1)无人机上升的速度为米/分,无人机在40米的高度上飞行了分.

(2)求无人机下落过程中,y与x之间的函数关系式.

(3)求无人机距地面的高度为50米时x的值.

6.某加工厂为赶制一批零件,通过提高加工费标准的方式调动工人的积性.工人每天加工零件获得的加工费y(元)与加工个数x(个)之间的函数图像为折线OA-AB-BC,如图所示.

(1)求工人一天加工费不超过20个时零件的加工费.

(2)求40≤x≤60时y与x的函数关系式.

(3)小王两天一共加工了60个零件,共得到加工费220元,在这两天中,小王一天加工的零件不足20个,求小王第一天加工零件的个数。

7.(9分)甲、乙两车分别从A 、B 两地同时出发.甲车匀速前往B 地,到达B 地立即以另一速度按

原路匀速返回到A 地;乙车匀速前往A 地.设甲、乙两车距A 地的路程为y (千米),甲车行驶的时间为x (时),y 与x 之间的函数图象如图所示. (1)求甲车从A 地到达B 地的行驶时间.

(2)求甲车返回时y 与x 之间的函数关系式,并写出自变量x 的取值范围. (3)求乙车到达A 地时甲车距A 地的路程.

8.甲、乙两台机器共同加工一批零件,在加工过程中两台机器均改变了一次工作效率,从工作开始

到加工完这批零件两台机器恰好同时工作6小时,甲、乙两台机器各自加工的零件的个数y (个)与加工时间x (时)之间的函数图象分别为折线OA AB -与折线OC CD -,如图所示. (1)求甲机器改变工作效率前每小时加工零件的个数; (2)求乙机器改变工作效率后与之间的函数关系式; (3)求这批零件的总个数.

甲D

C

45B A

6280

110x (时)

y (个)O

9.(8分)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC-CD-DE,如图所示,从甲队开始工作时计时.

(1)分别求线段BC、DE所在直线对应的函数关系式.

(2)当甲队清理完路面时,求乙队铺设完的路面长.

(第9题)

10.(8分)甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3小时完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50吨,甲、乙两队在此路段的清雪总量y (吨)与清雪时间x(时)之间的函数图象如图所示.

(1)乙队调离时,甲、乙两队已完成的清雪总量为吨;

(2)求此次任务的清雪总量m;

(3)求乙队调离后y与x之间的函数关系式.

解析:

1.已知A、B两地之间有一条长270千米的公路.甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A 地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.

(1)乙车的速度为千米/时,a=,b=

(2)求甲、乙两车相遇后y与x之间的函数关系式.

(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.

解:(1)共270千米,2小时两车相遇,即两车共走270千米,V总=270÷2=135(km/h)

(V甲=60km/h,(V2=V总-V甲=135-60=75km/h

a点为乙车到A地时的时间,即t乙==270÷75=3.6

b点为甲车到B地的时间,即t甲==270÷60=4.5

(2)设函数关系式为y=kx+b,当2<x≤3.6时,斜率k为两车速度和135

(y=135x+b,又有x=2时,y=0,(b=-270,(y=135x-270

当3.6<x≤4.5时,斜率k为甲车速度为60,(y=60x+b,

又有x=4.5时,y=270,(b=0,(y=60x,

综上所述,

(3)甲距B地70千米处时,t==,当x=时,y=135×-270=180km

(甲乙两车之间路程为180千米.

故答案为:(1)75;3.6;4.5

2.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.

(1)求每分钟向储存罐内注入的水泥量.

(2)当3≤x≤5.5时,求y与x之间的函数关系式.

(3)储存罐每分钟向运输车输出的水泥量是1立方米,从打开输入口到关闭输出口共用的时间为11分钟.

相关文档
最新文档