混凝土结构的腐蚀及防腐措施

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 腐蚀机理分析

1·1 混凝土的腐蚀机理

混凝土的腐蚀是一个很复杂的物理的、物理化学的过程.由于混凝土腐蚀机理的复杂性,对混凝土腐蚀的分类还没达成一个共同的认识,但一般都倾向于采用前苏联学者B·M.莫斯克文为代表所提出的分类方法[3].将混凝土的腐蚀分为3类:溶蚀性腐蚀、某些盐酸溶液和镁盐的腐蚀、结晶膨胀型腐蚀. 所以,混凝土的腐蚀机理可从以下3类入手:物理作用、化学腐蚀、微生物腐蚀.

1·1·1 物理作用

物理作用是指在没有化学反应发生时,混凝土内的某些成分在各种环境因素的影响下,发生溶解或膨胀,引起混凝土强度降低,导致结构受到破坏.物理作用主要包括2类:侵蚀作用和结晶作用.

(1)侵蚀作用:当环境中的侵蚀性介质(如地下软水,河流、湖泊中的流水)长期与混凝土接触时,将会使混凝土中的可溶性成分(如Ca(OH)2)溶解.在无压力水的环境下,基础周围的水容易被溶出的Ca(OH)2饱和,使溶解作用终止.侵蚀作用仅仅发生在混凝土表面,影响不大.但在流水或压力水作用下, Ca(OH)2会不断溶解、流失,使混凝土强度减小,pH值降低,孔隙率增大,腐蚀性介质更容易进入混凝土内部,如此循环,导致混凝土结构破坏.(2)结晶作用:混凝土是一种非常典型的孔隙材料.环境中的某些盐类侵入到混凝土的毛细孔道中,在湿度较大时会溶解,但在湿度较低或低温环境下会吸水结晶.随着孔隙中晶体的不断析出、积累,毛细孔中的晶体体积将不断膨胀,对混凝土孔壁造成极大的结晶压力,从而引起混凝土的膨胀开裂.寒冷地区的冻融破坏也属于此类反应.

1·1·2 化学腐蚀

化学腐蚀是指混凝土中的某些成分与外部环境中腐蚀性介质(如酸、碱、盐等)发生化学反应生成新的化学物质而引起混凝土结构的破坏.化学腐蚀可归纳为两大类:分解类腐蚀和分解结晶复合类腐蚀.

(1)分解类腐蚀混凝土中的有效成分与某些腐蚀性介质发生复分解反应,生成了新的物质. (2)分解结晶复合类腐蚀混凝土中的Ca(OH)2与腐蚀性介质发生反应,生成某些新的钙盐,这些钙盐在混凝土的毛细孔中可结合大量的水而形成体积较大的晶体,造成水泥石胀裂破

坏. 1·1·3 微生物腐蚀

从目前来看,生物对混凝土的腐蚀问题尚未引起国内重视[4].据了解,独联体国家由于混凝土遭受生物腐蚀所造成的经济损失,到20世纪90年代初已达到5·5亿美元/a,而且还有继续增加的趋势.生物对混凝土的腐蚀大致有2种形式:①生物力学作用.②类似于混凝土的化学腐蚀. 1·2 钢筋的腐蚀机理

电化学腐蚀是混凝土中钢筋腐蚀的根本原因.钢筋发生电化学腐蚀需具备以下几个条件[5]: (1)有阴极、阳极和电位差; (2)有离子通路(电解质); (3)有电子通路.多数情况下,钢筋混凝土都满足钢筋腐蚀的电化学条件.通常在钢筋表面的非钝化区域处于活化状态,形成腐蚀电池的阳极,可以自由释放电子,形成电子通路;在钝化区将形成腐蚀电池的大阴极,在该区域钢筋表面存在足够多的水和氧(电解质)[5].由于钢筋材质和表面的非均匀性,钢筋表面总有可能形成电位差.因此,在潮湿环境下就可发生电化学反应,反应生成的Fe(OH)2不稳定,在氧气充足的情况下,会进一步氧化成红铁锈,体积膨胀数倍,使得混凝土表面胀裂,钢筋力学性能下降.

2 腐蚀因素及其作用规律

钢筋混凝土基础属于地下结构.影响其腐蚀的因素主要有以下几种:混凝土的密实性、抗化学腐蚀性、碱骨料反应以及钢筋的锈蚀等.

2·1 密实性

混凝土的密实性直接影响混凝土的其他耐久性因素,如抗冻性、抗化学侵蚀性等.由于水泥在水化过程中会出现一些毛细孔隙,所以混凝土结构不可能绝对密实.从理论上讲,硅酸盐水泥完全水化所结合的水量只占水泥质量的%,但为了保证有必要的毛细孔作为供水通道,使水泥完全水化的最少需水量为%.因此,实际用水量都要比理论值偏大,从而使水灰比增大,混凝土的密实性减小.

2·2 抗化学腐蚀性

2·2·1 硫酸盐腐蚀

硫酸盐腐蚀在不同条件下主要有2种形式:E盐破坏和G盐破坏.E盐破坏即钙钒石膨胀破坏,通常发生在SO2-4质量浓度低于1000mg/L的情况下,其破坏产物为钙钒:4CaO·Al2O3·12H2O+3SO2-4+2Ca(OH)2+20H2O 3CaO·Al2O3·3CaSO4·31H2O+6OH-,反应

生成的钙钒石是溶解度极小的盐类矿物,极限石灰质量浓度只有L,即使在很低质量浓度的石灰溶液中也能稳定存在.此类物质呈针柱状晶体,又称之为“水泥杆菌”,其体积增加了倍,在混凝土内产生了巨大的膨胀应力.

2·2·2 镁盐腐蚀

镁盐主要以MgSO4和MgCl2的形式存在.当渗入到混凝土中,将会与水泥石中的Ca(OH)2发生复分解反应:

Ca(OH)2+MgSO4+2H2O CaSO4·2H2O+Mg(OH)2↓;

Ca(OH)2+MgCl2CaCl2+Mg(OH)2↓.

反应生成的固相物质Mg(OH)2积聚在混凝土孔隙内,在一定程度上可以阻止外界侵蚀性介质的侵入,但该反应消耗了大量的Ca(OH)2,使混凝土的pH值降低,导致水泥石中的水化硅酸钙和水化铝酸钙与呈酸性的镁盐发生反应.以MgSO4为例:3CaO·Al2O3·6H2O+3MgSO4+6H2O 3(CaSO4·2H2O)+2Al(OH)3+3Mg(OH)2↓,

3CaO·2SiO2·3H2O+3MgSO4+9H2O 3(CaSO4·2H2O)+2SiO2·3H2O↓+3Mg(OH)2↓,

反应生成的Mg(OH)2还能与铝胶、硅胶缓慢反应:

2Al(OH)3+Mg(OH)2Mg(AlO2)2+4H2O;

2SiO2·3H2O+2Mg(OH)22MgSiO3+5H2O,

结果将导致水泥石的粘结力下降,混凝土的强度大大降低.

2·2·3 氯盐腐蚀

这里的氯盐是指自由氯离子,已结晶固化的氯化物一般对混凝土不会有破坏作用.基于所处环境的不同,外部氯离子一般通过渗透、扩散等方式侵入混凝土中.它们可以和混凝土中的Ca(OH)2、3CaO·2Al2O3·3H2O等发生反应,生成易溶的CaCl2和带有大量结晶水且比反应物体积大几倍的固相化合物.反应式如下:

Ca(OH)2+2Cl-CaCl2+2OH-;

3CaCl2+3CaO·Al2O3·6H2O+25H2O 3CaO·Al2O3·3CaCl2·31H2O.

由上述反应式可以发现,Ca(OH)2的大量消耗,破坏了C—S—H凝胶和Ca(OH)2之间的平

相关文档
最新文档