反激式开关电源电路设计

合集下载

反激式开关电源设计详解

反激式开关电源设计详解

反激式开关电源设计详解一、工作原理1.开关管控制:反激式开关电源中,开关管起到了关键的作用。

当输入电压施加在开关管上时,开关管处于导通状态,此时电流流经变压器和输出电路,能量存储在变压器核心中。

当输入电压施加在开关管上时,开关管处于截止状态,此时能量释放,通过一对二极管和电容器形成输出脉冲电流。

2.变压器作用:反激式开关电源中的变压器主要用于将输入电压转换为所需的输出电压。

在导通状态下,输入电压施加在变压器的一侧,能量存储在变压器的磁场中。

在截止状态下,变压器的磁场崩溃,能量释放到输出电路中。

3.输出电路过滤:输出电流通过一对二极管和电容器形成脉冲电流。

为了使输出电流更加稳定,需要通过电容器对输出电流进行滤波,降低脉冲幅度,使输出电压更加平稳。

二、基本结构1.输入滤波电路:由于输入电源通常含有较多的噪声和干扰,为了保障开关电源的正常工作,需要在输入端添加一个滤波电路,通过滤波电容和电感将输入电压的尖峰和噪声滤除。

2.开关控制电路:开关控制电路用于对开关管进行控制,使其在合适的时机打开和关闭。

常见的控制方式有定时控制和反馈控制两种。

3.开关管:开关管在反激式开关电源中起到了关键的作用。

常见的开关管有MOS管、IGBT管等,其特性包括导通损耗、截止损耗和开关速度等。

4.变压器:变压器用于将输入电压变换为所需的输出电压。

同时,变压器还能起到隔离输入电源和输出负载的作用,保护负载。

5.输出整流滤波电路:输出整流滤波电路用于对输出电流进行整流和滤波,使输出电压更加稳定。

三、常见设计方法1.脉冲宽度调制(PWM)控制:PWM是一种常用的反激式开关电源控制方法,通过控制开关管的导通时间来调节输出电压和电流。

PWM控制能够实现较高的效率和较低的输出波纹,但需要一定的控制电路。

2.变压器匹配设计:在设计反激式开关电源时,需要合理选择变压器的匝数比,以实现所需的输入输出电压转换。

同时,还需要考虑变压器的大小和功耗。

反激式开关电源(flyback)环路设计基础

反激式开关电源(flyback)环路设计基础

反激式开关电源(flyback)是一种常见的电源结构,广泛应用于电子设备中。

它具有结构简单、成本低廉、效率高等优点,在消费电子、工业控制和通信设备等领域被广泛应用。

本文旨在介绍反激式开关电源环路设计的基础知识,包括工作原理、设计步骤和注意事项。

一、反激式开关电源的工作原理1.1 反激式开关电源的基本结构反激式开关电源由输入滤波器、整流桥、高频变压器、功率开关器件、输出整流滤波器、控制电路等组成。

其中,高频变压器是反激式开关电源的关键部件,通过变压器实现输入电压的隔离和变换,功率开关器件则控制变压器的工作状态,实现电源的调节和稳定输出。

1.2 反激式开关电源的工作原理反激式开关电源通过功率开关器件周期性地将输入电压斩波,将输入电能存储在变压器的磁场中,然后再将其转换为输出电压。

在工作周期的后半段,存储的能量释放到输出负载上,从而实现对输出电压的调节。

通过控制功率开关器件的导通时间和断态时间,可以实现对输出电压的调节和稳定。

二、反激式开关电源环路设计的基础知识2.1 反激式开关电源的设计步骤(1)确定电源的输入输出参数:包括输入电压范围、输出电压、输出电流、负载调整范围等;(2)选择功率开关器件和高频变压器:根据电源的输入输出参数和工作频率选择合适的功率开关器件和高频变压器;(3)设计反激式开关电源的控制电路:根据所选的功率开关器件和高频变压器设计相应的控制电路,包括PWM控制电路、电源启动电路等;(4)设计输入输出滤波器和保护电路:设计输入输出滤波器,保证电源的输入输出稳定和干净,设计过压、过流、过温等保护电路,保证电源的安全稳定工作。

2.2 反激式开关电源环路设计的注意事项(1)磁性元件的设计:高频变压器和输出感应元件的设计是整个反激式开关电源设计的关键,应合理设计磁芯、线圈匝数等参数,保证磁性元件承载功率、效率和体积的平衡;(2)功率开关器件的选择和驱动:应选择合适的功率开关器件,并设计合理的驱动电路,保证功率开关器件的可靠工作和转换效率;(3)控制电路的设计:应根据功率开关器件的工作特性和工作频率设计合适的PWM控制电路和反馈控制电路,保证电源的稳定可调;(4)输入输出滤波器和保护电路的设计:应合理设计输入输出滤波器和保护电路,保证电源的输入输出稳定和安全可靠。

反激式开关电源的电路设计与参数计算_陈建林

反激式开关电源的电路设计与参数计算_陈建林

反激式开关电源的电路设计与参数计算_陈建林
一、反激式开关电源的电路设计
据报道,反激式开关电源可以提供高效率、小型体积和低成本的解决方案,它在电脑、消费电子产品以及数字电路系统中应用较为广泛。

反激式开关电源是指在典型的AC/DC转换过程中,通过开关电路,从交流电源抽取能量进行直流转换的电路。

下面将详细介绍反激式开关电源的电路设计。

(1)反激式开关电源电路的主要组件
交流输入电路:交流输入电路是反激式开关电源电路的起始模块,它的功能是把电源电压提供给其他组件。

开关功率电路:开关功率电路的最重要的组件是开关元件,它们是把AC输入电压装入到电源系统中的基础,通常可以使用MOSFET、差动管、晶闸管等。

控制电路:控制电路是反激式开关电源电路的关键组件,它的功能是控制开关管的开合以实现输入电压的正常转换。

一般来说,控制电路通过一系列的电路元件,如比较器、占空比调节器、稳压器、脉冲发生器和定时器等实现诸如占空比调节,稳压、启动和保护等功能。

CR6853控制的反激式开关电源设计

CR6853控制的反激式开关电源设计

电力电子技术实操技能训练CR6853控制的反激式开关电源设计系别专业班级学生姓名指导教师王志强提交日期2012年9月20日一、 反激稳压电源的工作原理1、 设计要求:(1) 输入直流电压为90V~220V; (2) 输出直流电压为12V,功率为30W; (3) 开关频率为65KHz。

2、 CR6853控制的反激式开关电源原理分析:图1 CR6853控制的反激式开关电源原理图(1) 输入滤波电路开关电源的输入滤波器的主要作用是抑制电网中的噪声,使电子设备抗干扰能力大大加强,仅使电源工作频率附近的频率成分顺利通过,衰减高次频率成分。

它还能抑制开关电源所产生的共模干扰和差模干扰进入交流电网,避免干扰其他电气电子设备。

开关电源输入滤波器的结构如图2所示:图2 入滤波器的结构输入滤波器主要是由电容和电感组成。

(2) 整流滤波电路一般情况下的交流电压输入的电源,其整流器大多为桥式整流电路,每半个周期里,有两个整流二极管参与导电。

整流滤波电路如图3所示:图3 整流滤波电路(3) RCD吸收电路MOSEFT关断时,当 超过RCD缓冲电路中的电容两端的电压 时,缓冲二极管导通,尖峰电流被RCD电路吸收时,从而削减尖峰电流。

缓冲电容一定要足够大,才能保证在一个开关周期内电容两端的电压没有显著变化。

但吸收电容太大,也会增加缓冲电路的损耗,必须折中。

图4 RCD 吸收电路(4) 电压反馈控制电路反激电源原副边隔离,电压调节需要采样副边输出电压,经过调节后需要控制原边开关管的门极驱动,因此电压反馈控制涉及到采样隔离和PI 调节。

采用TL431 和TLP521 的控制电路如下:图5 TL431控制电路T L431提供参考电压,并与Rf1,Rf2,Rf4,Cf1构成PI 调节器,Rf3用于增加TL431的偏置电流,使其工作在稳压状态。

TLP521用于隔离模拟信号,在一定范围内可以等效为比例环节。

+-V DCV RO+-图6 TL431控制电路(5) 逆变电路反激式变换器是一种电气隔离的升压/降压变换器,也是最简单的隔离型直流变换器。

反激式开关电源电路设计

反激式开关电源电路设计

反激式开关电源电路设计一、反激式开关电源的基本原理1.输入滤波电路:用于对输入电压进行滤波,消除噪声和干扰。

2.整流电路:将输入交流电压转换为直流电压。

3.开关变压器:通过变压器实现电压的升降。

4.开关管:通过快速开关控制电源的输出。

5.输出滤波电路:对输出电压进行滤波,减小纹波。

二、反激式开关电源的设计步骤1.确定需求:首先需要确定设计要求,包括输出电压和电流、负载稳定性要求、效率要求等。

2.选择开关管和变压器:根据需求选择合适的开关管和变压器,考虑其最大工作电流和功率损耗。

3.转换频率的选择:根据应用的具体要求,选择合适的转换频率。

较高的频率可以减小变压器的尺寸,但也会增加开关管的功耗。

4.控制电路设计:设计开关管的控制电路,包括驱动电路和保护电路,确保开关管的正常工作和保护电路的可靠性。

5.输出滤波电路设计:设计输出滤波电路,用于滤除输出电压中的高频噪声和纹波,提高稳定性和负载能力。

6.开关电路设计:设计开关电路,确保开关管的快速开关和可靠性。

7.其他辅助电路设计:如过温保护电路、过流保护电路等。

8.电路板布局和布线:根据电路设计和要求进行电路板布局和布线,提高电路的可靠性和稳定性。

9.电路仿真和调试:使用仿真软件对设计的电路进行仿真分析,并进行实际的电路调试,确保电路的可靠性和稳定性。

三、反激式开关电源设计的注意事项1.高效率设计:选择合适的元件和电路设计,减小功率损耗,提高电源的整体效率。

2.稳定性设计:考虑负载稳定性的要求,选择合适的控制策略和滤波电路,提高电源的稳定性和负载能力。

3.保护设计:考虑过温、过流、短路等保护功能的设计,保护电源和负载器件的安全。

4.电磁兼容设计:反激式开关电源中产生的高频噪声易对其他电子设备产生干扰,需要采取适当的电磁屏蔽和滤波措施。

5.安全性设计:合理设置安全保护电路和安全措施,确保电源在故障情况下能够及时切断电源,保护用户的安全。

通过以上步骤和注意事项,可以设计出一台高效、稳定、安全的反激式开关电源,满足不同应用领域的需求。

反激式开关电源设计方法

反激式开关电源设计方法

反激式开关电源设计方法1.工作原理反激式开关电源是一种将线性变压器替换为变压器型电感器的开关电源。

它的工作原理是通过开关管周期性的打开和关闭,将直流电源的电能经过变压器转化为需要的输出电压。

当开关管打开时,电流从电源流入变压器进行储能;当开关管关闭时,储存在变压器中的电能会通过二次侧电容器得以释放,并输出到负载上。

2.主要组成部分(1)输入滤波电路:用来消除电源输入端的干扰信号,保证稳定的输入电压。

(2)整流电路:将交流输入电压转化为直流电压,常采用整流桥整流。

(3)激励电路:用来控制开关管的导通和关闭,以实现变压器的能量转移。

(4)变压器:用来完成电能的变换和隔离,将输入端的电能转换为所需的输出电能。

(5)输出电路:包括输出电容和输出滤波电路,用来滤除开关产生的高频脉冲,以得到稳定的输出电压。

3.设计要点在进行反激式开关电源设计时(1)确定输出电压和电流需求:根据实际应用需求,确定所需的输出电压和电流,并根据负载特性选择合适的功率等级。

(2)选择合适的开关管和变压器:根据负载需求和电路参数,选择合适的开关管和变压器,以保证输出电压和效率的要求。

(3)控制开关频率和占空比:根据负载要求和电路特性,选择合适的开关频率和占空比,以保证输出电压的稳定性和整体效果。

(4)进行热设计和保护措施:由于开关管会产生较高的温度,需要进行合理的热设计,同时添加保护电路,如过流保护、过温保护等,以保证电路的安全性和可靠性。

(5)进行EMC设计和测试:由于开关电源会产生较大的电磁干扰,需要进行EMC设计和测试,以满足相关的国际标准要求。

总结:反激式开关电源是一种常用的电源设计方案,其设计方法包括确定输出需求、选择合适的器件、控制开关频率和占空比、进行热设计和保护措施,以及进行EMC设计和测试。

通过合理的设计和选择,可以实现高效率、小型化的电源方案,满足各种电子设备的需求。

多路输出单端反激式开关电源设计

多路输出单端反激式开关电源设计

设计要求本文设计的开关电源将作为智能仪表的电源,最大功率为10 W。

为了减少PCB的数量和智能仪表的体积,要求电源尺寸尽量小并能将电源部分与仪表主控部分做在同一个PCB 上。

考虑10W的功率以及小体积的因素,电路选用单端反激电路。

单端反激电路的特点是:电路简单、体积小巧且成本低。

单端反激电路由输入滤波电路、脉宽调制电路、功率传递电路(由开关管和变压器组成)、输出整流滤波电路、误差检测电路(由芯片TL431及周围元件组成)及信号传递电路(由隔离光耦及电阻组成)等组成。

本电源设计成表面贴装的模块电源,其具体参数要求如下:输出最大功率:10W输入交流电压:85~265V输出直流电压/电流:+5V,500mA;+12V,150mA;+24V,100mA纹波电压:≤120mV单端反激式开关电源的控制原理所谓单端是指TOPSwitch-II系列器件只有一个脉冲调制信号功率输出端一漏极D。

反激式则指当功率MOSFET导通时,就将电能储存在高频变压器的初级绕组上,仅当MOSFET关断时,才向次级输送电能,由于开关频率高达100kHz,使得高频变压器能够快速存储、释放能量,经高频整流滤波后即可获得直流连续输出。

这也是反激式电路的基本工作原理。

而反馈回路通过控制TOPSwitch器件控制端的电流来调节占空比,以达到稳压的目的。

TOPSwitch-Ⅱ系列芯片选型及介绍TOPSwitch-Ⅱ系列芯片的漏极(D)与内部功率开关器件MOSFET相连,外部通过负载电感与主电源相连,在启动状态下通过内部开关式高压电源提供内部偏置电流,并设有电流检测。

控制极(C)用于占空比控制的误差放大器和反馈电流的输入引脚,与内部并联稳压器连接,提供正常工作时的内部偏置电流,同时也是提供旁路、自动重起和补偿功能的电容连接点。

源极(S)与高压功率回路的MOSFET的源极相连,兼做初级电路的公共点与参考点。

内部输出极MOSFET的占空比随控制引脚电流的增加而线性下降,控制电压的典型值为5.7 V,极限电压为9 V,控制端最大允许电流为100 mA。

(完整版)反激式开关电源的设计方法

(完整版)反激式开关电源的设计方法

1 设计步骤:1.1 产品规格书制作1.2 设计线路图、零件选用.1.3 PCB Layout.1.4 变压器、电感等计算.1.5 设计验证.2 设计流程介绍:2.1 产品规格书制作依据客户的要求,制作产品规格书。

做为设计开发、品质检验、生产测试等的依据。

2.2 设计线路图、零件选用。

2.3 PCB Layout.外形尺寸、接口定义,散热方式等。

2.4 变压器、电感等计算.变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,2.4.1 决定变压器的材质及尺寸:依据变压器计算公式Gauss x NpxAeLpxIp B 100(max ) ➢ B(max) = 铁心饱合的磁通密度(Gauss)➢ Lp = 一次侧电感值(uH)➢ Ip = 一次侧峰值电流(A)➢ Np = 一次侧(主线圈)圈数➢ Ae = 铁心截面积(cm 2)➢B(max) 依铁心的材质及本身的温度来决定,以TDK FerriteCore PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。

2.4.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。

2.4.3 决定变压器线径及线数:变压器的选择实际中一般根据经验,依据电源的体积、工作频率,散热条件,工作环境温度等选择。

当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。

反激式开关电源的设计计算

反激式开关电源的设计计算

反激式开关电源的设计计算首先,需要明确设计参数:1. 输入电压(Vin):反激式开关电源的输入电压一般为交流电网的标称电压,如220V或110V。

2. 输出电压(Vout):反激式开关电源的输出电压需要满足目标设备的需求,例如5V、12V等。

3. 输出功率(Pout):反激式开关电源的输出功率是根据目标设备的功率需求确定的,一般以瓦(W)为单位。

4. 开关频率(fsw):反激式开关电源的开关频率一般在10kHz到100kHz之间,根据具体需求和性能要求确定。

设计步骤如下:1.计算电流和电压波形:根据输出功率和输出电压,可以计算出输出电流:Iout = Pout / Vout。

同时,可以根据输入和输出的电压波形关系,使用变压器的变比关系计算输入电流波形。

2.选择开关元件:根据开关频率和输出功率,可以选择合适的功率场效应管(MOSFET)作为开关元件。

选择时需要考虑开关速度、导通和截止损耗等因素。

3.选择变压器:根据输入和输出电压的变比,可以选择合适的变压器。

变压器的选择需要考虑输入输出功率、开关频率、能量传输效率等因素。

4.计算电感和电容:通过计算电流波形和电压波形的变化率,可以确定所需的输入和输出电感。

同时,通过计算输出电压的纹波和电流的纹波,可以选择合适的输出电容。

5.设计控制电路:根据输入和输出电压、开关频率以及开关元件的特性,设计合适的控制电路。

常见的控制方案有可变频率、可变占空比等,需要根据具体需求确定。

6.完善保护电路:7.电路仿真和优化:通过电路仿真软件可以对设计的开关电源进行仿真,并对效果进行优化,如进一步降低纹波、提高效率等。

以上是基于反激式开关电源的设计计算的基本步骤,实际设计中还需要考虑其他因素,如电源的稳定性、EMI(电磁干扰)等。

设计计算的具体细节和参数计算可以根据具体的需求和设备要求进行调整和优化。

反激式开关电源电路设计

反激式开关电源电路设计

反激式开关电源电路设计首先,反激式开关电源的基本原理是利用开关管来开闭电源电流,从而实现电流的快速切换。

这样可以有效地提高电源的转换效率。

设计反激式开关电源的步骤如下:1.确定输出电压和电流要求:首先需要确定电源的输出电压和电流要求,这对于选取合适的电源电路和元器件非常重要。

2.确定输入电压范围:根据使用环境和应用需求,确定电源的输入电压范围。

通常情况下,反激式开关电源的输入电压范围为100V至240V。

3.选择开关管和变压器:选择合适的开关管和变压器是设计过程中的关键步骤。

开关管需要具有高效率和可靠性,变压器需要满足电源的输入输出要求。

4.设计开关电路:设计开关电路是反激式开关电源设计的核心部分。

开关电路的设计需要根据输入输出电压和电流的要求,选择合适的电感和电容元件,以及适当的反馈电路。

5.设计保护电路:设计反激式开关电源的过程中,需要考虑各种保护电路,以确保电源的安全和稳定性。

常见的保护电路包括过温保护、过压保护、过流保护等。

6.PCB布局和元件选型:进行PCB布局和元件选型是设计的最后一步。

在PCB布局中,需要考虑电源电路的稳定性和EMC(电磁兼容)的问题。

在元件选型过程中,需要考虑电压和电流的要求,以及元件的可靠性和成本。

设计完成后,需要对反激式开关电源进行测试和验证。

测试过程可以包括输入输出电压波形、效率和稳定性等方面的测试。

总之,反激式开关电源的设计需要考虑多个因素,包括输出电压和电流要求、输入电压范围、开关管和变压器的选择、开关电路和保护电路的设计、PCB布局和元件选型等。

只有综合考虑这些因素,并进行有效的测试和验证,才能设计出稳定、高效的反激式开关电源。

反激式开关电源设计详解

反激式开关电源设计详解

反激式开关电源设计详解反激式开关电源是一种常见的电力变换器,被广泛应用于电子设备和电力系统中。

它能够将输入电压转换为稳定的输出电压,并具有体积小、效率高、轻负载性能好等优点。

本文将详细介绍反激式开关电源的工作原理、基本结构和设计方法。

1.工作原理:整体工作原理如下:1.输入电压通过整流电路转换为直流电压;2.直流电压经过滤波电路去除纹波;3.控制电路根据反馈信号对开关元件进行驱动;4.开关元件的工作周期性地将直流电压斩波形成交流电压;5.交流电压经过变压器降压并通过输出滤波电路去除纹波,得到稳定的输出电压。

2.基本结构:开关元件:通常采用MOSFET或IGBT作为开关元件。

它们能够在很短的开关时间内实现高效的能量转换。

变压器:变压器用于将输入电压降到合适的电压级别。

绕线的匝数比决定了输入输出电压的比例。

滤波电路:滤波电路用于去除输出电压中的纹波和噪声。

一般采用电容器进行滤波。

控制电路:控制电路通过对开关元件的工作周期进行调节,控制输出电压的稳定性。

常见的控制方法有固定频率控制和可变频率控制。

保护电路:保护电路用于对反激式开关电源进行过载、过压和短路等故障保护,确保电源的安全可靠。

3.设计方法:选取开关元件时,应考虑其导通压降、开关速度和损耗等因素。

通常选择导通压降较小、开关速度较快且具有较低损耗的器件。

选取变压器时,应根据输入输出电压和功率需求确定变压器的参数,如匝数比、磁芯材料和绕组结构等。

控制电路的设计需要结合具体应用进行调整,以实现输出电压的稳定性和负载适应性。

稳压和滤波电路的设计通常基于反馈控制的原理,通过对输入电压和输出电压进行差分放大和反馈控制,实现稳定的输出电压和滤波效果。

4.总结:反激式开关电源是一种广泛应用的电力变换器,具有体积小、效率高、轻负载性能好等优点。

设计反激式开关电源需要考虑开关元件、变压器、控制电路和滤波电路等多个方面的因素。

通过合理选型和设计,可以实现稳定可靠的输出电压。

反激式开关电源设计

反激式开关电源设计

反激式开关电源设计反激式开关电源(Flyback Switching Power Supply)是一种常见的开关电源拓扑结构,广泛应用于各种电子设备中。

它具有体积小、效率高、成本低以及输出功率可调等优点,是现代电子产品中常见的电源设计方案之一反激式开关电源的基本工作原理如下:输入电压通过输入滤波电容进行滤波处理后,经过输入电阻和整流二极管进入变压器的一侧,经过一定的变换比转化为高压脉冲,在一段时间内使得磁场存储能量。

然后,纳秒级的开关管被打开,导通磁漏感能量在负载中释放,给负载提供电能。

在变压器中,输出输出电压通过输出二极管、滤波电容等元件经过滤波处理后,提供给负载。

同时,负载电流的反馈信息通过反馈电路控制控制器,实现对输出电压的稳定调节。

1.输入电压范围:反激式开关电源应能适应不同输入电压,以保证电源的稳定输出。

2.输出电压范围:根据具体应用需求确定输出电压范围,可通过反馈电路和调节元件进行调节。

3.输出功率:根据负载的需求确定输出功率大小,确保负载能够正常工作。

4.效率:反激式开关电源的效率较高,设计时应尽量选择低损耗的元件和合适的电路结构,以提高整个系统的效率。

5.稳定性:设计时需要考虑输出电压的稳定性,可通过反馈控制和滤波电路等手段实现。

6.保护功能:考虑到电源在使用过程中可能遇到的过载、过压过流等问题,设计中应加入相应的保护电路,以保护电源和负载安全。

在具体的反激式开关电源设计过程中,需要按照以下步骤进行:1.根据负载的需求确定输入和输出电压,并计算所需的输出功率。

2.选取适合的开关管和变压器,根据输入和输出电压比计算变压器的变换比。

3.根据变换比确定合适的工作频率和占空比。

该步骤可通过电路仿真软件进行验证。

4.设计反馈控制回路,以控制输出电压的稳定性。

可选择基于电压模式或者电流模式进行控制。

5.根据设计参数选择合适的滤波电容和输出二极管等元件,以保证输出电压质量。

6.添加必要的保护电路,如过载保护、过压保护等,以保护电源和负载安全。

反激式开关电源设计

反激式开关电源设计

Star
D
D
D
IC1 C5
1
S
2
Vcc
3
Fb
Ipk
D6 N2
L2
D7
R14
4
C7
R5
R6
R9
R11
IC2 R10
C13
3
1 IC3
2
R13
R12
第二章、变压器设计
单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、 传递能量等工作。下面对工作于连续模式和断续模式的单端反激变换器的变压 器设计进行总结。
反激式(回扫式)开关电源设计
第一章、 电路结构 第二章、 变压器设计 第三章、 关键元件选择 第四章、 传导和辐射噪音的抑制
第一章、电路结构
1、 单管反激电路基本结构
DC IN
C1 R1
D1 T2
D1
N1
N2
R2
Q1
Drive
CS
R3
GND
DC OUT C2
GND
பைடு நூலகம்
2、 双管反激电路基本结构
DC IN T1 R1 N2
(Vo+Vf)×(T-Ton)
Np=
Vi×Ton
Vi×Ton Lp= (1-K)×I
为了避免磁芯饱和,我们应该在磁回路中加入一个适当的气隙,气隙一般大于 0.1mm,功率大,则气隙要大, 由以上可得磁芯参数:
Lg×Lp×10 8 Ae= 0.4π×Np 2
根据求得的 Ae 值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯, 这样磁芯的窗口有效使用系数较高,同时可以减小漏感。 有了磁芯需再较正原边的匝数。根据下式:

反激式开关电源辅助电路设计

反激式开关电源辅助电路设计

反激式开关电源辅助电路设计反激式开关电源是一种常见的电源设计,常用于电子设备中。

为了提高开关电源的性能和稳定性,通常需要设计一些辅助电路来实现。

本文将介绍反激式开关电源辅助电路的设计原理和实施方法。

我们来了解一下反激式开关电源的工作原理。

反激式开关电源由输入电源、变压器、整流电路、滤波电路、开关管和控制电路等组成。

其中,开关管通过开关动作来控制输入电源与变压器的耦合,从而实现输入电源能量的传递。

为了提高开关电源的效率和稳定性,需要设计一些辅助电路来辅助实现开关管的控制和滤波。

一、过压保护电路过压保护电路是反激式开关电源中重要的辅助电路之一。

其作用是在输出电压超过设定值时,通过控制开关管的导通和断开来保护负载和开关管。

过压保护电路通常由比较器、参考电压源和控制电路等组成。

当输出电压超过设定值时,比较器会检测到这一变化,并通过控制电路来控制开关管的动作,从而实现过压保护的功能。

二、过流保护电路过流保护电路也是反激式开关电源中常用的辅助电路之一。

其作用是在输出电流超过设定值时,通过控制开关管的导通和断开来保护负载和开关管。

过流保护电路通常由电流传感器、比较器和控制电路等组成。

当输出电流超过设定值时,电流传感器会检测到这一变化,并通过控制电路来控制开关管的动作,从而实现过流保护的功能。

三、温度保护电路温度保护电路是为了防止开关电源因过热而损坏而设计的辅助电路。

温度保护电路通常由温度传感器、比较器和控制电路等组成。

当温度传感器检测到开关电源的温度超过设定值时,比较器会发出信号,并通过控制电路来控制开关管的动作,从而实现温度保护的功能。

四、软起动电路软起动电路是为了减小开关电源启动时的冲击电流而设计的辅助电路。

软起动电路通常由电容器、电阻器和继电器等组成。

在开关电源启动时,软起动电路会通过控制继电器的动作来实现对电源的逐渐接入,从而减小冲击电流的影响。

以上是反激式开关电源辅助电路的一些常见设计。

在实际应用中,根据具体的需求和要求,可能还需要设计其他辅助电路来满足特定的功能和性能要求。

反激式开关电源的设计

反激式开关电源的设计

反激式开关电源的设计1.反激式开关电源的基本原理与拓扑结构2.反激式开关电源的设计步骤(1)选择合适的开关器件:根据设计需求确定开关器件的额定电流和电压。

应选择满足设计需求的高效开关器件,以确保电源的稳定性和可靠性。

(2)设计变压器:变压器是反激式开关电源中非常重要的组成部分,其设计影响着整个电源的性能。

变压器的设计应根据输入电压、输出电压及负载电流等确定变比。

(3)设计输入滤波器:输入滤波器主要用于去除输入电源的高频噪声和电磁干扰。

应根据设计要求选择合适的滤波器元件。

(4)选择输出滤波器:输出滤波器用于去除输出电压中的高频噪声和波动。

应选择满足设计要求的输出滤波器元件。

(5)选择控制器和反馈电路:反激式开关电源需要一个控制器来控制开关器件的开关频率和占空比。

应根据具体设计需求选择合适的控制器和反馈电路。

(6)设计保护电路:反激式开关电源应设计有相应的保护电路,以防止过流、过压和过温等情况的发生,保证电源的安全可靠运行。

(7)进行电路仿真和调试:应使用电子设计自动化工具进行电路仿真和调试,以验证电源设计的正确性和稳定性。

3.注意事项和常见问题(1)电源设计应考虑效率和性能的平衡,既要保持高效率,又要满足设计要求。

(2)电源设计时要合理布局电路板,降低电磁干扰和噪声。

(3)电源设计应注意选择合适的元件,在成本和性能之间进行权衡。

(4)在进行电路仿真和调试时,应注意保护器件和测试仪器的安全,避免电源短路和电流过大导致元器件损坏。

(5)设计完成后,应进行严格的测试和质量控制,确保电源的稳定性和可靠性。

总结:反激式开关电源是一种常见的开关电源拓扑结构,在设计中需要考虑元件选择、变压器设计、滤波器设计、控制器和反馈电路选择等多个因素。

合理的设计和调试能够确保电源的稳定性和可靠性,满足设备的电源需求。

反激式开关电源设计方法

反激式开关电源设计方法

反激式开关电源设计方法1.输入变压器设计:反激式开关电源的输入变压器主要用于实现能量的储存和传递。

其设计方法一般包括确定变压器的变比、计算绕线参数和计算磁芯截面积。

变比的选择要根据输入和输出电压的关系来确定,一般采用副边大于主边的变比。

绕线参数的计算要根据输入电压、输出功率和开关频率来确定。

磁芯截面积的计算要根据输入电压、输出功率和变频器频率来确定。

2.控制电路设计:反激式开关电源的控制电路主要用于实现开关管的开关和关断控制。

其设计方法一般包括选择适合的开关管和控制芯片、设计反馈电路和设计保护电路。

选择合适的开关管和控制芯片要考虑输入和输出电压、输出功率和开关频率等因素。

设计反馈电路主要是为了实现恒定的输出电压,一般采用反馈误差放大器和锁相环等。

设计保护电路主要是为了提高电源的可靠性和稳定性,一般包括过流保护、过压保护和过温保护等。

3.输出滤波电路设计:反激式开关电源的输出滤波电路主要用于滤除开关管开关过程中产生的高频脉冲噪声,保证输出电压的稳定性和纹波度。

其设计方法一般采用LC滤波器或电容滤波器。

LC滤波器具有较好的滤波效果,但体积较大,适用于功率较大的电源。

电容滤波器体积小,但滤波效果相对较差,适用于功率较小的电源。

4.保护电路设计:反激式开关电源的保护电路主要用于保护电源,防止出现过流、过压、过温等故障。

其设计方法一般包括选择合适的保护元件和设计合理的保护电路。

选择合适的保护元件要考虑其额定参数和动态特性,以满足电源的保护要求。

设计合理的保护电路要考虑多种故障情况,实现对电源的全方位保护。

以上是反激式开关电源设计的基本方法和步骤,设计师在实际设计过程中还需考虑电源的稳定性、可靠性、效率等因素,并根据具体的应用需求进行优化设计。

同时,还要注意电源设计中的安全性和可调度性,确保电源工作的稳定性和可靠性。

反激式开关电源的RCD吸收电路设计

反激式开关电源的RCD吸收电路设计

反激式开关电源的RCD吸收电路设计目的:即要限制主MOS管最大反峰,又要RCD吸收回路功耗最小假设:①开关电源的工作频率范围:20~200KHZ;② RCD中的二极管正向导通时间很短(一般为几十纳秒);③在调整RCD回路前主变压器和MOS管,输出线路的参数已经完全确定。

计算:一﹑首先对MOS管的VD进行分段:ⅰ,输入的直流电压VDC;ⅱ,次级反射初级的VOR;ⅲ,主MOS管VD余量VDS;ⅳ,RCD吸收有效电压VRCD1。

二﹑对于以上主MOS管VD的几部分进行计算:ⅰ,输入的直流电压VDC。

在计算VDC时,是依最高输入电压值为准。

如宽电压应选择AC265V,即DC375V。

VDC=VAC *√2ⅱ,次级反射初级的VOR。

VOR是依在次级输出最高电压,整流二极管压降最大时计算的,如输出电压为:5.0V±5%(依Vo =5.25V计算),二极管VF为0.525V(此值是在1N5822的资料中查找额定电流下VF值).VOR=(VF+Vo)*Np/Nsⅲ,主MOS管VD的余量VDS.VDS是依MOS管VD的10%为最小值.如KA05H0165R的VD=650应选择DC65V.VDS=VD* 10%ⅳ,RCD吸收VRCD.MOS管的VD减去ⅰ,ⅲ三项就剩下VRCD的最大值。

实际选取的VRCD应为最大值的90%(这里主要是考虑到开关电源各个元件的分散性,温度漂移和时间飘移等因素得影响)。

VRCD=(VD-VDC -VDS)*90%注意:① VRCD是计算出理论值,再通过实验进行调整,使得实际值与理论值相吻合.②VRCD必须大于VOR的1.3倍.(如果小于1.3倍,则主MOS管的VD值选择就太低了)③MOS管VD应当小于VDC的2倍.(如果大于2倍,则主MOS管的VD 值就过大了)④如果VRCD的实测值小于VOR的1.2倍,那么RCD吸收回路就影响电源效率。

⑤VRCD是由VRCD1和VOR组成的ⅴ,RC时间常数τ确定.τ是依开关电源工作频率而定的,一般选择10~20个开关电源周期。

多路输出反激式开关电源的设计与实现

多路输出反激式开关电源的设计与实现

多路输出反激式开关电源的设计与实现多路输出反激式开关电源的设计与实现一、引言开关电源是一种高效率、高可靠性、体积小、重量轻的电源设备,被广泛应用于电子产品中。

多路输出反激式开关电源是一种基于反激式开关电源拓扑结构,能够同时提供多个稳定电压输出的电源系统。

本文将针对这种电源系统进行设计与实现。

二、多路输出反激式开关电源原理多路输出反激式开关电源的基本原理是利用开关管进行高频开关,通过变压器传递能量,并通过整流和滤波电路获得稳定的输出电压。

其核心是控制开关管的导通时间,以实现不同输出电压的调节。

三、电路设计与元器件选择1. 输入电路设计:为了保护开关管和输入电源,应采用滤波电感和输入电容进行滤波处理,同时添加过流保护电路。

2. 变压器设计:根据输出电压和电流要求确定变压器的参数,选择合适的线性密度和电感,以获得理想的传输效果。

3. 输出电路设计:对于多路输出反激式开关电源,每个输出通道都要设计独立的整流和滤波电路,以确保稳定的输出电压。

4. 控制电路设计:采用反馈控制电路,通过对反馈信号的处理调节开关管的导通时间,实现多路输出电压的精确控制。

四、PCB板设计PCB板是电路实现的载体,其设计主要包括布局设计、走线设计和连接设计。

在多路输出反激式开关电源中,需要考虑分区布局,分别放置输入输出电路和控制电路,以最大限度地减小干扰。

同时,在走线设计中,应注意分离高频信号和低频信号,减少耦合。

五、电路调试与输出稳定性测试在完成电路设计与制作后,需要进行电路调试,并测试输出稳定性。

调试时可以通过示波器观察各个节点的波形,以确定是否存在异常。

并通过负载变化测试,验证输出电压是否能够保持稳定。

六、改进与优化在实际应用中,根据具体需求可以对多路输出反激式开关电源进行改进和优化。

常见的改进方法包括添加过压、欠压保护功能,提高电源的效率,降低输出纹波等。

七、结论多路输出反激式开关电源作为一种高效、可靠、稳定的电源系统,具有广泛应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第一章开关电源设计任务书 (1)1.1课程设计的目的 (1)1.2课程设计的要求 (1)1.2.1题目 (1)1.2.2设计装置的主要技术数据 (1)1.2.3课程设计主要内容 (2)1.2.4课程设计的要求 (2)1.3 课程设计报告的基本格式 (2)第二章总体方案的确定 (3)2.1 反激式开关电源的介绍 (3)2.2 UC3842开关电源简介 (4)2.2.1 UC3842内部工作原理简介 (4)2.2.2 UC3842的使用特点 (6)2.2.3 UC3842组成的反激式开关电源 (6)2.3 总体方案的确定 (7)第三章具体电路设计 (8)3.1 EMI滤波电路 (8)3.2 整流滤波电路的设计 (9)3.3 高频变压器的设计 (10)3.4 控制电路的选择 (17)3.5 反馈电路的设计 (18)3.5.1 电压反馈电路 (18)3.5.2 输出电流反馈 (18)3.6 保护电路的设计 (19)3.6.1 输出电压保护电路 (19)3.6.2 输入欠压过压保护 (20)3.7 输出整流滤波电路设计 (21)第四章个人心得体会 (22)附录1 重薄膜绝缘导线参数 (23)附录2 设计完整电路图......................................附大图致谢.. (24)参考文献 (24)第一章开关电源设计任务书1.1 课程设计的目的通过开关电源技术的课程设计达到以下几个目的:1、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。

2、培养学生综合分析问题、发现问题,特别是解决问题的能力。

3、培养学生运用知识的能力和工程设计的能力。

4、培养学生运用仿真工具的能力。

5、提高学生课程设计报告撰写水平。

1.2课程设计的要求1.2.1题目题目:反激式开关电源电路设计注意事项:①学生也可以选择规定题目方向外的其他开关电源电路设计。

②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。

首先要明确自己课程设计的设计内容。

1.2.2 设计装置(或电路)的主要技术数据主要技术数据1、交流输入电压AC220V2、直流输出为两端输出,一端输出直流电压5V,输出电流1A,另外一端输出电压15V,输出电流500mA。

3、要求反馈端接5V电压输出端。

4、输出纹波电压≤0.2V5、输入电压在95~270V变化时,输出电压误差≤0.03V1.2.3 课程设计主要内容1、开关电源主电路的设计和参数选择2、IGBT电流、电压额定的选择3、开关电源驱动电路的选择4、开关变压器设计5、画出完整的主电路原理图和控制电路原理图6、电路仿真分析和仿真结果。

1.2.4 课程设计的要求(1)在整个设计中要注意灵活运用所学电力电子技术知识和创造性的思维方式以及创新能力要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。

主电路具体电路元器件的选择应有计算和说明。

课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量相关文献的基础上,经过剖析、提炼,设计出所要求的电路(或装置)。

课程设计中要不断的提出问题,并给出这些问题的解决方法和机子的研究体会。

设计报告最后给出设计中所查阅的参考文献最少不能少于5篇,且文中有引用说明。

(2)在整个设计中要注意培养独立分析和独立解决问题的能力。

要求学生在教师的指导下,独立完成所设计的系统主电路、控制电路等详细的设计(包括计算和元器件类型)。

严禁抄袭,严禁两篇设计报告基本相同,甚至完全一样。

(3)课程设计用纸和格式统一课程设计用纸在学校印刷厂统一购买和装订,封面为学校统一要求。

要求图表规范。

文字通畅,逻辑性强,设计报告不少于20页。

1.3课程设计报告的基本格式目录内容:1.设计的基本要求(给出所要涉及的装置的主要技术数据和设计装置要达到的要求,包括性能指标,最好简述所设计装置的主要用途)2.总体方案的确定3.具体电路设计(包括主电路设计、控制电路设计、变压器设计等以及参数计算)4.电路仿真和结果5.附录(电路图、方针结果图等)6.参考文献第二章总体方案的确定2.1 反激式开关电源的介绍开关电源具有能耗小、效率高、稳压范围宽、体积小、重量轻等突出优点,在通讯设备、数控装置、仪表仪器、影音设备、家用电器等电子电路中得到了广泛应用。

开关电源的基本组成如图2-1所示,其中,DC/DC变换器用以进行功率变换,它是开关电源的核心部分;驱动器是开关信号的放大部分,对来自信号源的开关信号进行放大和整形,以适应开关管的驱动要求;信号源产生控制信号,该信号有它激或自激电路产生(本次课程设计要求它激)。

比较放大器对给定信号和输出反馈信号进行比较运算,控制开关信号的幅值,、频率、波形等,通过驱动器控制开关器件的占空比,以达到稳定输出电压值的目的。

除此之外,开关电源还有辅助电路,包括启动、过流过压保护、输入滤波、输出采样、功能指示等电路。

【1】电源结构、反激开关电源结构、半桥开关电源结构、全桥开关电源结构等。

这里重点介绍一下反激开关电源结构。

反激开关电源如图2-2所示,当功率开关管VT导通时,输入端的电能以磁能的形式储存在变压器的初级线圈N1中,由于同名端关系,次级侧二极管V1不导通,负载没有电流通过。

当功率开关晶体管VT断开时,变压器次级绕组以输出电压U0为负载供电,并对变压器进行消磁。

反激开关电源电路简单,输出电压U0即可高于输入电压U i又可低于输入电压U i,一般适用于在输出功率在200W以下的开关电源中。

2.2 UC3842式开关电源简介UC3842是美国Unitrode公司(该公司现已被TI公司收购)生产的一种高性能单端输出式电流控制型脉宽调制器芯片,可直接驱动双极型晶体管、MOSFEF 和IGBT 等功率型半导体器件,具有管脚数量少、外围电路简单、安装调试简便、性能优良等诸多优点,广泛应用于计算机、显示器等系统电路中作开关电源驱动器件。

2.2.1 UC3842 内部工作原理简介UC3842为双列8脚单端输出的它激式开关电源驱动集成电路,其内部电路包括振荡器、误差放大器、电流取样比较器、PWM锁存电路、5VC基准电压、欠压锁定电路、图腾柱输出电路、输出电路等。

图2-3 示出了UC3842 内部框图和引脚图,UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:(1) 5 V 基准电源:内部电源,经衰减得到2.5 V 作为误差比较器的比较基准。

该电源还可以提供外部5 V/50 mA 。

(2) 振荡器:产生方波振荡。

R T 接在④、 REF ⑧脚之间,C T 接④、 GND ⑤之间。

频率f =1.8/(C T R T ), 最大为500 kHz 。

(3) 误差放大器:由V FB 端输入的反馈电压和2.5 V 做比较,误差电压COMP 用于调节脉冲宽度。

COMP 端引出接外部RC 网络,以改变增益和频率特性。

(4) 输出电路:图腾柱输出结构,电路1 A ,驱动MOS 管及双极型晶体管。

(5) 电流取样比较器:③脚ISENSE 用于检测开关管电流,可以用电阻或电流互感器采样,当V ISENSE >1 V 时,关闭输出脉冲,使开关管关断。

这实际上是一个过流保护电路。

(6) 欠压锁定电路V VLO :开通阈值16 V ,关闭阈值10 V 。

具有滞回特性。

(7) PWM 锁存电路:保证每一个控制脉冲作用不超过一个脉冲周期,即所谓逐脉冲控制。

另外,V CC 与GND 之间的稳压管用于保护,防止器件损坏。

(8) 图腾柱输出电路(Totem Pole):由于此结构画出的电路图有点像印第安人的图腾柱,所以叫图腾柱式输出,也叫图腾式输出。

输出极采用一个上电阻接一个NPN 型晶体管的集电极,这个晶体管的发射极接下面管子的集电极同时输出;下晶体管的发射极接地。

两晶体管的基极分别接前级的控制。

就是上下两个输出晶体管,从直流角度看是串联,两晶体管联接处为输出端。

上晶体管导通下晶体管截止,输出高电平;下晶体管导通上晶体管截止,输出低电平;上下两晶体管均截止,则输出为高阻态。

2.2.2 UC3842的使用特点(1) 采用单端图腾柱式PWM 脉冲输出,输出驱动电流为±200 mA ,峰值可达±1 A 。

(2) 启动电压大于16 V ,启动电流仅1 mA 即可进入工作状态。

处于正常工作状态时,工作电压在10~34 V 之间,负载电流为15 mA 。

超出此限制,开关电源呈欠电压或过电压保护状态,无驱动脉冲输出。

(3) 内设5 V(50 mA)基准电压源,经2∶1分压后作为取样基准电压。

(4) 输出电流为200 mA ,峰值为1 A ,既可驱动双极型三极管也可驱动MOSFET 管。

若驱动双极型三极管,应加入开关管截止加速RC 电路,同时将内部振荡器的频率限制在40 kHz 以下。

若驱动MOSFET 管,振荡频率由外接RC 电路设定,见式(3-1),工作频率最高可达500 kHz 。

(5) 内设过流保护输入(③脚)和误差放大输入(①脚)两个PWM 控制端。

误差放大器输入构成主PWM 控制系统,可使负载变动在30%~100%时输出负载调整率在8 %以下,负载变动在70%~100%时负载调整率在3%以下。

(6) 过流检测输入端可对每个脉冲进行控制,直接控制每个周期的脉宽,使输出电压调整率达到0.01%/V 。

如果③脚电压大于1 V 或①脚电压小于1 V ,PWM 比较器输出高电平使锁存器复位,直到下一个脉冲到来时才重新置位。

利用①脚和③脚的电平关系,在外电路控制锁存器的开/闭,使锁存器每个周期只输出一次触发脉冲。

因此,电路的抗干扰性极强,开关管不会误触发,提高了可靠性。

(7) 内部振荡器的频率由④脚外接电阻与⑧脚外接电容设定。

集成电路内部基准电压通过④脚引入外同步。

④脚和⑧脚外接R T 、 C T 构成定时电路,C T 的充电与放电过程构成一个振荡周期,其振荡频率可由下式近似得出:T T T T C 8.155.011C R C R T f ===2.2.3 UC3842 组成的反激式开关电源反激式开关电源电路中的变压器起着储能元件的作用,可以看做是一对相互耦合的电感,其工作过程是:开关开通后,V处于断态,初级绕组的电流线性增长,电感储能增加;开关关断后,初级绕组的电流被切断,变压器中的磁场能量通过次级绕组和V向输出端释放。

【1】图2-4是反激式开关电源原理图,其中的控制芯片采用UC3842。

电源的输出电压等级有三种:+5 V、+12 V、-12 V。

该电路的变换器是一个降压型开关电路。

由单管驱动隔离变压器TC主绕组N1电流,C2、R3可以提供变压器原边泄放通路。

相关文档
最新文档