第一章 第一节 集合
高中数学必修一第一章第一节:集合的表示课件
首页
上一页
下一页
末页
结束
用列举法表示集合
[例1] (1)设集合A={1,2,3},B={1,3,9},若x∈A且x∉B,
则x=( )
A.1
B.2
C.3
D.9
首页
上一页
下一页
末页
结束
(2)用列举法表示下列集合: ①不大于 10 的非负偶数组成的集合; ②方程 x2=x 的所有实数解组成的集合; ③直线 y=2x+1 与 y 轴的交点组成的集合; ④方程组xx-+yy==-1,1 的解.
首页
上一页
下一页
末页
结束
描述法
[导入新知]
描述法 (1)定义:用集合所含元素的共同特征表示集合的方法. (2) 具 体 方 法 : 在 花 括 号 内 先 写 上 表 示 这 个 集 合 元 素 的 __一__般__符__号__及_取__值__(或__变__化__)_范__围__,再画一条竖线,在竖线后写 出这个集合中元素所具有的_共__同__特__征___.
首页
上一页
下一页
末页
结束
[类题通法]
用列举法表示集合的步骤 (1)求出集合的元素. (2)把元素一一列举出来,且相同元素只能列举一次. (3)用花括号括起来.
首页
上一页
下一页
末页
结束
[活学活用]
已 知 集 合 A = { - 2 , - 1,0,1,2,3} , 对 任 意 a∈A , 有 |a|∈B,且B中只有4个元素,求集合B.
首页
上一页
下一页
末页
结束
(2)设集合 B=x∈N2+6 x∈N
.
①试判断元素 1,2 与集合 B 的关系;
集合的基本概念元素集合之间的关系
集合的基本概念元素集合之间的关系第⼀章集合第⼀节集合的概念⼀、要点透析(⼀)集合的有关概念:由⼀些数、⼀些点、⼀些图形、⼀些整式、⼀些物体、⼀些⼈组成的。
我们说,每⼀组对象的全体形成⼀个集合,或者说,某些指定的对象集在⼀起就成为⼀个集合,也简称集。
集合中的每个对象叫做这个集合的元素。
1、集合的概念(1)元素:某些特定的研究对象叫做元素(2)集合:⼀些元素集在⼀起就形成⼀个集合(简称集)2、元素对于集合的⾪属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a A∈(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作a A3、集合中元素的特性(1)确定性:按照明确的判断标准给定⼀个元素或者在这个集合⾥,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)⽆序性:集合中的元素没有⼀定的顺序(通常⽤正常的顺序写出)例1.下列各组对象能确定⼀个集合吗?(1)所有很⼤的实数()(2)好⼼的⼈()(3)1,2,2,3,4,5.()4、(1)集合通常⽤⼤写的拉丁字母表⽰,如A 、B 、C 、P 、Q ……元素通常⽤⼩写的拉丁字母表⽰,如a 、b 、c 、p 、q ……(2)“∈”的开⼝⽅向,不能把a A ∈颠倒过来写5、常⽤数集及记法(1)⾮负整数集(⾃然数集):全体⾮负整数的集合,记作N ,{}0,1,2,N = (2)正整数集:⾮负整数集内排除0的集,记作*N 或N +,{}*1,2,3,N = (3)整数集:全体整数的集合,记作Z ,{}012Z =±± ,,,(4)有理数集:全体有理数的集合,记作Q ,{}Q =整数与分数(5)实数集:全体实数的集合,记作R ,{}R =数轴上所有点所对应的数(6)空集:不含任何元素的集合,记作?注:(1)⾃然数集与⾮负整数集是相同的,也就是说,⾃然数集包括数0(2)⾮负整数集内排除0的集,记作*N 或N +,Q 、Z 、R 等其它数集内排除0的集,也是这样表⽰,例如,整数集内排除0的集,表⽰成*Z例2.⽤适当的符号(∈?,)填空:(1)3_____N;(2)0_____{Φ};(3)32____Z,0.5Q Q ,;2(⼆)集合的表⽰⽅法1、列举法:把集合中的元素⼀⼀列举出来,写在⼤括号内表⽰集合例如,由⽅程210x -=的所有解组成的集合,可以表⽰为{1,1}-注:(1)有些集合亦可如下表⽰:从51到100的所有整数组成的集合:{51,52,53,,100} ;所有正奇数组成的集合:{1,3,5,7,}(2)a 与{}a 不同:a 表⽰⼀个元素,{}a 表⽰⼀个集合,该集合只有⼀个元素例3、设a,b 是⾮零实数,那么ba +可能取的值组成集合的元素是:练习、由实数x,-x,|x |,332,x x -所组成的集合,最多含()(A )2个元素(B )3个元素(C )4个元素(D )5个元素2、描述法:⽤确定的条件表⽰某些对象是否属于这个集合,并把这个条件写在⼤括号内表⽰集合的⽅法格式:{|()}x A P x ∈含义:在集合A 中满⾜条件()P x 的x 的集合例如,不等式32x ->的解集可以表⽰为:{|32}x R x ∈->或{|32}x x ->所有直⾓三⾓形的集合可以表⽰为:{|}x x 是直⾓三⾓形例4、已知集合{}R a x ax x A ∈=+-=,023|2;(1)若A 是空集,求a 的取值范围;(2)若A 中只有⼀个元素,求a 的值,并把这个元素写出来;(3)若A 中⾄多有⼀个元素,求a 的取值范围3、⽂⽒图:⽤⼀条封闭的曲线的内部来表⽰⼀个集合的⽅法4、何时⽤列举法?何时⽤描述法?(1)有些集合的公共属性不明显,难以概括,不便⽤描述法表⽰,只能⽤列举法如:集合2322{,32,5,}x x y x x y +-+(2)有些集合的元素不能⽆遗漏地⼀⼀列举出来,或者不便于、不需要⼀⼀列举出来,常⽤描述法如:集合2{(,)|1}x y y x =+;集合{1000}以内的质数思考:集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同⼀个集合吗?(三)有限集与⽆限集有限集:含有有限个元素的集合⽆限集:含有⽆限个元素的集合空集:不含任何元素的集合,记作?,如:2{|10}x R x ∈+=⼆、题型解析(⼀)集合的基本概念1以下元素的全体不能够构成集合的是()A.中国古代四⼤发明B.地球上的⼩河流C.⽅程210x -=的实数解D.周长为10cm 的三⾓形2⽅程组23211x y x y -=??+=?的解集是()A.{5,1}B.{1,5}C.{(5,1)}D.{(1,5)}3给出下列关系:①12R ∈;Q ;③3N +∈;④0Z ∈,其中正确的个数是()A.1B.2C.3D.44下列各组中的两个集合M 和N ,表⽰同⼀集合的是()A.{}M π=,{3.14159}N =B.{2,3}M =,{(2,3)}N =C.{|11,}M x x x N =-<≤∈,{1}N =D.{}M π=,{,1,|N π=5已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是6⽤适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17A ;5-A ;17B 7已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满⾜的条件为(⼆)集合的表⽰⽅法1⽤列举法表⽰下列集合①{|15}x N x ∈是的约数②{(,)|{1,2},{1,2}}x y x y ∈∈③2(,)24x y x y x y ??+=-=?????④{|(1),}nx x n N =-∈⑤{(,)|3216,,}x y x y x N y N +=∈∈⑥{(,)|,4}x y x y 分别是的正整数约数2⽤描述法表⽰下列集合①{1,4,7,10,13}②{2,4,6,8,10}-----③{1,5,25,125,625}④12340,,,,,251017?±±±±(三)集合的分类1关于x 的⽅程0ax b +=,当a ,b 满⾜条件_____时,解集是有限集;当a ,b 满⾜条件_____时,解集是⽆限集2下列四个集合中,是空集的是()A.}33|{=+x x B.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x x D.},01|{2R x x x x ∈=+-三、课下训练1、有下列说法:(1)0与{0}表⽰同⼀个集合;(2)由1,2,3组成的集合可表⽰为{1,2,3}或{3,2,1};(3)⽅程2(1)(2)0x x --=的所有解的集合可表⽰为{1,1,2};(4)集合{|45}x x <<是有限集,其中正确的说法是()A.只有(1)和(4)B.只有(2)和(3)C.只有(2)D.以上四种说法都不对2、试选择适当的⽅法表⽰下列集合:(1)⼆次函数223y x x =-+的函数值组成的集合;(2)函数232y x =-的⾃变量的值组成的集合3、已知集合4{|}3A x N Z x =∈∈-,试⽤列举法表⽰集合4、给出下列集合:①{(,)|1,1,2,3}x y x y x y ≠≠≠≠-;②12(,)13x x x y y y ??≠≠≠≠-??????且③12(,)13x x x y y y ??≠≠≠≠-??????或;④{}2222(,)[(1)(1)][(2)(3)]0x y x y x y -+-?-++≠其中不能表⽰“在直⾓坐标系xOy 平⾯内,除去点(1,1),(2,3)-之外的所有点的集合”的序号有5、已知集合2{|12x a A a x +==-有唯⼀实施解},试⽤列举法表⽰集合A。
高考数学总复习 第一章 第一节集合的概念与运算课件 理
第十七页,共35页。
考点(kǎo 集合(jíhé)的基本关系及空集的妙用 diǎn)三
【例3】 设集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m -1},若B⊆A,求实数(shìshù)m的取值范围.
思路点拨:考查集合间的包含、相等关系,关键搞清A,B两 集合谁是谁的子集.若B⊆A,说明B是A的子集,即集合B中元素 都在集合A中,注意B是∅的情况;同样若A⊆B,说明A是B的子集, 此时注意B是不是∅;若A=B,说明两集合元素完全相同.
A.A=B B.B=C C.C=E D.B=E
思路点拨:要注意分辨各集合的代表元素是什么,如果性质 相同,但代表元素不同,则它们所表示的集合也是不一样的.因此 对于集合问题(wèntí),要首先确定它属于哪类集合(数集、点集或某 类图形).
第十五页,共35页。
解析:集合 A 是用列举法表示,它只含有一个元 素,即函数 y=x2+2,集合 B,C,E 中的元素都是数, 即这三个集合都是数集,集合 B 表示的是函数 y=x2 +2 的值域2,+∞,集合 C 表示的是函数 y=x2+2 的 定 义 域 R, 集 合 E 是不 等 式 x - 2≥0 的 解集 2,+∞,集合 D 的元素则是平面上的点,此集合是 函数 y=x2+2 的图象上所有点所组成的集合.故只有 B=E.故选 D.
第七页,共35页。
2.并集. (1)定义: 由所有属于集合A或集合B的元素组成的集合,称 为(chēnɡ w集éi)合__(_j_íh_é_)_A_与__集__合__(_j_íh的é)并B集,记作___A__∪__B_____(读作 “A并B”).即 A∪B={ x|x∈A,或x∈B}. (2)性质:
高一数学《集合》完整版课件
(1)集合的定义:集合是由一些确定的对象组成的整体。
(2)集合的表示方法:列举法、描述法、图示法。
(3)集合的性质:无序性、互异性、确定性。
(4)集合间的关系:子集、超集、相等、不相交。
(5)集合的运算:并集、交集、补集。
3.例题讲解:
(1)判断以下说法是否正确:①空集是任何集合的子集;②任何集合都是自身的子集。
2.集合间的关系和运算。
3.例题解答步骤。
七、作业设计
1.作业题目:
(1)用列举法和描述法表示集合:{x|x是正整数}。
(2)判断以下集合间的关系:A={x|x是3的倍数},B={x|x是6的倍数}。
(3)求集合A={1, 2, 3, 4, 5}和集合B={4, 5, 6, 7, 8}的并集、交集和补集。
高一数学《集合》完整版课件
一、教学内容
本节课选自高一数学教材第一章《集合与函数的概念》第一节“集合的概念及其表示”,内容包括集合的定义、集合的表示方法、集合的性质、集合间的基本关系和运算。
二、教学目标
1.理解集合的概念,掌握集合的表示方法,能够正确书写集合。
2.掌握集合的性质,理解集合间的基本关系和运算,能够解决相关问=∅。
-集合的运算:
-并集:集合A和集合B中所有元素组成的集合,记作A∪B。
-交集:集合A和集合B共有的元素组成的集合,记作A∩B。
-补集:在全集U中,不属于集合A的元素组成的集合,记作A'。
在教学过程中,需重点关注以下几点:
-解释集合运算的实际意义,如并集表示两个集合中所有元素的汇总,交集表示两个集合共有的部分。
2.鼓励学生主动提问,及时解答疑惑,促进师生互动。
四、情景导入
集合的基本概念元素集合之间的关系
第一章集合第一节集合的概念一、要点透析(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。
我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。
集合中的每个对象叫做这个集合的元素。
1、集合的概念(1)元素:某些特定的研究对象叫做元素(2)集合:一些元素集在一起就形成一个集合(简称集)2、元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a A∈(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作a A∉3、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)例1.下列各组对象能确定一个集合吗?(1)所有很大的实数()(2)好心的人()(3)1,2,2,3,4,5.()4、(1)集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……(2)“∈”的开口方向,不能把a A ∈颠倒过来写5、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合,记作N ,{}0,1,2,N = (2)正整数集:非负整数集内排除0的集,记作*N 或N +,{}*1,2,3,N = (3)整数集:全体整数的集合,记作Z ,{}012Z =±± ,,,(4)有理数集:全体有理数的集合,记作Q ,{}Q =整数与分数(5)实数集:全体实数的集合,记作R ,{}R =数轴上所有点所对应的数(6)空集:不含任何元素的集合,记作∅注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集,记作*N 或N +,Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成*Z例2.用适当的符号(∈∉,)填空:(1)3_____N;(2)0_____{Φ};(3)32____Z,0.5Q Q ,;2(二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程210x -=的所有解组成的集合,可以表示为{1,1}-注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,,100} ;所有正奇数组成的集合:{1,3,5,7,}(2)a 与{}a 不同:a 表示一个元素,{}a 表示一个集合,该集合只有一个元素例3、设a,b 是非零实数,那么ba +可能取的值组成集合的元素是:练习、由实数x,-x,|x |,332,x x -所组成的集合,最多含()(A )2个元素(B )3个元素(C )4个元素(D )5个元素2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{|()}x A P x ∈含义:在集合A 中满足条件()P x 的x 的集合例如,不等式32x ->的解集可以表示为:{|32}x R x ∈->或{|32}x x ->所有直角三角形的集合可以表示为:{|}x x 是直角三角形例4、已知集合{}R a x ax x A ∈=+-=,023|2;(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来;(3)若A 中至多有一个元素,求a 的取值范围3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法4、何时用列举法?何时用描述法?(1)有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合2322{,32,5,}x x y x x y +-+(2)有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合2{(,)|1}x y y x =+;集合{1000}以内的质数思考:集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?(三)有限集与无限集有限集:含有有限个元素的集合无限集:含有无限个元素的集合空集:不含任何元素的集合,记作∅,如:2{|10}x R x ∈+=二、题型解析(一)集合的基本概念1以下元素的全体不能够构成集合的是()A.中国古代四大发明B.地球上的小河流C.方程210x -=的实数解D.周长为10cm 的三角形2方程组23211x y x y -=⎧⎨+=⎩的解集是()A.{5,1}B.{1,5}C.{(5,1)}D.{(1,5)}3给出下列关系:①12R ∈;Q ;③3N +∈;④0Z ∈,其中正确的个数是()A.1B.2C.3D.44下列各组中的两个集合M 和N ,表示同一集合的是()A.{}M π=,{3.14159}N =B.{2,3}M =,{(2,3)}N =C.{|11,}M x x x N =-<≤∈,{1}N =D.{}M π=,{,1,|N π=5已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是6用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17A ;5-A ;17B 7已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满足的条件为(二)集合的表示方法1用列举法表示下列集合①{|15}x N x ∈是的约数②{(,)|{1,2},{1,2}}x y x y ∈∈③2(,)24x y x y x y ⎧⎫+=⎧⎪⎪⎨⎨⎬-=⎩⎪⎪⎩⎭④{|(1),}nx x n N =-∈⑤{(,)|3216,,}x y x y x N y N +=∈∈⑥{(,)|,4}x y x y 分别是的正整数约数2用描述法表示下列集合①{1,4,7,10,13}②{2,4,6,8,10}-----③{1,5,25,125,625}④12340,,,,,251017⎧⎫±±±±⎨⎬⎩⎭(三)集合的分类1关于x 的方程0ax b +=,当a ,b 满足条件_____时,解集是有限集;当a ,b 满足条件_____时,解集是无限集2下列四个集合中,是空集的是()A.}33|{=+x x B.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x x D.},01|{2R x x x x ∈=+-三、课下训练1、有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};(4)集合{|45}x x <<是有限集,其中正确的说法是()A.只有(1)和(4)B.只有(2)和(3)C.只有(2)D.以上四种说法都不对2、试选择适当的方法表示下列集合:(1)二次函数223y x x =-+的函数值组成的集合;(2)函数232y x =-的自变量的值组成的集合3、已知集合4{|}3A x N Z x =∈∈-,试用列举法表示集合4、给出下列集合:①{(,)|1,1,2,3}x y x y x y ≠≠≠≠-;②12(,)13x x x y y y ⎧⎫≠≠⎧⎧⎪⎪⎨⎨⎨⎬≠≠-⎩⎩⎪⎪⎩⎭且③12(,)13x x x y y y ⎧⎫≠≠⎧⎧⎪⎪⎨⎨⎨⎬≠≠-⎩⎩⎪⎪⎩⎭或;④{}2222(,)[(1)(1)][(2)(3)]0x y x y x y -+-⋅-++≠其中不能表示“在直角坐标系xOy 平面内,除去点(1,1),(2,3)-之外的所有点的集合”的序号有5、已知集合2{|12x a A a x +==-有唯一实施解},试用列举法表示集合A。
数学一集合 第一章第一节
(1)所有较小的实数; (2)好心的人;
(3)小于5的自然数.
【解析】
.(1)、(2)中的对象是不确定的,不可以组成集合,(3)中的
对象是确定的,指0,1,2,3,4,可以组成集合.
例2:A是由数-1、1、0、10作为元素构成的集合,B是江苏省的地级市所在的城 市构成的集合,用符号“”或“”填空。 (1)1 A,5 A,-2 A,6 A (2)南京 B,烟台 B,桂林 B,扬州 B
【探究2】下列各组对象哪些是有限的?哪些是无限的?哪些什么也没有? (1)中国的省会所在的城市; (2)三角形; (3)小于-8的自然数.
【解析】 第(1)组对象是有限的,第(2)组对象是无限的,第(3)组不含任 何对象。
2.知识链接 (1)集合:有某些确定的对象组成的整体,用大写英文字母表示; (2)集合与元素:若a是A的元素,记着a∈A;若a不是A的元素,记着a A; (3)有限集、无限集与空集:含有有限个元素的集合叫有限集;含有无限个元 素的集合叫无限集;不含任何元素的集合叫空集,记作
2
【解析】 (1)略 (2)① 7,有限集; ②1,3,5,有限集; ③C:没有元素,空集;D:-1,有限集; E:-1, 3 ,有限集;F:-1, 3 ,有限集;
(3)用符号“ ”或“ ”填空。
① N,0 N,99 N, 121 N.
1 3
4 11 ②-7 Z, Z, 3 Q, Q,3 2 5 R 5 7
2
④所有的梯形构成的集合; ⑤小于-2的所有自然数构成的集合。
【解析】 ①是有限集,③,④是无限集,②,⑤是空集。
(3)指出下列集合中含有的元素
①你本学期学习的课程构成的集合; ②中国四大名著构成的集合; ③中国古代四大发明构成的集合。
第一章 第一节 集合
5.理解两个集合的并集与交集的含义,会求两 .理解两个集合的并集与交集的含义, 个简单集合的并集与交集; 个简单集合的并集与交集; 6.理解在给定集合中一个子集的补集的含义, .理解在给定集合中一个子集的补集的含义, 会求给定子集的补集; 会求给定子集的补集; 7.能使用韦恩图表达集合的关系和运算. .能使用韦恩图表达集合的关系和运算.
2.设集合A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7}, .设集合 = , + = , = , + = , 则满足C⊆ ∩ 的集合 的集合C的个数是 则满足 ⊆(A∩B)的集合 的个数是 A.0 . C.2 . B.1 . D.3 .
x=1, = , ⇒ y=2, = ,
b 4.若 a,b∈R,集合 ,a+b,a}={0,a,b},求 b2011 . , ∈ ,集合{1, + , = , , 的值. -a2011 的值.
b 解:由{1,a+b,a}={0,a,b}可知 a≠0,则只能 a , + , = , 可知 ≠ , 则有以下对应关系: +b=0.则有以下对应关系: = 则有以下对应关系 a+b=0, + = , b =a, , a b=1 = 由①得 a+b=0, + = , b=a, = , ① 或 b a=1.
4.集合的表示法: 列举法 、 描述法 、韦恩图 . .集合的表示法:
二、集合间的基本关系 表示 关系 定义 记法 A=B =
集合A与集合 与集合B中的所有元素都相同 集合 相等 集合 与集合 中的所有元素都相同
间的 子集 A中任意一元素均为 中的元素 中任意一元素均为B中的元素 中任意一元素均为 A⊆B 或 B⊇A ⊆ ⊇ 基本 中任意一元素均为B中的元素 真子 A中任意一元素均为 中的元素,且 中任意一元素均为 中的元素, A B或B A 关系 中至少有一个元素A中没有 集 B中至少有一个元素 中没有 中至少有一个元素 空集是任何集合的子集 空集 空集是任何 非空集合 的真子集 ∅⊆B ∅⊆ ∅B (B≠∅) ≠
集合与常用逻辑用语--2023高考真题分类汇编完整版
集合与常用逻辑用语--高考真题汇编第一章第一节集合1.(2023全国甲卷理科1)设集合{}31,A x x k k ==+∈Z ,{}32,B x x k k ==+∈Z ,U 为整数集,则()U A B = ð()A.{}3,x x k k =∈ZB.{}31,x x k k =-∈ZC.{}32,x x k k =-∈Z D.∅【分析】根据整数集的分类,以及补集的运算即可解出.【解析】因为整数集{}{}{}3,3+1,3+2,x x k k x x k k x x k k ==∈=∈=∈Z Z Z Z ,=U Z ,所以(){}3,U A B x x k k ==∈Z ð.故选A .2.(2023全国甲卷文科1)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}2,5N =,则U N M = ð()A.{}2,3,5 B.{}1,3,4 C.{}1,2,4,5 D.{}2,3,4,5【分析】利用集合的交并补运算即可得解.【解析】因为全集{1,2,3,4,5}U =,集合{1,4}M =,所以{}2,3,5U M =ð,又{2,5}N =,所以{2,3,5}U N M = ð.故选A.3.(2023全国乙卷理科2)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x =()A.()U M N ð B.U N Mð C.()U M N ð D.U M Nð【分析】由题意逐一考查所给的选项运算结果是否为{}2x x 即可.【解析】由题意可得{}2M N x x =< ,则(){}2U M N x x = ð,选项A 正确;{}1U M x x =ð,则{}1U N M x x =>- ð,选项B 错误;{}11M N x x =-<< ,则(){}11U M N x x x =- 或ð,选项C 错误;{}12U N x x x =-或ð,则{}12U M N x x x =< 或ð,选项D 错误;故选A.4.(2023全国乙卷文科2)设全集{}0,1,2,4,6,8U =,集合{}0,4,6M =,{}0,1,6N =,则U M N = ð()A.{}0,2,4,6,8 B.{}0,1,4,6,8 C.{}1,2,4,6,8 D.U【分析】由题意可得U N ð的值,然后计算U M N ð即可.【解析】由题意可得{}2,4,8U N =ð,则{}0,2,4,6,8U M N = ð.故选A.5.(2023新高考I 卷1)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N =()A.{}2,1,0,1--B.{}0,1,2 C.{}2- D.{}2【解析】{}(][)260,23,N x x x =--≥=-∞-+∞ ,所以{}2M N =- ,故选C.6.(2023新高考II 卷2)2.设集合{}{}0,,1,2,22A a B a a =-=--,若A B ⊆,则a =()A.2 B.1 C.23D.1-【解析】因为A B ⊆,所以必有20a -=或220a -=,解得2a =或1a =.当2a =时,{}{}0,2,1,0,2A B =-=,不满足A B ⊆;当1a =时,{}{}0,1,1,1,0A B =-=-,符合题意.所以1a =.故选B.7.(2023北京卷1)已知集合{}20M x x =+,{}10N x x =-<,则M N = ()A.{}21x x -<B.{}21x x -<C.{}2x x - D.{}1x x <【分析】先化简集合,M N ,然后根据交集的定义计算.【解析】由题意,{20}{|2}M xx x x =+≥=≥-∣,{10}{|1}N x x x x =-<=<∣,根据交集的运算可知,{|21}M N x x =-≤< .故选A.8.(2023天津卷1)已知集合{}{}{}1,2,3,4,5,1,3,1,2,4U A B ===,则U B A = ð()A .{}1,3,5B .{}1,3C .{}1,2,4D .{}1,2,4,5【分析】对集合B 求补集,应用集合的并运算求结果;【解析】由{3,5}U B =ð,而{1,3}A =,所以{1,3,5}U B A = ð.故选A.第二节充分条件与必要条件、全称量词与存在量词1.(2023全国甲卷理科7)“22sin sin 1αβ+=”是“sin cos 0αβ+=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解.【解析】当2απ=,0β=时,有22sin sin 1αβ+=,但sin cos 0αβ+≠,即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,()2222sin sin cos sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件.故选B.2.(2023新高考I 卷7)已记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:n S n ⎧⎫⎨⎬⎩⎭为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解析】{}n a 为等差数列,设首项为1a 公差为d ,则()112n n n S na d -=+,111222n S n d d a d n a n -=+=+-,所以n S n ⎧⎫⎨⎬⎩⎭为等差数列,所以甲是乙的充分条件.n S n ⎧⎫⎨⎬⎩⎭为等差数列,即()()()1111111n n n n n n nS n S S S na S n n n n n n +++-+--==+++为常数,设为t ,即()11n nna S t n n +-=+,故()11n n S na tn n +=-+,()()()1112n n S n a t n n n -=---≥,两式相减得()1112n n n n n a S S na n a tn -+=-=---,12n n a a t +-=为常数,对1n =也成立,所以{}n a 为等差数列,所以甲是乙的必要条件.所以,甲是乙的充要条件,故选C.3.(2023北京卷8)若0xy ≠,则“0x y +=”是“2x yy x+=-”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】解法一:证明充分性可由0x y +=得到x y =-,代入x yy x+化简即可,证明必要性可由2x y y x +=-去分母,再用完全平方公式即可;解法二:由x y y x+通分后用配凑法得到完全平方公式,证明充分性可把0x y +=代入即可;证明必要性把2x yy x+=-代入,解方程即可.【解析】解法一:充分性:因为0xy ≠,且0x y +=,所以x y =-,所以112x y y y y x y y-+=+=--=--,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选C.解法二:充分性:因为0xy ≠,且0x y +=,所以()2222222222x y xy x y x y x y xy xy xy y x xy xy xy xy+-+++--+===-,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以()()22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy+-++++-+====-=-,所以()20x y xy+=,所以()20x y +=,所以0x y +=,所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选C.4.(2023天津卷2)“22a b =”是“222a b ab +=”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【解析】由22a b =,则a b =±,当0a b =-≠时222a b ab +=不成立,充分性不成立;由222a b ab +=,则2()0a b -=,即a b =,显然22a b =成立,必要性成立;所以22a b =是222a b ab +=的必要不充分条件.故选B.。
01-第一节 集合的概念高中数学必修一人教A版
【解析】
B.0 ∈
∗
1
C.
3
∈
D. π2 ∈
2是实数,故A错误;由 ∗ 是正整数集,可知0 ∉ ∗ ,故B错
1
误; 是有理数,故C正确;
3
π2 = π 是无理数,是整数集,故D错误.
4.(多选)[2024江苏连云港检测]已知集合 = {| = 3 − 1, ∈ },
故 − ∈ 0 ,故D正确.
6.由实数,− ,
2,
2
2
4
,− 3 组成的集合中最多含有___个元
素.
【解析】 由题可知 ≥ 0,所以− , 2 ,
2
, ,− ,故由实数,− ,
元素.
2,
2
2
2
2 ,− 3 分别可化为− 2 ,
,− 3 组成的集合中最多含有4个
D.{ = −1, = 3}
2 + = 5,
2 + = 5,
= 3,
【解析】 由ቊ
得ቊ
所以方程组ቊ
的解集
= −1,
− − 4 = 0,
−−4=0
是{ 3, −1 }.
9.(多选)集合{1,3,5,7,9}用描述法可表示为(
AB
)
A.{|是不大于9的非负奇数}
D.不等式3 − 10 < 0的所有正整数解
【解析】
A √ 某校2024年入学的全体高一年级新生确定,元素确定,能构成集合.
B × 精确度不一样得到的近似值不一样,元素不确定,不能构成集合.
C × 学习成绩较好是相对的,故这些学生不确定,不能构成集合.
D √
不等式3 − 10 < 0的所有正整数解为1,2,3,元素确定,能构成
中职数学-第一章-集合
第三节 集合的运算
思考与讨论
例4中集合A、B的交集{(1,2)}能否写成{1, 2}?有什么区别呢?
第三节 集合的运算
二、 并集
观察下面三个集合: M={-2,-1,0},N={1,2,3,4},P={-2,1,0,1,2,3,4}, 可以看出,集合P是集合M与集合N的所有元素组成的. 一般地,像上述那样,对于两个给定的集合A、B,由 集合A和集合B的所有元素组成的集合叫作集合A和集合B的并 集,记作
二、 集合的表示方法
用列举法表示集合时,一般不考虑元 素的排列顺序,如集合{1,2}与集合{2,1}表 示的是同一个集合.
如何表示一个集合呢?常用的表示方 法有列举法和描述法两种.
第一节 集合的概念
1. 列举法
把集合的元素一一列举出来,元素中间用逗号 隔开,写在花括号“{}”中用来表示集合,这种 方法即为列举法.例如,由小于5的自然数所组成的 集合可表示为
课堂练习
(1){1,3,5} (2){x|x2=9} ( 3 ) a {a}; (4){2,4,6}
{1,2,3,4,5}; {-3,3};
{4,6}.
第三节 集合的运算
过去我们只对数或式子进行算 术运算或代数运算,那么集合与集 合之间可以进行运算吗?
由两个已知的集合按照某种 指定的法则构造出一个新的集合即 为集合的运算.
第一节 集合的概念
课堂练习
1.用符号“∈
(1)-3 N; (2)3.14 Q;
(3)π Q; (4)0.5
Z;
(5)1.8 R; (6)-1
N*.
2.判断下列语句是否正确:
(1)由1,2,4,2构成一个集合,这个集合共有4个元素;
(2)方程x2+1=0的所有解组成的集合为空集.
北师大版高中数学必修一第一章第一节集合的含义课件 (共15张PPT)
§1 集合的含义与表示
第1课时 集合的含义
高中数学必修1
学习目标
1.通过实例理解集合的有关概念. 2.初步理解集合中元素的三个特性. 3.体会元素与集合的属于关系. 4.了解常用数集及其专用符号,学会用集合语言表示有关数学对象.
预习清单 集合与元素的概念
1.集合与元素的定义 一般地,我们把研究对象统称为 元素 ,把一些元素组成的总
提示:①“本班全体同学”构成一个集合,每一个同学都是集合中的 元素;
②“直线AB上所有点”构成一个集合,集合中的元素是:直线AB 上每一个点.
合作探究 探究点2 集合中元素的特征
【问题2】任意一组对象是否都能组成一个集合?集合中的元素有什 么特征?请思考下列问题:
1. 某单位所有的“帅哥”能否构成一个集合? 不能
A. ②③④⑥⑦⑧ C. ②③⑥⑦
B. ②③⑥⑦⑧ D. ②③⑤⑥⑦⑧
课堂练习
2.判断正误: (1){(1,2)}={(2,1)}
(2){(1,2),(2,1)}={(2,1),(1,2)}
课堂练习
解析:由元素的互异性可知:
归纳小结
1. 集合的概念
确定性
2. 集合中元素的性质 互异性
知识点
无序性
3. 元素与集合的关系 a∈A aA
4. 常用的数集(N,Z,Q,R)
思想方法: 分类讨论思想
体叫做 集合 (简称集).
2.集合与元素的字母表示
通常用 大写拉丁字母A,B,C,…
表示集合,
用 小写拉丁字母a,b,c,…
表示集合中的元
素.
预习清单 集合与元素的概念
3.元素与集合的关系
(1)属于:如果a是集合A的元素,就说a属于集合A,记
高考一轮数学复习课件:第一章 第一节 集合
师生互动
(A ) A.{x|-1<x<3} B.{x|-1<x<1} C.{x|1<x<2} D.{x|2<x<3}
考点三
解析
自主探究
3.已知全集 U={0,1,2,3,4ቤተ መጻሕፍቲ ባይዱ, 集合 A={1,2,3},B={0,2,4},
因 为 U = {0,1,2,3,4} , A = {1,2,3},所以∁UA={0,4},所 以(∁UA)∩B={0,4},故选 A.
解析
2. 已知集合 A={x|x2-3x
自主探究
+2=0,x∈R},B={x|0 <x<5,x∈ N},则满足
B={1,2,3,4}, A={x|x2-3x+2=0}={1,2}, 由 A⊆C⊆B, ∴C={1,2},{1,2,3},{1,2,4},{1,2,3,4}.
师生互动
条件 A⊆C⊆B 的集合 C 的个数为( D ) A.1 C.3 B. 2 D.4
考点三
集合的基本运算
1.集合的并、交、补运算
自主探究
并集:A∪B= {x|x∈A,或 x∈B} ; 交集:A∩B={x|x∈A,且 x∈B}; 补集:∁UA={x|x∈U,且 x∉A};U 为全集,∁UA 表示集合 A 相对于全
师生互动
集 U 的补集. 2.集合的运算性质 (1)A∪B=A⇔B⊆A,A∩B=A⇔A⊆B; (2)A∩A=A,A∩∅=∅; (3)A∪A=A,A∪∅=A; (4)A∩(∁UA)= ∅ ,A∪(∁UA)=
3 性可知不满足题意;当 m=- 时,m+ 2 2
2
师生互动
1 1 1 1 ∴B=2,2,2,3,3,2,3,3 .
考点一
自主探究
开学第一讲:第一章 第一节 集合的概念
a A a A
注:不含任何元素的集合为空集,记作
eg:集合B中的元素为1,3,7. 则1_B,2_B,8_B
3.集合元素的特征: 1)确定性 2)互异性 3)无序性
eg: |x|,x构成集合,含有几个元素?
4.常用符号:
实数集有理数集 整数集 正整数集 自然数集 无理数集 分数集 0 负整数集 随机考察几个
问:第一象限所有的点构成的集合?
问:直线x+y+3=0上所有的点构成的集合? 问:方程x+y+3=0的解集?
• 典例:
eg1 : M {( x, y) | xy 0}
eg 2 : 用列举法表示 12 A {x N | N} 6 x 2 * B {( x, y ) | y x 6, x N , y N }
30班
• 注:不含任何元素的集合为空集, 记作
5集合分类:
• 含有有限个元素的集合叫做有限集 • 含有无限个元素的集合叫做无限集
二:集合的表示方法
• 1 列举法
{0,1}
2
x 9的所有的解构成的集合 为
{(0,1),(3,4)} {1,2,3,4,…,n,…}
{3,-3} {N,Z,Q}
{1,2,3,4,…,100}
数学
宋 2011.9.5
开场白
• • • • • • 自我介绍 数学重要性 数学学科特点 初高中差异 学法指导 集合初步
有用吗?
有何用?
07734
狂奔的千里马 与骆驼
数学的作用:
• 实用 • 思维 • 品质
简
突击
记笔记 背公式 总结整理 足够的练习
悟
第一章:集合
第一章 第一节 集 合
集合间的基本关系
讲练融通
(1)(2022·山东泰安二模)设全集 U=R,则集合 M={0,1,2}和 N={x|x·(x -2)·log2x=0}的关系可表示为( )
(2)(2022·吉安期中)已知全集 U=R,集合 A={x|-2≤x≤7},B={x|m+ 1≤x≤2m-1},则使 B⊆A 成立的实数 m 的取值范围是________.
3.已知集合 A={1,2,3},B={1,m,n},若 3-m∈A,n+1∈A,则非 零实数 m+n 的可能取值构成的集合是________.
答案:{2} 解析:因为 3-m∈A,所以 3-m=1 或 3-m=2 或 3-m=3, 解得 m=2 或 m=1 或 m=0, 因为 n+1∈A,所以 n+1=1 或 n+1=2 或 n+1=3, 解得 n=0 或 n=1 或 n=2,又因为 B={1,m,n},所以mn==02, 或mn==20,, 即 m+n=2.
把 y= 3 x+4 代入 x2+y2=4,得 x2+2 3 x+3=0,解得 x=- 3 ,有唯
一解,故集合 A∩B 中元素的个数为 1.
2.已知集合 A={x∈N|1<x<log2k},集合 A 中至少有 3 个元素,则( ) A.k≥16 B.k>16 C.k≥8 D.k>8 B 解析:由集合 A 中至少有 3 个元素,得 log2k>4,解得 k>16,故选 B.
练4 已知集合 M={x|0<x<5},N={x|m<x<6}.若 M∩N={x|3<x<n},则 m
+n 等于( )
A.9
B.8
C.7
D.6
B 解析:因为 M∩N={x|0<x<5}∩{x|m<x<6}={x|3<x<n},所以 m=3,n=
高考数学复习笔记1第一章 第一节 集合
数学一轮总复习 第一章 集合与简易逻辑第一节 集合【考纲要求】【知识网络】【考点梳理】 一.集合的概念:集 合集 合 表 示 法集 合 的 关 系集 合 的 运 算 描 述 法图 示 法列 举 法 相 等 包 含 交 集并 集 补 集子集、真子集1.一般的,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,简称为集。
集合通常用大写的拉丁字母表示,如A 、B 、C 、……元素通常用小写的拉丁字母表示,如a 、b 、c 、…… 2.集合中元素特征(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了. (2)互异性:集合中的元素一定是不同的. (3)无序性:集合中的元素没有固定的顺序. 3.集合的分类:根据集合所含元素个属不同,可把集合分为如下几类: (1)把不含任何元素的集合叫做空集Ф (2)含有有限个元素的集合叫做有限集 (3)含有无穷个元素的集合叫做无限集 注:应区分Φ,}{Φ,}0{,0等符号的含义 4、常用数集(1)非负整数集(自然数集):全体非负整数的集合.记作N (2)正整数集:非负整数集内排除0的集.记作N *或N + (3)整数集:全体整数的集合.记作Z (4)有理数集:全体有理数的集合.记作Q (5)实数集:全体实数的集合.记作R 注:(1)自然数集包括数0.(2)非负整数集内排除0的集.记作N *或N +,Q 、Z 、R 等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z *二.集合的表示法:1.列举法:用来表示有限集或具有显著规律的无限集,如N +={0,1,2,3,…};2.描述法:例如,不等式232>-x x 的解集可以表示为:}23|{2>-∈x x R x 或}23|{2>-x x x , 3.韦恩图: 4.区间法:三.集合间的基本关系:1.元素与集合的关系,用∈或∉表示;属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A 不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉ 要注意“∈”的方向,不能把a ∈A 颠倒过来写.2.集合与集合的关系,用⊆,≠⊂,=表示,当A ⊆B 时,称A 是B 的子集;当A ≠⊂B 时,称A 是B 的真子集。
第一节 集合概念及其运算
第一章 集合与常用逻辑用语【知识导读】【方法点拨】1. 集合蕴涵着一种数学思想即对应的思想,数学的统一靠集合的语言,语言的形式化、符号化为现代数学的逻辑结构及相互关系提供了较好的表达、组织方式.在复习中应强调渗透和运用集合的语言、思想和方法.2. 逻辑体现了一种数学思想,即转化的思想.命题的转化有等价和不等价的,主要依据四个命题的关系和充分性、必要性.3.已知简单命题的真假而判断由其构成的复合命题的真假,主要是依据真值表而不是命题的具体内容,这种判断实际上是一种命题演算,是抽象的判断,而不是经验的判断. 4. 判断全称命题是假命题,只要在限定的集合M 中找到一个0x x =使)(0x p 不成立;要判断一个特称命题是真命题,只要在限定的集合M 中至少找到一个0x x =使)(0x p 为真.全称量词的否定是存在量词,存在量词的否定是全称量词;全称命题的否定是特称命题,特称命题的否定是全称命题.第1课 集合的概念及运算【考点导读】1. 了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用.2. 理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3. 理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.4. 集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想. 【基础练习】1.集合{(,)02,02,,}x y x y x y Z ≤≤≤<∈用列举法表示{(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)}.2.设集合{21,}A x x k k Z ==-∈,{2,}B x x k k Z ==∈,则A B ⋂=∅.3.已知集合{0,1,2}M =,{2,}N x x a a M ==∈,则集合M N ⋂=____________. 4.设全集{1,3,5,7,9}I =,集合{1,5,9}A a =-,{5,7}I A =ð,则实数a 的值为____8或2___.5. 已知集合[1,4)A =,(,)B a =-∞,若A B A ⋂=,则实数a 的取值范围____________. 6. 已知集合{|10}M x x =+<,1{|0}N x x=>,则图中【范例解析】例1. 设,a b R ∈,集合{1,,}{0,,}ba b a b a+=,求b a -的值.分析:利用集合中元素互异性和集合相等性质,得到集合中对应元素的关系.解:由题知,0a ≠, 0a b +=,则1b a =-,所以 1baa b ⎧=⎪⎨⎪=⎩,解得11a b =-⎧⎨=⎩,所以2b a -=.点评:本题以集合中元素的性质为载体,考察学生对条件的把握分析能力,以寻找解题的突破口. 例2.已知集合{026}A x ax =<+≤,{124}B x x =-<≤.(1) 若A B A ⋂=,求实数a 的取值范围;(2) 集合A ,B 能否相等?若能,求出a 的值;若不能,请说明理由. 分析:(1)对a 进行分类讨论,利用数轴求a 的取值范围. 解: {124}B x x =-<≤1{2}2x x =-<≤,{026}A x ax =<+≤{24}x ax =-<≤. ①当0a =时,A R =,所以A B ⊆不可能;第6题{0,2} [4,)+∞②当0a >时,24{}A x x a a =-<≤,若A B ⊆,则21,24 2.a a ⎧-≥-⎪⎪⎨⎪≤⎪⎩解得4a ≥.③当0a <时,42{}A x x a a =≤<-,若A B ⊆,则41,22 2.a a⎧>-⎪⎪⎨⎪-≤⎪⎩解得8a <-.综上所得,a 的取值范围为(,8)[4,)-∞-⋃+∞.(2)分析一:求出满足B A ⊆时a 的取值范围,再与(1)取交集.解法一:①当0a =时,A R =,所以B A ⊆成立;②当0a >时,24{}A x x a a =-<≤,若B A ⊆,则21,24 2.a a ⎧-≤-⎪⎪⎨⎪≥⎪⎩解得02a <≤.③当0a <时,42{}A x x a a =≤<-,若B A ⊆,则41,22 2.a a⎧≤-⎪⎪⎨⎪->⎪⎩解得10a -<<.综上,B A ⊆时,12a -<≤.A B A B =⇔⊆ 且B A ⊆,∴若A B =,则(1,2]a ∈-且(,8)[4,)a ∈-∞-⋃+∞,矛盾.所以,集合A 与B 不可能相等.分析二:利用两个相等集合中元素的对应关系,建立等量关系. 解法二:①当0a =时,A R =,所以B A ≠;②当0a >时,24{}A x x a a =-<≤,若B A =,则21,24 2.a a⎧-=-⎪⎪⎨⎪=⎪⎩无解.③当0a <时,42{}A xx a a=≤<-,若B A =,显然不成立. 综上,集合A 与B 不可能相等.点评:在解决两个数集关系问题时,应合理运用数轴帮助分析与求解.另外,在解含参数的不等式(方程)时,要对参数进行分类讨论,分类时要遵循不重不漏的分类原则,然后对每一类情况都要给出问题的解答.例3.(1)已知R 为实数集,集合2{320}A x x x =-+≤.若R B A R ⋃=ð,{01R B A x x ⋂=<<ð或23}x <<,求集合B ;(2)已知集合{,0}M a =,2{30,}N x x x x Z =-<∈,且{1}M N ⋂=,记P M N =⋃,写出集合P的所有子集.分析:(1)先化简集合A ,由R B C A R ⋃=可以得出A 与B 的关系;最后,由数形结合,利用数轴直观地解决问题.(2)求出N ,由{1}M N ⋂=,可知1M ∈,解得a ,进而求出P .解:(1){12}A x x =≤≤ ,{1R C A x x ∴=<或2}x >.又R B C A R ⋃=,R A C A R ⋃=,可得A B ⊆. 而{01R B C A x x ⋂=<<或23}x <<,∴{01x x <<或23}x <<.B ⊆ 借助数轴可得B A =⋃{01x x <<或23}x <<{03}x x =<<.(2)由230x x -<,得03x <<;又x Z ∈,故{1,2}N =.由{,0}M a =且{1}M N ⋂=,可得1a =.{1,0}M ∴=,故P 的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}.点评:(1)研究数集的相互关系时,可通过数轴示意,借助直观性探求,易于理解.(2)含有n 个元素的集合,共有2n 个子集,21n-个真子集.另注意空集的情况.例4.已知函数2()f x x px q =++,集合{()}A x f x x ==,集合{[()]}B x f f x x ==. (1)求证:A B ⊆;(2)若{1,3}A =-,求集合B .分析:(1)要证明A B ⊆,根据定义,只要证A 中任一元素都是B 中的元素即可; (2)由{1,3}A =-,可以求出p ,q 的值,从而求出B .解:(1)设0x 是集合A 中的任一元素,即0x A ∈. {()}A x f x x ==,∴ 00()x f x =, 即有000[()]()f f x f x x ==.∴0x B ∈.故A B ⊆.(2) {1,3}A =-2{}x x px q x =++=,1∴-,3是方程2(1)0x p x q +-+=的两个根,∴1(1)(1)0,9(1)30,p q p q +-⋅-+=⎧⎨+-⋅+=⎩1,3.p q =-⎧∴⎨=-⎩2() 3.f x x x ∴=-- 因为集合B 中的元素是方程[()]f f x x =的根,也就是222(3)(3)3x x x x x ------=的根.方程整理得22(23)(3)0x x x ---=,解得1x =-{1B =-.点评:本题考查集合语言与集合思想在解决方程问题时的运用,在解答过程中,应脱去集合符号和抽象函数符号的“外衣”,显出本质的数量关系,要不断实施各种数学语言间的相互转换. 【反馈演练】1.设全集U =R ,集合M ={x | x >1},P ={x | x 2>1},则下列关系中正确的是( C ) A .M =P B .P ÜM C .M ÜP D .U M P =∅ ð2.设集合{}2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A =_________. 3.设P ,Q 为两个非空实数集合,定义集合P +Q =},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P +Q 中元素的个数是____8___个.4.已知集合A ={-1,3,2m -1},集合B ={3,2m }.若B ⊆A ,则实数m = 1 . 5.若集合M ={0,l ,2},N ={(x ,y )|x -2y +1≥0且x -2y -1≤0,x ,y ∈M },则N 中元素的个数为 ______4____个.6.设f (n )=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧={n ∈N |f (n )∈P },Q ∧={n ∈N |f (n )∈Q },则(P ∧∩N ðQ ∧)∪(Q ∧∩N ðP ∧)=_____________. 7.若集合131,11,2,01A y y x x B y y x x ⎧⎫⎧⎫⎪⎪==-≤≤==-<≤⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭,则A ∩B 等于[]1,1-.8.已知集合}1≤-=a x x A ,{}0452≥+-=x x x B ,若φ=B A ,则实数a 的取值范围是 .9.已知A ,B ,C 为三个集合,若C B B A ⋂=⋃,给出下列结论:①C A ⊆;②A C ⊆;③C A ≠;④φ=A . 其中正确结论的有_______①______.提示:由A B B C = 知,,A B B A B C A B C ⊆⊆∴⊆⊆ .10.已知集合2{20}A x x x =+-≤,{214}B x x =<+≤,2{0}C x x bx c =++>,若集合A ,B ,C满足()A B C ⋃⋂=∅,()A B C R ⋃⋃=,求b ,c 的值.解:由题知:{(1)(2)0}A x x x =-+≤{21}x x =-≤≤,{13}B x x =<≤.{23}A B x x ∴⋃=-≤≤.()A B C ⋃⋂=∅,()A B C R ⋃⋃=,()R C A B ∴=⋃ð.{2C x x ∴=<-或3}x >.又2{0}C x x bx c =++>,∴20x bx c ++=的两根为2-和3,即有420,930.b c b c -+=⎧⎨++=⎩解得1b =-,6c =-.11.设集合2{60}P x x x =--<,{23}Q x a x a =≤≤+.(1)若P Q P ⋃=,求实数a 的取值范围; (2)若P Q ⋂=∅,求实数a 的取值范围;{}4,2,1 {0,3} (2,3)(3)若{03}P Q x x ⋂=≤<,求实数a 的值.解:(1)由题意知:{23}P x x =-<<, P Q P ⋃=,Q P ∴⊆. ①当Q =∅时,得23a a >+,解得3a >.②当Q ≠∅时,得2233a a -<≤+<,解得10a -<<. 综上,(1,0)(3,)a ∈-⋃+∞.(2)①当Q =∅时,得23a a >+,解得3a >;②当Q ≠∅时,得23,3223a a a a ≤+⎧⎨+≤-≥⎩或,解得3532a a ≤-≤≤或.综上,3(,5][,)2a ∈-∞-⋃+∞.(3)由{03}P Q x x ⋂=≤<,则0a =.12.设集合2{40}A x x x =+=,22{2(1)10}B x x a x a =+++-=.(1)若A B B ⋂=,求a 的值; (2)若A B B ⋃=,求a 的值. 解:由题知:{0,4}A =-. (1)A B B ⋂= ,B A ∴⊆.①当B =∅时,224(1)4(1)0a a ∆=+--<,解得1a <-;②当{0}B =或{4}-时,224(1)4(1)0a a ∆=+--=,解得1a =-,此时,{0}B =,满足B A ∴⊆;③当{0,4}B =-时,22224(1)4(1)0,10,168(1)10.a a a a a ⎧∆=+-->⎪-=⎨⎪-++-=⎩综上所述,实数a 的取值范围是1a =或1a ≤-.(2)A B B ⋃= ,A B ∴⊆,故{0,4}B =-.即22224(1)4(1)0,10,168(1)10.a a a a a ⎧∆=+-->⎪-=⎨⎪-++-=⎩,解得1a =.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.(2011·湖南高考)设全集U =M ∪N ={1,2,3,4,5},M ∩∁U N ={2,4},则N =( )
A .{1,2,3}
B .{1,3,5}
C .{1,4,5}
D .{2,3,4}
解析:由M ∩∁U N ={2,4}可得集合N 中不含有元素2,4,集合M 中含有元素2,4,故N ={1,3,5}.
答案:B
2.设全集为R ,集合M ={x |y =2x +1},N ={y |y =-x 2},则( )
A .M ⊆N
B .N ⊆M
C .N =M
D .M ∩N ={(-1,-1)}
解析:从代表元素入手,认识集合的意义,M 为一次函数的定义域,N 为二次函数的值域,化简判断,M =R ,N =(-∞,0],即N ⊆M .
答案:B
3.函数y =1-2x 的定义域为集合A ,函数y =ln(2x +1)的定义域为集合B ,则A ∩B =( )
A .(-12,12]
B .(-12,12
) C .(-∞,-12) D .[12
,+∞) 解析:∵函数y =1-2x ,∴1-2x ≥0.∴x ≤12
. ∴A ={x |x ≤12
}.又∵函数y =ln(2x +1),∴2x +1>0. ∴x >-12.∴B ={x |x >-12}.∴A ∩B ={x |-12<x ≤12
}. 答案:A
4.已知集合A ={y |x 2+y 2=1}和集合B ={y |y =x 2},则A ∩B 等于( )
A .(0,1)
B .[0,1]
C .(0,+∞)
D .{(0,1),(1,0)}
解析:∵A ={y |x 2+y 2=1},∴A ={y |-1≤y ≤1}.
又∵B ={y |y =x 2},∴B ={y |y ≥0}.∴A ∩B ={y |0≤y ≤1}.
答案:B
5.(2011·北京高考)已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是
( )
A .(-∞,-1]
B .[1,+∞)
C .[-1,1]
D .(-∞,-1]∪[1,+∞)
解析:因为P ∪M =P ,所以M ⊆P ,即a ∈P ,得a 2≤1,解得-1≤a ≤1,所以a 的取值范围是[-1,1].
答案:C
二、填空题
6.已知集合A ={3,2,2,a },B ={1,a 2},若A ∩B ={2},则a 的值为________. 解析:因为A ∩B ={2},所以a 2=2,所以a =2或a =-2;当a =2时,不符合元素的互异性,故舍去,所以a =- 2.
答案:- 2
7.已知集合A ={x |-x 2+2x +3>0},B ={x |x -2<0},则A ∩(∁R B )=________. 解析:因为A ={x |-1<x <3},B ={x |x <2},
所以∁R B ={x |x ≥2}.
所以A ∩(∁R B )={x |2≤x <3}.
答案:[2,3)
三、解答题
8.设集合A ={x 2,2x -1,-4},B ={x -5,1-x,9},若A ∩B ={9},求A ∪B . 解:由9∈A ,可得x 2=9,或2x -1=9,
解得x =±3,或x =5.
当x =3时,A ={9,5,-4},B ={-2,-2,9},B 中元素重复,故舍去;
当x =-3时,A ={9,-7,-4},B ={-8,4,9},A ∩B ={9}满足题意,故A ∪B ={-8,-7,-4,4,9};
当x =5时,A ={25,9,-4},B ={0,-4,9},此时A ∩B ={-4,9}与A ∩B ={9}矛盾,故舍去.
综上所述,A ∪B ={-8,-7,-4,4,9}.
9.已知集合A ={x |x 2-2x -3≤0,x ∈R},B ={x |m -2≤x ≤m +2}.
(1)若A ∩B =[1,3],求实数m 的值;
(2)若A ⊆∁R B ,求实数m 的取值范围.
解:A ={x |-1≤x ≤3},
B ={x |m -2≤x ≤m +2}.
(1)∵A ∩B =[1,3],∴⎩⎪⎨⎪⎧
m -2=1,m +2≥3,得m =3. (2)∁R B ={x |x <m -2或x >m +2}.
∵A ⊆∁R B ,∴m -2>3或m +2<-1.
∴m >5或m <-3.
10.已知集合A ={x ∈R|ax 2-3x +2=0,a ∈R}.
(1)若A 是空集,求a 的取值范围;
(2)若A 中只有一个元素,求a 的值,并把这个元素写出来.
解:集合A 是方程ax 2-3x +2=0在实数范围内的解组成的集合.
(1)A 是空集,即方程ax 2-3x +2=0无解,得
⎩⎪⎨⎪⎧
a ≠0,Δ=(-3)2-8a <0, ∴a >98
. 即实数a 的取值范围是(98
,+∞). (2)当a =0时,方程只有一解,方程的解为x =23
; 当a ≠0且Δ=0,即a =98时,方程有两个相等的实数根,A 中只有一个元素43
. ∴当a =0或a =98时,A 中只有一个元素,分别是23和43
.。