第2篇:中考必会几何模型:半角模型

合集下载

中考数学 几何专题——半角模型

中考数学 几何专题——半角模型

几何模型之半角模型一、旋转性质1.图形对应边相等(易得等腰,且等腰均相似)2.对应角相等3.对应点与旋转中心连线构成旋转角,旋转角处处相等二、半角模型半角模型(90°含45°)条件模型结论①等腰直角△ABC;②∠DAE=45°DE2=BD2+CE2①等腰直角△ABC;②∠DAE=45°DE2=BD2+CE2①正方形ABCD;②∠EAF=45°①EF=BE+DF;②△CEF的周长是正方形周长的一半;③点A到EF的距离等于正方形的边长.①正方形ABCD;②∠EAF=45°EF=DF-BE三、模型演练1.如图,在正方形ABCD中,AB=1,E,F分别是边BC,CD上的点,连接EF、AE、AF,过A作AH⊥EF 于点H.若EF=BF+DF.那么下列结论:①AE平分∠BEF;②FH=FD;③∠EAF=45°;④S△E A F=S△A B E+S△A D F;⑤△CEF的周长为2.其中正确结论的是.2.在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A 顺时针旋转90°后,得到△AFB,连接EF,下列结论①△AEF≌△AED;②∠AED=45°;③BE+DC=DE;④BE2+DC2=DE2,其中正确的是()A.②④B.①④C.②③D.①③3如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.4.如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE=25.若∠EOF=45°,则F点的坐标是.5.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)6.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,点D、E是BC边上的任意两点,且∠DAE=45°.(1)将△ABD绕点A逆时针旋转90°,得到△ACF,请在图(1)中画出△ACF.(2)在(1)中,连接EF,探究线段BD,EC和DE之间有怎样的数量关系?写出猜想,并说明理由.(3)如图2,M、N分别是正方形ABCD的边BC、CD上一点,且BM+DN=MN,试求∠MAN的大小.。

中考数学必会几何模型:半角模型

中考数学必会几何模型:半角模型

中考数学必会几何模型:半角模型半角模型是指存在两个角度是一半关系,并且这两个角共顶点的模型。

通过先旋转全等再轴对称全等,一般结论是证明线段和差关系。

常见的半角模型是90°含45°,120°含60°。

例如,已知正方形ABCD中,∠MAN=45°,它的两边分别交线段CB、DC于点M、N。

要求证:BM+DN=MN,以及作AH⊥XXX于点H,求证:AH=AB。

证明过程如下:1.延长ND到E,使DE=BM。

由四边形ABCD是正方形,得AD=AB。

在△ADE和△ABM中,有AD=AB,∠ADE=∠BAM,DE=BM,因此△ADE≌△ABM。

得AE=AM,∠XXX∠BAM。

由∠MAN=45°,得∠BAM+∠NAD=45°,因此∠MAN=∠EAN=45°。

在△AMN和△AEN中,有MA=EA,∠MAN=∠EAN,AN=AN,因此△AMN≌△AEN。

得MN=EN。

因此BM+DN=DE+DN=EN=MN。

2.由(1)得△AMN≌△XXX。

因此S△AMN=S△AEN,即AH×MN=AD×EN。

又因为MN=EN,得AH=AD。

因此AH=AB。

在等边△ABC的两边AB、AC上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC。

要探究当M、N分别在线段AB、AC上移动时,BM、NC、MN之间的数量关系。

1) 当DM=DN时,BM、NC、MN之间的数量关系是BM+NC=MN。

2) 猜想:当DM≠DN时,仍有BM+NC=MN。

证明如下:延长AC至E,使CE=BM,连接DE。

因为BD=CD,且∠BDC=120°,所以△BDC是等边三角形。

因此BD=DC=CE=BM,得△BDE是等边三角形,∠BED=60°。

因此△DEN和△DME是等腰三角形,得DN=EN,DM=EM。

专题02 全等模型-半角模型(解析版)

专题02 全等模型-半角模型(解析版)

专题02 全等模型--半角模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就半角模型进行梳理及对应试题分析,方便掌握。

模型1.半角模型【模型解读】过等腰三角形顶点 两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。

【常见模型及证法】常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。

半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论.1.(2022·湖北十堰·中考真题)【阅读材料】如图①,四边形ABCD 中,AB AD =,180B D Ð+Ð=°,点E ,F 分别在BC ,CD 上,若2BAD EAF ÐÐ=,则EF BE DF =+.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知100m CD CB ==,60D Ð=°,120ABC Ð=°,150BCD Ð=°,道路AD ,AB 上分别有景点M ,N ,且100m DM =,)501m BN =-,若在M ,N 之间修一条直路,则路线M N ®的长比路线M A N ®®的长少_________m 1.7»).【答案】370【分析】延长,AB DC 交于点E ,根据已知条件求得90E Ð=°,进而根据含30度角的直角三角形的性质,求得,EC EB ,,AE AD ,从而求得AN AM +的长,根据材料可得MN DM BN =+,即可求解.【详解】解:如图,延长,AB DC 交于点E ,连接,CM CN ,Q 60D Ð=°,120ABC Ð=°,150BCD Ð=°,30A \Ð=°,90E Ð=°,100DC DM ==Q DCM \V 是等边三角形,60DCM \Ð=°,90BCM \Ð=°,在Rt BCE V 中,100BC =,18030ECB BCD Ð=°-Ð=°,1502EB BC ==,EC ==100DE DC EC \=+=+Rt ADE △中,2200AD DE ==+150AE ==+,\200100100AM AD DM =-=+=+()AN AB BN AE EB BN =-=--())15050501=--150=,100150250AM AN \+=++=+Rt CMB △中,BM ==Q )50501EN EB BN EC =+=+==ECN \V 是等腰直角三角形()1752NCM BCM NCB BCM NCE BCE DCB \Ð=Ð-Ð=Ð-Ð-Ð=°=Ð由阅读材料可得))100501501MN DM BN =+=+-=,\路线M N ®的长比路线M A N ®®的长少)250501200370+-+=+»m .答案:370.【点睛】本题考查了含30度角的直角三角形的性质,勾股定理,理解题意是解题的关键.2.(2022·河北邢台·九年级期末)学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠ADC =90°.把△ABE 绕点A 逆时针旋转到ADE ¢△的位置,然后证明AFE AFE ¢≌△△,从而可得=EF E F ¢.E F E D DF BE DF ¢¢=+=+,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,12EAF BAD Ð=Ð,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,12EAF BAD Ð=Ð,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是O e 的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系.由旋转可知ABE ADE ¢≌△△,∴BE ∵∠B +∠ADC =180°,∴ADC ADE Ð+Ð∵12EAF BAD Ð=Ð,∴BAE DAF Ð+Ð∴12DAE DAF BAD ¢Ð+Ð=,∴FAE Ð∵AF =AF ,∴FAE FAE ¢≌△△,∴FE 由圆内接四边形性质得:∠AC P 即P ,C ,P ¢在同一直线上.∴∵BC 为直径,∴∠BAC =90°=∠BAP ∴△PAP ¢为等腰直角三角形,∴【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四边形的性质、等腰直角三角形的判定及性质等知识点.解题关键是利用旋转构造全等三角形.3.(2022·福建·龙岩九年级期中)(1)【发现证明】如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且45EAF Ð=°,求证:EF DF BE =+.小明发现,当把ABE △绕点A 顺时针旋转90°至ADG V ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD 中,如果点E ,F 分别是CB ,DC 延长线上的动点,且45EAF Ð=°,则(1)中的结论还成立吗?若不成立,请写出EF ,BE ,DF 之间的数量关系______(不要求证明)②如图3,如果点E ,F 分别是BC ,CD 延长线上的动点,且45EAF Ð=°,则EF ,BE ,DF 之间的数量关系是_____(不要求证明).(3)【联想拓展】如图1,若正方形ABCD 的边长为6,AE =AF 的长.BAE DAG \Ð=Ð,AE AG =,90B ADG Ð=Ð=°,180ADF ADG \Ð+Ð=°,F \,D ,G 三点共线,45EAF Ð=°Q ,45BAE FAD \Ð+Ð=°,45DAG FAD \Ð+Ð=°,EAF FAG \Ð=Ð,AF AF =Q ,()EAF GAF SAS \D @D ,EF FG DF DG \==+,EF DF BE \=+;(2)①不成立,结论:EF DF BE =-;证明:如图2,将ABE D 绕点A 顺时针旋转90°至ADM D ,EAB MAD \Ð=Ð,AE AM =,90EAM =°∠,BE DM =,45FAM EAF \Ð=°=Ð,AF AF =Q ,()EAF MAF SAS \D @D ,EF FM DF DM DF BE \==-=-;②如图3,将ADF D 绕点A 逆时针旋转90°至ABN D ,4.(2022·山东省青岛第二十六中学九年级期中)【模型引入】当几何图形中,两个共顶点的角所在角度是公共大角一半的关系,我们称之为“半角模型”【模型探究】(1)如图1,在正方形ABCD中,E、F分别是AB、BC边上的点,且∠EDF=45°,探究图中线段EF,AE,FC之间的数量关系.【模型应用】(2)如图2,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.【拓展提高】(3)如图3,在四边形ABCD中,AB=AD,∠ABC与∠ADC互补,点E、F分别在射线CB、DC上,且∠EAF12=∠BAD.当BC=4,DC=7,CF=1时,V CEF的周长等于.(4)如图4,正方形ABCD中,V AMN的顶点M、N分别在BC、CD边上,AH⊥MN,且AH=AB,连接BD分别交AM、AN于点E、F,若MH=2,NH=3,DF=,求EF的长.(5)如图5,已知菱形ABCD中,∠B=60°,点E、F分别是边BC,CD上的动点(不与端点重合),且∠EAF=60°.连接BD分别与边AE、AF交于M、N,当∠DAF=15°时,求证:MN2+DN2=BM2.(5)将△ADF 绕A 顺时针旋转120°,AD与AB 重合,F 转到G ,在AG 上取AH =AN ,连接BH 、MH ,利用△ABH ≌△ADN 和△AMH ≌△AMN ,证明MN =MH ,DN =BH ,再证明△BMH 为直角三角形即可.【详解】(1)EF =FC +AE ,理由如下:证明:将△DAE 绕点D 逆时针旋转90°,得到△DCM ,∴△DAE ≌△DCM ,∴DE =DM ,AE =CM ,∠ADE =∠CDM ,B 、C 、M 三点共线,∵∠EDF =45°,∴∠ADE +∠FDC =∠CDM +∠FDC =∠MDF =45°,在△DEF 和△DMF 中,45DE DM EDF MDF DF DF =ìïÐ=Ð=°íï=î,∴△DEF ≌△DMF (SAS ),∴EF =FM ∴EF =FM =FC +CM =FC +AE ;(2)解:如图,在DC 上取一点G ,使得DG =BE ,∵∠BAD =∠BCD =90°,∴∠ABC +∠D =180°,∠ABE +∠ABC =180°,∴∠ABE =∠D ,∵AB =AD ,BE =DG ,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =45°,∴∠EAB +∠BAF =∠DAG +∠BAF =45°,∵∠BAD =90°,∴∠FAG =∠FAE =45°,∵AE =AG ,AF =AF ,∴△AFE ≌△AFG (SAS ),∴EF =FG ,设BE =x ,则EC =EB +BC =x +7,EF =FG =18-x ,在Rt △ECF 中,∵EF 2=EC 2+CF 2,∴52+(7+x )2=(18-x )2,∴x =5,∴BE =5;(3)解:在DF 上截取DM =BE ,课后专项训练:1.(2022·重庆市育才中学二模)回答问题(1)【初步探索】如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是_______________;(2)【灵活运用】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.(2)仍成立,理由:如图2,延长FD 到点G ,使DG =BE ,连接AG ,∵∠B +∠ADF =180°,∠ADG +∠ADF =180°,∴∠B =∠ADG ,又∵AB =AD ,∴△ABE ≌△ADG (SAS ),∴∠BAE =∠DAG ,AE =AG ,∵EF =BE +FD =DG +FD =GF ,AF =AF ,∴△AEF ≌△AGF (SSS ),∴∠EAF =∠GAF =∠DAG +∠DAF =∠BAE +∠DAF ;1∠DAB .证明:如图3,在DC 延长线上取一点G ,使得2.(2022·江西九江·一模)如图(1),在四边形ABCD 中,180B D Ð+Ð=°,AB AD =,以点A 为顶点作EAF Ð,且12EAF BAD Ð=Ð,连接EF .(1)观察猜想 如图(2),当90BAD B D Ð=Ð=Ð=°时,①四边形ABCD 是______(填特殊四边形的名称);②BE ,DF ,EF 之间的数量关系为______.(2)类比探究 如图(1),线段BE ,DF ,EF 之间的数量关系是否仍然成立?若成立,请加以证明;若不成立,请说明理由.(3)解决问题 如图(3),在ABC V 中,90BAC Ð=°,4AB AC ==,点D ,E 均在边BC 上,且45DAE Ð=°,若BD =,求DE 的长.(2)如下图,延长CD 至点H ,使得DH=BE ,∵B ADF Ð+а,∴B ADH Ð=Ð,同(1)②的证明方法得ABE ADH ≌△△,同理证AEF ≌△△,从而得BE FD EF +=.(3)如图过点C 作CM BC ⊥,且CM BD =,3.(2022·山东聊城·九年级期末)(1)如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF Ð=°,连接EF ,求证:EF BE DF =+,试说明理由.(2)类比引申:如图2,四边形ABCD 中,AB AD =,90BAD Ð=°,点E ,F 分别在边BC ,CD 上,∠EAF =45°,若B Ð、D Ð都不是直角,则当B Ð与D Ð满足等量关系______时,仍有EF BE DF =+,试说明理由.(3)联想拓展:如图3,在△ABC 中,90BAC Ð=°,AB AC =,点D ,E 均在边BC 上,且∠DAE =45,若1BD =,2EC =,求DE 的长.【详解】()1证明:如图1中,AB AD=Q,\把△ABE绕点A逆时针旋转90°至△ADG,AB与AD重合.∠ADC=∠B=90°∠FDG=180°,点F、D、G三点共线,则DAG BAEÐÐ=,AE AG=,∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90°-45°=45°=∠EAF即∠EAF=∠FAG,在△EAF和△GAF中,AF AFEAF GAFAE AG=ìïÐ=Ðíï=î,∴△AFG≌△()AFE SAS,∴EF=FG=BE+DF;()2当180B DÐ+Ð=°,仍有EF BE DF=+.理由:AB AD=Q,\把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,如图2,BAE DAG\Ð=Ð,∠B=∠ADG90BADÐ=°Q,45EAFÐ=°,∴∠BAE+∠DAF=45°,∴∠FAG=45°∴∠EAF=∠FAG,180ADC BÐ+Ð=°Q,∴∠ADC+∠ADG=180°∴∠FDG=180°,点F、D、G共线.在△AFE和△AFG中,AE AGFAE FAGAF AF=ìïÐ=Ðíï=î∴△AFE≌△AFG(SAS).EF FG\=,即:EF BE DF=+.故答案为:180B DÐ+Ð=°.()3将△ACE绕点A旋转到△ABF的位置,连接DF,则∠FAB=∠CAE90BACÐ=°Q,45DAEÐ=°,∴∠BAD+∠CAE=45°.又∵∠FAB=∠CAE,∴∠FAB+∠BAD=45°,∴∠FAD=∠DAE=45°.4.(2022·黑龙江九年级阶段练习)已知:正方形ABCD 中,∠MAN=45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N .当∠MAN 绕点A 旋转到BM =DN 时,(如图1),易证BM +DN =MN .(1)当∠MAN 绕点A 旋转到BM ≠DN 时(如图2),线段BM 、DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN 绕点A 旋转到如图3的位置时,线段BM 、DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想.【答案】(1)BM DN MN +=,理由见解析;(2)DN BM MN -=,理由见解析【分析】(1)把ADN D 绕点A 顺时针旋转90°,得到ABE D ,然后证明得到AEM ANM D D ≌,从而证得ME MN =,可得结论;(2)首先证明ADQ ABM D D ≌,得DQ BM =,再证明AMN AQN D D ≌,得MN QN =,可得结论;(1)解:BM DN MN +=.理由如下:如图2,把ADN D 绕点A 顺时针旋转90°,得到ABE D ,90ABE ADN \Ð=Ð=°,AE AN =,BE DN =,180ABE ABC \Ð+Ð=°,\点E ,点B ,点C 三点共线,90904545EAM NAM \Ð=°-Ð=°-°=°,又45NAM Ð=°Q ,在AEM D 与ANM D 中,AE AN EAM NAM AM AM =ìïÐ=Ðíï=î,AEM ANM \D D ≌(SAS ),ME MN \=,ME BE BM DN BM =+=+Q ,DN BM MN \+=;(2)解:DN BM MN -=.理由如下:在线段DN 上截取DQ BM =,在ADQ D 与ABM D 中,AD AB ADQ ABM DQ BM =ìïÐ=Ðíï=î,ADQ ABM \D D ≌(SAS ),DAQ BAM \Ð=Ð,QAN MAN \Ð=Ð.在AMN D 和AQN D 中,AQ AM QAN MAN AN AN =ìïÐ=Ðíï=î,AMN AQN \D D ≌(SAS ),MN QN \=,DN BM MN \-=.【点睛】本题是四边形综合题,考查正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题.5.(2022·重庆南川·九年级期中)如图,正方形ABCD 中,45MAN Ð=°,MAN Ð绕点A 顺时针旋转,它的两边分别交BC 、DC (或它们的延长线)于点M 、N .(1)当MAN Ð绕点A 旋转到BM DN =时(如图1),证明:2MN BM =;(2)绕点A 旋转到BM DN ¹时(如图2),求证:MN BM DN =+;(3)当MAN Ð绕点A 旋转到如图3位置时,线段BM 、DN 和MN 之间有怎样的数量关系?请写出你的猜想并证明.【答案】(1)见解析(2)见解析(3)DN BM MN -=,见解析【分析】(1)把ADN △绕点A 顺时针旋转90°,得到ABE △,证得B 、E 、M 三点共线,即可得到AEM △≌ANM V ,从而证得ME MN =;(2)证明方法与(1)类似;(3)在线段DN 上截取DQ BM =,判断出ADQ △≌ABM V,同(2)的方法,即可得出结论.(1)证明:如图1,∵把ADN △绕点A 顺时针旋转90°,得到ABE △,ABE \V ≌ADN △,AE ANM \=,ABE D Ð=Ð,Q 四边形ABCD 是正方形,90ABC D \Ð=Ð=°,90ABE ABC \Ð=Ð=°,\点E 、B 、M 三点共线.90904545EAM NAM \Ð=°-Ð=°-°=°,又45NAM Ð=°Q ,在AEM △与ANM V 中,AE AN EAM NAM AM AM =ìïÐ=Ðíï=î,AEM \△≌()ANM SAS V ,ME MN \=,ME BE BM DN BM =+=+Q ,DN BM MN \+=,BM DN =Q ,2MN BM \=.(2)证明:如图2,把ADN △绕点A 顺时针旋转90°,得到ABE △,ABE \V ≌ADN △,AE ANM \=,ABE D Ð=Ð,Q 四边形ABCD 是正方形,90ABC D \Ð=Ð=°,90ABE ABC \Ð=Ð=°,\点E 、B 、M三点共线.90904545EAM NAM \Ð=°-Ð=°-°=°,又45NAM Ð=°Q ,在AEM △与ANM V 中,AE AN EAM NAM AM AM =ìïÐ=Ðíï=î,AEM \△≌()ANM SAS V ,ME MN \=,ME BE BM DN BM =+=+Q ,DN BM MN \+=.(3)解:DN BM MN -= 理由如下:如图3,在线段DN 上截取DQ BM =,连接AQ ,在ADQ △与ABMV 中,AD AB ADQ ABM DQ BM =ìïÐ=Ðíï=î,ADQ \V ≌()ABM SAS V ,DAQ BAM \Ð=Ð,QAN MAN \Ð=Ð.在AMN V 和AQN △中,AQ AM QAN MAN AN AN =ìïÐ=Ðíï=î,AMN\V ≌()AQN SAS V ,MN QN \=,DN BM MN \-=.【点睛】本题是四边形综合题,考查正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,学会利用旋转法添加辅助线,构造全等三角形是解题的关键.6.(2022·江西景德镇·九年级期中)(1)【特例探究】如图1,在四边形ABCD 中,AB AD =,90ABC ADC Ð=Ð=°,100BAD Ð=°,50EAF Ð=°,猜想并写出线段BE ,DF ,EF 之间的数量关系,证明你的猜想;(2)【迁移推广】如图2,在四边形ABCD 中,AB AD =,180ABC ADC Ð+Ð=°,2BAD EAF ÐÐ=.请写出线段BE ,DF ,EF 之间的数量关系,并证明;(3)【拓展应用】如图3,在海上军事演习时,舰艇在指挥中心(O 处)北偏东20°的A 处.舰艇乙在指挥中心南偏西50°的B 处,并且两舰艇在指挥中心的距离相等,接到行动指令后,舰艇甲向正西方向以80海里/时的速度前进,同时舰艇乙沿北偏西60°的方向以90海里/时的速度前进,半小时后,指挥中心观测到甲、乙两舰艇分别到达C ,D 处,且指挥中心观测两舰艇视线之间的夹角为75°.请直接写出此时两舰艇之间的距离.【答案】(1)EF =BE +DF ,理由见解析;(2)EF =BE +DF ,理由见解析;(3)85海里【分析】(1)延长CD 至点G ,使DG =BE ,连接AG ,可证得△ABE ≌△ADG ,可得到AE =AG ,∠BAE =∠DAG ,再由100BAD Ð=°,50EAF Ð=°,可证得△AEF ≌△AGF ,从而得到EF =FG ,即可求解;(2)延长CD 至点H ,使DH =BE ,连接AH ,可证得△ABE ≌△ADH ,可得到AE =AH ,∠BAE =∠DAH ,再由2BAD EAF ÐÐ=,可证得△AEF ≌△AHF ,从而得到EF =FH ,即可求解;(3)连接CD ,延长AC 、BD 交于点M ,根据题意可得∠AOB =2∠COD ,∠OAM +∠OBM =70°+110°=180°,再由(2)【迁移推广】得:CD =AC +BD ,即可求解.【详解】解:(1)EF =BE +DF ,理由如下:如图,延长CD 至点G ,使DG =BE ,连接AG ,∵90ABC ADC Ð=Ð=°,∴∠ADG =∠ABC =90°,∵AB =AD ,∴△ABE ≌△ADG ,∴AE =AG ,∠BAE =∠DAG ,∵100BAD Ð=°,50EAF Ð=°,∴∠BAE +∠DAF =50°,∴∠FAG =∠EAF =50°,∵AF =AF ,∴△AEF ≌△AGF ,∴EF =FG ,∵FG =DG +DF ,∴EF =DG +DF =BE +DF ;(2)EF =BE +DF ,理由如下:如图,延长CD 至点H ,使DH =BE ,连接AH ,∵180ABC ADC Ð+Ð=°,∠ADC +∠ADH =180°,∴∠ADH =∠ABC ,∵AB =AD ,∴△ABE ≌△ADH ,∴AE =AH ,∠BAE =∠DAH ,∵2BAD EAF ÐÐ=∴∠EAF =∠BAE +∠DAF =∠DAF +∠DAH ,∴∠EAF =∠HAF ,∵AF =AF ,∴△AEF ≌△AHF ,∴EF =FH ,∵FH =DH +DF ,∴EF =DH +DF =BE +DF ;(3)如图,连接CD ,延长AC 、BD 交于点M ,根据题意得: ∠AOB =20°+90°+40°=150°,∠OBD =60°+50°=110°,∠COD =75°,∠OAM =90°-20°=70°,OA =OB ,∴∠AOB =2∠COD ,∠OAM +∠OBM =70°+110°=180°,∵OA=OB,∴由(2)【迁移推广】得:CD=AC+BD,∵AC=80×0.5=40,BD=90×0.5=45,∴CD=40+45=85海里.即此时两舰艇之间的距离85海里.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质、勾股定理的运用、等腰直角三角形的性质,题目的综合性较强,难度较大,解题的关键是正确的作出辅助线构造全等三角形,解答时,注意类比思想的应用.7.(2022·上海·九年级专题练习)小明遇到这样一个问题:如图1,在Rt△ABC中,∠BAC=90°,AB=AC,点D,E在边BC上,∠DAE=45°.若BD=3,CE=1,求DE的长.小明发现,将△ABD绕点A按逆时针方向旋转90º,得到△ACF,联结EF(如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE=45°,可证△FAE≌△DAE,得FE=DE.解△FCE,可求得FE(即DE)的长.(1)请回答:在图2中,∠FCE的度数是,DE的长为.参考小明思考问题的方法,解决问题:(2)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是边BC,CD上的点,且∠EAF=12∠BAD.猜想线段BE,EF,FD之间的数量关系并说明理由.∴BE =DG ,AE =AG ,∵∠B +∠ADC =180°,∠∴∠ADG +∠ADC =180°∵∠EAF =12∠BAD ,∴∠8.(2022·黑龙江·哈尔滨市九年级阶段练习)已知四边形ABCD 是正方形,一个等腰直角三角板的一个锐角顶点与A 点重合,将此三角板绕A 点旋转时,两边分别交直线BC ,CD 于M ,N .(1)如图1,当M ,N 分别在边BC ,CD 上时,求证:BM +DN =MN(2)如图2,当M ,N 分别在边BC ,CD 的延长线上时,请直接写出线段BM ,DN ,MN 之间的数量关系(3)如图3,直线AN 与BC 交于P 点,MN =10,CN =6,MC =8,求CP 的长.【答案】(1)见解析;(2)BM DN MN -=;(3)3【分析】(1)延长CB 到G 使BG DN =,连接AG ,先证明AGB AND @△△,由此得到AG AN =,GAB DAN Ð=Ð,再根据45MAN Ð=°,90BAD Ð=°,可以得到45GAM NAM Ð=Ð=°,从而证明AMN AMG △≌△,然后根据全等三角形的性质即可证明BM DN MN +=;(2)在BM 上取一点G ,使得BG DN =,连接AG ,先证明AGB AND @△△,由此得到AG AN =,GAB DAN Ð=Ð,由此可得90GAN BAD Ð=Ð=°,再根据45MAN Ð=°可以得到45GAM NAM Ð=Ð=°,从而证明AMN AMG △≌△,然后根据全等三角形的性质即可证明BM DN MN -=;(3)在DN 上取一点G ,使得DG BM =,连接AG ,先证明ABM ADG V V ≌,再证明AMN AGN △≌△,设DG BM x ==,根据DC BC =可求得2x =,由此可得6AB BC CD CN ====,最后再证明ABP NCP △≌△,由此即可求得答案.【详解】(1)证明:如图,延长CB 到G 使BG DN =,连接AG ,∵四边形ABCD 是正方形,∴AB AD =,90ABG ADN BAD Ð=Ð=Ð=°,在ABG V 与ADN △中,AB AD ABG ADN BG DN =ìïÐ=Ðíï=î, ()AGB AND SAS \△≌△,AG AN \=,GAB DAN Ð=Ð,45MAN Ð=°Q ,90BAD Ð=°,∴45DAN BAM BAD MAN Ð+Ð=Ð-Ð=°,45GAM GAB BAM DAN BAM \Ð=Ð+Ð=Ð+Ð=°,GAM NAM \Ð=Ð,在AMN V 与AMG V 中,AM AM GAM NAM AN AG =ìïÐ=Ðíï=î, ()AMN AMG SAS \△≌△,MN GM \=,又∵BM GB GM +=,BG DN =,BM DN MN \+=;(2)BM DN MN -=,理由如下:如图,在BM 上取一点G ,使得BG DN =,连接AG ,∵四边形ABCD 是正方形,∴AB AD =,90ABG ADN BAD Ð=Ð=Ð=°,在ABG V 与ADN△中,AB AD ABG ADN GB DN =ìïÐ=Ðíï=î,()AGB AND SAS \△≌△,AG AN \=,GAB DAN Ð=Ð,∴GAB GAD DAN GAD Ð+Ð=Ð+Ð,∴90GAN BAD Ð=Ð=°,又45MAN Ð=°Q ,45GAM GAN MAN MAN \Ð=Ð-Ð=°=Ð,在AMN V 与AMG V 中,AM AM GAM NAM AN AG =ìïÐ=Ðíï=î,()AMN AMG SAS \△≌△,MN GM \=,又∵BM BG GM -=,BG DN =,∴BM DN MN -=,故答案为:BM DN MN -=;(3)如图,在DN 上取一点G ,使得DG BM =,连接AG ,∵四边形ABCD 是正方形,∴AB AD BC CD ===,90ABM ADG BAD Ð=Ð=Ð=°,//AB CD ,9.(2022·浙江·九年级阶段练习)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD 的顶点A 重合,将此三角板绕点A 旋转,使三角板中该锐角的两条边分别交正方形的两边BC ,DC 于点E ,F ,连接EF .(1)猜想BE 、EF 、DF 三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A 作AM ⊥EF 于点M ,请直接写出AM 和AB 的数量关系;(3)如图2,将Rt △ABC 沿斜边AC 翻折得到Rt △ADC ,E ,F 分别是BC ,CD 边上的点,∠EAF =12∠BAD ,连接EF ,过点A 作AM ⊥EF 于点M ,试猜想AM 与AB 之间的数量关系.并证明你的猜想.【答案】(1)EF =BE +DF .证明见解析;(2)AM =AB ;(3)AM =AB .证明见解析10.(2022·北京四中九年级期中)如图,在△ABC中,∠ACB=90°,CA=CB,点P在线段AB上,作射线CP(0°<∠ACP<45°),射线CP绕点C逆时针旋转45°,得到射线CQ,过点A作AD⊥CP于点D,交CQ 于点E,连接BE.(1)依题意补全图形;(2)用等式表示线段AD,DE,BE之间的数量关系,并证明.【答案】(1)作图见解析.(2)结论:AD+BE=DE.证明见解析.【分析】(1)根据要求作出图形即可.(2)结论:AD+BE=DE.延长DA至F,使DF=DE,连接CF.利用全等三角形的性质解决问题即可.(1)解:如图所示:(2)结论:AD+BE=DE.理由:延长DA至F,使DF=DE,连接CF.∵AD⊥CP,DF=DE,∴CE=CF,∴∠DCF =∠DCE =45°,∵∠ACB =90°,∴∠ACD +∠ECB =45°,∵∠DCA +∠ACF =∠DCF =45°,∴∠FCA =∠ECB ,在△ACF 和△BCE 中,CA CB ACF BCE CF CE =ìïÐ=Ðíï=î,∴△ACF ≌△BCE (SAS ),∴AF =BE ,∴AD +BE =DE .【点睛】本题考查作图-旋转变换,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。

初中几何|半角模型

初中几何|半角模型

初中几何|半角模型
半角模型是初中学习几何最常见的一个模型,这个模型常用的辅助线思维是旋转,而旋转又是学生几何思维中最不习惯的,那么我们如何进行利用呢?今天具体的进行讲解。

一、半角模型特征
1、共端点的等线段;
2、共顶点的倍半角;
二、半角模型辅助线的作法
1、旋转的方法:以公共端点为旋转中心,相等的两条线段的夹角为旋转角;
2、旋转的条件:具有公共端点的等线段;
3、旋转的目的:将分散的条件集中,隐蔽的关系显现。

三、等腰直角三角形的半角模型(大角夹小角)
如图,在△ABC中,AB=AC,∠BAC=90°,点D、E在边BC上,且∠EAD=45°.
(1)求证:△BAE∽△ADE∽△CDA
(2)求证:BD2+CE2=DE2
四、等腰直角三角形的半角模型(拓展)
1、如图,在△ABC中,AB=AC,∠BAC=90°,点D在边BC上,点E在BC的延长线上,且∠EAD=45°.求证:BD2+CE2=DE2
五、一般三角形的半角模型
六、正方形中半角模型相关结论(大角夹小角)
七、正方形中半角模型(拓展)。

几何模型-半角模型

几何模型-半角模型
几何模型——半角模型
单击此处加副标题
什么叫半角模型?
定义:我们习惯把过等腰三角形顶角的顶点引两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并形成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得出线段之间的数量关系,从而解决问题。
解:EF=DF﹣BE,证明如下:如图,把△ABE绕点A逆时针旋转90°到AD,交CD于点G,同(1)可证得△AEF≌△AGF,∴EF=GF,且DG=BE,∴EF=DF﹣DG=DF﹣BE.
其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊重,相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪,弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时,你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!

2024年中考数学几何模型归纳(全国通用):全等与相似模型-半角模型(教师版)

2024年中考数学几何模型归纳(全国通用):全等与相似模型-半角模型(教师版)

专题16全等与相似模型-半角模型全等三角形与相似三角形在中考数学几何模块中占据着重要地位。

相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。

如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了。

本专题就半角模型进行梳理及对应试题分析,方便掌握。

模型1.半角模型半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半。

思想方法:通过旋转(或截长补短)构造全等三角形,实现线段的转化。

解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。

半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论。

【模型展示】1)正方形半角模型条件:四边形ABCD是正方形,∠ECF=45°;结论:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④ AEF的周长=2AB;⑤CE、CF分别平分∠BEF和∠EFD。

2)等腰直角三角形半角模型条件: ABC是等腰直角三角形,∠DAE=45°;结论:①△BAD≌△CAG;②△DAE≌△GAE;③∠ECG==90°;④DE2=BD2+EC2;3)等边三角形半角模型(120°-60°型)条件: ABC 是等边三角形, BDC 是等腰三角形,且BD =CD ,∠BDC =120°,∠EDF =60°;结论:①△BDE ≌△CDG ;②△EDF ≌△GDF ;③EF =BE +FC ;④ AEF 的周长=2AB ;⑤DE 、DF 分别平分∠BEF 和∠EFC 。

4)等边三角形半角模型(60°-30°型)条件: ABC 是等边三角形,∠EAD =30°;结论:①△BDA ≌△CFA ;②△DAE ≌△FAE ;③∠ECF =120°;④DE 2=(12BD +EC)2+2;5)半角模型(2 - 型)条件:∠BAC =2 ,AB =AC ,∠DAE = ;结论:①△BAD ≌△CAF ;②△EAD ≌△EAF ;③∠ECF=180°-2 。

九年级中考几何模型之半角模型详解

九年级中考几何模型之半角模型详解

中考几何模型之半角模型【模型由来】半角模型是指:共顶点的两个一大一小的角,其中小角是大角的一半。

如下图中:若小角∠EAD等于大角∠BAC的一半,我们习惯上称之为“半角模型”。

【模型思想】通过旋转变化后构造全等三角形,实线边的转化。

【基本模型】类型一、90°中夹45°(正方形中的半角模型)条件:在正方形ABCD中,E、F分别是BC、CD边上的点,∠EAF=45°,BD为对角线,交AE于M点,交AF于N点。

结论①:图1、2中,EF=BE+FD;证明:如图3中,将AF绕点A顺时针旋转90°,F点落在F’处,连接BF’,∴∠EAF’=90°-∠EAF=90°-45°=45°=∠EAF,且AE=AE,AF=AF’,∴△FAE≌△F’AE(SAS),∴EF=EF’,又∠D=∠ABF’=90°,∠ABE=90°,∴∠ABE+∠ABF’=90°+90°=180°,∴F’、B、E三点共线,∴EF’=BE+BF’=BE+DF。

结论②:图2中MN²=BM²+DN²;证明:如图4中,将AN绕点A顺时针旋转90°,N点落在N’处,连接AN’、BN’、MN’,∴∠N’AM=90°-∠EAF=90°-45°=45°=∠MAN,且AM=AM,AN=AN’,∴△MAN’≌△MAN(SAS),∴MN=MN’,又∠ADN=45°=∠ABN ’,∠ABD=45°,∴∠MBN ’=∠ABD+∠ABN ’=45°+45°=90°,∴在Rt △MBN ’中,MN ’²=BM ²+BN ’²,即MN ²=BM ²+BN ’²。

结论③:图1、2中EA 平分∠BEF ,FA 平分∠DFE 。

中考数学必会几何模型:半角模型

中考数学必会几何模型:半角模型

半角模型已知如图:①∠2=12∠AOB;②OA=OB.OABEF123连接FB,将△FOB绕点O旋转至△FOA的位置,连接F′E,FE,可得△OEF≌△OEF′4321F'FE BAO模型分析∵△OBF≌△OAF′,∴∠3=∠4,OF=OF′.∴∠2=12∠AOB,∴∠1+∠3=∠2∴∠1+∠4=∠2又∵OE是公共边,∴△OEF≌△OEF′.(1)半角模型的命名:存在两个角度是一半关系,并且这两个角共顶点;(2)通过先旋转全等再轴对称全等,一般结论是证明线段和差关系;(3)常见的半角模型是90°含45°,120°含60°.模型实例例1 已知,正方形ABCD中,∠MAN=45°,它的两边分别交线段CB、DC于点M、N.(1)求证:BM+DN=MN.(2)作AH⊥MN于点H,求证:AH=AB.证明:(1)延长ND 到E ,使DE=BM ,∵四边形ABCD 是正方形,∴AD=AB . 在△ADE 和△ABM 中, ⎪⎩⎪⎨⎧=∠=∠=BM DE B ADE AB AD∴△ADE ≌△ABM .∴AE=AM ,∠DAE=∠BAM ∵∠MAN=45°,∴∠BAM+∠NAD=45°. ∴ ∠MAN=∠EAN=45°. 在△AMN 和△AEN 中, ⎪⎩⎪⎨⎧=∠=∠=AN AN EAN M AN EA M A∴△AMN ≌△AEN . ∴MN=EN .∴BM+DN=DE+DN=EN=MN .(2)由(1)知,△AMN ≌△AEN . ∴S △AMN =S △AEN .即EN AD 21MN AH 21⋅=⋅.又∵MN=EN , ∴AH=AD . 即AH=AB .例2 在等边△ABC的两边AB、AC上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在线段AB、AC上移动时,BM、NC、MN之间的数量关系.(1)如图①,当DM=DN时,BM、NC、MN之间的数量关系是_______________;(2)如图②,当DM≠DN时,猜想(1)问的结论还成立吗?写出你的猜想并加以证明.图①图②解答(1)BM、NC、MN之间的数量关系是BM+NC=MN.(2)猜想:BM+NC=MN.证明:如图③,延长AC至E,使CE=BM,连接DE.∵BD=CD,且∠BDC=120°,∴∠DBC=∠DCB=30°.又∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∴∠MBD=∠NCD=90°.在△MBD与△ECD中,∵DB=DC,∠DBM=∠DCE=90°,BM=CE,∴△MBD≌△ECD(SAS).∴DM=DE,∠BDM=∠CDE.∴∠EDN=∠BDC-∠MDN=60°.在△MDN和△EDN中,∵MD=ED,∠MDN=∠EDN=60°,DN=DN,∴△MDN≌△EDN(SAS).∴MN=NE=NC+CE=NC+BM.图③例3 如图,在四边形ABCD 中,∠B+∠ADC=180°,AB=AD ,E 、F 分别是BC 、CD 延 长线上的点,且∠EAF=21∠BAD .求证:EF=BE-FD .证明:在BE 上截取BG ,使BG=DF ,连接AG . ∵∠B+∠ADC=180°,∠ADF+∠ADC=180°, ∴∠B=∠ADF .在△ABG 和△ADF 中, ⎪⎩⎪⎨⎧=∠=∠=DF BG ADF B AD AB∴△ABG ≌△ADF (SAS ). ∴∠BAG=∠DAF ,AG=AF . ∴∠GAF=∠BAD .∴∠EAF=21∠BAD=21∠GAF . ∴∠GAE=∠EAF . 在△AEG 和△AEF 中, ⎪⎩⎪⎨⎧=∠=∠=AE AE FAE GAE AF AG∴△AEG ≌△AEF (SAS ). ∴EG=EF .∴EF=BE-FD .跟踪练习:1.已知,正方形ABCD ,M 在CB 延长线上,N 在DC 延长线上,∠MAN=45°. 求证:MN=DN-BM .【答案】证明:如图,在DN 上截取DE=MB ,连接AE , ∵四边形ABCD 是正方形, ∴AD=AB ,∠D=∠ABC=90°. 在△ABM 和△ADE 中, ⎪⎩⎪⎨⎧=∠=∠=DE BM ABM D AB AD∴△ABM ≌△ADE .∴AM=AE , ∠MAB=∠EAD . ∵∠MAN=45°=∠MAB+∠BAN , ∴∠DAE+∠BAN=45°. ∴∠EAN=90°-45°=45°=∠MAN . 在△AMN 和△AEN 中, ⎪⎩⎪⎨⎧=∠=∠=AN AN EAN M AN AE AM∴△ABM ≌△ADE .∵DN-DE=EN.∴DN-BM=MN.2.已知,如图①在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°,探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D使问题得到解决.请你参考小明的思路探究并解决以下问题:(1)猜想BD、DE、EC三条线段之间的数量关系式,并对你的猜想给予证明;(2)当动点E在线段BC上,动点D运动到线段CB延长线上时,如图②,其他条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.图①图②【答案】解答:(1)猜想:DE2=BD2+EC2.证明:将△AEC绕点A顺时针旋转90°得到△ABE′,如图①∴△ACE≌△ABE′.∴BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB.在Rt△ABC中,∵AB=AC,∴∠ABC=∠ACB=45°.∴∠ABC+∠ABE′=90°,即∠E′BD=90°.∴E′B2+BD2=E′D2.又∵∠DAE=45°,∴∠BAD+∠EAC=45°.∴∠E′AB+∠BAD=45°,即∠E′AD=45°.∴△AE′D≌△AED.∴DE=D E′.∴DE2=BD2+EC2.图①(2)结论:关系式DE2=BD2+EC2仍然成立.证明:作∠FAD=∠BAD,且截取AF=AB,连接DF,连接FE,如图②∴△AFD≌△ABD.∴FD=DB,∠AFD=∠ABD.又∵AB=AC,∴AF=AC.∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB )=90°-(45°-∠DAB)=45°+∠DAB,∴∠FAE=∠CAE.又∵AE=AE,∴△AFE≌△ACE.∴FE=EC,∠AFE=∠ACE=45°.∠AFD=∠ABD=180°-∠ABC=135°.∴∠DFE=∠AFD-∠AFE=135°-45°=90°.在Rt△DFE中,DF2+FE2=DE2.即DE2=BD2+EC2.图②3.已知,在等边△ABC中,点O是边AC、BC的垂直平分线的交点,M、N分别在直线AC、BC上,且∠MON=60°.(1)如图①,当CM=CN时,M、N分别在边AC、BC上时,请写出AM、CN、MN三者之间的数量关系;(2)如图②,当CM≠CN时,M、N分别在边AC、BC上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;(3)如图③,当点M在边AC上,点N在BC的延长线上时,请直接写出线段AM、CN、MN三者之间的数量关系.图①图②图③【答案】结论:(1)AM=CN+MN;如图①图①(2)成立;证明:如图②,在AC上截取AE=CN,连接OE、OA、OC.∵O是边AC、BC垂直平分线的交点,且△ABC为等边三角形,∴OA=OC,∠OAE=∠OCN=30°,∠AOC=120°.又∵AE=CN,∴△OAE≌△OCN.∴OE=ON,∠AOE=∠CON.∴∠EON=∠AOC=120°.∵∠MON=60°,∴∠MOE=∠MON=60°.∴△MOE≌△MON.∴ME=MN.∴AM=AE+ME=CN+MN.图②(3)如图③,AM=MN-CN.图③4.如图,在四边形ABCD 中,∠B+∠D=180°,AB=AD ,E 、F 分别是线段BC 、CD 上的 点,且BE+FD=EF .求证:∠EAF=21∠BAD .【答案】证明:如图,把△ADF 绕点A 顺时针旋转∠DAB 的度数得到△ABG ,AD 旋转到AB ,AF 旋转到AG ,∴AG=AF ,BG=DF ,∠ABG=∠D ,∠BAG=∠DAF . ∵∠ABC+∠D=180°, ∴∠ABC+∠ABG=180°. ∴点G 、B 、C 共线. ∵BE+FD=EF , ∴BE+BG=GE=EF . 在△AEG 和△AEF 中, ⎪⎩⎪⎨⎧===EF EG AE AE AF AG ∴△AEG ≌△AEF . ∴∠EAG=∠EAF .∴∠EAB+∠BAG=∠EAF . 又∵∠BAG=∠DAF ,∴∠EAB+∠DAF=∠EAF . ∴∠EAF=21∠BAD .5.如图①,已知四边形ABCD ,∠EAF 的两边分别与DC 的延长线交于点F ,与CB 的延长线交于点E ,连接EF . (1)若四边形ABCD 为正方形,当∠EAF =45°时,EF 与DF 、BE 之间有怎样的数量关系?(只需直接写出结论)(2)如图②,如果四边形ABCD 中,AB =AD ,∠ABC 与∠ADC 互补,当∠EAF =12∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出结论并证明.(3)在(2)中,若BC =4,DC =7,CF =2,求△CEF 的周长(直接写出结论)解答:(1)EF=DF-BE (2)EF=DF-BE证明:如图,在DF 上截取DM=BE ,连接AM , ∵∠D+∠ABC=∠ABE+∠ABC=180° ∵D=ABE ∵AD=AB在△ADM 和△ABE 中,DM BE D ABE AD AB =⎧⎪∠=∠⎨⎪=⎩∴△ADM ≌△ABE∴AM=AE ,∠DAM=∠BAE ∵∠EAF=∠BAE+∠BAF=12∠BAD ,11∴∠DAM+∠BAF=12∠BAD ∴∠MAF=12∠BAD ∴∠EAF=∠MAF在△EAF 和△MAF 中AE AM EAF MAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴△EAF ≌△MAF∴EF=MF∵MF=DF-DM=DF-BE ,∴EF=DF-BE(3)∵EF=DF-BE∴△CEF 的周长=CE+EF+FC=BC+BE+DC+CF-BE+CF =BC+CD+2CF=15。

中考数学解题的基本模型半角模型

中考数学解题的基本模型半角模型

中考数学解题的基本模型半角模型建立模型如图,在四边形ABCD中,AB=AD,∠BAD+∠BCD=180°,点E、F分别是边BC、CD上的点,且∠EAF=1/2∠BAD.求证:EF=BE+DF.分析:要证明一条线段等于两条线段的和,我们首先想到的是"截长补短"添加辅助线.如下图,在线段EF上截取EG=EB.如果能证明线段GF=DF,则结论得证.而要证明两条线段相等,且两条线段不在同一个三角形中,可以尝试利用全等.即证明△ABE≌△AGE.通过尝试,我们发现很难证明这两个三角形全等,所以"截长"无法得到我们想要的结果.再试一试“补短”,延长CD至点G,使DG=EB.如下图:此时若能证明FG=FE,则FE=FG=FD+DG=FD+BE.结论得证.而要证明FE=FG,只需证明△AEF≌AGF即可.证明:延长FD至点G,使DG=BE.易证△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG.∴∠EAF=1/2∠BAD=∠BAE+∠FAD=∠DAG+∠FAD=∠GAF又∵AF=AF,∴△EAF≌△GAF.∴EF=GF=DF+DG=DF+BE反思:1、本题中的辅助线:延长DG=BE,也可以通过旋转来实现(实际上就是将三角形ABE绕点A逆时针旋转∠BAD的度数).需要指出的是,如果用旋转,需说明C、D、G三点共线(证明∠ADG+∠ADC=180°即可).2、题中有三个非常重要的元素:(1)∠EAF=1/2∠BAD(半角模型名称的由来);(2)AB=AD. 共端点的两条线段相等,这点尤为关键,它为下一步的旋转提供了条件.当题中出现一个角等于另一角的一半,且共端点的线段相等时,常采用旋转,将分散的条件集中起来,为下一步的证明做好铺垫. (3)对角互补.由于对角互补的存在,通过旋转,两边的两个三角形可拼成一个大三角形,进而可证明三角形全等.一、半角结构之90°与45°先来看一道题目:如图,在正方形ABCD中,点E,F分别在BC,CD上,∠EAF=45°.求证:EF=BE+DF.证明:证明:∵四边形ABCD是正方形∴AB=AD且∠ABE+∠ADF=180°将△ABE绕点A逆时针旋转90°得到△ADG,此时点C、D、G三点共线.∴∠BAE=∠DAG,AE=AG. ∵∠EAF=45°∴∠BAE+∠DAF=∠DAG+∠DAF=∠GAF=45°∴∠EAF=∠GAF. 又∵AF=AF.∴△EAF≌△GAF.∴EF=GF=DF+DG=DF+BE.模型应用1:如图,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°.BE=2cm,DF=3cm.求正方形的边长.分析:根据上题的结论可知EF=BE+DF=5.设正方形的边长为x,那么CE=x-2,CF=x-3.在Rt△CEF中,根据勾股定理得,CE^2+CF^2=EF^2,即(x-2)^2+(x-3)^2=5^2,解得,x=6.所以正方形的边长为6以上的半角结构主要发生在四边形中,再次回顾半角结构中的重要元素:(1)半角(2)邻边相等(3)对角互补. 半角模型中经常通过旋转将分散的条件集中起来,进而通过三角形的全等进行证明.在三角形中同样存在半角模型,下面以一道题为例来说明三角形中的半角模型.如图,在△ABC中,∠BAC=90°,AB=AC.点D,E是BC边上两点且∠DAE=45°求证:BD^2+CE^2=DE^2分析:看到这个结论,相信大部分同学首先想到的是勾股定理,但DE,BD,CE不在同一个三角形中.所以要想办法将他们集中在一个三角形里面,根据题中条件AB=AC,共端点的两条线段相等,可以尝试旋转.证明:因为AB=AC,且∠BAC=90°.将△ABD绕点A逆时针旋转90°得到△ACG,连接EG. 如下图:由旋转的性质可知,△ABD≌△ACG.∴AD=AG,∠BAD=∠CAG,∠ABD=∠ACG=45°.∵∠DAE=45°,∴∠BAD+∠EAC=∠CAG+∠EAC=45°∴∠DAE=∠GAE∴△DAE≌△GAE(SAS)∴DE=GE在Rt△GCE中CE^2+CG^2=GE^2∵BD=CG,DE=CG∴BD^2+CE^2=DE^2反思:对于本题,我们通过旋转将分散的条件集中起来,进而得到结论。

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)

几何图形之半角模型主题半角模型教学内容教学目标1。

掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。

2.掌握正方形的性质定理1和性质定理2。

3.正确运用正方形的性质解题。

4.通过四边形的从属关系渗透集合思想.5。

通过理解四种四边形内在联系,培养学生辩证观点.知识结构正方形的性质因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结)。

正方形性质定理1:正方形的四个角都是直角,四条边相等。

正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角.说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。

小结:(1)正方形与矩形,菱形,平行四边形的关系如上图(2)正方形的性质:①正方形对边平行。

②正方形四边相等.③正方形四个角都是直角.④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。

典型例题精讲例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG .【解析】:作GM ⊥BD,垂足为M . 由题意可知∠ADG=GDM, 则△ADG ≌△MDG . ∴DM=DA=2. AC=GM 又易知:GM=BM .而BM=BD —DM=22—2=2(2—1), ∴AG=BM=2(2—1).例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积?【解析】:过P 作EF AB ⊥于F 交DC 于E .设PF x =,则10EF x =+,1(10)2BF x =+.由222PB PF BF =+. 可得:222110(10)4x x =++. 故6x =.216256ABCD S ==.例 3. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥,•垂足为M ,AM AB =,则有EF BE DF =+,为什么?【解析】:要说明EF=BE+DF,只需说明BE=EM ,DF=FM 即可,而连结AE 、AF .只要能说明△ABE ≌△AME,△ADF ≌△AMF 即可. 理由:连结AE 、AF .由AB=AM ,AB ⊥BC ,AM ⊥EF,AE 公用, ∴△ABE ≌△AME . ∴BE=ME .同理可得,△ADF ≌△AMF .∴DF=MF .∴EF=ME+MF=BE+DF .例4.如下图E 、F 分别在正方形ABCD 的边BC 、CD 上,且45EAF ︒∠=,试说明EF BE DF =+. 【解析】:将△ADF 旋转到△ABC ,则△ADF ≌△ABG∴AF=AG ,∠ADF=∠BAG,DF=BG∵∠EAF=45°且四边形是正方形, ∴∠ADF ﹢∠BAE=45° ∴∠GAB ﹢∠BAE=45° 即∠GAE=45°∴△AEF ≌△AEG (SAS ) ∴EF=EG=EB ﹢BG=EB ﹢DF例5。

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)

几何图形之半角模型主题半角模型教学内容教学目标1。

掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。

2。

掌握正方形的性质定理1和性质定理2。

3。

正确运用正方形的性质解题。

4.通过四边形的从属关系渗透集合思想。

5。

通过理解四种四边形内在联系,培养学生辩证观点.知识结构正方形的性质因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结).正方形性质定理1:正方形的四个角都是直角,四条边相等.正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角.说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。

小结:(1)正方形与矩形,菱形,平行四边形的关系如上图(2)正方形的性质:①正方形对边平行。

②正方形四边相等。

③正方形四个角都是直角。

④正方形对角线相等,互相垂直平分,每条对角线平分一组对角.典型例题精讲例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG .【解析】:作GM ⊥BD,垂足为M . 由题意可知∠ADG=GDM , 则△ADG ≌△MDG . ∴DM=DA=2. AC=GM 又易知:GM=BM .而BM=BD-DM=22—2=2(2-1), ∴AG=BM=2(2-1).例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积?【解析】:过P 作EF AB ⊥于F 交DC 于E .设PF x =,则10EF x =+,1(10)2BF x =+.由222PB PF BF =+. 可得:222110(10)4x x =++. 故6x =.216256ABCD S ==.例3。

中考数学几何模型专题2半角模型(学生版)知识点+例题

中考数学几何模型专题2半角模型(学生版)知识点+例题

【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题02半角模型模型1:正方形中的半角模型模型2:等腰直角三角形中的半角模型典例题【例1】.(2020·山西晋中·八年级阶段练习)如图所示:已知ΔABC中,∠BAC=90°,AB=AC,在∠BAC内部作∠MAN=45°,AM、AN分别交BC于点M,N.[操作](1)将ΔABM绕点A逆时针旋转90°,使AB边与AC边重合,把旋转后点M的对应点记作点Q,得到ACQ,请在图中画出ΔACQ;(不写出画法)[探究](2)在(1)作图的基础上,连接NQ,求证:MN=NQ;[拓展](3)写出线段BM,MN和NC之间满足的数量关系,并简要说明理由.【例2】(2022·全国·九年级专题练习)折一折:将正方形纸片ABCD折叠,使边AB、AD都落在对角线AC上,展开得折痕AE、AF,连接EF,如图1.(1)∠EAF=°,写出图中两个等腰三角形:(不需要添加字母);(2)转一转:将图1中的∠EAF绕点A旋转,使它的两边分别交边BC、CD于点P、Q,连接PQ,如图2.线段BP、PQ、DQ之间的数量关系为;(3)连接正方形对角线BD,若图2中的∠P AQ的边AP、AQ分别交对角线BD于点M、点N,=;如图3,则CQBM(4)剪一剪:将图3中的正方形纸片沿对角线BD剪开,如图4.求证:BM2+DN2=MN2.【例3】(2022·江苏·八年级专题练习)问题情境在等边∠ABC的两边AB,AC上分别有两点M,N,点D为∠ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.特例探究如图1,当DM=DN时,(1)∠MDB=度;(2)MN与BM,NC之间的数量关系为;归纳证明(3)如图2,当DM≠DN时,在NC的延长线上取点E,使CE=BM,连接DE,猜想MN 与BM,NC之间的数量关系,并加以证明.拓展应用(4)∠AMN的周长与∠ABC的周长的比为.【例4】.(2020·全国·九年级专题练习)请阅读下列材料:已知:如图(1)在Rt∠ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.一、解答题1.(2022·陕西西安·七年级期末)问题背景:如图1,在四边形ABCD中AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______.。

专题02 全等模型-半角模型(解析版)

专题02 全等模型-半角模型(解析版)

专题02 全等模型-半角模型(解析版)全等模型-半角模型(解析版)全等模型是高中数学中的重要概念之一,它在几何图形的研究和证明中占据着重要地位。

而半角模型则是全等模型的一种特殊形式,在解题过程中起到简化问题的作用。

本文将深入探讨全等模型和半角模型,分析其定义、性质以及解题方法。

一、全等模型的定义与性质全等模型是指两个几何图形的各个对应部分完全相等。

当两个几何图形的所有对应角相等,对应边相等时,我们可以称这两个图形是全等的。

全等模型不仅包括了普通的三角形全等模型,还包括了平行四边形、直角三角形等特殊图形的全等模型。

全等模型的性质有以下几点:1. 全等模型的对应边和对应角相等。

2. 全等模型的对应线段相等。

3. 全等模型的对应角度相等。

二、半角模型的定义与性质半角模型是指含有一个角的两个图形,其中一个角为已知角,另一个角为未知角。

半角模型常见于求解未知角度的问题,特别是在解三角形问题时经常使用。

半角模型的性质有以下特点:1. 已知角和未知角的对应边是相等的。

2. 已知角和未知角的对应边可以通过等式关系来求解。

3. 半角模型可以通过运用角平分线的性质来简化问题。

三、全等模型与半角模型的关系全等模型包含了半角模型,因为当一个图形是全等模型时,我们可以通过已知角和对应边的关系来推导出未知角的值。

而半角模型是全等模型的一种特殊情况,它将求解未知角度的问题简化为已知角和对应边之间的关系。

在解题过程中,我们可以将全等模型转化为半角模型,通过已知条件等式的关系求解未知角度。

这种转化能够帮助我们更好地理解和解决几何问题,并且降低解题的难度。

四、利用半角模型解题的具体方法利用半角模型解题的具体方法如下:1. 根据已知条件画出给定图形,并标出已知角度和对应边。

2. 将问题转化为半角模型,确定未知角度。

3. 利用已知角度和对应边之间的关系,建立方程或等式。

4. 解方程或等式,求解未知角度的值。

5. 检验解的合理性,并进行必要的推理和证明。

半角模型(初三数学最全最详细半角模型)

半角模型(初三数学最全最详细半角模型)

几何模型07——半角模型一、正方形中夹半角模型(45°)例1.如图,已知正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°.求证:(1)EF=BE+DF;变式1.如图,已知正方形ABCD的边长为6,E,F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=MF(2)若AE=2,求FC的长.变式2.在四边形ABCD中,AD∥BC(BC>AD),∠A=∠B=90°,AB=BC=20,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.变式3.已知,正方形ABCD,M在CB延长线上,N在DC延长线上,∠MAN=45°.求证:MN=DN﹣BM.变式4.在平面直角坐标系中,已知A(x,y),点A作AB⊥y轴,垂足为B.若在x轴正半轴上取一点M,连接BM并延长至N,以BN为直角边作等腰Rt △BNE,∠BNE=90°,过点A作AF∥y轴交BE于点F,连接MF,设OM =a,MF=b,AF=c,试证明:=.例2.如图所示,过正方形ABCD的顶点A在正方形ABCD的内部作∠EAF=45°,E、F分别在BC、CD上,连接EF,作AH⊥EF于点H求证:AH=AB.变式1.已知△AMN中,∠MAN=45°,AH⊥MN于点H,且MH=3,NH=7,求AH的长.变式2.已知:如图,在正方形ABCD中,M在CB延长线上,N在DC延长线上,∠MAN=45°,AH⊥MN,垂足为H,求证:AH=AB.二、等腰直角三角形中的夹半角模型(45°)例3.已知Rt△ABC中,∠ACB=90°,AC=BC,点D、E在斜边AB上,且∠DCE=45°,证明:DE2=BE2+AD2;.变式1.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.变式2.如图,在△ABC中,AB=AC,点E,F是边BC所在直线上与点B,C不重合的两点.∠BAC=90°,∠EAF=135°,证明:EF2=EC2+BF2三、其他半角模型例4.在等边△ABC的两边AB,AC上分别有两点M,N,点D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC,DM≠DN,证明:MN=BM+NC.变式1.如图,在△ABC中,AB=AC,点E,F是边BC所在直线上与点B,C不重合的两点.∠BAC=60°,∠EAF=30°,已知BE=3,CF=5,求线段EF的长度;例5.如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD;变式1.如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD;变式2.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD.证明:EF=BE﹣FD,变式3.已知,如图,在四边形ABCD中,∠B+∠D=180°,AB=AD,E,F分别是线段BC,CD上的点,且BE+FD=EF.求证:∠EAF=∠BAD.变式4.已知△ABC中,AB=AC,∠BAC=120°.点M在BC上,点N在BC 的上方,且∠MBN=∠MAN=60°,求证:MC=BN+MN;。

初中数学几何模型之半角模型

初中数学几何模型之半角模型

数学模型-----半角模型几何是初中数学中非常重要的内容,在数学的学习过程中,若能抓住基本图形,举一反三,定能引领学生领略到“一图一世界”的风采.下面先给大家介绍一种常见的数学模型---半角模型,通过对模型的理解和掌握,把模型的结论融会贯通,理解透彻,有助于理清思路、节省大量时间,遇到这一类题型,都是可以迎刃而解的.一、模型类别二、相关结论的运用(一)等边三角形中120︒含60︒半角模型条件:△ABC是等边三角形,∠CDB =120︒,∠EDF=60︒,BD=CD,旋转△BDE至△CDG结论1:△FDE △FDG结论2:EF=BE+CF结论3:∠DEB =∠DEF典例精讲:已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E、F.(1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想AE,CF,EF之间存在怎样的数量关系?请将三条线段分别填入后面横线中:+=.(不需证明)(2)当∠MBN绕B点旋转到AE≠CF(如图2)时,上述(1)中结论是否成立?请说明理由.(3)当∠MBN绕B点旋转到AE≠CF(如图3)时,上述(1)中结论是否成立?若不成立,线段AE,CF,EF又有怎样的数量关系?请直接写出你的猜想,不需证明.【思路点拨】(1)证明△ABE≌△CBF且△BEF是等边三角形即可;(2)根据“半角”模型1,先证△BAE≌△BCG,再根据“半角”模型1中的结论2得出△GBF≌△EBF,再根据“半角”模型1中的结论3即可;(3)根据“半角”模型1,先证△BAH≌△BCF,再根据“手拉手”模型1中的结论2得出△EBF≌△EBH即可.【详解】解:(1)如图1,△ABE 和△CBF 中,AE CF BAE BCF AB CB =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBF (SAS ),∴∠CBF =∠EBA ,BE =BF ,∵∠ABC =120°,∠EBF =60°,∴△BEF 是等边三角形,CF =12B ,AE =12BE , ∴EF =BE =BF =AE+CF ;(2)如图2,延长FC 至G ,使AE =CG ,连接BG ,在△BAE 和△BCG 中,BA BC BAE BCG AE CG =⎧⎪∠=∠⎨⎪=⎩,∴△BAE ≌△BCG (SAS ),∴∠ABE =∠CBG ,BE =BG ,∵∠ABC =120°,∠EBF =60°,∴∠ABE+∠CBF =60°,∴∠CBG+∠CBF =60°,∴∠GBF =∠EBF ,在△GBF 和△EBF 中,BG BE GBF EBF BF BF =⎧⎪∠=∠⎨⎪=⎩,∴△GBF ≌△EBF (SAS ),∴EF =GF =CF+CG =CF+AE ;(3)不成立,但满足新的数量关系.如图3,在AE 上截取AH =CF ,连接BH ,在△BAH 和△BCF 中,BA BC BAH BCF AH CF =⎧⎪∠=∠⎨⎪=⎩,∴△BAH ≌△BCF (SAS ),∴BH =BF ,∠ABH =∠CBF ,∵∠EBF =60°=∠FBC+∠CBE∴∠ABH+∠CBE =60°,∵∠ABC =120°,∴∠HBE =60°=∠EBF ,在△EBF 和△HBE 中,BH BF HBE EBF BE BE =⎧⎪∠=∠⎨⎪=⎩,∴△EBF ≌△EBH (SAS ),∴EF =EH ,∴AE =EH+AE =EF+CF .【解题技法】本题典型的利用“半角”模型1,其基本思路是“旋转补短”,从而构造全等三角形.实战演练:1. 如图1,在菱形ABCD 中,AC =2,BD =AC ,BD 相交于点O .(1)求边AB 的长;(2)求∠BAC 的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD 的顶点A处,绕点A 左右旋转,其中三角板60°角的两边分别与边BC ,CD 相交于点E ,F ,连接EF .判断△AEF 是哪一种特殊三角形,并说明理由.【答案】(1)2;(2)60︒ ;(3)见详解【解析】【分析】(1)由菱形的性质得出OA=1,,根据勾股定理可得出答案; (2)得出△ABC 是等边三角形即可;(3)由△ABC 和△ACD 是等边三角形,利用ASA 可证得△ABE△△ACF ;可得AE=AF ,根据有一个角是60°的等腰三角形是等边三角形推出即可.【详解】解:(1)△四边形ABCD 是菱形,△AC△BD ,△△AOB 为直角三角形,且111,22OA AC OB BD ====△2AB ===;(2)△四边形ABCD 是菱形,△AB=BC ,由(1)得:AB=AC=BC=2,△△ABC 为等边三角形,△BAC=60°;(3)△AEF 是等边三角形,△由(1)知,菱形ABCD 的边长是2,AC=2,△△ABC 和△ACD 是等边三角形,△△BAC=△BAE+△CAE=60°,△△EAF=△CAF+△CAE=60°,△△BAE=△CAF ,在△ABE 和△ACF 中,BAE CAF AB ACEBA FCA ∠=∠⎧⎪=⎨⎪∠=∠⎩△△ABE△△ACF (ASA ),△AE=AF ,△△EAF=60°,△△AEF 是等边三角形.【点睛】本题考查了菱形的性质,全等三角形的性质和判定,等边三角形的性质以及图形的旋转.解题的关键是熟练掌握菱形的性质.2. 在平行四边形ABCD 中,点E ,F 分别在边AD ,AB 上(均不与顶点重合),且∠BCD =120°,∠ECF =60°.(1)如图1,若AB =AD ,求证:AEC BFC ≅;(2)如图2,若AB =2AD ,过点C 作CM ⊥AB 于点M ,求证:①AC ⊥BC ;②AE =2FM ;(3)如图3,若AB =3AD ,试探究线段CE 与线段CF 的数量关系.【答案】(1)证明见解析;(2)①证明见解析;②证明见解析;(3)3CE CF =,证明见解析.【解析】【分析】(1)先根据菱形的判定与性质可得60CAE ACB B ∠=∠=∠=︒,再根据等边三角形的判定与性质可得AC BC =,然后根据角的和差可得ACE BCF ∠=∠,最后根据三角形全等的判定定理即可得证;(2)①先根据平行四边形的性质可得60B ∠=︒,BC AD =,从而可得1cos 2BC B AB ==,再根据直角三角形的性质即可得证;②先根据平行线的性质、直角三角形的性质可得90,30CAE ACB BAC ∠=∠=︒∠=︒,2AC MC=,再根据角的和差可得60ACM ECF ∠=∠=︒,从而可得ACE MCF ∠=∠,然后根据相似三角形的判定与性质可得2AE AC FM MC==,由此即可得证; (3)如图(见解析),先根据平行四边形的性质可得60D B ∠=∠=︒,BC AD =,AB CD =,再根据等边三角形的判定与性质可得60BGC BCG ∠=∠=︒,BC CG =,从而可得3CD CG=,然后根据角的和差可得DCE GCF ∠=∠,最后根据相似三角形的判定与性质可得3CE CD CF CG==,由此即可得出答案. 【详解】(1)四边形ABCD 是平行四边形,AB AD =,∴四边形ABCD 是菱形,120BCD ∠=︒,60,CAE ACB B AB BC ∴∠=∠=∠=︒=,ABC ∴是等边三角形,AC BC ∴=,60ECF =︒∠,60ACE ACF ∴∠+∠=︒,又60ACB ∠=︒,即60BCF ACF ∠+∠=︒,ACE BCF ∴∠=∠,在AEC 和BFC △中,CAE B AC BC ACE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()AEC BFC ASA ∴≅;(2)①四边形ABCD 是平行四边形,120BCD ∠=︒,60B ∴∠=︒,BC AD =,//BC AD ,1cos cos 602B ∴=︒=, 2AB AD =,2AB BC ∴=,即12BC AB =, ∴在ABC 中,1cos 2BC B AB ==, ABC ∴是直角三角形,且90ACB ∠=︒,即AC BC ⊥;②90,60,//ACB B BC AD ∠=︒∠=︒,90,30CAE ACB BAC ∴∠=∠=︒∠=︒,∴在Rt ACM △中,2AC MC =,即2AC MC=, CM AB ⊥,90,60CMF ACM ∴∠=︒∠=︒,60MCF ACF ∴∠+∠=︒,60ECF =︒∠,60ACE ACF ∴∠+∠=︒,ACE MCF ∴∠=∠,在ACE 和MCF △中,90CAE CMF ACE MCF ∠=∠=︒⎧⎨∠=∠⎩, ACE MCF ∴~,2AE AC FM MC∴==, 即2AE FM =;(3)3CE CF =,证明如下:如图,在AB 上取一点G ,使得BG BC =,连接CG ,四边形ABCD 是平行四边形,120BCD ∠=︒,60D B ∴∠=∠=︒,BC AD =,AB CD =,BCG ∴是等边三角形,BC CG ∴=,60BGC BCG ∠=∠=︒,3AB AD =,33CD BC CG ∴==,即3CD CG=, 120,60BCD ECF ∠=︒∠=︒,60DCE BCF ∴∠+∠=︒,60BCF ∴∠<︒,即BCF BCG ∠<∠,∴点G 一定在点F 的左侧,60GCF BCF BCG ∴∠+∠=∠=︒,DCE GCF ∴∠=∠,在CDE △和CGF △中,60D FGC DCE GCF ∠=∠=︒⎧⎨∠=∠⎩, CDE CGF ∴~,3CE CD CF CG∴==, 即3CE CF =.【点睛】本题考查了三角形全等的判定定理、菱形的判定与性质、等边三角形的判定与性质、相似三角形的判定与性质等知识点,较难的是题(3),通过作辅助线,构造相似三角形是解题关键.(二)等腰直角三角形中90︒含45︒半角模型条件:△ABC是等腰直角三角形,∠CAB =90︒,AB=AC,∠DAE=45︒,旋转△BDE至△CDG(△BDE沿AD翻折到△ADF)结论1:△ADE≅△AFE(△ACE≅△AFE)结论2:DE2=BD2+EC2结论3:C∆CEF=BC(C∆DEF=BC)典例精讲:已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.(1)当扇形CEF绕点C在∠ACB的内部旋转时,如图①,求证:MN2=AM2+BN2;思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.请你完成证明过程:(2)当扇形CEF绕点C旋转至图②的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.【思路点拨】(1)将△ACM沿直线CE对折,得△DCM,连DN,根据“半角”模型2,证明出△CDN≌△CBN,再根据“半角”模型2的结论2即可;(2)将△ACM沿直线CE对折,得△GCM,连GN,根据“半角”模型2,证明△CGN≌△CBN,再根据“半角”模型2的结论2即可;【详解】(1)证明:将△ACM沿直线CE对折,得△DCM,连DN,则△DCM≌△ACM.有CD=CA,DM=AM,∠DCM=∠ACM,∠CDM=∠A.又由CA=CB,得CD=CB.由∠DCN=∠ECF﹣∠DCM=45°﹣∠DCM,∠BCN=∠ACB﹣∠ECF﹣∠ACM=90°﹣45°﹣∠ACM,得∠DCN=∠BCN.又CN=CN,∴△CDN≌△CBN.∴DN=BN,∠CDN=∠B.∴∠MDN=∠CDM+∠CDN=∠A+∠B=90°.∴在Rt△MDN中,由勾股定理,得MN2=DM2+DN2.即MN2=AM2+BN2.(2)关系式MN2=AM2+BN2仍然成立.证明:将△ACM沿直线CE对折,得△GCM,连GN,则△GCM≌△ACM.有CG=CA,GM=AM,∠GCM=∠ACM,∠CGM=∠CAM.又由CA=CB,得CG=CB.由∠GCN=∠GCM+∠ECF=∠GCM+45°,∠BCN=∠ACB﹣∠ACN=90°﹣(∠ECF﹣∠ACM)=45°+∠ACM.得∠GCN =∠BCN .又CN =CN ,∴△CGN ≌△CBN .有GN =BN ,∠CGN =∠B =45°,∠CGM =∠CAM =180°﹣∠CAB =135°,∴∠MGN =∠CGM ﹣∠CGN =135°﹣45°=90°.∴在Rt △MGN 中,由勾股定理,得MN 2=GM 2+GN 2.即MN 2=AM 2+BN 2.【解题技法】利用“半角”模型2,正确作出辅助线,构造直角三角形是解题的关键. 实战演练:3. 在等腰ABC 中,CA =CB ,点D ,E 在射线AB 上,不与A ,B 重合(D 在E 的左边),且∠DCE =12∠ACB . (1)如图1,若∠ACB =90°,将CAD 沿CD 翻折,点A 与M 重合,求证:MCE BCE ≅;(2)如图2,若∠ACB =120°,且以AD 、DE 、EB 为边的三角形是直角三角形,求AD EB的值; (3)∠ACB =120°,点D 在射线AB 上运动,AC =3,则AD 的取值范围为 .【答案】(1)证明见解析;(2)12或2;(3)0AD <<【解析】【分析】(1)先根据翻折的性质可得,CA CM ACD MCD =∠=∠,从而可得CM CB =,再根据角的和差可得MCE BCE ∠=∠,然后根据三角形全等的判定定理即可得证; (2)如图(见解析),先根据等腰三角形的性质可得30A B ==︒∠∠,再根据翻折的性质可得,30DF AD CFD A =∠=∠=︒,然后根据三角形全等的判定定理与性质可得,30EF EB CFE B =∠=∠=︒,从而可得60DFE ∠=︒,最后根据直角三角形的定义分90EDF ∠=︒和90DEF ∠=︒两种情况,分别利用余弦三角函数即可得; (3)先判断出AD 取得最大值时点D 的位置,再利用余弦三角函数求解即可得.【详解】(1)由翻折的性质得:,CA CM ACD MCD =∠=∠,CA CB =,CM CB ∴=,190,2ACB DCE ACB ∠=︒∠=∠, 45MCD MCE DCE ∴∠+∠=∠=︒,45ACD BCE ACB DCE ∠+∠=∠-∠=︒, MCE BCE ∠=∠∴,在MCE 和BCE 中,CM CB MCE BCE CE CE =⎧⎪∠=∠⎨⎪=⎩,()MCE BCE SAS ≅∴;(2)如图,将ACD △沿CD 翻折,点A 与F 重合,连接EF ,,120ACB CA CB ∠==︒,30A B ∴∠=∠=︒,由翻折的性质得:,30DF AD CFD A =∠=∠=︒,同(1)的方法可证:FCE BCE ≅,,30EF EB CFE B ∴=∠=∠=︒,60CFD DFE CFE =∠+∴=∠∠︒,以AD 、DE 、EB 为边的三角形是直角三角形,∴以DF 、DE 、EF 为边的三角形是直角三角形,即DEF 是直角三角形, 因此分以下两种情况:①当90EDF ∠=︒时,在Rt DEF △中,1cos 2cos 60DF DFE EF ∠==︒=, 则12AD DF EB EF ==, ②当90DEF ∠=︒时,在Rt DEF △中,1cos 2cos 60EF DFE DF ∠==︒=, 则12EB EF AD DF ==, 即2AD EB =, 综上,AD EB 的值为12或2;(3),120ACB CA CB ∠==︒,30A B ∴∠=∠=︒,如图,当点D 在射线AB 上运动至CA CD ⊥的位置时,在Rt ACD △中,cos AC A AD =,即3cos302AD ︒==, 解得AD =120ACB ∠=︒,1209030BCD ACB ACD ∴∠=∠-∠=︒-︒=︒,1602DCE ACB ∠=∠=︒, 30BCE DCE BCD ∴∠=∠-∠=︒,30BCE B ∴∠=∠=︒,//∴AB CE ,要使点E 在射线AB 上,且点D 在E 的左边,则AD <即AD 的取值范围为0AD <<,故答案为:0AD <<.【点睛】本题考查了翻折的性质、三角形全等的判定定理与性质、等腰三角形的性质、余弦三角函数等知识点,较难的是题(3),正确判断出AD 取得最大值时点D 的位置是解题关键.(三)正方形中90︒含45︒半角模型条件:正方形ABCD 中,∠MAN =45︒ ,旋转△ABF 至△AND ;结论1:△AFM ≅△AMN结论2: MN=BM+DN(MN=DN-BM)结论3:C ∆MCN =2AB ;结论4: AMN ABM ADN S S S =+(AMN ADN ABM S S S =-)典例精讲:(1)(发现证明)如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且∠EAF =45°,求证:EF =DF+BE .小明发现,当把△ABE 绕点A 顺时针旋转90°至△ADG ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)(类比引申)①如图2,在正方形ABCD中,如果点E,F分别是CB,DC延长线上的动点,且∠EAF=45°,则(1)中的结论还成立吗?请写出证明过程.②如图3,如果点E,F分别是BC,CD延长线上的动点,且∠EAF=45°,则EF,BE,DF之间的数量关系是(不要求证明)(3)(联想拓展)如图1,若正方形ABCD的边长为6,AE=AF的长.【思路点拨】(1)(发现证明)根据“半角”模型3,证明出△EAF≌△GAF,再根据“半角”模型3的结论2即可得证;(2)(类比引申)①根据“半角”模型3,证明出△EAF≌△GAF,再根据“半角”模型3的结论2即可得证;②根据“半角”模型3,证明△AFE≌△ANE,再根据“半角”模型3的结论2即可得证;(3)(联想拓展)求出DG=2,设DF=x,则根据“半角”模型3的结论2得出EF=DG=x+3,CF=6﹣x,在Rt△EFC中,得出关于x的方程,解出x则可得解.【详解】(1)(发现证明)证明:把△ABE绕点A顺时针旋转90°至△ADG,如图1,∴∠BAE=∠DAG,AE=AG,∵∠EAF=45°,∴∠BAE+∠FAD=45°,∴∠DAG+∠FAD=45°,∴∠EAF=∠FAG,∵AF=AF,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=DF+BE;(2)(类比引申)①不成立,结论:EF=DF﹣BE;证明:如图2,将△ABE绕点A顺时针旋转90°至△ADM,∴∠EAB=∠MAD,AE=AM,∠EAM=90°,BE=DM,∴∠FAM=45°=∠EAF,∵AF=AF,∴△EAF≌△MAF(SAS),∴EF=FM=DF﹣DM=DF﹣BE;②如图3,将△ADF绕点A逆时针旋转90°至△ABN,∴AN=AF,∠NAF=90°,∵∠EAF=45°,∴∠NAE=45°,∴∠NAE=∠FAE,∵AE=AE,∴△AFE≌△ANE(SAS),∴EF=EN,∴BE=BN+NE=DF+EF.即BE=EF+DF.故答案为:BE=EF+DF.(3)(联想拓展)解:由(1)可知AE=AG=3,∵正方形ABCD的边长为6,∴DC=BC=AD=6,∴3DG===∴BE=DG=3,∴CE=BC﹣BE=6﹣3=3,设DF=x,则EF=DG=x+3,CF=6﹣x,在Rt△EFC中,∵CF2+CE2=EF2,∴(6﹣x)2+32=(x+3)2,解得:x=2.∴DF=2,∴AF==【解题技法】“半角”模型3,常与旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,将分散的条件集中起来,将隐秘的关系显现出来.实战演练:4. 思维探索:在正方形ABCD中,AB=4,∠EAF的两边分别交射线CB,DC于点E,F,∠EAF=45°.(1)如图1,当点E,F分别在线段BC,CD上时,△CEF的周长是;(2)如图2,当点E,F分别在CB,DC的延长线上,CF=2时,求△CEF的周长;拓展提升:如图3,在Rt△ABC中,∠ACB=90°,CA=CB,过点B作BD⊥BC,连接AD,在BC的延长线上取一点E,使∠EDA=30°,连接AE,当BD=2,∠EAD=45°时,请直接写出线段CE的长度.【答案】思维探索:(1)8;(2)12;拓展提升:CE﹣1.【解析】【分析】思维探索:(1)利用旋转的性质,证明△AGE≌△AFE即可;(2)把△ABE绕点A逆时针旋转90°到AD,交CD于点G,证明△AEF≌△AGF 即可求得EF=DF﹣BE;拓展提升:如图3,过A作AG⊥BD交BD的延长线于G,推出四边形ACBG是矩形,得到矩形ACBG是正方形,根据正方形的性质得到AC=AG,∠CAG=90°,在BG上截取GF=CE,根据全等三角形的性质得到AE=AF,∠EAC=∠F AG,∠ADF=∠ADE=30°,解直角三角形得到DE=DF=4,BE=CE=x,则GF=CE=x,BC=BG=﹣x,根据线段的和差即可得到结论.【详解】思维探索:(1)如图1,将△ADF绕点A顺时针旋转90°得到△ABG,∴GB=DF,AF=AG,∠BAG=∠DAF,∵四边形ABCD为正方形,∴∠BAD=90°,∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠BAG+∠BAE=45°=∠EAF,在△AGE和△AFE中AG AFGAE EAF AE AE=⎧⎪∠=∠⎨⎪=⎩∴△AGE≌△AFE(SAS),∴GE=EF,∵GE=GB+BE=BE+DF,∴EF=BE+DF,∴△CEF的周长=CE+CF+EF=CE+BE+DF+CF=BC+CD=8,故答案为:8;(2)如,2,把△ABE绕点A逆时针旋转90°到AD,交CD于点G,同(1)可证得△AEF≌△AGF,∴EF=GF,且DG=BE,∴EF=DF﹣DG=DF﹣BE,∴△CEF的周长=CE+CF+EF=CE+CF+DF﹣BE=BC+DF+CF=4+4+2+2=12;拓展提升:如图3,过A作AG⊥BD交BD的延长线于G,∵BD⊥BC,∠ACB=90°,∴∠ACB=∠CBG=∠G=90°,∴四边形ACBG是矩形,∵AC=BC,∴矩形ACBG是正方形,∴AC=AG,∠CAG=90°,在BG上截取GF=CE,∴△AEC≌△AGF(SAS),∴AE=AF,∠EAC=∠F AG,∵∠EAD=∠BAC=∠GAB=45°,∴∠DAF=∠DAE=45°,∵AD=AD,∴△ADE≌△ADF(SAS),∴∠ADF=∠ADE=30°,∴∠BDE=60°,∵∠DBE=90°,BD=2,∴DE=DF=4,BE=设CE=x,则GF=CE=x,BC=BG=x,∴DG=x,∴DG﹣FG=DF,即x﹣x=4,∴x﹣1,∴CE1.【点睛】本题以正方形为背景,结合旋转,三角形全等,解直角三角形进行综合性考查,熟知常见的全等模型,旋转性质,三角形的判定及性质,正方形,矩形的性质是解题的关键.5. (1)如图,在正方形ABCD 中,∠FAG=45°,请直接写出DG,BF 与FG 的数量关系,不需要证明.(2)如图,在Rt△ABC 中,∠BAC=90°,AB=AC,E,F 分别是BC 上两点,∠EAF=45°,①写出BE,CF,EF 之间的数量关系,并证明.②若将(2)中的△AEF 绕点A 旋转至如图所示的位置,上述结论是否仍然成立?若不成立,直接写出新的结论,无需证明.S(3)如图,△AEF 中∠EAF=45°,AG⊥EF 于G,且GF=2,GE=3,则AEF= .【答案】(1)FG=BF+DG;(2)①EF2=BE2+FC2,理由见解析;②仍然成立;(3)15【解析】【分析】(1)把△AGD绕点A逆时针旋转90°至△ABP,可使AD与AB重合,再证明△AFG≌△AFP进而得到PF=FG,即可得FG=BF+DG;(2)①根据△AFC绕点A顺时针旋转90°得到△AGB,根据旋转的性质,可知△ACF≌△ABG得到BG=FC,AG=AF,∠C=∠ABG,∠FAC=∠GAB,根据Rt△ABC中的AB=AC得到∠GBE=90°,所以GB2+BE2=GE2,证△AGE≌△AFE,利用EF=EG得到EF2=BE2+FC2;②将△ABE绕点A逆时针旋转使得AB与AD重合,点E的对应点是G,同上的方法证得GC2+CF2=FG2,再设法利用SAS证得△AFG≌△AFE即可求解;(3)将△AEG沿AE对折成△AEB,将△AFG沿AF对折成△AFD,延长BE、DF相交于C,构成正方形ABCD,在Rt△EFC中,利用勾股定理求得正方形的边长,即可求得AG的长,从而求得答案.【详解】(1)∵四边形ABCD为正方形,∴AB=AD,∠ADC=∠ABC=90°,∴把△AGD绕点A逆时针旋转90°至△ABP,使AD与AB重合,∴∠BAP=∠DAG ,AP= AG ,∵∠BAD=90°,∠FAG=45°,∴∠BAF+∠DAG=45°,∴∠PAF=∠FAG=45°,∵∠ADC=∠ABC=90°,∴∠FBP=180°,点F 、B 、P 共线,在△AFG 和△AFP 中,AG AP FAG FAP AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AFG ≌△AFP (SAS ),∴PF=FG ,即:FG=BF+DG ;(2)①FC 2+BE 2=EF 2,证明如下:∵AB=AC ,∠BAC=90°,∴∠C=∠ABC=45°,将△AFC 绕点A 顺时针旋转90°得到△AGB ,∴△ACF ≌△ABG ,∴BG=FC ,AG=AF ,∠C=∠ABG=45°,∠FAC=∠GAB ,∴∠GBE=∠ABG +∠ABC =90°,∴GB 2+BE 2=GE 2,又∵∠EAF=45°,∴∠BAE+∠FAC=45°,∴∠GAB+∠BAE=45°,即∠GAE=45°,在△AGE 和△AFE 中,GA FA EAG EAF AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△AGE ≌△AFE (SAS ),∴GE=EF ,∴FC 2+BE 2=EF 2;②仍然成立,理由如下:如图,将△ABE 绕点A 逆时针旋转使得AB 与AD 重合,点E 的对应点为点G ,∴△ACG ≌△ABE ,∴CG=BE ,AG=AE ,∠ACG=∠ABE=45°,∠BAE=∠CAG ,∴∠GCB=∠ACB +∠ACG =90°,即∠GCF=90°,∴GC 2+CF 2=FG 2,∵∠BAE+∠EAC=∠BAC=90°,∴∠CAG+∠EAC=90°,又∵∠EAF=45°,∴∠GAF=90°-∠EAF=45°,∴∠GAF=∠EAF=45°,在△AFG 和△AFE 中,GA EA GAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AFG ≌△AFE (SAS ),∴GF=EF ,∴FC 2+BE 2=EF 2;(3)将△AEG 沿AE 对折成△AEB ,将△AFG 沿AF 对折成△AFD ,延长BE 、DF 相交于C ,∴△AEG ≅△AEB ,△AFG ≅△AFD ,∴AB=AG=AD ,BE=EG=3,DF=FG=2,∠EAG=∠EAB ,∠FAG=∠FAD ,∠B=∠D=90°,∵∠EAF=45°,∴∠EAB+∠FAD=∠EAG+∠FAG=∠EAF=45°,∴∠BAD=90°,∴四边形ABCD 为正方形,设AG =x ,则AB=BC=CD=x ,在Rt △EFC 中,EF=3+2=5,EC=BC-BE=3x -,FC=CD-DF= 2x -, ∴222FC EC EF +=,故()()2222?35x x -+-=, 解得:11x =-(舍去),26x =,∴AG=6,∴AEF 115615 22S EF AG==⨯⨯=.故答案为:15.【点睛】本题主要考查了旋转的性质,折叠的性质,正方形的性质,全等三角形的判定与性质,勾股定理,三角形的面积等知识,同时考查了学生的阅读理解能力与知识的迁移能力,综合性较强,难度适中.(四)等边三角形中60︒含30︒半角模型条件:△ABC是等边三角形,∠DAE =30︒,旋转△ABD至△ACF;结论1:△ADE≅△AFE结论2:∠ECF =120︒结论3:C∆ECF=AB;典例精讲:转前后的线段之间、角之间的关系进行了探究.(一)尝试探究如图1所示,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分别在线段BC、CD上,∠EAF=30°,连接EF.(1)如图2所示,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF=度,线段BE、EF、FD之间的数量关系为.(2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.(二)拓展延伸如图4,在等边△ABC中,E、F是边BC上的两点,∠EAF=30°,BE=1,将△ABE绕点A逆时针旋转60°得到△A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点N,过点A 作AM⊥BC于点M,连接MN,求线段MN的长度.【思路点拨】(一)(1)(发现证明)根据“半角”模型4,证明出△AEF≌△AE′F,进而根据线段的和差关系得出结论;(2)先在BE上截取BG=DF,连接AG,根据“半角”模型4,判定△GAE≌△FAE,根据线段的和差关系得出结论;(二)先根据“半角”模型4,判定△AEE′是等边三角形,进而得到AN AMAE AB=和∠BAE=∠MAN,最后判定△BAE∽△MAN,并根据相似三角形对应边成比例,列出比例式求得MN的长.解:(一)(1)将△ABE绕点A逆时针旋转60°后得到△A′B′E′,则∠BAE=∠DAE',BE=DE′,AE=AE′,∵∠BAD=60°,∠EAF=30°,∴∠BAE+∠DAF=30°,∴∠DAE'+∠DAF=30°,即∠FAE′=30°∴∠EAF=∠FAE′,在△AEF和△AE′F中,AE AEEAF E AF AF AF''⎧=⎪∠=∠⎨⎪=⎩,∴△AEF≌△AE′F(SAS),∴EF=E′F,即EF=DF+DE′,∴EF=DF+BE,即线段BE、EF、FD之间的数量关系为BE+DF=EF,故答案为:30,BE+DF=EF;(2)如图3,BE上截取BG=DF,连接AG,在△ABG和△ADF中,AB ADABE ADF BG DF=⎧⎪∠=∠⎨⎪=⎩,∴△ABG≌△ADF(SAS),∴∠BAG=∠DAF,且AG=AF,∵∠DAF+∠DAE=30°,∴∠BAG+∠DAE=30°,∵∠BAD=60°,∴∠GAE=60°﹣30°=30°,∴∠GAE=∠FAE,在△GAE和△FAE中,AG AFGAE FAE AE AE=⎧⎪∠=∠⎨⎪=⎩,∴△GAE≌△FAE(SAS),∴GE=FE,又∵BE﹣BG=GE,BG=DF,∴BE﹣DF=EF,即线段BE、EF、FD之间的数量关系为BE﹣DF=EF;(二)如图4,将△ABE绕点A逆时针旋转60°得到△A′B′E′,则AE=AE′,∠EAE′=60°,∴△AEE′是等边三角形,又∵∠EAF=30°,∴AN平分∠EAE',∴AN⊥EE′,∴RtANE中,ANAE=∵在等边△ABC中,AM⊥BC,∴∠BAM =30°,∴AM AB =BAE+∠EAM =30°, ∴AN AM AE AB=, 又∵∠MAN+∠EAM =30°,∴∠BAE =∠MAN ,∴△BAE ∽△MAN ,∴MN AN BE AB =,即MN 1=,∴MN 【解题技法】根据“半角”模型,对图形进行分解、组合,抓住图形旋转前后的对应边相等,一般解题方法为作辅助线构造全等三角形或相似三角形.实战演练:6. (1)问题背景:如图1:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E 、F 分别是BC ,CD 上的点且∠EAF =60°,探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G .使DG =BE .连结AG ,先证明ABE ADG ≅△△,再证明AEF AGF ≅△△,可得出结论,他的结论应是 ;(2)探索延伸:如图2,若在四边形ABCD 中,AB =AD ,∠B+∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD ,上述结论 仍然成立(填“是”或“否”); (3)结论应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E 、F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.(4)能力提高:如图4,等腰直角三角形ABC 中,∠BAC =90°,AB =AC ,点M ,N 在边BC 上,且∠MAN =45°.若BM =1,CN =3,则MN 的长为 .【答案】(1)BE FD EF +=;(2)是;(3)210海里;(4【解析】【分析】(1)先根据三角形全等的判定定理与性质可得,,BE DG AE AG BAE DAG ==∠=∠,再根据角的和差可得EAF GAF ∠=∠,然后根据三角形全等的判定定理与性质可得EF GF =,最后根据线段的和差、等量代换即可得;(2)如图(见解析),先根据三角形全等的判定定理与性质可得,,BE DM AE AM BAE DAM ==∠=∠,再根据角的和差可得EAF MAF ∠=∠,然后根据三角形全等的判定定理与性质可得EF MF =,最后根据线段的和差、等量代换即可得;(3)先根据方位角的定义、角的和差分别求出140,70,180AOB EOF A OBC ∠=︒∠=︒∠+∠=︒,从而可得12EOF AOB ∠=∠,再根据航行速度与时间分别求出90AE =海里,120BF =海里,然后利用题(2)的结论即可得;(4)过点C 作CE ⊥BC,垂足为点C ,截取CE,使CE=BM.连接AE 、EN,根据(2)中的结论计算即可.【详解】(1)在ABE △和ADG 中,90AB AD B ADG BE DG =⎧⎪∠=∠=︒⎨⎪=⎩()ABE ADG SAS ∴≅,,BE DG AE AG BAE DAG ∴==∠=∠120,60BAD EAF ∠=︒∠=︒60BAE DAF ∴∠+∠=︒60DAG DAF ∴∠+∠=︒,即60GAF =︒∠60EAF GAF ∴∠=∠=︒在AEF 和AGF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩()AEF AGF SAS ∴≅EF GF ∴=DG FD GF +=BE FD EF ∴+=故答案为:BE FD EF +=;(2)是,证明如下:如图,延长CD 至点M ,使得DM BE =180B ADF ∠+∠=︒,180ADM ADF ∠+∠=︒B ADM ∴∠=∠在ABE △和ADM △中,AB AD B ADM BE DM =⎧⎪∠=∠⎨⎪=⎩()ABE ADM SAS ∴≅,,BE DM AE AM BAE DAM ∴==∠=∠12EAF BAD ∠=∠ 12BAE DAF BAD EAF BAD ∴∠+∠=∠-∠=∠ 12DAM DAF BAD ∴∠+∠=∠,即12MAF BAD ∠=∠ EAF MAF ∴∠=∠在AEF 和AMF 中,AE AM EAF MAF AF AF =⎧⎪∠=∠⎨⎪=⎩()AEF AMF SAS ∴≅EF MF ∴=DM FD MF +=BE FD EF ∴+=故答案为:是;(3)如图,延长AE 、BF ,相交于点C ,连接EF ,过点B 作BN x ⊥轴于点N 由题意得:30,907020,,70AOG BOD OA OB EOF ∠=︒∠=︒-︒=︒=∠=︒ 309020140AOB AOG DOG BOD ∴∠=∠+∠+∠=︒+︒+︒=︒,70OBN ∠=︒12∴∠=∠EOF AOB 舰艇甲从A 处向正东方向以45海里/小时的速度航行2小时至E 处//AE x ∴轴,45290AE =⨯=(海里)90AGO ∴∠=︒9060A AOG ∴∠=︒-∠=︒舰艇乙从B 处沿北偏东50︒的方向以60海里/小时的速度航行2小时至F 处 50NBD ∴∠=︒,602120BF =⨯=(海里)120OBC OBN NBD ∴∠=∠+∠=︒60120180A OBC ∴∠+∠=︒+︒=︒则由(2)的结论可得:90120210EF AE BF =+=+=(海里)故此时两舰艇之间的距离为210海里;(4)过点C 作CE ⊥BC,垂足为点C,截取CE ,使CE=BM.连接AE 、EN,由(2)可知,CE=BM=1, NE=MN,= .∴MN=,故答案为:【点睛】本题考查了全等三角形的判定和性质、勾股定理的运用、等腰直角三角形的性质,题目的综合性较强,难度较大,解题的关键是正确的作出辅助线构造全等三角形,解答时,注意类比思想的应用.。

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)

几何图形之半角模型主题半角模型教学内容教学目标1。

掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系.2.掌握正方形的性质定理1和性质定理2。

3.正确运用正方形的性质解题。

4。

通过四边形的从属关系渗透集合思想。

5.通过理解四种四边形内在联系,培养学生辩证观点。

知识结构正方形的性质因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结)。

正方形性质定理1:正方形的四个角都是直角,四条边相等.正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。

说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。

小结:(1)正方形与矩形,菱形,平行四边形的关系如上图(2)正方形的性质:①正方形对边平行。

②正方形四边相等.③正方形四个角都是直角。

④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。

典型例题精讲例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG .【解析】:作GM ⊥BD ,垂足为M . 由题意可知∠ADG=GDM, 则△ADG ≌△MDG . ∴DM=DA=2. AC=GM 又易知:GM=BM .而BM=BD-DM=22—2=2(2-1), ∴AG=BM=2(2-1).例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积?【解析】:过P 作EF AB ⊥于F 交DC 于E .设PF x =,则10EF x =+,1(10)2BF x =+.由222PB PF BF =+. 可得:222110(10)4x x =++. 故6x =.216256ABCD S ==.例3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半角模型已知如图:①∠2=12∠AOB ;②OA =OB .连接FB ,将△FOB 绕点O 旋转至△FOA 的位置,连接F ′E ,FE ,可得△OEF ≌△OEF ′模型分析∵△OBF ≌△OAF ′,∴∠3=∠4,OF =OF ′.∴∠2=12∠AOB ,∴∠1+∠3=∠2∴∠1+∠4=∠2又∵OE 是公共边,∴△OEF ≌△OEF ′.(1)半角模型的命名:存在两个角度是一半关系,并且这两个角共顶点;(2)通过先旋转全等再轴对称全等,一般结论是证明线段和差关系;(3)常见的半角模型是90°含45°,120°含60°.模型实例例1已知,正方形ABCD 中,∠MAN=45°,它的两边分别交线段CB 、DC 于点M 、N .(1)求证:BM+DN=MN .(2)作AH ⊥MN 于点H ,求证:AH=AB .证明:(1)延长ND 到E ,使DE=BM ,∵四边形ABCD 是正方形,∴AD=AB .在△ADE 和△ABM 中,⎪⎩⎪⎨⎧=∠=∠=BM DE B ADE AB AD ∴△ADE ≌△ABM .∴AE=AM ,∠DAE=∠BAM∵∠MAN=45°,∴∠BAM+∠NAD=45°.∴∠MAN=∠EAN=45°.在△AMN 和△AEN 中,⎪⎩⎪⎨⎧=∠=∠=AN AN EAN MAN EA MA ∴△AMN ≌△AEN .∴MN=EN .∴BM+DN=DE+DN=EN=MN.(2)由(1)知,△AMN ≌△AEN .∴S △AMN =S △AEN .即EN AD 21MN AH 21⋅=⋅.又∵MN=EN ,∴AH=AD .即AH=AB .例2在等边△ABC的两边AB、AC上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在线段AB、AC上移动时,BM、NC、MN之间的数量关系.(1)如图①,当DM=DN时,BM、NC、MN之间的数量关系是_______________;(2)如图②,当DM≠DN时,猜想(1)问的结论还成立吗?写出你的猜想并加以证明.图①图②解答(1)BM、NC、MN之间的数量关系是BM+NC=MN.(2)猜想:BM+NC=MN.证明:如图③,延长AC至E,使CE=BM,连接DE.∵BD=CD,且∠BDC=120°,∴∠DBC=∠DCB=30°.又∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∴∠MBD=∠NCD=90°.在△MBD与△ECD中,∵DB=DC,∠DBM=∠DCE=90°,BM=CE,∴△MBD≌△ECD(SAS).∴DM=DE,∠BDM=∠CDE.∴∠EDN=∠BDC-∠MDN=60°.在△MDN和△EDN中,∵MD=ED,∠MDN=∠EDN=60°,DN=DN,∴△MDN≌△EDN(SAS).∴MN=NE=NC+CE=NC+BM.图③例3如图,在四边形ABCD 中,∠B+∠ADC=180°,AB=AD ,E 、F 分别是BC 、CD 延长线上的点,且∠EAF=21∠BAD .求证:EF=BE-FD.证明:在BE 上截取BG ,使BG=DF ,连接AG .∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF .在△ABG 和△ADF 中,⎪⎩⎪⎨⎧=∠=∠=DF BG ADF B AD AB ∴△ABG ≌△ADF (SAS ).∴∠BAG=∠DAF ,AG=AF .∴∠GAF=∠BAD .∴∠EAF=21∠BAD=21∠GAF .∴∠GAE=∠EAF .在△AEG 和△AEF 中,⎪⎩⎪⎨⎧=∠=∠=AE AE FAE GAE AF AG ∴△AEG ≌△AEF (SAS ).∴EG=EF .∵EG=BE-BG ,∴EF=BE-FD.跟踪练习:1.已知,正方形ABCD ,M 在CB 延长线上,N 在DC 延长线上,∠MAN=45°.求证:MN=DN-BM.【答案】证明:如图,在DN 上截取DE=MB ,连接AE ,∵四边形ABCD 是正方形,∴AD=AB ,∠D=∠ABC=90°.在△ABM 和△ADE 中,⎪⎩⎪⎨⎧=∠=∠=DE BM ABM D AB AD ∴△ABM ≌△ADE .∴AM=AE ,∠MAB=∠EAD .∵∠MAN=45°=∠MAB+∠BAN ,∴∠DAE+∠BAN=45°.∴∠EAN=90°-45°=45°=∠MAN .在△AMN 和△AEN 中,⎪⎩⎪⎨⎧=∠=∠=AN AN EAN MAN AE AM∴MN=EN.∵DN-DE=EN.∴DN-BM=MN.2.已知,如图①在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°,探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D使问题得到解决.请你参考小明的思路探究并解决以下问题:(1)猜想BD、DE、EC三条线段之间的数量关系式,并对你的猜想给予证明;(2)当动点E在线段BC上,动点D运动到线段CB延长线上时,如图②,其他条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.图①图②【答案】解答:(1)猜想:DE2=BD2+EC2.证明:将△AEC绕点A顺时针旋转90°得到△ABE′,如图①∴△ACE≌△ABE′.∴BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB.在Rt△ABC中,∵AB=AC,∴∠ABC=∠ACB=45°.∴∠ABC+∠ABE′=90°,即∠E′BD=90°.∴E′B2+BD2=E′D2.又∵∠DAE=45°,∴∠BAD+∠EAC=45°.∴∠E′AB+∠BAD=45°,即∠E′AD=45°.∴DE=DE′.∴DE2=BD2+EC2.图①(2)结论:关系式DE2=BD2+EC2仍然成立.证明:作∠FAD=∠BAD,且截取AF=AB,连接DF,连接FE,如图②∴△AFD≌△ABD.∴FD=DB,∠AFD=∠ABD.又∵AB=AC,∴AF=AC.∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)=90°-(45°-∠DAB)=45°+∠DAB,∴∠FAE=∠CAE.又∵AE=AE,∴△AFE≌△ACE.∴FE=EC,∠AFE=∠ACE=45°.∠AFD=∠ABD=180°-∠ABC=135°.∴∠DFE=∠AFD-∠AFE=135°-45°=90°.在Rt△DFE中,DF2+FE2=DE2.即DE2=BD2+EC2.图②3.已知,在等边△ABC中,点O是边AC、BC的垂直平分线的交点,M、N分别在直线AC、BC上,且∠MON=60°.(1)如图①,当CM=CN时,M、N分别在边AC、BC上时,请写出AM、CN、MN三者之间的数量关系;(2)如图②,当CM≠CN时,M、N分别在边AC、BC上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;(3)如图③,当点M在边AC上,点N在BC的延长线上时,请直接写出线段AM、CN、MN三者之间的数量关系.图①图②图③【答案】结论:(1)AM=CN+MN;如图①图①(2)成立;证明:如图②,在AC上截取AE=CN,连接OE、OA、OC.∵O是边AC、BC垂直平分线的交点,且△ABC为等边三角形,∴OA=OC,∠OAE=∠OCN=30°,∠AOC=120°.又∵AE=CN,∴△OAE≌△OCN.∴OE=ON,∠AOE=∠CON.∴∠EON=∠AOC=120°.∵∠MON=60°,∴∠MOE=∠MON=60°.∴△MOE≌△MON.∴ME=MN.∴AM=AE+ME=CN+MN.图②(3)如图③,AM=MN-CN.图③4.如图,在四边形ABCD 中,∠B+∠D=180°,AB=AD ,E 、F 分别是线段BC 、CD 上的点,且BE+FD=EF .求证:∠EAF=21∠BAD.【答案】证明:如图,把△ADF 绕点A 顺时针旋转∠DAB 的度数得到△ABG ,AD 旋转到AB ,AF 旋转到AG ,∴AG=AF ,BG=DF ,∠ABG=∠D ,∠BAG=∠DAF .∵∠ABC+∠D=180°,∴∠ABC+∠ABG=180°.∴点G 、B 、C 共线.∵BE+FD=EF ,∴BE+BG=GE=EF .在△AEG 和△AEF 中,⎪⎩⎪⎨⎧===EF EG AE AE AF AG ∴△AEG ≌△AEF .∴∠EAG=∠EAF .∴∠EAB+∠BAG=∠EAF .又∵∠BAG=∠DAF ,∴∠EAB+∠DAF=∠EAF .∴∠EAF=21∠BAD .5.如图①,已知四边形ABCD ,∠EAF 的两边分别与DC 的延长线交于点F ,与CB 的延长线交于点E ,连接EF .(1)若四边形ABCD 为正方形,当∠EAF =45°时,EF 与DF 、BE 之间有怎样的数量关系?(只需直接写出结论)(2)如图②,如果四边形ABCD 中,AB =AD ,∠ABC 与∠ADC 互补,当∠EAF =12∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出结论并证明.(3)在(2)中,若BC =4,DC =7,CF =2,求△CEF的周长(直接写出结论)解答:(1)EF=DF-BE(2)EF=DF-BE证明:如图,在DF 上截取DM=BE ,连接AM ,∵∠D+∠ABC=∠ABE+∠ABC=180°∵D=ABE∵AD=AB在△ADM 和△ABE 中,DM BE D ABE AD AB =⎧⎪∠=∠⎨⎪=⎩∴△ADM ≌△ABE∴AM=AE ,∠DAM=∠BAE∵∠EAF=∠BAE+∠BAF=12∠BAD ,11∴∠DAM+∠BAF=12∠BAD∴∠MAF=12∠BAD∴∠EAF=∠MAF在△EAF 和△MAF 中AE AMEAF MAF AF AF=⎧⎪∠=∠⎨⎪=⎩∴△EAF ≌△MAF∴EF=MF∵MF=DF-DM=DF-BE ,∴EF=DF-BE(3)∵EF=DF-BE∴△CEF 的周长=CE+EF+FC=BC+BE+DC+CF-BE+CF=BC+CD+2CF=15。

相关文档
最新文档