形状记忆合金及应用
形状记忆合金的机理及其应用
形状记忆合金的机理及其应用【摘要】形状记忆合金是一种能够记忆其原始形状并在适当条件下恢复的智能材料。
本文首先介绍了形状记忆合金的基本原理,包括其特殊的晶体结构和相变特性。
接着探讨了形状记忆合金在医疗器械和航空航天领域的广泛应用,如支架和航天器构件。
也介绍了形状记忆合金在智能材料中的应用,如自修复材料和智能纺织品。
文章总结了形状记忆合金的前景及发展趋势,指出其在未来有望在更多领域发挥重要作用,并可能带来更多创新和应用。
形状记忆合金的机理及其应用具有广阔的发展前景,将为科技领域带来更多新的可能性和机遇。
【关键词】形状记忆合金,机理,应用领域,医疗器械,航空航天,智能材料,前景,发展趋势1. 引言1.1 形状记忆合金的机理及其应用形状记忆合金是一种具有特殊性能的金属材料,其最显著的特点就是可以记忆其固有的形状并在外界条件发生变化时恢复到原来的形状。
这种特殊性能的机理主要是由于形状记忆合金内部的晶体结构和相变特性所决定的。
当形状记忆合金处于低温状态时,其晶体结构呈现出一种特定的形状;而当受热或外力作用时,形状记忆合金会发生相变,晶体结构重新排列,从而使材料发生形状变化。
形状记忆合金的应用领域非常广泛,包括医疗器械、航空航天、智能材料等。
在医疗器械领域,形状记忆合金可以被用于制作支架、植入物等医疗器械,因其具有良好的生物相容性和机械性能,可以有效帮助医生进行手术或治疗。
在航空航天领域,形状记忆合金可以被用于制作航空器件、航天器件等,因其轻便、耐高温等特点,可以大大提高航空航天设备的性能。
在智能材料领域,形状记忆合金可以被用于制作智能材料,可以根据外界条件变化自动改变形状,具有广阔的应用前景。
形状记忆合金的发展趋势是不断完善其性能,拓展其应用领域,推动其在工业生产和科研领域的广泛应用。
形状记忆合金将会在未来发挥越来越重要的作用,为人类社会的发展做出更大的贡献。
2. 正文2.1 形状记忆合金的基本原理形状记忆合金是一种具有特殊结构和性能的智能材料,其基本原理是在外界作用下能够发生可逆形变,并且恢复到其原始形状。
形状记忆合金的制备及应用
形状记忆合金的制备及应用形状记忆合金是一种特殊的材料,具有记忆形状的能力。
它可以在预设的温度范围内自动形变,主要是由于合金中的晶格结构发生改变而引起的。
由于这种材料独特的性质,已经在许多领域得到了广泛应用。
在本文中,我们将讨论形状记忆合金的制备及应用。
制备方法形状记忆合金的制备有许多方法,其中最常见的是冷加工和热处理。
第一种方法是将材料加工成所需的形状,然后在低温下进行形状记忆效应的形成。
第二种方法是将材料热处理至相应的温度,使其形成一定的记忆效应。
此外,还可以通过合金加工技术制备形状记忆合金。
这种方法可以在制备材料的同时将记忆效应预先设定在材料中。
应用领域形状记忆合金的应用领域非常广泛。
以下是一些主要领域。
医疗器械形状记忆合金在医疗器械中得到了广泛应用。
例如,它可以用于制造人工血管和支架,可以在体内自动调整其形状以适应血管的不同区域。
此外,形状记忆合金还可以用于制造牙套和牙齿矫正器等牙科器械。
汽车工业形状记忆合金还可以在汽车行业中使用。
例如,它可以用于制造记忆效应轮胎,这种轮胎可以在不同路况下自动调整其形状,减少轮胎损耗和燃油消耗。
此外,形状记忆合金还可以用于精密机械零件的制造,以确保它们具有良好的机械性能和耐腐蚀性能。
航空航天形状记忆合金在航空航天领域也得到了广泛应用。
例如,它可以用于制造飞机轮胎和前缘襟翼,以确保它们在高速运动时具有稳定性。
此外,形状记忆合金还可以用于制造支撑系统和阻尼器等关键零部件。
电子科技形状记忆合金在电子科技领域也有应用。
例如,它可以用于制造形状记忆合金微光电机,这种微型机械可以在微米级别上进行精确操作,广泛应用于微电子和微机器人领域。
此外,形状记忆合金还可以用于制造弯曲传感器和防盗系统等电子器件。
总结形状记忆合金是一种具有独特性质的材料。
通过不同的制备方法,可以得到具有不同记忆效应的形状记忆合金。
由于其广泛的应用领域,形状记忆合金已经成为材料科学领域中的重要研究和应用领域之一。
形状记忆合金的机理及其应用
形状记忆合金的机理及其应用形状记忆合金是一种特殊的金属合金,具有自恢复形状的能力。
它是通过改变材料结构和晶格以实现这种特殊形状记忆功能的。
在应用中,形状记忆合金用途非常广泛,比如医学领域中做成骨钉、牙套、血管支架等医疗器械,还可应用于航天、汽车、机械等行业。
机理形状记忆合金是由两种或多种金属混合而成,其中至少有一种为记忆金属。
记忆金属的显著特点是它具有两种富于改变的结构,即低温下具有铁素体晶格结构,高温时则具有奥氏体晶格结构。
形状记忆合金发挥作用的基本机理是晶格变形。
在形状记忆合金的高温形态中,由于晶格呈奥氏体结构,因此它能够延展。
而在形状记忆合金的低温形态中,由于晶格呈铁素体结构,因此它不能够延展。
当形状记忆合金处于低温状态下受到了加热时,晶格结构会发生改变,即从铁素体改变成奥氏体结构,从而使合金发生纵向或横向的形变,并最终恢复其原来的形状。
当形状记忆合金处于高温状态下受到了冷却时,晶格结构又会发生逆向改变,即从奥氏体变成铁素体,从而使变形消失。
应用形状记忆合金的应用场景很多,其中最为广泛的应用领域当属医学。
在医学领域中,形状记忆合金可以被用来制造骨钉、牙套和血管支架等医疗器械,这些器械可以通过体内的最小切口或者组织缝合,完成病人的治疗。
形状记忆合金还可以应用于航天、汽车、机械等行业。
比如,在航天领域中,形状记忆合金可以被用于制造太阳能帆板,从而使得太阳能帆板可以根据环境的变化自动调整,提高能源利用效率。
而在汽车领域中,形状记忆合金可以被用来制造车身构件,从而使得汽车可以具有更好的耐冲击性和抗变形性。
在机械工业中,形状记忆合金可以被用来制造自动调节机构和阀门等关键部件,从而使得机器和设备能够具有更好的自适应性和稳定性。
总结形状记忆合金是一种非常特殊、非常有潜力的材料,在未来的科技应用领域中将会有更广泛的开拓空间。
同时,加强研发和实验技术,不断优化合金的性能,提高其可持续性,将有助于更多的行业和领域参与到这一技术革新中来。
机械工程中的形状记忆合金的性能与应用分析
机械工程中的形状记忆合金的性能与应用分析引言:机械工程领域一直在寻求新材料的应用,以提高产品的性能和效率。
近年来,形状记忆合金作为一种新兴材料,逐渐受到了广泛的关注。
形状记忆合金具有独特的性能和应用优势,成为许多领域的研究热点。
本文将对形状记忆合金的性能进行分析,并探讨其在机械工程中的应用。
一、形状记忆合金的性能形状记忆合金是一类在特定条件下能够恢复其原始形状的金属材料。
其最重要的性能之一是记忆效应,即在经历塑性变形后能够通过加热或应力释放恢复到原始形状。
这一性能使得形状记忆合金在机械工程中具有独特的应用潜力。
其次,形状记忆合金还具有良好的弹性和耐磨性。
相对于传统金属材料,在形状记忆合金中,由于晶体结构的特殊性,材料具有更强的弯曲弹性和抗磨损能力。
这使得形状记忆合金在耐磨、抗弯曲等方面有广泛的应用前景。
最后,形状记忆合金具有优异的耐高温性和抗腐蚀性。
由于其特殊的晶体结构和化学成分,形状记忆合金能够在高温和腐蚀环境下保持稳定的性能。
这种耐高温性和抗腐蚀性使得形状记忆合金在航空航天、核工程等领域有大量的应用。
二、形状记忆合金在机械工程中的应用1. 智能传感器与执行器形状记忆合金的记忆效应可用于制造智能传感器和执行器。
例如,通过将形状记忆合金作为传感器的敏感部件,可以实现对温度、应力等参数的准确监测与控制。
同时,形状记忆合金的形状恢复能力也使其成为执行器的理想材料,可以用于实现智能控制系统中的机构运动。
2. 超弹性弯曲材料形状记忆合金的弯曲弹性和抗磨损性使其成为超弹性弯曲材料的理想选择。
传统的金属材料在工程设计中常用于制造弹簧、连接器等。
而形状记忆合金在这些应用中能够提供更高的弯曲弹性和抗磨损能力,从而延长产品的使用寿命和可靠性。
3. 智能结构与控制系统形状记忆合金可以用于制造智能结构和控制系统,如智能材料导向的振动控制系统。
利用形状记忆合金的记忆效应,结合传感器和执行器,可以实现结构的形状变换和振动控制,从而提高产品的性能和稳定性。
形状记忆合金的机理及其应用
形状记忆合金的机理及其应用形状记忆合金(Shape Memory Alloy,SMA)是指在外力驱动下可以产生形状记忆效应的金属合金,其最重要的特性是在一定范围内可以自恢复原始形状,同时具备优异的力学性能、良好的耐腐蚀性能及高温稳定性等优点。
SMA最早是在1962年由William Buehler 提出的,自此以后,SMA就被广泛研究并应用于不同领域。
SMA的特性是由其所具备的晶体结构和相变特性所决定的,SMA常见的结构类型有Cu-Zn-Al、Ni-Ti、Cu-Al-Ni、Fe-Mn-Si等。
其中,最为常用的是Ni-Ti SMA,这种合金具有良好的形状记忆效应和超弹性特性,是目前最为常用的SMA之一。
当SMA处于高温相(austenite相)时,晶体结构稳定,SMA可以被加工成任意形状。
当外界作用力使SMA在相变温度下降到低温相(martensite相),晶体结构失稳,原本具有的形状记忆效应就会被激发出来。
这种相变是可逆的,可以产生与消失形状记忆效应,从而使SMA表现出自修复、自调整和自适应等功能,被广泛应用于机械、微机电、汽车、医疗等领域。
SMA在机械系统中有广泛应用,例如:在阀门、制动系统、传感器和运动控制系统中使用的SMA弹簧、阀杆、马达和块体,以及金属粉末成型制造的SMA零件,可以安装在汽车和航空航天系统上,在温度和振动变化等条件下,能保障系统的性能稳定和安全可靠。
SMA在医疗系统中的应用也非常广泛,例如利用SMA刀具控制机械手的运动,可以在手术中进行精确的切割和缝合。
同时,利用SMA在不同温度下的形状变化,可以制造热敏支架、热敏钩子和热敏衬垫等医疗器械,可以在体内完成自动放置和释放、自由展开和收缩等操作,很好地解决了手术中的一些难题。
SMA还广泛应用于微纳机电系统(MEMS)中,例如利用SMA薄片可控制悬臂梁的挠度和弯曲,从而实现无线通信、火灾预警、生物传感和关节外科等微型器件。
此外,利用SMA 的变形能力和自恢复特性,也可以制造可变形的电缆、活塞和电子插头等调节设备,实现快速、准确、稳定和可靠的微调控制。
磁控形状记忆合金执行器工作原理及其应用
磁控形状记忆合金执行器工作原理及其应用磁控形状记忆合金执行器是一种新型的智能材料执行器,利用形状记忆合金的特殊性质,能够实现快速、准确的运动控制。
本篇文档将介绍磁控形状记忆合金执行器的工作原理及其应用。
1. 工作原理磁控形状记忆合金执行器是由形状记忆合金丝和磁控软磁铁两部分组成。
软磁铁将磁场输送到形状记忆合金丝中,通过磁力作用控制形状记忆合金丝的形状变化,从而实现执行器的启动和控制。
具体来说,当软磁铁施加磁场时,会引起形状记忆合金丝的形状变化。
形状记忆合金丝的形状变化激发了质量重组,获得更高的能量状态。
此时,形状记忆合金丝的透磁率比软磁铁更高,磁控软磁铁施加的磁场会受到形状记忆合金丝的影响,导致磁场方向的变化,从而调节形状记忆合金丝的形状和力量。
2. 应用磁控形状记忆合金执行器的应用具有广泛的前景,可以应用于机械、电力、电子、医疗等领域。
以下是具体应用的几个方面:(1) 机器人机器人技术是近年来发展十分迅速的一门技术。
磁控形状记忆合金执行器具有迅速响应、高精度、小体积的特点,可应用于机器人关键部件的驱动与控制。
(2) 医疗器械磁控形状记忆合金执行器具有快速响应和无空气污染等特点,可应用于医疗器械的高精度控制中,例如精密手术器械、心脏起搏器等。
(3) 动力系统磁控形状记忆合金执行器可用于动力系统中,例如汽车、飞机等。
通过冷却和加热形状记忆合金来实现发动机的冷却和加热,从而增强机器工作的效率和稳定性。
(4) 电子技术磁控形状记忆合金执行器可应用于电子技术领域,例如可用于快速响应的机械开关、高精度的自动对焦装置等。
总之,磁控形状记忆合金执行器的应用十分广泛,具有不少的优势。
在未来的发展中,相信磁控形状记忆合金执行器会有更广阔的前景和更重要的地位。
形状记忆合金的发展及其在导弹与航天领域的应用
形状记忆合金的发展及其在导弹与航天领域的应用
形状记忆合金的发展经历了多个阶段。
近年来,美国、欧洲、日本等国家和地区在形状记忆合金的制备工艺、成分配比以及与先进制造技术的结合方面取得了显著的进展。
尤其是以4D打印技术为代表的先进制造技术,使用形状记忆合金作为原材料,已经扩展了其在软体机器人、医疗器械、航空航天等领域的应用范围。
在导弹与航天领域,形状记忆合金及其执行器的应用主要有以下几个方面:
1. 实现飞行器轻量化、高效率和高精度的设计需求。
形状记忆合金执行器可以作为驱动特定结构运动从而改变结构特性或触发预设动作的手段。
例如,形状记忆合金管接头已经被大量应用于军用飞机,大大降低了飞机管线漏液情况的发生。
2. 用于机翼调节结构。
通过改变机翼形状和状态,使飞行器在不同环境和执行不同任务的过程中始终保持气动性能最优,同时提高安全性、可靠性和降低噪声。
例如,Smart Wing项目采用对抗式和扭管式驱动器对机翼形状和扭转角度进行调节,在风洞的各项测试中均达到了较优的效果,证明了形状记忆合金在机翼调节应用中的可行性和优越性。
总的来说,形状记忆合金的发展及其在导弹与航天领域的应用,对于提高飞行器的性能、降低制造成本以及实现更复杂的设计需求具有重要意义。
形状记忆合金材料的制备及其应用研究
形状记忆合金材料的制备及其应用研究形状记忆合金材料是一种具有形状记忆和超弹性的功能材料,具有形变能力和恢复能力,并能在外力作用下实现形状变化。
该材料由普通金属元素组成,具有优异的力学性能、化学稳定性和重复使用性能,并且易于加工成各种形状,是一种十分有潜力的新型材料。
一、形状记忆合金材料的制备形状记忆合金材料的制备方法主要有两种:一种是金属粉末冶金法,另一种是真空蒸镀法。
1、金属粉末冶金法金属粉末冶金法是以金属粉末为原料,将其压制成型,再进行烧结或热压而得到的一种粉末材料。
对于制备形状记忆合金材料而言,金属粉末冶金法是一种比较常用的方法。
其制备流程基本包括原料的选择、球磨、混合、压制成型、静态或动态热处理等步骤。
2、真空蒸镀法真空蒸镀法是将形状记忆合金的元素蒸发到基底表面上,在真空中形成紧密结合的金属薄膜,便于加工成各种形状。
真空蒸镀法制备的形状记忆合金材料具有较强的表面硬度和耐腐蚀性能,但相比粉末冶金法制备的材料,其力学性能较弱。
二、形状记忆合金材料的应用形状记忆合金材料的应用范围十分广泛,具有很高的应用价值。
主要分为以下几个领域:1、传感器领域形状记忆合金材料是一种具有记忆形状和超弹性的智能材料,可以用于制作传感器,如温度传感器、压力传感器、位移传感器等。
这些传感器可以在极端条件下进行测量,具有高精度、高稳定性等特点,可以广泛应用于汽车工业、电子工业、航空航天等领域。
2、医疗领域形状记忆合金材料可以制作成医用支架、植入物等,用于支撑或修复骨骼、血管、神经等组织。
与传统的支架相比,形状记忆合金支架可以更好地适应体内形态和变化,减少对组织的损伤,是一种较为理想的材料。
3、智能材料领域形状记忆合金材料还可以用于制造智能材料,如智能合金、智能陶瓷等。
这种材料可以根据外界刺激自主地进行变形和恢复,具有广泛的应用前景。
例如,可以制作具有自修复功能的构件、具有适应能力的材料、具有变形控制能力的材料等。
总之,形状记忆合金材料是一种功能材料,具有良好的形状记忆和超弹性,易于制备和加工,具有广泛的应用前景。
形状记忆合金的机理及其应用
形状记忆合金的机理及其应用
形状记忆合金(Shape Memory Alloy,SMA)是一种具有形状记忆效应的特殊金属材料,它可以在受力后发生可逆性的形状变化。
SMA主要由镍钛合金或铜铝合金构成,这些合金能够在经历塑性变形后,通过加热或受力去除负荷来回复原始形状。
形状记忆合金的形状记忆机理主要涉及两个相互作用的阶段:亚稳相和稳定相。
在低温下,形状记忆合金处于亚稳相,其晶格结构呈现出低对称性。
当合金受力或加热时,合金中的相转变发生,形状记忆合金进入稳定相。
在稳定相中,合金的晶格结构发生变化,具有高对称性,导致原子重新排列并引发形状记忆效应。
形状记忆合金的应用非常广泛。
在机械工程领域,形状记忆合金常用于制作形状可变的机械元件,如夹具、阀门和泵等。
通过控制合金的加热和冷却过程,可以实现对机械元件形状的精确控制和调节。
在医疗领域,形状记忆合金用于制作血管支架,即支持心脏和其他血管的金属网状结构。
这种支架在体内植入时具有一定的弹性,可以适应血管的形状和大小。
当支架进入到体温下时,形状记忆合金会发生相变,并恢复到原始形状,固定在血管内,起到支撑和保持血管通畅的作用。
形状记忆合金还应用于航空航天领域。
它可以用于制作航天器和卫星中的天线、支撑结构和导向装置等。
由于航空航天器常处于极端环境下,形状记忆合金的耐腐蚀性和高温性能使其成为理想的材料选择。
形状记忆合金的机理主要是基于其相转变的特点,通过控制温度和应力来实现形状的可逆变化。
它的应用范围涵盖了机械工程、医疗和航空航天等多个领域,具有重要的科学研究和工程实践价值。
形状记忆合金的应用现状与发展趋势
形状记忆合金的应用现状与发展趋势
形状记忆合金是一种具有特殊形状记忆性能的功能性材料,具有高温
不变形、形状恢复性好、抗腐蚀性强等特点,因此在各种领域得到广
泛应用。
以下是形状记忆合金的应用现状与发展趋势:
一、医疗领域
形状记忆合金在医疗领域中的应用十分广泛,如在牙科种植、心脏支架、血管成形等方面都有所应用。
其中,心脏支架是目前形状记忆合
金在医疗领域应用最为成功的项目之一。
此外,形状记忆合金在骨科、口腔领域中也有一定的应用前景。
二、航空航天领域
形状记忆合金在航空航天领域中的应用主要体现在机械系统的控制、
传输和制造等方面。
其成为精密控制元件的一个重要应用领域,如发
动机控制、平衡状态控制以及控制气动力等都在其中。
三、电子电器领域
随着电子电器产品的不断推陈出新,形状记忆合金也应用于相关领域,如在小型电机、压电石英晶体谐振器及电导电缆等领域得到了广泛的
应用。
四、建筑及土木工程领域
形状记忆合金在建筑和土木领域的应用主要涉及到桥梁、隧道的检测和设备监测等方面。
通过利用形状记忆合金的变形特性,可以对各种设施进行实时监测,更好地维护安全。
五、冶金领域
冶金领域中,形状记忆合金主要应用于展开机构、铁路工程中用于绞车、卸料钳、铁路巨载等机器装备的零部件等领域,通过提高装备的智能化,提升装备的自适应性以及降低设备成本等。
总之,形状记忆合金因其独特的材料特性,可以应用于多个领域,具有无限的发展前景。
形状记忆合金及其应用
形状记忆合金及其应用、何为形状记忆合金1932 年,瑞典人奥兰德在金镉合金中首次观察到"记忆"效应,即合金的形状被改变之后,一旦加热到一定的跃变温度时,它又可以魔术般地变回到原来的形状,人们把具有这种特殊功能的合金称为形状记忆合金( Shape Memory Alloy ,SMA )。
这种能够记住其原始形状的功能称为形状记忆效应( Shape Memory Effect ,SME )。
二、形状记忆合金的分类SMA 的形状记忆效应源于热弹性马氏体相变,这种马氏体一旦形成,就会随着温度下降而继续生长,如果温度上升它又会减少,以完全相反的过程消失。
两项自由能之差作为相变驱动力。
两项自由能相等的温度T0 称为平衡温度。
只有当温度低于平衡温度T0 时才会产生马氏体相变,反之,只有当温度高于平衡温度T0 时才会发生逆相变。
在SMA 中,马氏体相变不仅由温度引起,也可以由应力引起,这种由应力引起的马氏体相变叫做应力诱发马氏体相变,且相变温度同应力呈线性关系。
按照记忆效应不同,可分为三类:单程记忆效应:形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。
双程记忆效应:某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。
全程记忆效应:加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。
三、形状记忆合金的物理模型虽然早在上个世纪30 年代,人们就发现了一些合金的形状记忆效应,但是直到70 年代Muller 等人提出SMA 材料的本构关系模型以来,有关形状记忆合金的机理和本构模型的研究才取得了一定的进展[1]。
SMA 的模型可大致分为两类:微观热力学模型、宏观现象学模型。
微观热力学模型有助于了解材料宏观特性的微观机理,揭示SMA 的物理本质。
微观热力学模型主要有从相界运动的动力学角度给出的本构模型和以能量耗散理论为依据的细观力学模型[2,3]。
形状记忆合金的机理及其应用
形状记忆合金的机理及其应用形状记忆合金(Shape Memory Alloys,SMA)是一种具有特殊记忆性能的金属材料,它可以在经历了变形之后恢复到原来的形状。
这种具有神奇特性的材料在多个领域都有着重要的应用,比如医疗器械、航空航天、汽车工业等。
本文将从形状记忆合金的机理入手,介绍其主要的应用领域,并展望其未来的发展前景。
一、形状记忆合金的机理形状记忆合金的记忆效应是其独特之处,它主要是由晶格结构的相变和马氏体转变引起的。
在形状记忆合金中,晶体结构可以在两种状态之间切换,一种是高温下的固溶体状态,另一种是低温下的马氏体状态。
在室温下,形状记忆合金处于变形后的状态,当温度升高时,晶格结构将发生相变,使得形状恢复到原来的状态。
这种温度诱导记忆效应是形状记忆合金能够恢复原状的重要机理之一。
形状记忆合金还具有应变诱导记忆效应。
在外力作用下,形状记忆合金会发生塑性变形,当外力消失后,形状记忆合金会恢复到原来的状态。
这是因为在外力作用下,形状记忆合金的晶格结构会发生相变,从而导致形状的改变。
一旦外力消失,形状记忆合金会重新发生相变,使得形状恢复到原来的状态。
形状记忆合金的记忆效应是由晶格结构的微观变化引起的,这种特殊的记忆性能使得形状记忆合金在许多领域中都有着广泛的应用。
1. 医疗器械形状记忆合金在医疗器械中有着重要的应用,比如支架和夹具等。
由于形状记忆合金具有记忆效应,可以在体内定位、调整,因此在心脏支架、动脉支架等方面有着广泛的应用。
形状记忆合金还可以用于牙科器械、外科手术器械等领域。
2. 航空航天形状记忆合金在航空航天领域也有着重要的应用,比如用于飞机的襟翼、起落架等部件。
形状记忆合金可以用于制造复杂形状的零部件,并且具有较高的强度和韧性,因此在航空航天领域有着广泛的应用前景。
3. 汽车工业在汽车工业中,形状记忆合金可以用于发动机部件、悬架系统等零部件的制造。
形状记忆合金具有耐磨性、耐腐蚀性和高温性能,可以提高汽车零部件的使用寿命和可靠性。
形状记忆合金的机理及其应用
形状记忆合金的机理及其应用形状记忆合金(Shape Memory Alloy, SMA)是一种具有特殊形状记忆能力的材料。
其最显著的特征是可以在经过预先训练(热处理)之后记忆一种"程序形状",并在外力作用下回复至"程序形状"状态。
这种记忆能力不受重复使用次数的限制,也不受外力作用的方式和形式的限制。
形状记忆合金可以在变形后通过热处理使其回复其初始形状的记忆能力使其应用范围非常广泛。
形状记忆合金的机理主要是基于固溶体(通常是α-铁素体)和马氏体的互相转变而实现的。
固溶体经过加热或外力作用,固溶体中的一部分原子会从基体中脱离,形成一个稳定的马氏体。
马氏体在外力作用下会变形,当外力消失时,马氏体中的原子会回到固溶体中,形状就会回到马氏体形状。
该过程中需要考虑的重要参数是材料的几何尺寸,组成和热处理方式等。
由于其独特的形状记忆性质,形状记忆合金在许多领域得到了广泛的应用,包括航空航天、自动化、机器人技术、医疗器械、高桥、防卫、汽车等各个领域。
1、医学领域在医学领域中,形状记忆合金被广泛用于各种医疗设备和手术器械。
在医疗工具方面,形状记忆合金可以制作支撑器、生物医学设备、人工骨骼和人工关节等。
另外,一些医学器械如心脏起搏器也常常使用了形状记忆合金技术。
2、航天领域在航天领域中,形状记忆合金被用于可形变机构,包括太阳能电池板的弯曲以及测量仪器平衡器的控制。
这些应用的好处是,因为形状记忆材料可以自动记忆构型变化,机构开展和关闭的速度更快,操作精度更高。
3、军事领域军事领域也是形状记忆合金的一个重要应用领域。
在军事上,形状记忆合金被用于微型电动力系统,各种机器人,扩展拉门和武器的升降平台等。
4、机器人技术形状记忆合金的机构在机器人技术中应用广泛,例如腕部和手部关节,这些关节可以动作加强或抵抗力外力作用。
通过使用这种降低摩擦和惯性的技术可以实现更高的运动精度。
5、汽车领域在汽车领域中,形状记忆合金主要用于制造汽车变速器的锁定按钮等。
形状记忆合金的应用
形状记忆合金的应用形状记忆合金(SMA)是一种具有特殊形状记忆特性的金属合金材料,它能够记住并恢复其原始形状,即使在经历了弯曲、扭曲等变形之后。
这种特殊的性质为SMA在多个领域的应用提供了巨大的潜力,包括医疗器械、航空航天、汽车工业和建筑工程等领域。
本文将深入探讨SMA在这些领域的具体应用,并分析其未来的发展趋势。
SMA在医疗器械领域的应用十分广泛。
由于其具有形状记忆特性,SMA可以被用于制造支架、植入物和外科器械等医疗器械。
利用SMA制造的支架能够在植入血管中后根据体温自行展开,从而减少手术风险和提高手术效率。
SMA还可以被用于制造可变形的植入物,可以使患者在手术后更快地康复。
随着医疗技术的不断进步,SMA在医疗器械领域的应用前景十分广阔。
航空航天领域也是SMA的重要应用领域之一。
在航空航天工程中,SMA可以被用于制造飞机零部件、航天器配件和卫星机构。
利用SMA制造的飞机零部件能够在高温和高压环境下自行调整形状,提高了航空器的安全性和可靠性。
SMA还可以被用于制造太阳能帆板和卫星折叠结构,提高了太空探索的效率和成本效益。
随着太空科技的不断发展,SMA在航空航天领域的应用前景将会更加广阔。
SMA在汽车工业领域也有着重要的应用价值。
在汽车制造过程中,SMA可以被用于制造变形记忆合金悬挂系统、智能车身件和碰撞缓冲器等关键部件。
利用SMA制造的变形记忆合金悬挂系统可以自动调节悬挂高度和刚度,提高了汽车的行驶稳定性和舒适性。
SMA还可以被用于制造智能车身件,能够自动调整车身形态,减少空气阻力,提高汽车的燃油经济性。
在碰撞缓冲器方面,SMA能够在碰撞时迅速回复原始形状,提高汽车的 passivo安全性。
随着汽车工业的快速发展,SMA在汽车工业领域的应用潜力十分巨大。
SMA还在建筑工程领域展现出了巨大的应用前景。
利用SMA制造的形状记忆合金构件可以用于支撑大型建筑和桥梁结构,能够在地震或强风等自然灾害发生时自动调整形状,保障了建筑的安全性和稳定性。
形状记忆合金的应用现状与发展趋势
总的来说,形状记忆合金的独特性质和广泛的应用前景使得它们成为未来科 技发展的重要方向之一。随着新的科研成果和技术进步的出现,我们可以期待在 未来看到更多的创新和应用。
谢谢观看
一、形状记忆合金的基本特性
形状记忆合金的主要成分是钛、锆或镍,它们在微观结构上具有两个不同的 晶体结构,称为母相和马氏体。在较低的温度下,材料处于母相,此时对其进行 塑性变形,然后在较高的温度下进行加热,使其发生马氏体转变,此时材料恢复 到其原始形状。
二、形状记忆合金的应用
1、医疗领域:在医疗领域,形状记忆合金被广泛应用于矫形外科和口腔科。 例如,利用其形状记忆特性,可以制造出用于治疗骨折的固定器和用于牙齿矫正 的弓丝。此外,形状记忆合金还被用于药物载体和生物医学传感器。
二、形状记忆合金的应用优势
1、高温、高压下的稳定性
形状记忆合金具有优异的高温、高压下的稳定性,能够在极端环境下保持稳 定的性能。这一特点使得形状记忆合金在高温、高压环境下具有广泛的应用前景, 如在航空航天、石油化工等领域。
2、机械性能
形状记忆合金具有优异的机械性能,如高强度、高硬度、良好的耐磨性和抗 疲劳性等。这些特点使得形状记忆合金在承受大的力学作用时仍能保持优异的性 能,为各种领域的应用提供了强有力的保障。
随着人工智能和物联网技术的不断发展,智能化应用将逐渐普及。形状记忆 合金作为一种具有智能响应特性的材料,将在智能化应用中发挥重要作用。研究 人员将致力于研究如何将形状记忆合金与传感器、执行器等相结合,实现智能化 控制和应用。
4、多领域交叉合作
随着形状记忆合金在各个领域的广泛应用,多领域交叉合作将成为未来发展 的重要趋势。研究人员将来自不同领域的研究人员和工程师进行合作交流,共同 推动形状记忆合金在不同领域的应用研究和发展。
形状记忆合金的特点和应用
形状记忆合金的特点和应用什么是形状记忆合金?形状记忆合金,也称记忆合金,是一种特殊的金属合金。
其特殊之处在于在经历某些物理变化或力学应力的情况下能够“记忆”自己的原始形状,并还原成原来的形状。
形状记忆合金的特点形状记忆合金具有以下特点:1.记忆性:形状记忆合金在经历一定的变形后,能够回到原始形状。
这种特性被称为“形状记忆”。
2.弹性:形状记忆合金的弹性非常好,能够承受很大的变形。
3.耐腐蚀性:形状记忆合金具有很好的耐腐蚀性能。
4.高温稳定性:形状记忆合金在高温下也能保持稳定性。
形状记忆合金的应用形状记忆合金被广泛应用于各个领域,以下是几个重要的应用:医疗领域形状记忆合金在医疗领域有着广泛的应用。
它们可以被用于制造支架、手术器械和植入物等医疗设备。
例如,在心脏手术中,医生使用形状记忆合金支架来扩张狭窄的心脏血管。
汽车和航空领域形状记忆合金也被广泛地应用于汽车和航空领域。
汽车发动机由于高温和高压的影响,对材料的性能要求很高,而形状记忆合金能够稳定地工作在高温和高压环境下,因此是理想的选择。
在航空领域,一些形状记忆合金被用作机身、发动机和座椅支架等高强度部件。
家具领域形状记忆合金在家具领域也有应用。
例如,一些奢华的床垫上使用形状记忆合金弹簧,可以根据人体的不同形状来适应睡眠者的身体。
此外,还有一些可以自动调节高度和角度的桌子和椅子等家具,其结构中也使用了形状记忆合金。
形状记忆合金的未来虽然形状记忆合金已经被广泛应用,但其未来的发展仍有很多潜力。
例如,科学家正在研究如何利用形状记忆合金制造更先进的机器人和人工肢体,以及如何运用于智能材料等方面。
因此,我们期待着形状记忆合金在未来的广泛应用。
形状记忆合金的机理及其应用
形状记忆合金的机理及其应用形状记忆合金是一种具有特殊记忆性能的金属材料,它可以在经历形变后恢复到原来的形状。
这种金属材料具有许多独特的特性,因此在许多领域具有广泛的应用。
本文将介绍形状记忆合金的机理及其在工程、医疗、航空航天等领域的应用。
形状记忆合金的机理形状记忆合金最常见的例子是钛镍合金,它是一种由钛和镍组成的合金材料。
形状记忆合金的记忆效应是其最显著的特性之一,这是由其特殊的晶体结构和相变特性所决定的。
在常温条件下,形状记忆合金处于其高温相状态,即奥氏体相。
在这种状态下,合金具有良好的塑性和可形变性,可以通过外力进行形变而不会发生破裂。
当形状记忆合金被加热到一定温度时,会发生相变,转变为低温相状态,即马氏体相。
在这种状态下,合金会恢复到原来的形状,消除之前的形变痕迹。
形状记忆合金的相变过程是通过应力诱导和温度诱导两种方式进行的。
应力诱导相变是指在受到外力作用时,合金会发生相变,从而产生形变,而温度诱导相变则是指在特定温度下发生相变,使合金恢复原来的形状。
由于其特殊的记忆性能,形状记忆合金在许多领域具有广泛的应用。
在工程领域,形状记忆合金被广泛应用于机械和汽车领域。
可以将形状记忆合金用于制造汽车零部件,如车身结构和发动机零件,以提高汽车的安全性能和耐久性。
形状记忆合金还可以用于制造高性能阀门、管道连接件等,以应对极端工况下的压力和温度变化。
在医疗领域,形状记忆合金被广泛应用于医疗器械和植入物。
可以将形状记忆合金用于制造支架和植入内置器件,如心脏起搏器和血管支架,以治疗心血管疾病和其他疾病。
形状记忆合金还可以用于制造牙齿矫正器和关节假体,以改善患者的生活质量。
形状记忆合金具有独特的记忆性能和优异的物理特性,使其在工程、医疗、航空航天等领域具有广泛的应用前景。
随着材料科学和工程技术的不断发展,形状记忆合金将会有更加广泛的应用和推广,为人类社会的发展和进步做出更大的贡献。
形状记忆合金的机理及其应用
形状记忆合金的机理及其应用形状记忆合金(Shape Memory Alloys,SMA)是一种特殊的金属材料,具有能够记忆并恢复其原始形状的能力。
其机理基于固体相变原理和晶格结构的变化。
形状记忆合金最常见的一种是尼钛合金(nitinol),由镍和钛两种金属元素组成。
在高温下,尼钛合金会变得柔软并能够被塑形。
当尼钛合金被冷却至低温时,其晶格结构会发生变化,形成一种称为马氏体的结构。
在这种状态下,尼钛合金的形状会恢复到其原始形状,即具有形状记忆的能力。
形状记忆合金的机理可分为两个过程:相变和相互作用。
相变过程是指材料从奥氏体相(高温相)向马氏体相(低温相)的转变。
当形状记忆合金处于高温下时,其晶格结构呈现出一种称为奥氏体的结构,具有高度的塑形性。
当材料冷却至低温时,奥氏体相会转变为马氏体相。
这一相变过程是可逆的,也就是说,当材料再次加热时,马氏体相会转变回奥氏体相。
相互作用过程是指形状记忆合金在不同温度下发生形状变化的能力。
当材料处于马氏体相时,其形状会被锁定。
这是由于马氏体相的晶格结构的排列方式与原始形状相匹配。
当材料受到外界的力或热作用,温度升高时,马氏体相会发生相变并转变为奥氏体相。
在这一过程中,形状记忆合金可以被重新塑形,但一旦材料被冷却至低温,马氏体相又会重新形成,并恢复到原始形状。
形状记忆合金具有许多应用的领域。
其中最常见的是医疗领域,如心脏支架、血管支架和牙齿矫正器等。
形状记忆合金可以根据人体的温度变化和力的作用,自动调整其形状,从而确保医疗器械的稳定性和适应性。
形状记忆合金还被广泛应用于机械工程、航空航天、汽车制造等领域。
形状记忆合金可以用于机械开关、飞机翼尖和汽车阀门等部件。
通过利用形状记忆合金的形状稳定性和自适应性,可以提高设备的性能和可靠性。
形状记忆合金具有独特的机理和广泛的应用。
它通过相变和相互作用的过程,实现了记忆和恢复原始形状的能力,为不同领域的应用带来了许多创新和改进的机会。
形状记忆镍钛合金的应用
形状记忆镍钛合金的应用1.引言1.1 概述形状记忆镍钛合金是一种具有特殊性能的材料,它能够在受到外界刺激时发生形状变化并在去除刺激后恢复原状。
这种合金以其独特的形状记忆效应而得名。
形状记忆镍钛合金具有可以记忆两种不同形状的能力,即"正相变形"和"逆相变形",这使得它在多个领域具有广泛的应用前景。
在医疗领域,形状记忆镍钛合金可以用于制造医疗器械和植入物,如支架、夹具、心脏起搏器等。
它们具有良好的生物相容性和耐腐蚀性,可以适应人体的变化并提供有效的治疗。
在航空航天领域,形状记忆镍钛合金可以用于制造航天器和飞机的零部件。
它们可以在极端的温度和压力下保持结构的稳定性,并具有减轻重量和提高安全性的优势。
在汽车工业领域,形状记忆镍钛合金可以用于制造汽车零部件,如刹车片、引擎部件等。
它们可以在高温和高速条件下提供可靠的性能,并具有耐磨损和耐腐蚀的特点。
在建筑领域,形状记忆镍钛合金可以用于制造具有自适应功能的建筑结构,如自动调节温度和光线的窗户、门等。
它们可以根据外部环境的变化自动调整形状,提高建筑物的舒适性和节能性。
在电子领域,形状记忆镍钛合金可以用于制造电子元件和传感器。
它们可以根据电磁场、温度和应力等因素的变化精确控制形状和尺寸,提供更高的性能和可靠性。
总之,形状记忆镍钛合金的应用领域非常广泛,具有巨大的发展潜力。
随着科学技术的不断进步和创新,对其应用的研究和开发将会越来越深入,为各行各业带来更多的创新和突破。
1.2 文章结构本文将围绕形状记忆镍钛合金的应用展开,主要内容分为引言、正文和结论三个部分。
引言部分概述了文章的主题以及形状记忆镍钛合金的基本概念,介绍了本文的结构和目的。
正文部分主要包括以下几个方面的内容:2.1 形状记忆镍钛合金的定义和特性:详细介绍形状记忆镍钛合金的定义和特点,包括它的形状记忆效应、超弹性等性质,以及其在不同温度和应力条件下的行为。
2.2 形状记忆镍钛合金在医疗领域的应用:探讨形状记忆镍钛合金在医疗器械、植入物等方面的应用,如支架、矫正器、闭合器等,以及它的优势和局限性。
形状记忆合金的机理及其应用
形状记忆合金的机理及其应用形状记忆合金,又称记忆合金,是一种具有记忆性能的特殊金属合金材料。
它能够在一定温度范围内实现弹性形变,并且在去除外力的情况下能够恢复原来的形状。
这种神奇的材料被广泛应用于医疗器械、航空航天、汽车制造等领域,具有非常重要的意义。
形状记忆合金的机理形状记忆合金是由金属元素和非金属元素的合金组成,其最著名的代表是镍钛合金(NiTi)。
这种合金具有独特的内部晶体结构,在一定温度范围内具有“记忆效应”。
形状记忆合金的记忆效应是由于其内部晶体结构的变化而产生的。
在形状记忆合金的相变温度范围内,晶体结构由低温相变为高温相,这种相变过程伴随着晶格的变化。
当形状记忆合金在高温相状态下被弯曲或拉伸,然后在低温相状态下重新加热时,晶体结构发生改变,原本被弯曲或拉伸的部分会恢复到原来的状态,这就是形状记忆合金的记忆效应。
1. 医疗器械领域形状记忆合金在医疗器械领域有着广泛的应用。
比如在心脏支架的制造中,形状记忆合金能够在体内被压缩成小体积,通过血管输送到需要的位置后再恢复成原来的形状,起到支撑作用。
在牙齿正畸治疗中,也可以使用形状记忆合金制成的矫正器,通过温度变化来调整器件的形状,从而达到矫正牙齿的目的。
2. 航空航天领域在航空航天领域,形状记忆合金也有着重要的应用。
比如在航空发动机的控制系统中,可以使用形状记忆合金制成的零件来实现精确的控制和调节。
还可以利用形状记忆合金制成的材料来制造航天器的折叠结构,以减小发射时的体积,节约空间和成本。
3. 汽车制造领域在汽车制造领域,形状记忆合金被广泛用于汽车零部件的制造。
比如在汽车发动机的喷油系统中,可以使用形状记忆合金制成的喷嘴,通过温度变化来控制油水的喷射角度和强度,从而提高发动机的燃烧效率。
在汽车碰撞安全系统中,形状记忆合金也可以用来制造碰撞缓冲材料,以提高汽车的碰撞安全性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
形状记忆合金及应用XXX(化学化工学院材料化学材料化学1001)摘要形状记忆效应自20世纪30年代报道以来逐步得到人们的重视并加以应用,本文扼要地叙述了形状记忆合金及其机理以及在一些领域的应用。
关键词形状记忆合金原理应用Abstract The shape memory effect since the 1930s reported gradually get people's attention and application, this paper briefly describes the application of shape memory alloy and its mechanism, and in some areas.Key words Shape memory alloys Principle Application1.引言形状记忆合金( Shape Memory Alloy, 简称SMA) 是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后, 通过加热到某一临界温度以上又可恢复成初始形状的一类合金。
形状记忆合金是一类具有形状记忆性能的合金, 其主要特征是具有形状记忆效应(SME)[1]。
研究表明, 很多合金材料都具有SME, 但只有在形状变化过程中产生较大回复应变和较大形状回复力的, 才具有利用价值。
到目前为止, 应用得最多的是Ni-Ti合金和铜基合金( CuZnAl 和CuAlNi) 。
2.SMA2.1 发现历史形状记忆效应是张禄经和Read在1951年在AuCd合金中最早观察到的[2], 直到1963年Buehler的课题组在Ni-Ti合金中发现了类似的形状记忆效应之后[3],才真正引起很多科学家的重视。
2.2 晶体学特性SME 的本质是合金中的热弹性马氏体相变[4]。
马氏体相变发生的能量条件是马氏体的化学自由能必须比母相的低。
也就是说,只有当母相过冷到马氏体相与母相化学自由能平衡温度T0以下适当温度Ms 时,马氏体将长大,直到热化学自由能和弹性非化学自由能两者之差最小时,马氏体的生长过程才告结束。
同样,只有当马氏体过热到T0以上温度As 时, 在相变驱动力作用下, 马氏体缩小的逆转变过程才能开始。
这种马氏体的长大或缩小受热效应和弹性效应两因素平衡条件的制约的相变称为“热弹性马氏体相变”。
相变并不是发生在某一温度点, 而是一个温度范围, 不同的合金系具有不同的温度范围。
图1 相变温度曲线图( 1) 显示了相变特性及相变循环中的关键点, 其中Ms, Mf为马氏体相变的开始和结束时的温度, As,Af为逆相变的起始和结束温度,人们通常用相变温度Af表征合金的特性。
多数的合金, 相变发生在较窄的温度范围内, 而且伴随着滞后现象,以致加热与冷却的转变过程并不交迭, 相变的滞后程度因合金系的不同而不同。
通常,SMA 能够完全恢复的形变量可达6%~8%( 远非一般材料所能比拟 ,它的形变温度范围一般在100~200℃之间, 主要受合金成份及热处理制度等因素影响。
在形变回复时还会产生很大的回复力( 有的200MPa)。
2.3 形状记忆效应原理[5,6]SMA之所以产生形状记忆效应是因为合金中发生了热弹性马氏体相变和伪相变, 这是在通过多晶和单晶Cu-Zn 合金的实验时发现的。
相变时, 马氏体常围绕母相的一个特定位向形成4 种变体, 合称为一个“马氏体片群”。
变体的惯习面以这一特定位向对称排列。
在光学显微镜下采用偏振光观察, 每个马氏体片群具有4 种不同的颜色, 这表征各个变体的位向不同。
之所以形成这种结构, 是因为每片马氏体形成时,在其周围的基体中造成了一定方向的应力场, 变体沿这个方向长大很困难。
如果有另一个马氏体变体在此应力场中形成, 它将沿阻力小的取向长大, 使应变能降低。
宏观上看, 由4 种变体组成片群的总应变能趋近于零, 此即称为“马氏体相变的自适应”。
在通常的形状记忆合金中, 根据马氏体与母相的晶体学关系,共有6个片群,24种马氏体变体。
在外力作用下, 形状记忆合金可以把马氏体相变的自适应互相抵消的变形能量提供出来。
这存在两种情况:( 1) 呈马氏体状态的试样, 在单向外力作用下自适应排列的马氏体的择优取向, 整个试样呈明显的形变;( 2) 呈母相状态的试样, 在单向外力作用下能诱发马氏体相变, 所生成的马氏体都顺应力方向作择优取向, 整个试样也会呈现明显的形变。
马氏体择优取向是通过孪生和界面移动实现的。
这种变体的择优生长称为马氏体的再取向过程。
当加热温度在As-Af之间时,马氏体发生逆转变。
由于马氏体晶体的对称性低, 因此在逆转变时马氏体中只形成几个母相的晶体位向, 有时只形成一个母相的原来位向。
当母相为长程有序时, 形成单一母相原来位向的倾向更大,使马氏体完全回复了原来母相的晶体, 宏观变形也就完全回复。
正是基于这种机理, SMA即会产生形状记忆效应。
2.4 SMA分类研究2.4.1 TiNi基合金TiNi基合金由于表现出优良的形状记忆效应和超弹性、高的耐磨耐腐蚀性能, 而成为形状记忆合金家族中的佼佼者, 是当今最具实用性的形状记忆合金系列。
为满足实际应用对TiNi 基合金提出的各种要求, 近年来,我国研究者对合金相图相变热力学及第三第四合金元素的添加等进行了大量的研究工作。
作者采用多元扩散偶一电子探针微区成分分析技术研究了T i-Ni-Nb三元系全部成分范围相图的700℃、800℃、900℃等温截面, 确定了该三元系在以上3 个温度下各相的相平衡成分和相平衡关系[7~9], 并提出了可用于热弹性马氏体相变热力学定量分析的改进O一P热力学模型[10]。
贾堤研究了V对Ti44Ni47Nb9记忆合金临界屈服强度应力的影响[11]。
研究结果表明, 利用lat%v 替代该合金中的Nb,可有效地提高Ti一Ni一Nb记忆合金临界屈服应力, 改善该合金的形状记忆回复率。
2.4.2 铜基合金铜基合金是继TiNi合金之后的又一种实用性较强的形状记忆合金。
与TiNi合金相比,它容易加工、成本低, 但也存在一些问题, 主要是晶粒粗大, 热稳定性差以及记忆性能易衰退等问题。
为克服以上不足, 人们希望通过添加合金元素或改进工艺来细化组织, 克服马氏体的稳定化。
在CuZnAl合金中添加微量镧铈复合稀土(0.01~0.08wt%),能有效细化合金组织, 改善力学性能, 防止合金发生马氏体稳定化现象, 并能减小马氏体相变温度滞后[12~13]。
在CuAlBe合金中添加微量硼可显著细化合金的晶粒和组织,改变合金的组织形态, 且在高温下能有效抑制晶粒长大, 改善合金的记忆性能和力学性能。
硼的加入量以0.05%~.010%范围效果最好[14]。
2.4.3 铁基合金Ti Ni 基合金虽然有优良的形状记忆效应, 但价格较贵, 加工困难。
铜基合金价格低但性能却不稳定, 因而铁基合金以其价格低廉、强度高、加工方便等特点引起工业界的重视。
从实用的观点来看,Fe-Mn-Si系形状记忆合金最具有应用前景。
一般情况下,Fe-Mn-Si基记忆合金的最大回复应变量为2% ,超过此应变量将会产生不可回复的应变。
显然,低的回复应变量是制约铁基记忆合金工程应用的难点之一, 为提高材料的回复应变量, 热机械处理或训练(Training,使材料经历一定变形,在高于Af温度加热后再冷却到Ms以上,如此反复多次)工艺的研究目前受到关注。
它可以显著降低诱发马氏体相变的应力, 抑制滑移变形, 提高回复应变量。
天津大学研制开发的Fe-Mn-Si系形状记忆合金, 经多次训练后, 记忆并未衰减, 反而在一定的训练次数内,有上升的趋势,然后逐渐趋于稳定[15]。
2.4.4 其它合金哈斯勒合金Ni2MnGa是同时兼有铁磁性和热弹性马氏体相变特性的金属间化合物, 是为数不多的铁磁性形状记忆合金之一。
目前我国研究者对它的研究主要集中在提高磁感生应变和形状记忆功能方面[16~18]。
研究中发现, 如果在Ni2MnGa材料中适当地掺加一些Fe 元素, 在保持材料的L21晶体结构不变的情况下, 其机械性能可以得到很大程度的提高,而且材料仍具有完全的双向形状记忆效应和较大的磁感生应变, 这非常有利于应用。
3 SMA应用3.1 SMA 在机械工程中的应用SMA 在机械工程中常用作力敏、热敏驱动元件和阻尼元件, 而且SMA 基本都作为体材料如丝、板、棒等使用。
如军用机械SMA紧固件、Ni-TiSMA 振膜泵( 图1)[19] 、温度调节器、金属封隔器、航天器分离机构上的驱动器、紧固铆钉等, 主要是利用了SMA 的形状记忆效应、伪弹效应和电阻特性。
这些特性使SMA 既具有感知、驱动的双重功效, 又具有阻尼功能。
图1 形状记忆合金振膜泵示意图此外, 形状记忆合金在驱动器领域的应用, 主要是利用了高温相和低温相在相互转变过程中产生的变形或者回复力达到驱动目的。
与传统机械或者电磁驱动方式相比较, 形状记忆合金在驱动领域的应用最显著的特点是几乎没有驱动能量的消耗。
3.2 SMA 在医疗器械方面的应用2001年9月, 由国际形状记忆与超弹性技术委员会和国际形状记忆材料委员会两个组织共同组办的国际形状记忆与超弹性技术和形状记忆材料会议的总结得出: 从目前销售和研发的记忆合金产品来看, 医学产品占的比重最大, 涉及心血管科、牙科、骨科、耳鼻喉科、放射科、介入医学等。
例如人造骨骼、伤骨固定加压器、牙科正畸器、各类腔内支架、栓塞器、心脏修补器、血栓过滤器、介入导丝和手术缝合线等等, 记忆合金在现代医疗中正扮演着不可替代的角色[25]。
形状记忆合金因具有较高的抗拉强度和延伸率、良好的应变恢复特性、极大的超弹性完全可恢复应变量、优良的生物相容性、低生物蜕变性、耐腐蚀性和抗疲劳性, 使其在生物医用领域得到了广泛的应用。
尤其是TiNi形状记忆合金, 成为记忆合金产业的首选材料。
3.3宇航工业中的应用形状记忆合金可用于制造探索宇宙奥秘的月球天线这种天线的形状像一朵朵盛开的巨型荷花由于天线体积庞大,运载上月球很不方便人们在高温环境下制做好天线再在低温下把它压缩成一个小铁蛋,使它的体积缩小到只有原先的千分之一,这样就能轻巧地放进太空船的登月小艇当小铁蛋送上月球后,太阳的强烈辐射唤醒了铁蛋的记忆,遂使它恢复了原来的形状,并按照人们的意愿向地球发回宝贵的宇宙信息形状记忆合金还可应用于直升飞机的智能水平旋翼由于直升飞机的高震动和高噪声使使用受到限制,其噪声和震动的来源主要是叶片涡流干扰,以及叶片型线的微小偏差这就需要一种平衡叶片螺距的装置,使各叶片能精确地在同一平面旋转目前已开发出一种叶片的轨迹控制器,它是用一个小的双管形状记忆合金驱动器控制叶片边缘轨迹上的小翼片的位置使其震动降到最低。