小学奥数 公式大全
学习小学奥数的必备十大公式
学习小学奥数的必备十大公式:一、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数二、和倍问题的公式和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)三、差倍问题的公式差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)四、植树问题的公式1.非封闭线路上的植树问题主要可分为以下三种情形:1.1.如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)1.2.如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数1.3.如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2.封闭线路上的植树问题的数量关系如下:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数五、盈亏问题的公式(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数六、相遇问题的公式相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间七、追及问题的公式追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间八、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2九、浓度问题的公式溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量十、利润与折扣问题的公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)。
小学奥数公式大全
小学奥数公式大全一、基本运算符号:1.加法公式:a+b=b+a2.减法公式:a-b≠b-a3.乘法公式:a×b=b×a4.除法公式:a÷b≠b÷a二、数的性质:1.奇数与奇数相加等于偶数:奇数+奇数=偶数2.奇数与偶数相加等于奇数:奇数+偶数=奇数3.偶数与偶数相加等于偶数:偶数+偶数=偶数4.0与任何数相乘等于0:0×a=05.1与任何数相乘等于原数:1×a=a6. 除零是不存在的:a ÷ 0 = undefined三、算术运算公式:1.两个数相加:a+b=c2.两个数相减:a-b=c3.两个数相乘:a×b=c4.两个数相除:a÷b=c四、公约数与最大公约数:1.求两个数的公约数:a、b的公约数有d2.求两个数的最大公约数:a、b的最大公约数为d五、倍数与最小公倍数:1.求一个数的倍数:a的倍数有b2.求两个数的最小公倍数:a、b的最小公倍数为c六、平方与平方根:1.一个数的平方:a的平方是b,即a²=b2.开平方:一个数的平方根:√a=b,b²=a七、百分数与比例:1.百分数转换为小数:百分数÷100=小数2.小数转换为百分数:小数×100=百分数3.比例换算:a:b=c:d八、平均数:1.n个数的平均数:(a₁+a₂+...+aₙ)÷n=平均数九、等差数列:1.等差数列的通项公式:第n个数aₙ=a₁+(n-1)×d2.求等差数列前n项和:前n项和Sn=(a₁+aₙ)×n÷2十、等比数列:1.等比数列的通项公式:第n个数aₙ=a₁×q^(n-1)2.求等比数列前n项和:前n项和Sn=a₁(1-q^n)÷(1-q),(q≠1)十一、三角形:1.三角形的周长:周长=边1+边2+边32.直角三角形勾股定理:c²=a²+b²(c为斜边,a、b为直角边)3. 正弦定理:a/sinA = b/sinB = c/sinC4. 余弦定理:a² = b² + c² - 2bc × cosA。
小奥数公式定理大全
小奥数公式定理大全
小学奥数公式定理如下:
1. 每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数。
2. 1倍数×倍数=几倍数,几倍数÷1倍数=倍数,几倍数÷倍数=1倍数。
3. 速度×时间=路程,路程÷速度=时间,路程÷时间=速度。
4. 单价×数量=总价,总价÷单价=数量,总价÷数量=单价。
5. 工作效率×工作时间=工作总量,工作总量÷工作效率=工作时间,工作总量÷工作时间=工作效率。
6. 加数+加数=和,和-一个加数=另一个加数。
7. 被减数-减数=差,被减数-差=减数,差+减数=被减数。
8. 因数×因数=积,积÷一个因数=另一个因数。
9. 被除数÷除数=商,被除数÷商=除数,商×除数=被除数。
以上是小奥数的公式定理,仅供参考,可以查阅奥数书籍获取更多公式定理。
小学奥数思维里面常用的公式
小学奥数思维里面常用的公式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a7、正方体V:体积a:棱长表面积=棱长×棱长×6S=a×a×6体积=棱长×棱长×棱长V=a×a×a 8、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab9、长方体V:体积s:面积a:长b:宽h:高(1)表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh10、三角形s面积a底h高面积=底×高÷2s=ah÷2高=面积×2÷底底=面积×2÷高11、平行四边形s面积a底h高面积=底×高s=ah12、梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷213、圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏14、圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径15、圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷316、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数17、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)18、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)19、植树问题1非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那就这样:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2封闭线路上的植树问题的数量关系如下:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数20、盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数21、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间22、追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间23、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷224、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量25、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)真正的好老师,不在于教给孩子们多少知识,而在于教给他们最好的学习方法和习惯。
小学奥数常用公式
§1 等差数列公式:1、末项 =首项 +(项数 -1)×公差2、an=a1+(n- 1) ×d3、项数 =(末项 -首项)÷公差 +14、n =(an-a1) ÷d +15、中项定理:和 =中间数×项数6、S =中间数×n7、(仅奇数列可用)注意:连续的奇数(或偶数)必定是等差数列,公差必定是 2.平方差公式:a2-b2=(a+b ) × (a-b )(a+b )(a-b )=a2-b2§2 兼顾与最优化时间兼顾:单列和多列排队排序:快的在前,慢的在后(注意:每列不一样地点的等候人数)。
过河问题(绘图)快去快回,慢者结伴(5 人以下常用, 7 人以上可试试)。
地址兼顾:1、点无大小奇数点选中间点,偶数点选中间段。
2、点有大小(一段法)轻往重移,小往大移§3 整除特点:四大金刚:变形金刚:2×5=100.2×5=14×25=1004×2.5=108×125=10008×1.25=1016×625=10000㈠末端系:1、末 1位:2、52、末 2位: 4、253、末 3位: 8、125㈡和系:1、数字和(弃 9 法): 3、92、两位一截乞降: 33、99(要点)㈢差系: 11欢迎阅读奇数位数字和-偶数位数字和㈣截位系(三位一截)7、11、13奇段和-偶段和。
㈤试除法(合用于末端未知)二部曲1、用最大数试;992、查验。
综合就用:⑴拆数(拆成学过的数)⑵先考虑末端系,再考虑其余。
§4 加乘原理:1、加法原理:分类相加(类类独立)2、乘法原理:分步相乘,步步有关。
惯例题型:1、排数字:⑴注意有无重复;⑵特别地点优先办理;⑶“ 0”的出现① 0 不可以放在首位②0 和偶数同时出现必分类2、插旗帜:按次序分类议论。
染色问题:1、排序:从邻圈最多开始排;2、染色:颜色数目。
小学奥数必须掌握的34个重点公式
小学奥数必须掌握的34个重点公式①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。
基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。
基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。
小学奥数公式
(一) 时钟问题一.追及距离(格数)÷速度差(1-121)= 时间 1.两针重合公式:格数÷(1-121) 2.两针垂直公式:(格数±15)÷(1-121) 3.两针成直线公司:(格数±30)÷(1-121)推广:两针成30°公式:(格数±5)÷(1-121) 两针成60°公式:(格数±10)÷(1-121)两针成120°公式:(格数±20)÷(1-121)4.两针与某时刻距离相等(假设为相遇问题)公式:格数÷(1+121) 5.镜子中的时刻:镜子中与实际时针只需将分针与时针互换。
例:镜子中6点20分即现实中的5点40分。
6.时针与分针成多少度公式:时针点数×5×6°- 分针点数×5.5° 7.从0点到12点时针与分针共重合11次。
(二) 整数的计算公式:1.求和公式:和=(首项+末项)×项数÷2 2.项数公式:项数=(末项-首项)÷公差+13.末项公式:末项=首项+(项数-1)×公差 另有:奇数个数的和除以项数等于中间数 4.从1开始的连续自然数的平方求和公式:21+22+23+ (2)n =6)12()1(+⨯+⨯n n n从1开始的连续奇数的求平方和公式:21+23+25+……(2n -1)2= 61×n ×(n+1)×(n+2)从2开始的连续偶数的平方求和公式:22+24+26+……+2n 2= 61×n ×(n+1)×(n+2)5.连续自然数的立方求和公式:13+23+33+……+n 3 = (1+2+3+……+n )26.平方差公式:a 2-b 2=(a +b )×(a -b ) a -1=(a +1)×(a -1) 7.公比是2的等比数列求和公式:S=2+22+23+24……+2n = 21+n -28.等差数列的平均数公式:(首项+末项)÷2 9.裂项公式:①)1(1+⨯n n =n 1-11+n 211⨯+321⨯+431⨯=1-21+21-31+31-41②)(1k n n +⨯=(n 1-k n +1)×k 1有公差的分母,分拆成首项与末项的差乘以公差的倒数。
(完整版)小学奥数公式汇总
符号
二、整除判断方法:
1.能被2、5整除:末位上的数字能被2、5整除。
2.能被4、25整除:末两位的数字所组成的数能被4、25整除。
3.能被8、125整除:末三位的数字所组成的数能被8、125整除。
4.能被3、9整除:各个数位上数字的和能被3、9整除。
关键问题:确定已知量和未知量,确定使用的公式;
二进制及其应用: 十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,
十位上的2表示20,百位上的2表示200。所以234=200+30+4=次102+3X 10+4。
鼻时&AAA】,=AnX10n-1+An-1 x 10n-2+An-2 x
那么12和18的公约数有:1、2、3、6;
那么12和18最大的公约数是:6,记作(12, 18) =6;
求最大公约数基本方法:
1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的 最大公约数。
奥数公式
和差倍问题:
和差1可题
和倍问题
差倍问题
已知条件
几个数的和马差
几个数的和与倍数
几个数的差与倍数
公式适用范围
已知两个数的和,差,倍数关系
公式r
1(和一差)+2=较小数 较小数+差=较大数 和-较小数=较大数
2(和+差)+2=较大数 较大数-差=较小数 和-较大数=较小数
和+(倍数+1)=小数 小数X倍数=大数 和一小数=大数
小学奥数公式大全
目录计算板块 (2)计数板块 (5)数论板块 (7)应用题板块 (11)几何板块 (15)行程板块 (21)计算板块1、加法交换律: a b b a , a b c a c b2、加法结合律: a b c a bc3、乘法交换律: a b b a , a b c a cb4、乘法结合律: ab c ab c5、乘法分配律: a bcabac6、“除法分配律”: a b c a c b c7、减法性质: a b c a b c8、除法性质: a bc a bc9、商不变性质: a b a m b m an b n,m 0,n 010、积不变性质: ab amb m,m 011、等差数列相关:项数n,公差d ,首项a ,第 n 项a,前 n 项和S , 1nn通项公式: aa 1 nd , aa n m dn1n,m项数公式:1 nn1,aad若 mn p q , m a aaanpq求和公式:2 S1a a nn,n中项定理,奇数项等差数列: S nann 1从 1 开始连续自然数求和:21 1 2n n n2从 1 开始连续奇数求和:1 32n 1n2从 2 开始连续偶数求和: 2 42n n n 112、多位数乘法:99101MMnM 99时,积的数字和为 9n当n个9n 个913、a,ba b 2a2abb2a 2 2ab b 222a,a 1b 1 ab a b 1b a b a 2 b2a 3a3a b3abbb3223a,3ba b aab b332222a 3b a b a abb114、平方求和:12 11222n 2 n n n 61立方求和:132n12nn n12 2 3324115、整数裂项:1 212 23n n 1 n n n 3 1123 23 4 n n 1 n 2 n n n n1 2 34 113 352n 1 2n 1 n n n2 3 2 1 2 1 36 11 11分数裂项:111 2 23n n 1n1111 1112 3 23 4 n n1 n 22 1 2 n 1 n 216、缺 8 数:123456799 111111111,1234567918 222222222 ,···,1234567981 999999999;123456798 98765432 17、走马灯数:1, ··0.142857 7 4, ··0.57142872·, ·0. 2 857147 5··,0.714285 73 ··,0.4 28571 76··0.8571427142857 2 285714,142857 3 428571,142857 4 571428, 1428575 714285,1428576 857142,1428577 999999.18、山顶数:1111121,11111112321, ······山顶数列求和:12n 1 n n1 2 1n2121,1 2 1 22 1232112 32 1333 , ······22奇数山顶数列求和:132219、重码数: ab 101 abab , ab 1001 ab 0ababc 1001 abcabc , ab 10101 ababab20、车轮数:12342341341241231 23 4111121、循环小数化分数:·a a, 9 0.· ·ab0. a b,99· ·0.a b ca bc a990附:若一个最简分数,它的分母仅含质因数 2 和 5,则它可化为有限小数,反之必为无 限循环小数;若分母仅含 2,5 以外的质因数,则必可化为纯循环小数,若分母含质因数 2 或 5,且含 2,5 以外的质因数,则必可化为混循环小数.a a qn1n122、等比数列相关:S na q1n1a 1 q n aqaS11q 1nn1 q 1 q23、常用数列:1,4,9,16,25,36,······,a n n 2 0,3,8,15,24,35,······,an 2 1n1,3,7,13,21,31,······,an 2 n 1n1,2,4,8,16,32,······,2n 1an1,1,2,3,5,8,13,······,a naan 1n211,3,6,10,15,21,······,1an n n2计数板块1、 容斥原理二元容斥: A B =A +B -A B 三元容斥: A BC =A +B +C -A B -B C -A C +A B C2、 抽屉原理苹果数÷抽屉数 (n) =商……余数 余数:(1)余数= x(1≤x ≤n -1) ,结论:至少有“商+1”个苹果在同一个抽屉里 (2)余数=0,结论:至少有“商”个苹果在同一个抽屉里3、 排列组合n!排列: Pmm=A =n(n -1)(n -2)(n -m +1)=n- n (n m)!组合:n n 2)(n -m 1)n!(n -1)( -+C m== n-m(m -1)(m -2) ××1(nm)!×m!n -其他: CC n1 C +C +C +=20n == , C n m =C nm,12 nn -nnnnn常用方法:捆绑法;插空法;隔板法;排除法;枚举法.4、 几何计数① 线段:一条线段被分成 n 个互不重叠的小线段,那么这条线段共包含的线段数1为:1+2+3++ = 2( 1) 条。
小学奥数所有公式
姓名:1、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数2、和倍问题的公式和÷(倍数-1)=小数×倍数=大数(或者和-小数=大数) 3、差倍问题的公式差÷(倍数-1)=小数×倍数=大数(或小数+差=大数)3、植树问题的公式⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数4、盈亏问题的公式(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数5、相遇问题的公式相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间6、流水问题顺水路程=顺水速度×时间逆水路程=逆水速度×时间顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷27、过桥问题过桥问题的一船的数量关系是:路程=桥长+车长车速=(桥长+车长)÷通过时间通过时间=(桥长+车长)÷车速车长=车速×通过时间-桥长桥长=车速×通过时间-车长8、浓度问题的公式溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量9、圆形S面积C周长d直径r (1)周长=直径×圆周率=2×圆周率×半径C=∏d=2∏r d= C (2)面积=半径×半径×∏半径∏圆周率÷(2∏)r= d÷∏÷2 r= C。
小学奥数公式大全
小学奥数公式大全小学奥数中的公式主要包括数学、几何和概率等方面的公式。
下面是一些小学奥数常用的公式:一、数学公式:1.正整数相乘的结果等于两个数的乘积:a×b=c2.正整数相除的结果等于除数a的倍数:a÷b=c3.正整数相减的结果等于差:a-b=c4.正整数相加的结果等于和:a+b=c5. 两个数的平方和等于两个数平方的和与两倍乘积的和:(a + b)² = a² + 2ab + b²6. 两个数的差的平方等于两个数平方的差与两倍乘积的差:(a -b)² = a² - 2ab + b²7.两个数的乘积的平方等于两个数平方的积的平方:(a×b)²=a²×b²8.两个数的商的平方等于两个数平方的商的平方:(a÷b)²=a²÷b²9.n个相同的数相乘的结果可以表示为这个数的n次幂:a×a×...×a=a^n10.平方数是两个相邻奇数的和:1²=1,2²=3,3²=5...,n²=(n-1)+(n+1)二、几何公式:11.长方形的面积等于长乘以宽:面积=长×宽12.正方形的面积等于边长的平方:面积=边长²13.三角形的面积等于底边乘以高的一半:面积=1/2×底边×高14.圆的面积等于半径的平方乘以π(圆周率):面积=π×半径²15.圆的周长等于直径乘以π:周长=直径×π16.矩形的周长等于两倍的长加两倍的宽:周长=2×(长+宽)17.等边三角形的内角为60°18.三条边长度为a、b、c的三角形,满足a+b>c、b+c>a、c+a>b19.两条边为a、b的锐角三角形的第三边最大为√(a²+b²)20.两条边为a、b的直角三角形的斜边长度为√(a²+b²)三、概率公式:21.事件的概率等于有利结果数目除以总结果数目:P(A)=有利结果数目/总结果数目22.两个相互独立的事件同时发生的概率等于各自概率的乘积:P(A且B)=P(A)×P(B)23.两个互为逆事件的概率之和等于1:P(A)+P(非A)=1这些是小学奥数中常见的一些公式,掌握了这些公式可以帮助你更好地解题。
小学生奥数经典数学公式大全,值得收藏!
【导语】数学公式是⼈们在研究⾃然界物与物之间时发现的⼀些联系,并通过⼀定的⽅式表达出来的⼀种表达⽅法。
是表征⾃然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从⼀种事物到达另⼀种事物的依据,使我们更好的理解事物的本质和内涵。
以下是整理的⼩学⽣奥数经典数学公式⼤全,希望对您有所帮助! 数量关系式: 1,每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2,1倍数×倍数=⼏倍数⼏倍数÷1倍数=倍数⼏倍数÷倍数=1倍数 3,速度×时间=路程路程÷速度=时间路程÷时间=速度 4,单价×数量=总价总价÷单价=数量总价÷数量=单价 5,⼯作效率×⼯作时间=⼯作总量⼯作总量÷⼯作效率=⼯作时间⼯作总量÷⼯作时间=⼯作效率 6,加数+加数=和和-⼀个加数=另⼀个加数 7,被减数-减数=差被减数-差=减数差+减数=被减数 8,因数×因数=积积÷⼀个因数=另⼀个因数 9,被除数÷除数=商被除数÷商=除数商×除数=被除数 和差问题的公式 (和+差)÷2=⼤数 (和-差)÷2=⼩数 和倍问题 和÷(倍数-1)=⼩数 ⼩数×倍数=⼤数 (或者和-⼩数=⼤数) 差倍问题 差÷(倍数+1)=⼤数 ⼩数×倍数=⼤数 (或⼩数+差=⼤数) 平均数问题公式 总数量÷总份数=平均数。
植树问题: 1、⾮封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在⾮封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距+1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在⾮封闭线路的⼀端要植树,另⼀端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在⾮封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2、封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题公式 (1)⼀次有余(盈),⼀次不够(亏),可⽤公式: (盈+亏)÷(两次每⼈分配数的差)=⼈数。
奥数34个常用公式
34个小学奥数必考公式1、和差倍问题:和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4、植树问题:基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5、鸡兔同笼问题:基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
小学奥数公式汇总
1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数小学奥数很简单,就这30个知识点和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
34个奥数解题公式
34个奥数解题公式34个小学奥数“必考”公式,打印贴墙背,6年数学“不慌张”!数学是一门十分重视根底的学科,小学数学正是孩子打根底的最好阶段,而小学数学中,应用题一直是考试中的重难点。
1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题:确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
小学奥数公式大全
小学奥数公式大全1.两数之和:a+b=c例如:5+3=82.两数之差:a-b=c例如:7-2=53.两数之积:a×b=c例如:4×3=124.两数之商:a÷b=c例如:9÷3=35.平方:a²=b例如:3²=96.开方:√a=b例如:√9=37.百分数:a%=b例如:25%=0.258.两个数的平均数:(a+b)÷2=c例如:(3+5)÷2=49.相邻角和:a+b=180°例如:80°+100°=180°10.对角线的关系:正方形对角线相等,长方形对角线不相等,且满足勾股定理。
例如:正方形ABCD,对角线AC=BD;长方形ABCD,对角线AC≠BD。
11.垂直线的斜率乘积为-1例如:两条互相垂直的线的斜率之积为-112.正整数相邻数之积减1的平方根之和等于整数本身。
例如:3×4-1=√11+√1113.等边三角形三个内角都是60°。
14.三角形周长:a+b+c=p其中,a、b、c分别是三角形的三边的长度,p是三角形的周长。
例如:三角形ABC,AB = 3cm,BC = 4cm,CA = 5cm,则周长p = 3 + 4 + 5 = 12cm15.相似三角形对应边的比例相等:若三角形A与三角形B相似,则AB/DE=AC/DF=BC/EF。
16.平行线的性质:平行线之间的对应角相等,对顶角互补,内错角相等。
17.枚举法:通过列举所有可能的情况来解题。
18.因数分解:将一个数拆分成几个素数的乘积。
19.最大公约数(最小公倍数)的性质:若a能被b整除,且a能被c整除,那么a也能被b与c的最大公约数整除。
20.偶数与奇数相加的结果是奇数。
小学奥数公式大全
小学奥数公式大全及其运用1 、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2 、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3 、速度×时间=路程路程÷速度=时间路程÷时间=速度4 、单价×数量=总价总价÷单价=数量总价÷数量=单价5 、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6 、加数+加数=和和-一个加数=另一个加数7 、被减数-减数=差被减数-差=减数差+减数=被减数8 、因数×因数=积积÷一个因数=另一个因数9 、被除数÷除数=商被除数÷商=除数商×除数=被除数1 、正方形C周长S面积a边长周长=边长×4 C=4a面积=边长×边长S=a×a表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长S面积a边长周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 、三角形s面积a底h高面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 、平行四边形s面积a底h高面积=底×高s=ah7 、梯形s面积a上底b下底h高面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形S面积C周长∏d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 、圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2 (3)体积=底面积×高(4)体积=侧面积÷2×半径10 、圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3 总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量--------------------------------------------------------------------------------奥数网每周专题训练(四)1、甲、乙两车分别从A、B两地出发相向而行。
小学奥数常用公式大全
小学奥数常用公式大全在小学奥数竞赛中,掌握一些常用的数学公式是非常重要的。
这些公式可以帮助学生更好地解决数学问题,并提高其在奥数竞赛中的竞争力。
本文将为大家介绍一些常见的小学奥数公式。
一、四则运算公式1.1 加法:a + b = c例子:4 + 5 = 91.2 减法:a - b = c例子:8 - 3 = 51.3 乘法:a × b = c例子:3 × 6 = 181.4 除法:a ÷ b = c例子:24 ÷ 4 = 6二、整数运算公式2.1 整数相乘:(-a) × (-b) = c例子:(-2) × (-3) = 62.2 整数相除:(-a) ÷ (-b) = c例子:(-12) ÷ (-4) = 32.3 整数的乘方:(-a)的-b次方 = c例子:(-2)的3次方 = -8三、几何公式3.1 矩形的面积:面积 = 长 ×宽例子:矩形的面积 = 4 × 6 = 243.2 正方形的面积:面积 = 边长 ×边长例子:正方形的面积 = 5 × 5 = 253.3 圆的周长:周长= 2 × π × 半径例子:圆的周长≈ 2 × 3.14 × 5 ≈ 31.4四、分数运算公式4.1 分数的加法:a/b + c/d = (ad + bc) / bd例子:1/2 + 1/3 = (1 × 3 + 1 × 2) / (2 × 3) = 5/6 4.2 分数的减法:a/b - c/d = (ad - bc) / bd例子:3/4 - 1/2 = (3 × 2 - 4 × 1) / (4 × 2) = 1/8 4.3 分数的乘法:(a/b) × (c/d) = ac / bd例子:2/3 × 3/5 = (2 × 3) / (3 × 5) = 6/15 = 2/5 4.4 分数的除法:(a/b) ÷ (c/d) = ad / bc例子:2/3 ÷ 4/5 = (2 × 5) / (3 × 4) = 10/12 = 5/6五、平方和立方公式5.1 平方的计算:a² = a × a例子:7² = 7 × 7 = 495.2 立方的计算:a³ = a × a × a例子:4³ = 4 × 4 × 4 = 64六、百分数公式6.1 百分数转小数:百分数 / 100例子:50% = 50 / 100 = 0.56.2 小数转百分数:小数 × 100例子:0.6 = 0.6 × 100 = 60%七、简单方程求解公式7.1 小学一元一次方程求解:ax + b = c例子:2x + 3 = 7,解得 x = 27.2 小学二元一次方程求解:ax + by = c例子:2x + 3y = 12,3x + 4y = 14,解得 x = 2,y = 3综上所述,小学奥数中常用的公式包括四则运算公式、整数运算公式、几何公式、分数运算公式、平方和立方公式、百分数公式以及简单方程求解公式等。
小学奥数计算公式大全
小学奥数计算公式大全鸡兔同笼的公式:解法1:鸡的只数=(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)兔的只数=总只数-鸡的只数解法2:兔的只数=(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)鸡的只数=总只数-兔的只数解法3:兔的只数=总脚数÷2—总头数鸡的只数=总只数—兔的只数和差问题的公式(和+差)÷2=大数 (和-差)÷2=小数和倍问题的公式和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数)差倍问题的公式差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数)植树问题的公式1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题的公式溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题的公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%) 奥数公式(3~6年级)圆周率常取数据3.14×1=3.14 3.14×2=6.28 3.14×3=9.423.14×4=12.56 3.14×5=15.7 3.15×6=18.843.14×7=21.98 3.14×8=25.12 3.14×9=28.26常用特殊数的乘积25×3=75 25×4=100 25×8=200 125×3=375125×4=500 125×8=1000 625×16=10000 37×3=111常用平方数2222222222222222211121121441316914196152251625617289183241936125625351225452025553025654225755625857225959025=================关于常用分数与小数的互化:1131=0.5=0.25=0.75=0.224452341=0.4=0.6=0.8=0.1255558357=0.375=0.625=0.8758881379=0.05=0.15=0.35=0.45202020201246=0.04=0.08=0.16=0.2425252525常用立方数:3333333331=12=83=274=645=1256=2167=3438=5129=729。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
余数:(1)余数= x(1 ≤x ≤n-1) , 结论:至少有“商+1”个苹果在同一个抽屉里
(2)余数=0,
结论:至少有“商”个苹果在同一个抽屉里
3、 排列组合
排列:
Pnm=A
mn =n(n-1)(n-2)
(n-m+1)=
n! (n-m)!
组合:
C
mn =
n(n-1)(n-2)(n-m+1) m(m-1)(m-2) ××1
5、 归纳计数 n 个图形最多可把平面分成部分数: 1. 直线: 2+2+3+ +n=1+1 n(n 1) 2 2. 圆: 2+2+4+ +(2 n-1)=2+n(n 1) 3. 椭圆: 2 4 8 4(n 1) 2 2n(n 1) 4. 三角形: 2+6+12+ +(6 n-1)=2+3n(n 1) 5. 长方形: 2+8+16+ +(8 n-1)=2+4n(n 1)
计算板块
1、加法交换律: a b b a , a b c a c b
2、加法结合律: a b c a b c
3、乘法交换律: ab b a , abc acb
4、乘法结合律: abc abc
5、乘法分配律: a b c a b a c 6、“除法分配律”: a b c a c b c
a ba b a2 b2 , a 1b 1 ab a b 1
a b3 a3 3a2b 3ab2 b3
a3 b3 a b a2 ab b2 , a3 b3 a b a2 ab b2
14、平方求和:12 22 n2 1 nn 12n 1
6
立方求和:13 23 n3 1 2 n2 1 n2 n 12
3、部分特殊数的分解:
999 33 37 ; 1001 71113 ; 10031759 ; 11111 41271 ; 10001 73137 ; 1995 35719 ; 2007 32 223 ; 2008 23 251 ;
2009 72 41 ; 2012 22 503 ; 2013 31161 ; 2014 21953 ; 2015 51331; 2016 25 32 7 ;10101 371337
4
15、整数裂项:1 2 2 3 nn 1 1 nn 1n 2
3
1 23 23 4 nn 1n 2 1 nn 1n 2n 3
4
13 35 2n 12n 1 1 2n 32n 12n 1 3
6
分数裂项:
1 1 2
2
1
3
1
nn
1
1
n
1
1
1
1 2
3
2
1 3
4
nn
1
1n
2
条。
② 角:一个角被分成 n 个互不重叠的小角(大于 0°,小于 180°),那么这个角共
包含的角数为:
1+2+3++n=Cn21
1 2
n(n
1)
个。
③ 三角形:一个三角形底边被从对顶点引的线把底边分成 n 个互不重叠的小线
段,那么这个三角形共包含的三角形数为: 1+2+3++n=Cn21
1 2
n(n
2
从 1 开始连续奇数求和:1 3 2n 1 n2
从 2 开始连续偶数求和: 2 4 2n nn 1
12、多位数乘法: M 9 9 M 10n 1
n个9
当 M 9 9 时,积的数字和为 9n
n个9
13、 a b2 a2 2ab b2 , a b2 a2 2ab b2
1)
个。 ④ 长方形:网格状图形中,长方形(包含正方形)的个数=长边上所有线段数×
宽边上所有线段数。 ⑤ 正方形:一般的,一个长方形的长被分成 n 份,宽被分成 m 份( n ≥m ,每小
格 均 为 相 等 的 正 方 形 ), 那 么 这 个 长 方 形 中 正 方 形 的 总 数 为 : n m+(n-1)(m-1)+ +(n m 1) 1 . ⑥ 包含☆的长方形个数=☆上线段数×☆下线段数×☆左线段数×☆右线段数 ⑦ 所有长方形的面积和=长边上的所有线段的长度和×宽边上的所有线段的长度 和
通项公式: an a1 n 1 d , an am n m d ,
项数公式: n an a1 d 1,
若 m n p q , am an ap aq
求和公式: Sn a1 an n 2 ,
中项定理,奇数项等差数列: Sn an1 n
2
从 1 开始连续自然数求和: 1 2 n nn 1
(2)约数和:一个整数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依 次从 1 加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的 所有约数的和。
如: 21000 23 3 53 7 ,所以 21000 所有约数的和为 (1 2 22 23)(1 3)(1 5 52 53)(1 7) 74880 (3)求最大公约数与最小公倍数主要方法:短除法、分解质因数法、辗转相除法
19、重码数: ab101 abab, ab1001 ab0ab
abc1001 abcabc, ab10101 ababab
20、车轮数:1234 2341 3412 4123 1 2 3 41111
21、循环小数化分数:
·
0.a
a
,
··
0.a b
ab
,
··
0.a b c
abc
a
9
99
990
1 2
1 1 2
n
1
1n
2
16、缺 8 数:
12345679 9 111111111 ,
12345679 18 222222222 ,
···,
12345679 81 999999999 ;
12345679 8 98765432
17、走马灯数:
1
·
·
0.142857 ,
7
4
·
·
0.571428 ,
目录
计算板块 ................................................................................................................................................. 2 计数板块 ................................................................................................................................................. 5 数论板块 ................................................................................................................................................. 7 应用题板块 ...........................................................................................................................................11 几何板块 ...............................................................................................................................................15 行程板块 ...............................................................................................................................................21
1,1,2,3,5,8,13,······, an an1 an2
1,3,6,10,15,21,······, an
1 2
nn
1
计数板块
1、 容斥原理 二元容斥: A B=A+B-A B 三元容斥: A B C=A+B+C-A B-B C-A C+A B C
2、 抽屉原理
苹果数÷抽屉数 (n) =商……余数
n个9
一位截断作差:11
两位截断作差:101
三位截断作差:1001,7,11,13
n 位截断作差:10 01 ,及10 01 的所有约数
n1个0
n1个0
5、约数倍数 (1)约数个数:一个整数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次 数)加 1 后所得的和的乘积。
如:1400 严格分解质因数之后为 23 52 7 ,所以它的约数有 3 12 111 24个;
7、减法性质: a b c a b c
8、除法性质: a b c a bc
9、商不变性质: a b a mb m a nbn , m 0, n 0
10、积不变性质: ab a mb m, m 0
11、等差数列相关:项数 n,公差 d ,首项 a1,第 n 项 an ,前 n 项和 Sn ,
7
2
·
·
0.285714 ,
7
5
·
·
0.714285 ,
7
3
·
·
0.4 28571,76·源自·0.8 57142
7
1428572 285714,1428573 428571,1428574 571428,
1428575 714285,1428576 857142,1428577 999999.