9.1.1 不等式及其解集(含答案)

合集下载

9.1.1 不等式及其解集

9.1.1 不等式及其解集

9.1.1 不等式及其解集 学习目标:1. 知道不等式的定义,理解不等式的解集和方程的解的不同.2. 会在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示.3. 知道一元一次不等式的定义 重点:不等式和不等式解集的概念的理解,利用数轴表示不等式的解集 难点:总结归纳不等式及不等式的解,正确理解不等式解集的概念 学习过程: 1、用“>”或“<”填空. 7+3 4+3 7×2 4×22、以上式子是等式吗?它是用 或 号表示 关系的式子,叫做 .3、求不等式的解集的过程叫做 .4、不等式用符号>,<,≥,≤.“≥”读作“大于等于”,表示大于或等于也就是不小于。

“≤”读作“小于等于”. 表示小于或等于,也就是不大于。

例如:x ≥y 表示 ,也就是 .下列等式哪些是不等式?①42>;②230a +>;③235x x +;④24x x <+;⑤23x x =-;⑥2231x x x +<+;⑦a b c +≠;⑧58>;⑨8x ≥用不等式表示①a 与4的和是正数②m的3倍大于n的2倍③a与b和的2倍是非正数5、当x= 时,35x+=成立当x满足什么数值时,35x+>成立呢?使方程两边相等的未知数的值就是方程的解使成立的的值叫做不等式的解例如:当3,4,5.....x=时,不等式成立当2,1,0...x=时,不等式不成了我们发现,当x 时,不等式35x+>总不x+>总是成立;当x 时,不等式35成立.一般地,一个含有未知数的不等式的 ,组成这个不等式的解集.求不等式的的过程叫做解不等式.一个不等式的解有个.6、在数轴上表示不等式的解集:不等式x+2>5的解集,可以表示成x>3. x>3表示x取哪些数?在数轴上表示大于3的数的点应该数3所对应点的 (填写左边还是右边)?因此我们可以在数轴上把x>3直观地表示出来.画图时要注意方向(向 )和端点(不包括数3,在对应点画圆圈).如图所示:同样,如果某个不等式的解集为x≤-2, 那么它表示x取那些数?此时在作x≤-2的数轴表示时,要包括-2的对应点,因而在该点处应画圆点.如图所示:总结:小于向画,大于向画;无等号画圆圈,有等号画圆点.。

9.1.1不等式及其解集

9.1.1不等式及其解集

填一填
像 2x = 6 这类,表
示左__右__两__边__相__等__关系 的式子,叫做等式
类比
像 2x>6 这类,表
示_大__小___关系的式子, 叫做不等式
方程 2x = 6 的解是 __x__=__3
不等式 2x>6 的解 集是_x__>___3
练一练
判断下列说法是否正确,正确的打“√”,错误的打“×”.
(2)“不小于”;__≥__;
(3)“至多”;___≤_____;
(4)“至少”;__≥___; (5)“高出”:___>_____; (6)“不足”__<____; (7)“不超过”;_≤_____; (8)“不低于”:__≥__; (9)“不相等”;__≠_____.
4.(1)x的5倍与2的差大于x与1的和的3倍,用不等式表示
改为:自然数? 0、1、2、3、4、5 3、不等式x-5<1的解集是( C )
A、x<4 B、x>5 C、x<6 D、x<7
知识点 3:在数轴上表示不等式的解集
问题 如何在数轴上表示出不等式 x>25 的解集呢?
先A则都的在大 点点因不数于表等此A轴示可式右 2上的5以的,边标数像解而所出都下集点有表小图的x示于A那点>左样22表25边5表5.示.的所示的点有数
把表示 25 的点上 画空心圆圈,表示 不包含这一点.
A
0
25
画一画:利用数轴来表示下列不等式的解集.
空心圆圈表 示不含此点
(1)
x>-1

(2)1 2
.x<
表示
1 2
的点
-1 0 表示-1的点 方向向右
01 1 2
方向向左

9.1.1 不等式及其解集(精)--

9.1.1 不等式及其解集(精)--

这节课你有哪些收获?
什么叫不等式?不等式的解? 两个量之间的不等关系有哪些情况? 如何用数轴表示不等式的解集? 什么叫一元一次不等式?



补充题1:
不等式x<5有多少个解?有多少个正整数解?
不等式x<5有无数个解;有4个正整数解,分别 是4,3,2,1。
“<” 、“>” 、“≠”、“ ≤”、 “ ≥”都是不等号
用不等号表示不等关系的式子 【不等式 】
1、下面给出的几个式子,哪些属于 不等式? (1) -1 <0 (2) 3X-2Y ✕ (3) 3x +4=0 (4) 5+3 x > 240 ✕ (5)x +3≠ 0 (6) 5-x≥1
不等式可含有未知数,也可以无未知数

补充题2:
当x为任何正数时,都能使不等式x+3>2 成立,能不能说不等式x+3>2的解集是x>0?为 什么?

不等式及其解集







五一长假,我们一(4)班同学要到清港农业观光园参观. 准时 大家约定8:30在校门口骑车出发,但是要10点之前 到达那里观看文艺表演.车速应满足什么条 件?(已知: 校门口距观光园区8千米,为了安全起见,必须匀速骑 行.) 若设车速为X千米/小时,你能列出相应的式子吗? 请谈谈你的做法. 从路程 从时间

不成立 不成立 成立 成立 成立 成立 成立
问题3结论: 由上表可见,当X=25,26,27,28,29时,不等式5X>120才 成立,也就是说,少于30人时,至少要有25人进园区,买 30张票反而合算.
与方程类似,我们把使不等式成立的未知数的 值叫做不等式的解

人教版七年级数学下册_9.1.1不等式及其解集

人教版七年级数学下册_9.1.1不等式及其解集

A.5
B.4
C.3
D.2
感悟新知
知识点 3 不等式的解集的表示方法
在数轴上表示不等式的解集:
特别提醒 在数轴上表示不等式的解集时,
大于向右画, 小于向左画;界点处 用空心圆圈圈住该点.
知3-讲
感悟新知
知3-讲
不等式的解集表示的是未知数的取值范围,所以不等
式的解集可以在数轴上直观地表示出来. 一般地,利用数
C. 3
D. 2
感悟新知
例2 用不等式表示: (1)a 的一半与3 的和大于5; (2)x 的3 倍与1 的差小于2; (3)a 的 1 与1 的差是正数;
2
(4)m 与2 的差是负数.
知1-练
解题秘方:紧扣不等关系中的关键词语列出不等式.
感悟新知
解:(1) 1 a+3>5.
2
(2)3x-1<2.
第9章 不等式与不等式组
9.1 不等式
9.1.1 不等式及其解集
学习目标
1 课时讲解 2 课时流程
不等式 不等式的解与解集 不等式的解集的表示方法
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 不等式
知1-讲
1. 定义:用符号“<”或“>”表示大小关系的式子叫做不等
式. 用符号“≠”表示不等关系的式子也是不等式.
轴表示不等式的解集通常有以下四种情况(设a>0):
不等式的解集 x>a
x>-4a
x<a
x<-a
数轴表示
感悟新知
知3-练
例4 在数轴上表示下列不等式的解集: (1)x>2 (2)x<-2 解题秘方:紧扣不等式解集在数轴上的表示方法, 看清不等号和端点值是解决问题的关键.

不等式及其解集

不等式及其解集

问题:一辆匀速行驶 的汽车在11:20距离A 地50 km,要在12: 00之前驶过A地.你能 用式子表示出车速应 满足的条件吗?
一.不等式:
像 “<”
50 2 2 、 x 50 x 3 3
这样用“>”或
表示大小关系的式子,叫做不等式. 如:-3>-5,2≠6,x≤1等等 都是不等式.
不等式中常见的不等号有五种: “≠”、“>”、“<”、“≥”、 “ ≤”
你还能举出日常生活中一些 类似的不相等关系的例子吗?
这辆匀速行驶的汽 车在11:20距离A 地50 km,要在12: 00之前驶过A地.你 能用式子表示出我 的车速应满足的条 件吗?
探索新知
(1)汽车在12:00之前驶过A 地的意思是什么?
问题:这辆匀速行驶 的汽车在11:20距离A 地50 km,要在12: 00之前驶过A地.你能 用式子表示出车速应 满足的条件吗?
从时间上看,汽车要在12:00之前驶过A地,则
2 以这个速度行驶50 km所用的时间不到 h . 3
从路程上看,汽车要在12:00之前驶过A地, 2 则以这个速度行驶 h 的路程要超过50 km. 3
探索新知
(2)如何用式子表示以上 不等关系? 设:车速为x km/h.
50 2 从时间上看: x 3 2 从路程上看: x 50 3
练习:下列说法正确的是(
A)
A. x=3是2x>1的解
B. x=3是2x>1的唯一解 C. x=3不是2x>1的解 D. x=3是2x>1的解集 含有一个未知数且未知数的次数是1的不等式叫做一 元一次不等式.求不等式的解集的过程叫解不等式.
1、已知下列各数,请将是不等 式3x>5的解的数填到椭圆 中.-4,-2.5,0,1, 2,4.8, 3, 8 5 x>

第 九章 不等式9.1.1不等式及其解集

第 九章 不等式9.1.1不等式及其解集
(1)x的一半不小于-1 (1) 0.5x≥-1.如 x=-1,1.
(2) y+4>0.5. 如y=0,1.
(2)y与4的和大于0.5 (3) a<0 . 如a=-3,-4.
(3)a是负数; (4)b是非负数;
(4) b是非负数,就是b不是 负数,它可以是正数或零, 即b>0或b=0.如b=0,2.
(3)x=3;
(4) x2+xy+y2;
(5)x≠5; (6)x+2>y+5.
解 : (1)(2)(5)(6)是不等式; (3)(4)不是不等式.
知识讲解
练一练
C
知识讲解
2 用不等式表示数量关系
例2 用不等式表示下列数量关系:
(1)x的5倍大于-7; (2)a与b的和的一半小于-1;
5x >-7
知识讲解
例4 直接写出x+4<6的解集,并在数轴上表示出来. 解:x<2. 这个解集可以在数轴上表示为:
0 12 变式1 已知x的解集如图所示,你能写出x的解集吗?
(1)
-4
0
解:(1)x<-4;
(2)
0
4
(2)x>4.
知识讲解
变式2 直接写出不等式2x>8的解集,并在数轴上表示 出来.
解:x>4. 这个解集在数轴上表示为:
二、如何在小学数学教学活动中体现数学核心素养 1.数学抽象(符号意识、数感;几何直观、空间想象) 2.逻辑推理(推理能力、运算能力) 3.数学模型(模型思想、数据分析观念)
三、如何在数学教学评价中考查数学核心素养
教育质量监测的四个原则 1.不要求计算速度(速度的训练是课业负担重的主要原因) 2.监测内容蕴含的数学素养(概念、推理、计算、想象) 3.应当有一道开放题(超市的位置,加分原则) 4.说学生能懂的话(对可 直接写出不等式-2x>8的解集.

最新人教版七年级数学下册第九章 不等式与不等式组 9.1.1 不等式及其解集 基础训练题(含答案)

最新人教版七年级数学下册第九章 不等式与不等式组 9.1.1  不等式及其解集 基础训练题(含答案)

最新人教版七年级数学下册第九章不等式与不等式组基础训练题(含答案)9.1.1 不等式及其解集1.下列式子:①1x<y+5;①1>-2;①3m-1≤4;①a+2≠a-2中,不等式有()A.2个B.3个C.4个D.1个2.“数x不小于2”是指()A.x≤2 B.x≥2 C.x<2 D.x>23.若m是非负数,则用不等式表示正确的是()A.m<0 B.m>0 C.m≤0 D.m≥04.某市一天最高气温是8 ①,最低气温是-2 ①,则当天该市气温变化范围t(①)是()A.t>8 B.t<2 C.-2<t<8 D.-2≤t≤85.用适当的符号表示下列关系:(1)a-b是负数:_________________;(2)a比5大:__________________;(3)x是非负数:__________________;(4)m不大于-3:__________________.6.“b的12与c的和是负数”用不等式表示为__________________.7.下列说法中,错误的是()A.x=1是不等式x<2的解B.-2是不等式2x-1<0的一个解C.不等式-3x>9的解集是x=-3 D.不等式x<10的整数解有无数个8.用不等式表示如图所示的解集,其中正确的是()A.x>-2 B.x<-2 C.x≥-2 D.x≤-29.以下所给的数值中,是不等式-2x+3<0的解的是()A.-2 B.-1 C.32D.210.不等式x<-2的解集在数轴上表示为()11.在下列各数:-2,-2.5,0,1,6中,不等式23x>1的解有6;不等式-23x>1的解有___________.12.把下列不等式的解集在数轴上表示出来.(1)x≥-3; (2)x >-1; (3)x≤3; (4)x<-32.13.x 与3的和的一半是负数,用不等式表示为( )A.12x +3>0B.12x +3<0C.12(x +3)<0D.12(x +3)>014.下列数值中不是不等式5x≥2x +9的解的是( )A .5B .4C .3D .215.对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( )A .40B .45C .51D .5616.用不等式表示:(1)a 与5的和是非负数; (2)a 与2的差是负数; (3)b 的10倍不大于27.17.直接写出下列各不等式的解集:(1)x +1>0; (2)3x <6.18.学校要购买2 000元的图书,包括名著和辞典,名著每套65元,辞典每本40元,现已购买名著20套,问最多还能买几本辞典?(列式即可)参考答案:1.C2.B3.D4.D5.(1)a-b<0(2)a>5(3)x≥0(4)m≤-36.12b+c<07.C8.C9.D10.D11.-2,-2.512.解:(1)(2)(3)(4)13.C14.D15.C16.(1)解:a+5≥0.(2)解:a-2<0.(3)解:10b≤27.17.(1)解:x>-1.(2)解:x<2.18.解:设还能买x本辞典,得20×65+40x≤2 000.。

2014..9.1.1.不等式及其解集

2014..9.1.1.不等式及其解集

比较等式与不等式的性质
等式的基本性质1
等式两边加(或 减)同一个数或式 子,结果仍相等。 等式的基本性质2 不等式的性质1 不等式两边加(或减) 同一个数(或式子),不 等号的方向不变。
不等式的性质2 不等式两边乘(或除以) 等式两边乘同一个 正数 同一个正数,不等号的方 数,或除以同一个 不变 向不变。 不为零的数,结果 不等式的性质3 仍相等. 不等式的两边乘(或除以)同 一个负数,不等号的方向改变 负数 改变.
达标检测
1、已知a>b,下列不等式不成立的是( B)
A: a-3>b-3 B:-2a>-2b C: D: -a<-b 2、由m>n到km<kn成立的条件是( B ) A: k>0 B :k<0 C: k≥0 D: k≤0 3、已知a>b,用“<”或“>”填空: > -3 < -3b (1) a-3____b (2) -3a____ > < -3b (4) a-b____0 (3) 3-3a____3 <-2,依据____________. 不等式的性质3 4、若-2x>4,则x___ 若m-2>3,则m___ _________. 1 >5 ,依据不等式的性质
正数:7×3
7 ×2 7 ×1 零: 7× 0
> > >
4×3
4× 2 4× 1
负数:7×(-1)
7 ×(-2) 7 × (-3)
< 4 × (-1) < 4 × (-2) <
4 × (-3)
= 4× 0
发现:同乘以一个正数,不等号方向不变,同乘以一
个 负数不等号方向改变,同乘以0的时候相等.

人教版数学七年级下册同步训练: 9.1.1《不等式及其解集》

人教版数学七年级下册同步训练: 9.1.1《不等式及其解集》

人教版数学七年级下册同步训练: 9.1.1《不等式及其解集》姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分)(2020·重庆模拟) 若关于x的不等式组所有整数解的和为2,且关于y的分式方程=1的解是正数,则符合条件的所有整数k的和是()A . 10B . 13C . 15D . 172. (2分)(2019·福田模拟) 对于任意实数m,n,定义一种运算m※n=mn﹣m﹣n+3,例如:2※5=2×5﹣2﹣5+3=6.请根据上述定义解决问题:若5<2※x<7的整数解为()A . 4B . 5C . 6D . 73. (2分) (2020七上·滨海月考) 如果a+b 0,并且ab 0,那么()A . a 0,b 0B . a 0,b 0C . a 0,b 0D . a 0,b 04. (2分) (2020七下·门头沟期末) 把不等式x ≤1 的解集表示在数轴上,正确的是()A .B .C .D .5. (2分)若a>b,则下列式子中一定成立的是()A . a﹣2<b﹣2B . >C . 2a>bD . 3﹣a>3﹣b6. (2分) (2017八下·宝安期中) 若x>y,则下列式子中错误的是()A . x-3>y-3B . x+3>y+3C . -3x>-3yD .7. (2分) (2020八上·哈尔滨月考) 若,则下列各式中一定不成立的是()A .B .C .D .8. (2分)下列不等关系中,正确的是()A . a不是负数可表示为a>0B . x不大于5可表示为x>5C . x与1的和是非负数可表示为x+1>0D . m与4的差是负数可表示为m-4<09. (2分)(2017·乐清模拟) 若a>b,则下列各式中一定成立的是()A . a+2<b+2B . a﹣2<b﹣2C . >D . ﹣2a>﹣2b10. (2分) (2020八上·下城期末) 设m,n是实数,a,b是正整数,若,则()A .B .C .D .11. (2分) (2020七下·许昌期末) 若是关于的一元一次不等式,则该不等式的解集是()A .B .C .D .12. (2分)下列不等式中,是一元一次不等式的是()A . 2x-1>0B . -1<2C . 3x-2y≤-1D . y2+3>513. (2分) (2018八上·宁波期中) 一元一次不等式x+1>2的解在数轴上表示为()A .B .C .D .14. (2分) (2020八下·西安月考) 下列不等式中,属于一元一次不等式的是()A . x(x-1)+2≤0B . 2(1-y)+y>2C . <1D . x-2y≥015. (2分) (2019七下·唐山期末) 如果不等式组无解,则b的取值范围是A .B .C .D .二、填空题 (共5题;共5分)16. (1分) (2017八上·秀洲月考) 用不等式表示“x与1的和为正数”:________。

2023~2024学年 9.1.1 不等式及其解集(19页)

2023~2024学年 9.1.1 不等式及其解集(19页)

分析:若刚好在8:00到学校,则所用时间为40分钟,此时 可列出方程: 2000 40 . ①
x
但为了避免迟到,小明要在8:00之前赶到学校,故所用时 间要少于40分钟,于是可得:2000 40 . ②
x
1.不等式的概念
(1)像②这样,用符号“<”或“>”表示大小关系的式子,叫做不等式. (2)像a+1≠a-1这样,用符号“≠”表示不等关系的式子也是不等式.
新知小结
一个式子是不等式,要把握两点: (1)含有不等号; (2)表示不等关系,而与不等式是否成立无关.
例1 下列式子是不等式的有( C ) ① 2x=20;② 3>2;③ x≠4-3;④ 5a+6b;
⑤ x>2y;⑥
;⑦ >3.
A.2个 B.3个 C.4个
D.5个
解:判断一个式子是否为不等式的关键在于式子中是 否含有“≠”“>”“<”,由此可知②③⑤⑦是不等式.
x 60 73 74.9 75.1 76 79 80 90
2 x 50 3
不 是
不 是Biblioteka 不 是是是 是是是
(1)你发现哪些数是这个不等式的解? (2)你从表格中发现了什么规律?
结合以上内容,我们可以探究出:
1.不等式的解 使不等式成立的未知数的值,叫做不等式的解. 不等式的解是一个具体的值.
2.不等式的解集与解不等式 (1)一个含有未知数的不等式的所有解,组成这个
第九章 不等式与不等式组 9.1.1 不等式及其解集
学习目标
1.掌握不等式、不等式的解、不等式的解集等相关的概念. 2.会判断一个式子是不是不等式. 3.会用数轴表示不等式的解集.
合作探究
问题:小明早上7:20从家出发,赶往离家2 000米的学校上课, 若学校8:00开始上课,问: 小明的速度应该具备什么条件,才能不迟到?若设小明的 速度为每分钟x米,你能用一个式子表示吗?

9.1.1 不等式及其解集(西藏民族交流课)

9.1.1 不等式及其解集(西藏民族交流课)

不等式的解集的表示:
一、用式子表示:
即用最简形式的不等式来表示,如: x <a 或 x> a
二、用数轴表示:
即标出数轴上某一区间,其中的点对应的数
值都是不等式的解.
如图所示,x>a
如图所示,x<a
如图所示,x≥a
如图所示,x≤a
【例3】在数轴上表示下列不等式的解集
(1) x>-1; (2) x≥-1; (3) x<-1; (4) x≤-1
【例3】在数轴上表示下列不等式的解集
(1) x>-1; (2) x≥-1; (3) x<-1; (4) x≤-1
解不等式:
求不等式解集的过程叫解不等式.
巩固应用,反馈提高
1.用不等式表示: ① a 是负数; ② x 与 -5 的和小于-9; ③ a 与 2 的差小于等于-1; ④ a 的 2 倍不小于-10; ⑤ a 是非正数 .
要使汽车在12:00以前驶过A 地,你认为
车速应该为多少呢?
问题7:
车速可以是每小时85 km吗?每小时82 km呢?每小时75.1 km呢? 每小时74 km呢?
不等式的解:
我们曾经学过使方程两边相等的未知数的 值就是方程的解,我们也可以把使不等式成立 的未知数的值叫做不等式的解.
【例2】读下列数中,哪些是不等式2x-1≤3的解? 哪些不是? -3,-1,0,1,1.5,2,2.5,3,3.5 【解析】利用定义,把每个值逐一代入不等式加以验算,
50 2 < 3 x
问题4:
设车速是 x km/h,从路程上看,汽车要在 12:00 之前驶
2 过 A 地,则以这个速度行驶 h 的路程要大于 50 km ,如何 3
用数学语言表示这样的数量关系?

不等式的概念及解集练习题5套(含答案)

不等式的概念及解集练习题5套(含答案)

不等式的概念及解集同步练习题5套(含答案)同步练习题(1)知识点:1、不等式:含有符号“<、>、≥、≤、≠”的式子2、不等式的解:使含有未知数的不等式成立的值 3.不等式解集及其数轴表示法⑴ 不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x ≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.如:同步练习:1.用 连接的式子叫做不等式;2.当x = 3时,下列不等式成立的是 ( )A 、x +3>5B 、x +3>6C 、x +3>7D 、x +3>8 3.下列说法中,正确的有 ( )①4是不等式x +3>6的解,②x +3<6的解是x <2③3是不等式x +3≤6的解,④x >4是不等式x +3≥6的解的一部分 A 、1个 B 、2个 C 、3个 D 、4个4.图中表示的是不等式的解集,其中错误的是( ) A 、x ≥-2 B 、x <1 C 、x ≠、x <05.下列说法中,正确的是 ( )A 、x=3是不等式2x>5的一个解B 、x=3是不等式2x>5的解集C 、x=3是不等式2x>5的唯一解D 、x=2是不等式2x>5的解6.x 与3的差的2倍小于x 的2倍与3倍的差,用不等式表示为 ( ) A 、2(x-3)<(x-3) B 、2x-3<2(x-3) C 、2(x-3)<2x-3 D 、2x-3<1/2(x-3)7.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A 、13cm B 、6cm C 、5cm D 、4cm 9.1.1《不等式及其解集》同步练习题(1)答案: 1.符号“<、>、≥、≤、≠” 2-7 ABDACB0-1-2知识点:1、不等式:含有符号“<、>、≥、≤、≠”的式子2、不等式的解:使含有未知数的不等式成立的值 3.不等式解集及其数轴表示法⑴ 不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x ≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.如:同步练习:1、在下列式子中:①x-1>3x;②x+1>y;③1/3x - 1/2y;④4<7;⑤x ≠2;⑥x=0;⑦2x-1≥y;⑧x ≠y 是不等式的是 。

9-1-1不等式及其解集+课时练习

9-1-1不等式及其解集+课时练习

9.1.1《不等式及其解集》课时练习一、选择题1.有下列表达式:-3<0,4x+2y>0,x=3,x2+2xy+y2,x≠5,x+2≤y+3.其中为不等式的有()A.1个B.2个C.3个D.4个2.下列说法中,正确的是()A.a不是负数,则a>0B.a与3的差不等于1,则a-3<1C.a是不小于0的数,则a>0D.a与 b的和是非负数,则a+b≥03.语句“x的与x的和不超过5”可以表示为( )A.+x≤5 B.+x≥5 C.≤5 D.+x=54. “数x不小于2”是指( )A.x≤2B.x≥2C.x<2D.x>25.用不等式表示如图所示的解集,其中正确的是( )A.x>-2B.x<-2C.x≥-2D.x≤-26.下面给出5个式子:①3x>5;②x+1;③1-2y≤0;④x-2≠0;⑤3x-2=0.其中是不等式的个数有( )A.2个B.3个C.4个D.5个7.下列说法正确的是( )A.2是不等式x-3<5的解集B.x>1是不等式x+1>0的解集C.x>3是不等式x+3≥6的解集D.x<5是不等式2x<10的解集8.不等式x<-2的解集在数轴上表示为( )二、填空题1.x的2倍与5的差<0,用不等式表示为.2.如图,数轴上注明的数x的范围是 .3.某品牌的八宝粥,外包装标明净含量为330 g±10 g,表明这罐八宝粥的净含量x 的范围是 .4.满足不等式x>-3的最小整数是,满足不等式x<2的最大整数是 .5.在下列各数:-2,-2.5,0,1,6中,是不等式23x>1解的有____;是不等式-23x>1解的有____.6.用适当的符号表示下列关系:(1)a-b是负数:;(2)a比5大:;(3)x是非负数:;(4)m不大于-3: .三、解答题1.利用不等式的性质求出下列不等式的解集,并把它们的解集在数轴上表示出来:(1)-2x≥3(2)-4x+12<02.用不等式表示下列关系.(1)x的3倍大于-2;(2)y的4倍与1的和小于5;(3)x的平方与2的差是正数;(4)y除以2的商减6是非负数.3.若方程(m+2)x=2的解为x=2,想一想,不等式(2-m)x<3的解集是多少?试探究-2,-1,0,1,2这五个数中的哪些数是该不等式的解?4.类比学习:(1)请直接写出下列方程和不等式的解与解集.①x-1=2;②x-1>2;③x-1<2;(2)请根据(1)中结论解答:若不等式2x-a-2<0的解集为x<3,求a的值.。

人教版数学七年级下册:9.1.1 不等式及其解集 同步练习(附答案)

人教版数学七年级下册:9.1.1 不等式及其解集  同步练习(附答案)

9.1.1 不等式及其解集1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有( )A.2个 B.3个 C.4个 D.5个2.选择适当的不等号填空:(1)2 3;(2)4;(3)若a为正方形的边长,则a 0;(4)若x≠y,则-x -y.3.如图,左边物体的质量为x g,右边物体的质量为50 g,用不等式表示下列数量关系是.4.用不等式表示:(1)数a小于2;(2)a与5的和是正数;(3)a与2的差是负数;(4)b的10倍大于27.5.下列各数中,是不等式3x-2>1的解的是( )A.1 B.2 C.0 D.-16.不等式的解集x>1在数轴上表示正确的是( )A B C D7.如图,数轴所表示的不等式的解集是 .8.把下列不等式的解集在数轴上表示出来.(1)x >-3; (2)x<-32.9.“满足x<3的每一个数都是不等式x +2<6的解,所以不等式x +2<6的解集是x<3”,这句话是否正确?请你判断,并说明理由.10.语句“x 的18与x 的和不超过5”可以表示为( ) A.x 8+x ≤5 B.x 8+x ≥5 C.8x +5≤5 D.x 8+x =5 11.下列哪个数是不等式2(x -1)+3<0的一个解?( )A .-3B .-12 C.13D .2 12.不等式x<4的非负整数解的个数有( )A .4个B .3个C .2个D .1个13.请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解: ;(2)-2,-1,0,1都是不等式的解: ;(3)0不是这个不等式的解: ;(4)与x<-1的解集相同的不等式: .14.用不等式表示:(1)a 与3的和大于5;(2)x 的2倍与5的差小于1;(3)x 的13与x 的12的和是正数;(4)a 的20%与a 的和大于a 的3倍.15.已知一支圆珠笔1.5元,签字笔与圆珠笔相比每支贵2元.小华想要买x 支圆珠笔和10支签字笔.若付50元仍找回若干元,则如何用含x 的不等式来表示小华所需支付的金额与50元之间的关系?16.阅读下列材料,并回答下面的问题.你能比较2 0202 021和2 0212 020的大小吗?为了解决这个问题,先把问题一般化,比较n n +1和(n +1)n(n >0,且n 为整数)的大小.然后从分析n =1,n =2,n =3,…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”) ①12 21;②23 32;③34 43;④45 54;⑤56 65;⑥67 76;⑦78 87;(2)归纳第(1)问的结果,可以猜想出nn +1和(n +1)n 的大小关系; (3)根据以上结论,可以得出2 0202 021和2 0212 020的大小关系.参考答案:1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有(C)A.2个 B.3个 C.4个 D.5个2.选择适当的不等号填空:(1)2<3;(2)4;(3)若a为正方形的边长,则a>0;(4)若x≠y,则-x≠-y.3.如图,左边物体的质量为x g,右边物体的质量为50 g,用不等式表示下列数量关系是x>50.4.用不等式表示:(1)数a小于2;解:a<2.(2)a与5的和是正数;解:a+5>0.(3)a与2的差是负数;解:a-2<0.(4)b的10倍大于27.解:10b>27.5.下列各数中,是不等式3x-2>1的解的是(B)A.1 B.2 C.0 D.-16.不等式的解集x>1在数轴上表示正确的是(C)A B C D7.如图,数轴所表示的不等式的解集是x<3.8.把下列不等式的解集在数轴上表示出来.(1)x >-3;解:(2)x<-32. 解: 9.“满足x<3的每一个数都是不等式x +2<6的解,所以不等式x +2<6的解集是x<3”,这句话是否正确?请你判断,并说明理由.解:这句话不正确,因为满足x<3的数只是不等式x +2<6的部分解,如:x =3.1,x =3.2等都是不等式x +2<6的解,所以这句话不正确.10.语句“x 的18与x 的和不超过5”可以表示为(A) A.x 8+x ≤5 B.x 8+x ≥5 C.8x +5≤5 D.x 8+x =5 11.下列哪个数是不等式2(x -1)+3<0的一个解?(A)A .-3B .-12 C.13D .2 12.不等式x<4的非负整数解的个数有(A)A .4个B .3个C .2个D .1个13.请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解:x <1;(2)-2,-1,0,1都是不等式的解:x <2;(3)0不是这个不等式的解:x >0;(4)与x<-1的解集相同的不等式:x +2<1.14.用不等式表示:(1)a 与3的和大于5;解:a +3>5.(2)x 的2倍与5的差小于1;解:2x -5<1.(3)x 的13与x 的12的和是正数; 解:13x +12x >0. (4)a 的20%与a 的和大于a 的3倍.解:20%a +a>3a.15.已知一支圆珠笔1.5元,签字笔与圆珠笔相比每支贵2元.小华想要买x 支圆珠笔和10支签字笔.若付50元仍找回若干元,则如何用含x 的不等式来表示小华所需支付的金额与50元之间的关系?解:列不等式为:1.5x +10×(1.5+2)<50.16.阅读下列材料,并回答下面的问题.你能比较2 0202 021和2 0212 020的大小吗?为了解决这个问题,先把问题一般化,比较n n +1和(n +1)n(n >0,且n 为整数)的大小.然后从分析n =1,n =2,n =3,…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”) ①12<21;②23<32;③34>43;④45>54;⑤56>65;⑥67>76;⑦78>87;(2)归纳第(1)问的结果,可以猜想出nn +1和(n +1)n 的大小关系; (3)根据以上结论,可以得出2 0202 021和2 0212 020的大小关系. 解:(2)当n =1或2时,nn +1<(n +1)n ; 当n >2时,nn +1>(n +1)n . (3)2 0202 021>2 0212 020.。

9.1.1不等式及其解集(1)

9.1.1不等式及其解集(1)
⑴ x>-1; ⑵ x≥ -1; ⑶ x< -1; ⑷ x≤ -1.
解:
○ ●
-1 ⑴

0
-1 ⑵

0
-1 ⑶
0
-1 ⑷
0
总结: ①用数轴表示不等式的解集的步骤:
第一步:画数轴;
第二步:定界点;
第三步:定方向.
②用数轴表示不等式的解集,应记住下面的规律: 大于向右画,小于向左画;
有等号(≥ ,≤)画实心点,无等号(>,<)画空心圆.
下列式子哪些是不等式?哪些不是不等式?
(1)-2<5 (2)x+3> 2x (3)4x-2y<0 (4)a-2b
(5)x2-2x+1<0
(6) a+b≠c
(7)5m+3=8
(8)x≤-4 (1)(2)(3)(5)(6)(8)是不等式,(4)(7)不是不等式 小结:不等式中可以有未知数,也可以不包含未知数.
9.1.1不等式及其解集
学习目标
1、了解不等式的概念;理解不等式的解集; 能正确的表示不等式的解集。 2、经历由具体实例建立不等模型的过程,探 究不等式解与解集的不同意义的过程,渗 透数型结合思想。
思考下列问题: 一辆匀速行驶的汽车在11:20距离A地50千米, 要在12:00之前驶过A地,车速应满足什么条件?
例1:用不等式表示:
⑴ a与1的和是正数;
⑵ y的2倍与1的和小于3;
a+1>0
2y+1<3
⑶ y的3倍与x的2倍的和是非负 3y+2x≥0 数 ⑷ x乘以3的积加上2最多为5. 3x+2≤5
2.不等式的解:
我们曾经学过“使方程两边相等的未知数的值就是方程的 解”,同样,能使不等式成立的未知数的值叫不等式的解.

人教版数学七年级下册-9-1-1不等式及其解集-课件(2)

人教版数学七年级下册-9-1-1不等式及其解集-课件(2)
3
x >75在数轴上表示如下
0
75
在表示75的点上画空心圆圈,表 示不包含这一点,向右表示大于
解集的表示方法: 第一种:用式子(如x>2),即用最简形式的不等式 (如x>a或x<a)来表示. 第二种:用数轴,一般标出数轴上某一区间,其中的 点对应的数值都是不等式的解. 用数轴表示不等式的解集的步骤:
3.下列不是不等式5x-3<6的一个解的是( B ) A.1 B.2 C.-1 D.-2
4.在数轴上表示不等式x-1<0的解集,正确的是( C )
5. 用“<”或“>”号填空.
(1)-2_<___2;
(2)-3_<___-2;
(3)12_>___6;
(4)0_>___-8;
(5)-a__<__a (a>0); (6)-a_>___a(a<0).
一个式子是不等式,要把握两点: 一是含有不等号, 二是表示不等关系,而与不等式是否成立无关.
知识点二:列不等式表示不等关系
列不等式的一般步骤是: (1)分析题意,找出题目中的各种量; (2)寻找各种量之间的不等关系; (3)用代数式表示各量; (4)用适当的符号将各量连接起来.
例1 列不等式:
(1)a与1的和是正数:___a_+__1_>_0____; 表示不等关系的关键词有:
6.直接写出下列不等式的解集. x+3>6的解集是 x>3 ; 4x<8的解集是 x<2 ; x-2>0的解集是 x>2 .
7. 用不等式表示:
(1) a是正数;
(2) a是负数;
(3) a与5的和小于7;(4) a与2的差大于-1;
(5) a的4倍大于8; (6) a的一半小于3.

七级数学下册第九章不等式与不等式组9.1不等式9.1.1不等式及其解集一课一练基础闯关(含解析)(新)新人教

七级数学下册第九章不等式与不等式组9.1不等式9.1.1不等式及其解集一课一练基础闯关(含解析)(新)新人教

9.1 不等式 9.1.1 不等式及其解集一课一练·基础闯关题组不等式的定义和列不等式1.数学表达式①-5<7;②3y-6>0;③a=6;④2x-3y;⑤a≠2;⑥7y-6>y+2,其中是不等式的有( )A.2个B.3个C.4个D.5个【解析】选C.数学表达式①-5<7、②3y-6>0、⑤a≠2、⑥7y-6>y+2是不等式;③a=6是等式;④2x-3y是代数式.综上不等式有4个.2.(2017·卧龙期中)数x不小于3是指( )A.x≤3B.x≥3C.x>3D.x<3【解析】选B.数x不小于3是指x≥3.3.(2017·利州模拟)高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指( )A.每100克内含钙150毫克B.每100克内含钙不低于150毫克C.每100克内含钙高于150毫克D.每100克内含钙不超过150毫克【解析】选B.根据≥的含义,“每100克内含钙≥150毫克”,就是“每100克内含钙不低于150毫克”.4.下面列出的不等式中,正确的是( )A.a不是负数,可表示成a>0B.x不大于3,可表示成x<3C.m与4的差是负数,可表示成m-4<0D.x与2的和是非负数,可表示成x+2>0【解析】选C.a不是负数,可表示成a≥0;x不大于3,可表示成x≤3;m与4的差是负数,可表示成m-4<0;x与2的和是非负数,可表示成x+2≥0.【变式训练】下列各项中,蕴含不等关系的是( )A.老师的年龄是你的年龄的2倍B.小军和小红一样高C.小明岁数比爸爸小26岁D.x2是非负数【解析】选D.根据A的题意可列出等量关系;B是等量关系;小明的岁数加上26与他爸爸的岁数相同,是等量关系;由x2是非负数可知x2≥0,是不等关系.5.(2017·滕州模拟)用不等号连接下列各组数:(1)π________3.14.(2)(x-1)2________0.(3)-________-.【解析】(1)π>3.14.(2)(x-1)2≥0.(3)-<-.答案:(1)> (2)≥(3)<6.(教材变形题·P115练习T1)用不等式表示:(1)x与1的差是正数.(2)y的2倍与1的和小于3.(3)y的3倍与x的2倍的和是非正数.(4)b 的与c的和是负数.(5)x的绝对值与2的和不小于3.【解析】(1)x-1>0. (2)2y+1<3. (3)3y+2x≤0.(4)b+c<0. (5)|x|+2≥3.【知识归纳】不等关系的描述在描述同类量之间的关系时,常常会用“至少”“不足”“不大于”“不小于”等表示不等关系,常用的不等号有以下5种.种类符号实际意义读法举例小于号< 小于、不足小于3+1<7大于号> 大于、高出大于3+5>7小于或等于号≤不大于、不超过、至多小于或等于(不大于)x≤10大于或等于号≥不小于、不低于、至少大于或等于(不小于)y≥9不等号≠不相等不等于1≠-1题组不等式的解与解集1.(2017·高平期中)下列各数中,是不等式3x-2>1的解的是( )A.1B.2C.0D.-1【解析】选B.只有x=2使不等式成立.2.下面说法正确的是( )A.x=3是不等式2x>3的一个解B.x=3是不等式2x>3的解集C.x=3是不等式2x>3的唯一解D.x=3不是不等式2x>3的解【解析】选A.x=3是不等式2x>3的一个解,故A正确,D错误;由于4,5,6等都适合不等式2x>3,所以x=3不是不等式2x>3的唯一解,更不是不等式的解集,故B,C错误.3.不等式x<2在数轴上表示正确的是( )【解析】选A.x<2是指在数轴上,从表示2的点往左的部分的点表示的数(不含2这个点).【知识归纳】在数轴上表示不等式的解集1.空心点表示不包含该数,实心点表示包含该数.2.大于往右画,小于往左画.【变式训练】把不等式x≥-1的解集在数轴上表示出来,正确的是( )【解析】选B.大于方向是向右的,含等于是实心点.4.(2017·启东期中)下列数中:76,73,79,80,74.9,75.1,90,60,是不等式x>50的解的有( )A.5个B.6个C.7个D.8个【解析】选A.76,79,80,75.1,90满足不等式x>50,所以所给数据中满足不等式解的有5个.5.写出两个使不等式x-4>5成立的数,如x=________,________;写出两个使不等式x-4<5成立的数如x=________,________.【解析】当x=10,23,10.1,11等时,不等式x-4>5成立;当x=8,7,0,-1等时,不等式x-4<5成立. 答案:不唯一.如10 11 0 -16.直接写出下列不等式的解集,并在数轴上表示出来.①x是非负数;②2x>-3;③x+1≤3.【解析】①x≥0,在数轴上表示为:②不等式的解集为x>-,在数轴上表示为:③不等式的解集为x≤2,在数轴上表示为:制作某种产品的两种用料方案,方案Ⅰ是用4张A型钢板,8张B型钢板;方案Ⅱ是用3张A型钢板,9张B型钢板.A型钢板的面积比B型钢板的面积大,从省料的角度考虑,应选择哪种方案.【解析】设A型钢板和B型钢板的面积分别是x和y,则方案Ⅰ用料面积为4x+8y,方案Ⅱ用料面积为3x+9y,所以4x+8y-(3x+9y)=x-y.因为A型钢板的面积比B型钢板的面积大,所以x-y>0.所以从省料的角度考虑,应选择方案Ⅱ.【母题变式】[变式一]制作某种产品的两种用料方案,方案Ⅰ是用4张A型钢板,8张B型钢板;方案Ⅱ是用3张A型钢板,9张B型钢板.若A型钢板的面积不大于B型钢板的面积,从省料的角度考虑,应选择哪种方案.【解析】设A型钢板和B型钢板的面积分别是x和y,则方案Ⅰ用料面积为4x+8y,方案Ⅱ用料面积为3x+9y,所以4x+8y-(3x+9y)=x-y.因为A型钢板的面积不大于B型钢板的面积,即x≤y所以x-y≤0.所以从省料的角度考虑,应选择方案Ⅰ.[变式二]制作某种产品的两种用料方案,方案Ⅰ是用4张A型钢板,8张B型钢板;方案Ⅱ是用3张A型钢板,9张B型钢板.若A型钢板的价格高于B型钢板的价格,从省钱的角度考虑,应选择哪种方案. 【解析】设A型钢板和B型钢板的价格分别是a和b,则方案Ⅰ的费用为4a+8b,方案Ⅱ的费用为3a+9b,所以4a+8b-(3a+9b)=a-b.因为A型钢板的价格高于B型钢板的价格,即a>b,所以a-b>0.所以从省钱的角度考虑,应选择方案Ⅱ.[变式三]制作某种产品的两种用料方案,方案Ⅰ是用4张A型钢板,8张B型钢板;方案Ⅱ是用3张A型钢板,9张B型钢板.若A型、B型钢板每张需分别用工m,n个,从省工的角度考虑,应如何选择方案. 【解析】若A型钢板和B型钢板每张需用工分别为m和n,则方案Ⅰ需用工4m+8n个,方案Ⅱ需用工3m+9n 个,所以4m+8n-(3m+9n)=m-n.当A型比B型钢板每张用工多时,即m>n,由于m-n>0,所以从省工的角度考虑,应选择方案Ⅱ.当A型与B型钢板每张用工相同时,即m=n,由于m-n=0,所以从省工的角度考虑,选择方案Ⅰ,Ⅱ一样.当A型比B型钢板每张用工少时,即m<n,由于m-n<0,所以从省工的角度考虑,应选择方案Ⅰ.。

人教版_《不等式及其解集》PPT1

人教版_《不等式及其解集》PPT1
有4个正整数解,分别是4,3,2,1。
课 结堂

同学们,本节课你收获了什么?
课后作业 1.整理本节知识点 2.选做题: 同步检测题
答案:①②③⑤⑦⑧是不等式,④⑥不是.
检测目标
实数a,b在数轴上的位置关系如图 所示,选择适当的不等号填空: (1)a__<___b
(2) ab__<___0 (3)a+b__<___0
检测目标
在数轴上表示x≥-2正确的是 ( D )

-2
A

-2 0
B

-2 0
C

-2 0
D
检测目标
不等式x<5有多少个解?有多少个正整数解? 解:不等式x<5有无数个解;
(2)关键词“小于”可以转化为符号__<___; (2) 0.5 (a+b)<-1; (3)长方形面积为_x_y_c_m_2,正方形面积为_a_2_cm__2 ;关键词“小
于”可以转化为符号_<___. (3) xy<a2 . 注意:在表示数量关系时,一定要注意“大于”、“小于”、
“不小于”等关键性词语.
联系 某个解定是解集中
的一员
全体 如:x<5是2x-3<7 的解集
解集一定包括了 某个解
即学即练
() () ()
目标导学四:在数轴上表示不等式的解集
例4:直接想出不等式的解集: ⑴ x+2>6 ⑵ 3x>9 ⑶ x-3>0
解: ⑴ x>4 ;
⑵ x>3 ; ⑶ x>3.
如何在数轴上表示出不等式x>2的解集呢?
认真阅读课本中9.1.1 不 等式及其解集的内容,完成下 面练习并体验知识点的形成过 程。

9.1.1 不等式及其解集

9.1.1 不等式及其解集
若设车速为χ千米/小时,你能列出相应的式子吗?
从时间
以这个速度行驶50千米所用的时间小于 ____
从路程
50 2 路程 ① 时间= 速度 x 3 2 大于 50千米 以这个速度行驶 小时的路程要_____
2 χ >50 3
2 小时 3
3

路程= 速度X时间
对于不等式 x>50。虽然上面的式子表示了车 努力 速应满足的条件,但是我们希望更明确地得出x应取 探究 哪些值。当x分别取下列各数值时,完成下表。
无数个
成立
成立 成立
(3)你有没有什么方法把这些解更简单地 表示出来? (X>75)
能使不等式成立的x的取值范围,叫做不等式的解的集合, 简称解集。 也有无解的情况,如x2<0; 也有一 不等式一般有无数个解; 个解的情况,如x2≤0. 求不等式的解集的过程叫做解不等式。
不等式的解集可以用数轴表示 如:(X>75) 画图方法:1.画数轴;2.定界点;3.定方向.
2 x 3
2 3
x
30 66 72 75 76 78 90
x>50 成立吗? 不成立 不成立 不成立 不成立
2 3
使 不等式 方程 成立的未知数的值叫做 不等式 方程 的解。 问题:
2 (1)不等式 3
20 44 48 50 50 52 60
2 3
x>50的解除了前面举出的,还
有其它解吗?

(2)猜想一下这个不等式有多少个解?
归纳:只含有一个未知数,且未知数的指数是1的不等 式,叫做一元一次不等式。
例1 用不等式表示: (1)a是正数; (2)b是非负数; (3)x的一半小于-1; (4)y与4的和大于0.5。
解: (1) (2) a > 0; b ≥ 0;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.1.1 不等式及其解集
◆回顾归纳
1.用______号连接起来表示不等关系的式子叫______式.
2.要使不等式成立的未知数的值叫做______的解;•能使不等式成立的未知数的______,叫做不等式的解的_______,简称解集.
3.含有_____个未知数,未知数的次数是______的不等式叫做一元一次不等式.
◆课堂测控
知识点一用不等号表示不等关系或列不等式
1.用“>”、“<”号填空.
(1)0_____3;(2)-15____6;(3)7+2____5+3;(4)│x│+1_____0.
2.把下列叙述用不等式表示:
(1)x+3是负数:___________;(2)x-5大于7:____________;
(3)a是正数:_____________;(4)a不等于b+5:__________.
3.下列不等关系中,正确的是()
A.a不是负数表示为a>0; B.x不大于5可表示为x>5
C.x与1的和是非负数可表示为x+1>0; D.m与4的差是负数可表示为m-4<0 4.(教材变式题)比较下列几个算式结果大小.(在横线上选填“>”、“<”或“=”)(1)42+32_____2×4×3
(2)(-2)2+12_____2×(-2)×1
(3)(3
4
)2+(-
2
3
)2_____2×
3
4
×(-
2
3

(4)22+22______2×2×2
通过观察归纳,请写出反映这种现象的一般规律.
知识点二不等式及不等式的解集
5.-5,-3,-1,0,1
2
,1,4中是不等式5x>0的解是______.
6.当x=-2时,下列不等式不成立的是()
A.x-5<-6 B.1
2
x+2>0 C.3+2x>6 D.2(x-2)<-7
7.在数学表达式①-3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5;⑥x+2>y+3中,•不等式有()
A.1个 B.3个 C.4个 D.5个
8.(阅读理解题)若(n-2)x23
n-+5>0是关于x的一元一次不等式,则n=_____.小亮的解答如下:
∵(n-2)x23
n-+5>0是关于x的一元一次不等式.
∴n2-3=1 ①
∴n2=4 ②
∴n=±2 ③
上述过程中,有无错误,错在_____步,原因是_______,请写出正确的解答过程.
◆课后测控
1.用不等号填空:
(1)-π_____-3;(2)a2_____0;(3)│x│+│y│_____│x+y│;
(4)(-5)÷(-1)_____(-6)÷(-7);(5)当a_____0时,│a│=-a.
2.满足不等式-3≤x<2的整数有______.
3.在△ABC中,a,b,c为三边长,则a+b,a,│a-b│的大小关系为_____.
4.下列不等式是一元一次不等式的是()
A.x2-9x≥x2+7x-6 B.x+1
x
<0 C.x+y>0 D.x2+x+9≥0
5.下列语句错误的是()
A.方程2x+3=1的解是x=-1 B.x=-1是方程2x+3=1的解
C.不等式2x+3<1的解为x=3 D.x=3是不等式2x+3>1的解
6.如果a+b<0,且b>0,那么a,b,-a,-b的大小关系为()
A.a<b<-a<-b B.-b<a<-a<b C.a<-b<-a<b D.a<-b<b<-a
7.设“●”、“▲”、“■”表示三种不同的物体,现用天平称了两次,情况如图所示,那么“●”、“▲”、•“■”这三种物体按质量从小到大的顺序排列应为()
A.■,●,▲ B.■,▲,●
C.▲,●,■ D.▲,■,●
8.用不等式表示:
(1)a的相反数与5的和小于a与7的差;(2)x的绝对值的相反数是负数或零;
(3)2│a│+1一定是正数;(4)-5与-x的差是负数.
9.某市自来水公司按如下标准收取水费:若每户每月用水不超过10m3,•则每立方米收费1.5元;若每户每月用水超过10m3,则超过的部分每立方米收费2元.小亮家某月的水费不少于25元,那么他家这个月的用水量(xm3)至少是多少?请列出关于x•的不等式.
◆拓展创新
10.(经典题)红旗中学准备在国庆节期间组织部分学生举行夏令营活动,云海旅行社收费标准是:两名带队教师全票价,其余学生可享受半价优惠;•红星旅行社收费标准是:按全票的6折优惠,全票价均为200元.
(1)若共有200名学生,选择哪一家旅行社优惠?
(2)选择哪家旅行社优惠与学生的人数有没有关系?试举例说明.
答案:
回顾归纳
1.不等;不等 2.不等式;取值范围;集合 3.一;1 课堂测控
1.(1)< (2)< (3)> (4)>
2.(1)x+3<0 (2)x-5>7 (3)a>0 (4)a≠b+5 3.D 4.(1)> (2)> (3)>
(4)= 归纳:a2+b2≥2ab,且只有a=b时,有a2+b2=2ab
5.1
2
,1,4 6.C 7.C
8.①;一元一次不等式未知数的次数为1,且系数不为零,
依题意有:n-3=1且n-•2≠0,∴n=-2
课后测控
1.(1)< (2)≥(3)≥(4)> (5)≤
2.-3,-2,-1,0,1 3.a+b>a>│a-b│
4.A 5.C 6.D 7.B
8.(1)-a+5<a-7 (2)-│x│≤0 (3)2│a│+1>0 (4)-5-(x-2)<0 9.设小亮家每个月的用水量是xm3,由于25>1.5×10,
则有:1.5×10+2(x-10)≥25.
10.(1)选择甲旅行社更优惠.
(2)设学生人数为x人,甲旅行社所需费用为:(100x+400)元.
乙旅行社所需费用为:(120x+240)元.
∴选择哪一家旅行社优惠与学生人数有关.
当x=8时,甲乙旅行社费用一样.
当x=9时,∴选甲旅行社更优惠.
当x=7时,选乙旅行社更优惠.
解题规律:特殊值法是解决第(2)问的较好方法.。

相关文档
最新文档