炼钢的基本原理
钢铁的冶炼原理及生产工艺流程
炼铁方法主要有高炉法、直接还原法、熔融还原法等,其原理是矿石在特定的气氛中(还原物质CO、H2、C;适宜温度等)通过物化反应获取还原后的生铁。
生铁除了少部分用于铸造外,绝大部分是作为炼钢原料。
1、高炉炼铁的冶炼原理(应用最多的)
1)炼铁的原理:用还原剂将铁矿石中的铁氧化物还原成金属铁。
铁氧化物(Fe2O3、Fe3O4、FeO)+还原剂(C、CO、H2)铁(Fe)
2) 炼铁的方法
(1)直接还原法(非高炉炼铁法)
(2)高炉炼铁法(主要方法)
3)高炉炼铁的原料及其作用
(1)铁矿石:(烧结矿、球团矿)提供铁元素。
(2)焦碳:提供热量;提供还原剂;作料柱的骨架。
(3)熔剂:(石灰石、白云石、萤石)
使炉渣熔化为液体;去除有害元素硫(S)。
(4)空气:为焦碳燃烧提供氧。
2、工艺流程
生铁的冶炼虽原理相同,但由于方法不同、冶炼设备不同,所以工艺流程也不同。
下面分别简单予以介绍。
高炉生产是连续进行的
从炉顶(一般炉顶是由料种与料斗组成,现代化高炉是钟阀炉顶和无料钟炉顶)不断地装入铁矿石、焦炭、熔剂,从高炉下部的风口吹进热风(1000~1300摄氏度),喷入油、煤或天然气等燃料。
装入高炉中的铁矿石,主要是铁和氧的化合物。
在高温下,焦炭中和喷吹物中的碳及碳燃烧生成的一氧化碳将铁矿石中的氧夺取出来,得到铁,。
炼钢基本原理
炼钢基本原理
炼钢是指将生铁或钢水中的杂质和合金元素逐步除去,以获得符合规定化学成分和质量的金属材料的过程。
炼钢的基本原理是通过控制熔炼过程中的温度、氧化还原条件和流体动力学等因素,使金属中的杂质和合金元素发生物理化学变化,从而实现炼钢的目的。
首先,炼钢的原理是基于金属的化学性质。
在炼钢的过程中,通过控制熔炼温度和氧化还原条件,使金属中的氧化物、硫化物和氮化物等杂质得以去除。
同时,通过添加适量的合金元素,调整金属的化学成分,以满足不同用途的要求。
其次,炼钢的原理还涉及金属的物理性质。
在炼钢的过程中,通过控制金属的温度和流体动力学条件,使金属中的夹杂物和气体得以去除。
同时,通过合理的浇注和凝固工艺,调整金属的晶粒结构,提高金属的力学性能和加工性能。
此外,炼钢的原理还包括金属的热力学性质。
在炼钢的过程中,通过控制金属的熔化温度和熔化热量,实现金属的熔化和凝固。
同时,通过控制金属的过冷度和过热度,避免金属的结晶缺陷和组织偏析。
总之,炼钢的基本原理是通过控制金属的化学、物理和热力学性质,实现金属的净化和调整,从而获得符合规定化学成分和质量的金属材料。
在实际生产中,炼钢的原理是与炼钢的工艺、设备和操作密切相关的,需要综合考虑金属的成分、温度、流体动力学和热力学等因素,以实现炼钢的高效、节能和环保。
总的来说,炼钢基本原理是一个复杂而又精密的过程,需要工程师们在实际操作中不断积累经验和改进技术,以满足不同行业对金属材料的需求。
希望通过对炼钢基本原理的深入理解,能够为炼钢工艺的发展和提高提供一定的参考和帮助。
钢铁的冶炼原理及生产工艺流程
炼铁过程本质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。
炼铁方法主要有高炉法、直接复原法、熔融复原法等,其原理是矿石在特定的氛围中(复原物质CO、H2、C;适合温度等)经过物化反响获得复原后的生铁。
生铁除了少部分用于锻造外,绝大多半是作为炼钢原料。
1、高炉炼铁的冶炼原理(应用最多的)一)炼铁的原理(如何从铁矿石中炼出铁)用复原剂将铁矿石中的铁氧化物复原成金属铁。
铁氧化物(Fe2O3、Fe3O4、FeO)+复原剂(C、CO、H2)铁( Fe)二)炼铁的方法(1)直接复原法(非高炉炼铁法)(2)高炉炼铁法(主要方法)三)高炉炼铁的原料及其作用(1)铁矿石:(烧结矿、球团矿)供给铁元素。
冶炼一吨铁大概需要— 2吨矿石。
(2)焦碳:冶炼一吨铁大概需要 500Kg 焦炭。
供给热量;供给复原剂;作料柱的骨架。
(3)熔剂:(石灰石、白云石、萤石)使炉渣融化为液体;去除有害元素硫( S)。
(4)空气:为焦碳焚烧供给氧。
2、工艺流程生铁的冶炼虽原理同样,但因为方法不一样、冶炼设施不一样,因此工艺流程也不一样。
下边分别简单予以介绍。
高炉生产是连续进行的。
一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。
生产时,从炉顶(一般炉顶是由料种与料斗构成,现代化高炉是钟阀炉顶和无料钟炉顶)不停地装入铁矿石、焦炭、熔剂,从高炉下部的风口吹进热风( 1000~1300 摄氏度),喷入油、煤或天然气等燃料。
装入高炉中的铁矿石,主假如铁和氧的化合物。
在高温下,焦炭中和喷吹物中的碳及碳焚烧生成的一氧化碳将铁矿石中的氧争夺出来,获得铁,这个过程叫做复原。
铁矿石经过复原反响炼出生铁,铁水从出铁口放出。
铁矿石中的脉石、焦炭及喷吹物中的灰分与加入炉内的石灰石等熔剂联合生成炉渣,从出铁口和出渣口分别排出。
煤气从炉顶导出,经除尘后,作为工业用煤气。
现代化高炉还能够利用炉顶的高压,用导出的部分煤气发电。
生铁是高炉产品(指高炉冶炼生铁),而高炉的产品不不过生铁,还有锰铁等,属于铁合金产品。
炼钢基本原理
炼钢基本原理
炼钢是利用高温熔化铁矿石和脱除杂质的方法来生产高质量的钢材。
其基本原理包括清洁炼铁、脱硫脱磷、合金化和调质四个步骤。
清洁炼铁阶段主要目的是去除炼铁过程中产生的杂质,如硫、磷、钒、钨等。
通过加入氧化剂,如生铁、氧化亚铁或二氧化碳气体,使铁矿石中的杂质得以氧化,从而更容易被去除。
脱硫脱磷的过程主要依靠高温下的还原反应。
在加入适量的脱硫剂和脱磷剂的情况下,通过高温还原反应使硫和磷元素转移到熔渣中,从而实现脱除杂质的目的。
合金化是为了调整钢材的成分以满足特定要求。
在这一步骤中,需要加入适量的合金元素,如镍、钴、铬、钒等,来改变钢的性能和组织结构。
调质是通过控制冷处理过程中的工艺参数,使钢材达到期望的硬度和韧性。
常见的调质方法包括淬火和回火。
淬火过程中,钢材迅速冷却以产生硬质组织;而回火则是通过加热和保温过程来降低钢材的硬度和增加韧性。
通过这些基本原理,炼钢过程中的铁矿石和其他原料被转化为高质量的钢材。
不同的炼钢工艺会根据需要调整以上步骤的参数和顺序,以得到不同性能和用途的钢材。
生铁炼钢的原理化学式
生铁炼钢的原理化学式
生铁炼钢是一种将生铁转化为钢的常见方法。
生铁是经过高炉冶炼得到的含有铁和碳等杂质的铁合金,而钢则是一种含有较少碳和其他杂质的铁合金。
因此,将生铁转化为钢是必要的。
生铁炼钢的原理是通过加入适量的氧化剂,使铁中的碳和其他杂质被氧化并排除,同时加入合适的合金元素来调节钢的性质。
化学式方面,生铁炼钢的反应可以表示为:
Fe + C + O2 → FeO + CO2
其中,Fe代表铁,C代表碳,O2代表氧气,FeO代表氧化铁,CO2代表二氧化碳。
这个反应表明,在加入氧化剂的作用下,铁与氧气反应生成了氧化铁和二氧化碳。
由于氧化铁不稳定,它会被进一步还原为铁和二氧化碳。
在这个过程中,碳和其他杂质也被氧化并排除。
最终,经过多次炼制和调节,可以得到所需的钢材。
除了以上的化学反应,生铁炼钢过程中还会加入各种合金元素来控制钢的性质,例如钴、镍、钒等。
这些元素与铁形成的合金可以改变钢的硬度、韧性、耐蚀性等性质,使得钢能够适应不同的应用场景。
总之,生铁炼钢是一种经典的钢铁生产方法,它通过化学反应和合金掺杂来转化生铁为钢,并调节钢的性质以满足不同的需求。
- 1 -。
炼钢的原理
炼钢的原理炼钢是将生铁或钢锭通过一系列的工艺操作,去除其中的杂质和控制成分,从而获得具有特定成分和性能的钢材的过程。
炼钢的原理包括原料的选取、熔炼和调控、去氧化物和硫化物、除碳杂质和硅杂质等多个方面。
下面将重点介绍炼钢的原理和一些常用的炼钢工艺。
1. 原料的选取炼钢的原料主要包括生铁、废钢、合金等。
生铁是从铁矿石中通过高炉冶炼得到的,含有大量的杂质和碳。
废钢是指已经使用过的钢材,在回收利用过程中,需要进行炼钢处理以去除其中的杂质。
合金是为了调节钢材的成分和性能而添加的,常见的合金有铬、镍、钼等。
2. 熔炼和调控炼钢的首要工艺是熔炼,熔炼的过程中需要提供高温条件,使得原料能够完全熔化,并使其中的杂质被氧化或还原。
常用的炉型包括高炉、转炉、电弧炉等。
在熔炼过程中,需要进行一系列的调控工艺,包括调整炉温、搅拌炉内液体的气体、添加合适的氧化剂等,以控制反应的进行和产物的形成。
3. 去氧化物和硫化物在炼钢过程中,氧化物和硫化物是主要的杂质之一,它们对钢材的性能有着显著的影响。
因此,在炼钢的过程中,需要进行去氧化物和硫化物的工艺操作。
常见的方法包括氧化捞渣、碱洗和真空处理等。
氧化捞渣是通过在炼钢过程中添加氧化剂,使得氧化物被氧化为气体或溶于渣中。
碱洗是通过加入适量的碱性物质,使得硫化物与碱反应生成硫化物,再通过熔渣的形式将其从炉料中分离出来。
真空处理则是在特定的条件下,将炉内的气体抽出,以降低气体对钢液中杂质的影响。
4. 除碳杂质和硅杂质碳是炼钢过程中需要控制的一个重要成分,过高或过低的碳含量都会影响钢材的性能。
在炼钢中,需要进行去碳杂质的操作,常用的方法有吹氧、调温除碳、精炼等。
吹氧是通过喷吹氧气,使得钢液中的杂质氧化并产生二氧化碳气泡,然后通过搅拌炉液将其排出。
调温除碳是利用钢液的温度变化,使得其中的含碳物质与炉底的反应速度不同,从而实现除碳的目的。
精炼则是通过特定的精炼剂和操作条件,将其中的碳杂质和硅杂质转化为易于析出的化合物,然后通过渣浇的方式将其分离。
钢铁是怎样炼成的知识点整理及归纳考点
钢铁是怎样炼成的知识点整理及归纳考点一、炼钢的基本原理1. 原料准备:炼钢的原料主要有铁矿石、焦炭和石灰石,其中铁矿石是主要的铁源。
2. 高炉冶炼:高炉是炼钢的主要设备,通过高温和还原剂(焦炭)将铁矿石还原为熔融的铁水。
3. 钢水调质:对炼得的铁水进行调质,包括去除杂质、控制成分和温度等。
4. 连铸成型:将调质后的钢水连续浇注到铸造机中,通过冷却和凝固形成铸坯。
二、炼钢的主要工艺流程1. 矿石处理:将铁矿石破碎、磨细,并通过磁选、重选等工艺去除杂质。
2. 焦炭制备:将煤进行干馏得到焦炭,焦炭是高炉冶炼的还原剂。
3. 高炉冶炼:将经过矿石处理和焦炭制备的原料投入高炉,通过高温还原铁矿石中的铁,并将产生的熔融铁水收集。
4. 调质处理:对收集到的铁水进行脱硫、脱磷、脱硅等处理,调整成分和温度。
5. 连铸成型:将调质后的铁水通过连铸机连续浇注到结晶器中,形成铸坯。
三、炼钢中的关键技术和设备1. 高炉:高炉是炼钢的核心设备,其炉体由炉缸、炉腰、炉身和炉喉组成,通过供热和还原剂来实现铁矿石的冶炼。
2. 连铸机:连铸机是将熔融的铁水连续浇注成型的设备,主要由结晶器、浇注机构和冷却系统组成。
3. 调质设备:包括脱硫装置、脱磷设备、调温系统等,用于对熔融的铁水进行去杂质和调整成分、温度等处理。
4. 矿石处理设备:包括破碎机、磨矿机、磁选机等,用于将铁矿石进行处理,去除杂质。
5. 焦炭制备设备:包括焦炉、焦炭破碎机等,用于将煤进行干馏得到焦炭。
四、炼钢的关键参数和控制要点1. 温度控制:炼钢过程中,需要控制高炉温度、铁水温度和钢水温度等,以保证炼钢过程的稳定性和产品质量。
2. 成分控制:炼钢过程中,需要控制铁水中的碳含量、硫含量、磷含量等,以调整钢的性能和成分。
3. 流动控制:炼钢过程中,需要控制铁水和钢水的流动速度和方向,以保证连铸成型的质量和效率。
4. 杂质控制:炼钢过程中,需要去除铁水中的氧化物、硫化物、杂质金属等有害物质,以提高钢的纯净度和质量。
炼钢的基本原理
炼钢的基本原理炼钢是指将生铁或铁合金经过一系列物理和化学反应过程,消除杂质并调整成分,以制造出优质的钢材的过程。
它是钢铁生产的关键步骤之一、炼钢的基本原理涉及多个方面,包括原料选择、炉冶过程、炉渣控制和浇注技术等。
首先,原料选择是炼钢的关键之一、炼钢所使用的原料主要包括生铁、废钢、铁合金和盐酸等。
生铁是指通过高炉冶炼得到的铁水,其中含有很高的碳含量和其他杂质。
废钢具有较高的铁含量,可以作为原料直接投入到炼钢炉中。
铁合金主要用于调整钢材的成分,其中的一些合金元素可以提高钢材的特性。
其次,炉冶过程是炼钢的核心。
炼钢的主要方法包括转炉法、电炉法和平炉法等。
其中,转炉法是最常用的方法之一、在转炉法中,将预先加热的钢水加入到转炉中,并通过喷吹氧气来氧化和燃烧炉中的碳和其他杂质。
氧气的喷吹可以提高炉温和混合物的搅拌效果,以加快反应速度。
通过不断调整喷吹氧气的量和位置,可以控制钢水的成分和温度。
同时,炉渣控制也是炼钢过程中的重要环节。
炉渣是由氧化矿物、渣料等组成的物质,它在炼钢过程中扮演着重要的角色。
炉渣对于钢水的温度和成分具有一定的调节作用。
当炉渣中的氧化剂过多时,会导致钢材表面氧化过度。
而当炉渣中的还原剂过多时,会导致钢材中夹杂物的增加。
因此,通过控制炉渣的成分和熔化温度,可以有效地控制钢材的质量。
最后,浇注技术也是炼钢过程中需要注意的问题。
在进行炼钢过程中,需要将炉内的钢水倒入坯料模具中进行冷却和成形。
浇注时,需要控制好倾倒的速度和角度,以避免产生不均匀的应力和缺陷。
同时,在冷却过程中,也需要控制好温度和冷却速度,以保证钢材的内部组织和性能。
总之,炼钢的基本原理包括原料选择、炉冶过程、炉渣控制和浇注技术等方面。
通过合理的原料选择和炉冶方法,控制好炼钢过程中的各个环节,可以生产出质量优良的钢材。
炼钢作为钢铁生产的核心环节之一,对于提高钢材的质量和性能具有重要意义。
炼钢的基本原理
炼钢的基本原理:生铁,矿石或加工处理后的废钢氧气等为主要原料炼钢的方法,一般可分为转炉炼钢、平炉炼钢和电炉炼钢三种方法。
现分别介绍如下:1.转炉炼钢法这种炼钢法使用的氧化剂是氧气。
把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。
在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。
因此转炉炼钢不需要另外使用燃料。
转炉炼钢是在转炉里进行。
转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。
开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。
这时液态生铁表面剧烈的反应,使铁、硅、锰氧化(FeO,SiO2,MnO,)生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。
几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。
炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。
最后,磷也发生氧化并进一步生成磷酸亚铁。
磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。
当磷于硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。
这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。
整个过程只需15分钟左右。
如果空气是从炉低吹入,那就是低吹转炉。
随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。
这种转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质量。
2.平炉炼钢法(平炉炼钢法也叫马丁法)平炉炼钢使用的氧化剂通入的空气和炉料里的氧化物,(废铁,废钢,铁矿石)。
反应所需的热量是由燃烧气体燃料(高炉煤气,发生炉煤气)或液体燃料(重油)所提供。
平炉的炉膛是一个耐火砖砌成的槽,上面有耐火砖制成的炉顶盖住。
平炉的前墙上有装料口,装料机就从这里把炉料装进去。
炼钢基本原理
3
质。 熔池中氧的来源主要有三种形式:一是直接向熔池中吹入工业纯氧(含 O2> 98%);二是向熔池中加入富铁矿;三是炉气中的氧传入熔池。 氧在钢液中存在的形式,目前,常看作为氧原子、氧化亚铁分子 FeO 或氧 离子 O-2。当书写熔池中化学反应时,钢液中的氧常以[O]来表示。 铁液中元素的氧化方式大致有两种,即直接氧化与间接氧化。 其总反应式可写成: O2+2[Me]=2MeO,可看作是元素 Me 的直接氧化,
图 2 Pco=1.01325×105Pa 时,[%C]与[%O]的关系 在实际炼钢熔池中,[%C]与[%O]的数值与平衡值偏离较大。各种炼钢方法 中实际的熔池含氧量都高于相应的理论含量,即[O]实际>[O]平衡。这说明熔池中存 在着若干过剩氧,即⊿[O]=[O]实际一[O]平衡。虽然如此,从图 3 中仍可看出,实际 熔池中的碳、氧含量之间仍保持有近似等边双曲线的关系。由此可知,熔池中实 际含氧量仍主要决定于含碳量,即[C]高,则[O]低,[C]低,则[O]高。
而[O]+2[Me]=2MeO,可看作是元素 Me 的间接氧化。 由于熔池中 Fe 原子数远大于其它元素的原子数,所以在氧流作用区,氧首先 与铁结合成 FeO,表面生成 FeO 薄膜的金属液滴随氧气射流急违前进,参与熔 他的循环运动,将氧传给金属,并氧化杂质,起到了间接氧化的作用,即: [FeO]=[Fe] +[O] [Si] +2[O]=[SiO2] [Mn] +[O]=[MnO] 2[P] +5[O]=[P2O5] [C] +[O]=[CO] [C] +[O]=[C O2] 从上可知,吹入熔池中的气体氧,一部分溶入金属,一部分与杂质元素反应,一 部分则以 FeO 形式进入炉渣。 实际熔池中的传氧过程, 很难区分是直接氧化还是间接氧化,两者几乎同时 存在,只是随供氧条件不同各自所占比例不同而已。目前,大多数人认为,在氧 气顶吹转炉中,是以间接氧化方式为主。理由是:氧气顶吹转炉供氧速度大,氧 气射流又集中于作用区附近, 而不是高度分散在熔池中,因此当其它元素还未来 得及到达氧气泡表面时,氧巳和接触表面上大量存在的铁原子首先结合成 FeO 了。同时,由于氧气泡表面温度很高(2200℃以上),使 Si、Mn 对[O]的亲和力减 弱。 另—方面, 当金属液不与炉气中的气态氧直接接触或接触很少时, 如在平炉、 氧气顶吹转炉高枪位操作时的情况。 这时气态氧主要通过炉渣以下列方式传入金 属:
炼钢的基本原理
炼钢的基本原理
炼钢是炼钢厂的一种炼铁工序,其基本原理是利用高温金属熔液中的氧、氮等气体与熔融金属发生化学反应,生成新的合金。
钢是用生铁炼钢的。
生铁含碳量高,熔点低,易于熔化和锻造。
生铁中加入适量的废钢(约占生铁含量的70%),可降低钢中含碳量,从而提高钢的质量。
炼钢前将废钢放入转炉内加热到1200-1400℃(见铁水脱硫),然后将废钢中的碳还原成氧化亚铁。
当氧气吹入炉膛时,氧气与废钢中的碳发生反应生成二氧化碳和一氧化碳等气体。
这些气体随氧气进入铁水中,与铁水中的氧和氮反应生成新的合金元素——碳化物、氮化物和碳氮化物(见脱碳反应)。
同时,这些气体也随氧气进入铁水中与金属蒸汽相结合,生成新的合金。
钢水温度越高,形成碳化物和氮化物越多。
为了使钢材达到优质产品所要求的性能指标,必须控制钢中的碳含量(C)在0.05%-0.12%之间;控制钢中氮含量(N)在0.06%-0.10%之间;控制钢中磷含量(P)在0.015%-0.12%之间。
—— 1 —1 —。
转炉炼钢原理及工艺介绍
2[P] + 5(FeO) = (P2O5) + 5[Fe]
3(FeO) +(P2O5) = (3FeO·P2O5) 在炼钢过程中,由于上述化学反应是一个放热反应,炼钢初期,炉温不高时对 脱磷反应是有利的。由于生成的磷酸铁( 3FeO·P2O5)在高温下是不稳定的化合物, 当炉温升高时,它可以重新分解,使磷又进入金属。为了使磷酸铁不发生分解反应, 需向炉内加入石灰,使磷酸铁转比为稳定的磷酸钙,其反应为: (3FeO·P2O5) + 4(CaO) = (4CaO·P2O5 + 3(FeO) 综上所述,碱性炼钢炉内脱磷的总反应为: 2[P] + 5(FeO) + 4(CaO) =(4CaO·P2O5) + 5[Fe]
(4)碳的氧化与还原
碳的氧化反应又称脱碳反应或碳氧反应,它是炼钢过程中最基本的一 个反应,贯穿炼钢过程的始终。 在炼钢过程中碳可以被氧直接氧化成CO气体,反应式为; 2(C)+{O2}=2{CO}
熔渣中的(FeO)与氧化性气体接触被氧化成高价氧化铁
(FeO) + 1/2{O2}= (Fe2O3) (Fe2O3)从炉渣表面扩散到渣与金属液交界面,与金属接触被还原 成低价氧化铁 (Fe2O3) + [Fe] = 3(FeO) 在渣与金属界面上,氧溶解到金属液中 ( FeO) = [O] + [Fe] 碳与溶于金属的氧发生反应,生成CO气体并排出到炉气中 [C] +[O] ={CO}
(4)碳的氧化与还原
碳的这种氧化反应在炼钢过程中有着极为重要的作用: 1)使铁水中的含碳量降低到所炼钢种的规格范围内o 2)脱碳反应的产物——CO气体从熔池中排出时产生佛腾现象,使熔 池受到激烈地搅动,从而增大了反应接触界面,加速了传质和传热过程, 有刮于冶金物化反应的进行。同时均匀了熔池的成分和温度; (3)上浮的CO气体有利千清除钢中气体和夹杂物,从而提高钢的质量。 为了加速碳的氧化,保持熔池内良好的沸腾状态,就必须提高炉温, 并改善炉渣的流动性以及向炉内加入氧化剂(铁矿石、氧气等)。
炼钢的基本原理
炼钢的基本原理炼钢是将生铁或其他含铁杂质较高的原料经过一系列物理和化学反应,使其净化、脱碳、合金化,最终得到纯净的钢材的过程。
这个过程主要包括高炉冶炼、转炉炼钢和电炉炼钢三个阶段。
下面将详细介绍炼钢的基本原理。
高炉冶炼是炼钢的第一步,也是最重要的一步。
在高炉中,铁矿石和焦炭作为主要原料,经过还原反应生成生铁。
高炉内部温度高达1500℃以上,使得铁矿石中的铁氧化物被还原成金属铁。
同时,焦炭燃烧产生的热量使得反应继续进行,并将生成的生铁熔化。
此外,高炉中还加入一定量的石灰石和焦灰,用于吸附和融化矿石中的杂质,形成炉渣,以便于后续的分离和处理。
高炉产生的生铁含有较多的杂质,比如硫、磷、锰、硅等。
为了净化生铁,需要通过转炉炼钢或电炉炼钢进行进一步的处理。
转炉炼钢是利用大型倾转炉对生铁进行冶炼的过程。
在转炉中,将生铁和废钢等原料放入转炉中,并以高温燃烧的方式进行加热。
在高温条件下,生铁中的杂质会与加入的石灰石和氧化剂发生反应,生成易于脱离金属相的氧化物。
然后,通过吹氧和倾吹这两个阶段,将炉内的氧气吹入转炉中,使得生成的氧化物和炉渣分离。
炉渣中含有大部分的杂质,而金属铁则得到净化。
电炉炼钢是利用电能将生铁进行冶炼的过程。
电炉炼钢的原理与转炉炼钢类似,只是使用的加热方式不同。
电炉中通过电极向炉内通电,使得电流通过生铁,使其加热熔化。
在高温条件下,生铁中的杂质会与加入的石灰石和氧化剂发生反应,生成氧化物。
通过调节电流和电压,可以控制炉内的温度和反应速率。
最后,通过倾炉排出炉渣,得到净化后的钢水。
除了上述基本原理外,炼钢还涉及到一系列辅助工艺和设备,如炼钢渣的处理、合金的加入、温度的控制等。
炼钢渣的处理包括炉渣的收集、冷却、破碎等步骤,以便于回收利用。
合金的加入可以通过向转炉或电炉中加入铁合金的方式,使得最终的钢材具有特定的性能。
温度的控制是通过控制加热工艺和冷却过程中的温度,以保证钢材的质量和性能。
总的来说,炼钢的基本原理是通过高温条件下的物理和化学反应,将含铁原料净化、脱碳、合金化,最终得到纯净的钢材。
转炉炼钢原理及工艺介绍
锰的氧化反应有三种情况:
(1)锰与气相中的氧直接作用
[Mn]+ 1/2{O2}=(MnO)
(2)锰与溶于金属中的氧作用
[Mn]+ [O2] =(MnO)
(3)锰的氧化与还原
3)锰与炉渣中氧化亚铁作用
[Mn]+(FeO)=(MnO)+ [Fe]
第三个反应在炉渣——金属界面上迸行,是锰氧化的主要反应。
锰的氧化还原与硅的氧化还原相比有以下基本特点:
1)在冶炼初期锰和硅一样被迅速大量氧化,但锰的氧化程度要低些
,这是由于硅与氧的结合能力大于锰与氧的结合能力;
2)MnO为弱碱性氧化物,在碱性渣中( MnO)大部分呈自由状态存
在。因此,在一定条件下可以被还原。由于锰的氧化反应是放热反应,故
温度升高有利于锰的还原。所以在生产实践中冶炼后期熔池中会出现回锰
1)在某一温度下,几种元素同时和氧相遇时,位置低的元素先氧化。如1500℃ 时,氧化顺序为Al、Si、C、V、Mn。
2)位置低的元素可将位置高的氧化物还原。炼钢过程中脱氧就是利用Al、Si等 元素将FeO还原。
3)CO的分解压曲线的斜率与其它氧化物的不同,它与Si、Mn、V等的氧化物分 解与压CO曲分线解有压一曲交线点相,交此点点对所应对的应温的度温为度15称30为℃氧,化当转t>化15温30度℃。时例,如Si,先S于iOC2被分氧解化压;曲当线 t<1530℃时,则C先于Si被氧化。1530℃即为Si、C的氧化转化温度。
• 所谓炼钢,就是通过冶炼降低生铁中的 碳和去除有害杂质,在根据对钢性能的要求 加入适量的合金元素,使其成为具有高的强 度、韧性或其他特殊性能的钢。
•二、炼钢基本原理
• 因此,炼钢的基本任务可归纳为:
炼钢基本原理
◆
变化规律
铁和氧的亲和力小于Si、Mn、P与氧的亲和力,但由 于金属液中铁的浓度最大,质量分数为90%以上,所 以铁最先被氧化,生成大量的Fe0,并通过Fe0使其 与氧亲和力大的Si、Mn、P等被迅速氧化。
◆
Fe的氧化图解
[Fe]+1/2{O2}=[FeO] (直接氧化) [Fe]+[O]= [FeO] [FeO]= (FeO) (间接氧化)
废钢应清洁干燥不得混有泥沙,水泥,耐火材料,爆炸 物和易燃易爆品以及有毒物品等。废钢的硫、磷含量均 不大于0.050%。不同性质的废钢分类存放。 3)铁合金 铁合金是脱氧及合金化材料。用于钢夜脱氧的铁合金叫 做脱氧剂,常用的有: 简单合金:Fe-Mn,Fe-Si,Fe-Cr,Fe-V, Fe-Ti, Fe-Mo,Fe-W等 复合脱氧剂:Ca-Si合金,Al-Mn-Si合金,Mn-Si合金, Cr-Si合金,Ba-Ca-Si合金,Ba-Al-Si合金等。
6.3 炼钢基本原理
由于各元素与氧的亲和力不同,元素氧化的顺序不同。
1、当温度T<1400℃时,元素的氧化顺序是:
Si
Mn
C
P
Fe
2、当1400℃<T<1530℃时元素的氧化顺序是: Si C Mn P Fe
3、当T>1530℃时,元素的氧化顺序是: C Si Mn P Fe
氧化图解 变化规律
1、Fe
n为3或4) 熔渣 界面
3(FeO)+(P2O5)=( 3FeO. P2O5)
- 2[P]+5(FeO) = (P2O5) +5[Fe]
(吹炼前期)
钢水
2[P]+5[O]=(P2O5) 2[P]+{O2}=(P2O5)
萤石:萤石的主要成分是 CaF2,焙烧约930℃。萤石能 使CaO和阻碍石灰溶解的2CaO•SiO2外壳的熔点显著降 低,生成低熔点3CaO•CaF2•2SiO2(熔点1362℃),加 速石灰溶解,迅速改善炉渣流动性。 萤石助熔的特点是作用快,时间短。但大量使用萤石会增 加喷溅,加剧炉衬侵蚀,污染环境。转炉用萤石要求:块 度在5-50mm,且要干燥,清洁。
炼钢基本原理及原材料
炼钢炉渣的主要性质
炉渣的碱度 炉渣中碱性氧化物浓度总和与酸性氧化物浓度总 和之比称之为炉渣碱度,常用符号R表示。熔渣 碱度的大小直接对渣钢间的物理化学反应如脱磷、 脱硫、去气等产生影响。
炉料中w[P]<0.30%时 R wCaO wSiO 2
0.30%≤w[P]<0.60%时
R w CaO (wSiO 2 wP2O5 )
– 转炉炼钢的主要原料,占70-85% – 转炉炼钢对铁水的要求:
• 铁水成分直接影响转炉内的炉内温度、化渣和钢水质量 – Si、Mn、P、S
• 铁水温度(要求>1250 ℃ )
➢ 废钢
– 转炉冶炼加入一定废钢(15%-30%左右) – 电炉冶炼的主要原料
➢ 直接还原铁 ➢ 铁合金-作为脱氧剂和合金剂,调整钢水成分
炼钢原理及原材料
一、炼钢的基本任务
钢和铁都是以铁元素为基本成分的铁碳合金。生铁 和钢以在性能上有较大的差异,主要原因是由于含 碳量的不同。
生铁含碳高,硬而脆,冷热加工性能差;而钢则具 有较好的韧性,强度高,热加工性能和焊接性能比生 铁好,才能加工成各种类型的钢材而使用。生铁除含 有较高的碳外,还含有一定量的其他杂质。
直接氧化
直接向金属液吹入氧气,氧气与金属液直接接触
气体分子分解并吸附在铁液上 O2=2[O]吸附
[O]吸附=[O] 溶解到铁液中 [O]吸附+[Me]=MeO 与金属反应
O2+2[Me]=2MeO
条件:[O]能与金属接触,高度分散在熔池中
间接氧化
O2+Fe=(FeO)--在氧流区,Fe多
在熔池中, (FeO)=Fe+[O] [O]+[Fe]=[FeO] (FeO) 2[O]+[Si]=(SiO2) 5[O]+2[P]=(P2O5) [O]+[C]=CO
炼钢的原理化学方程式
炼钢的原理化学方程式炼钢是一种重要的冶金工艺,通过炼钢可以将生铁中的杂质去除,从而得到高质量的钢材。
炼钢的原理主要是利用化学反应来去除杂质,下面我们就来详细了解一下炼钢的原理和化学方程式。
首先,炼钢的原理是利用氧气与生铁中的杂质发生氧化还原反应。
在炼钢过程中,首先需要将生铁加热至熔化状态,然后通过吹氧等方法向熔融的生铁中通入氧气。
氧气与生铁中的杂质发生化学反应,将杂质氧化成氧化物,从而使其脱离熔融的金属,最终形成渣浆。
这样就可以将杂质从生铁中去除,得到高质量的钢材。
其次,炼钢的化学方程式主要包括氧化反应和还原反应两种类型。
在氧化反应中,氧气与生铁中的碳、硅、锰等杂质发生氧化反应,生成相应的氧化物。
以碳为例,其氧化反应方程式为:Fe + C + O2 → FeO + CO2。
在这个方程式中,生铁中的碳与氧气发生反应,生成氧化铁和二氧化碳。
通过这样的氧化反应,可以将生铁中的碳氧化成氧化物,从而去除碳的杂质。
另外,还原反应也是炼钢过程中的重要化学反应。
在炼钢过程中,还原剂通常是氧化铁,它可以与生铁中的氧化物反应,将氧化物还原成金属。
以氧化铁为例,其还原反应方程式为:FeO + C → Fe + CO。
在这个方程式中,氧化铁与碳发生反应,生成铁和一氧化碳。
通过这样的还原反应,可以将生铁中的氧化物还原成金属,从而得到高质量的钢材。
总的来说,炼钢的原理化学方程式是通过氧化还原反应去除生铁中的杂质,从而得到高质量的钢材。
通过合理控制炼钢过程中的氧化还原反应,可以有效去除生铁中的杂质,提高钢材的质量。
希望通过本文的介绍,能够对炼钢的原理和化学方程式有更深入的了解。
高炉炼钢原理
高炉炼钢原理一、引言高炉炼钢是现代钢铁工业的核心环节,其历史可追溯至数千年前。
高炉作为一种重要的冶金设备,主要用于将铁矿石还原成生铁,并进一步炼制成钢。
本文将详细阐述高炉炼钢的基本原理、工艺流程、关键设备以及环保措施,以便读者全面了解这一传统而现代的炼钢方法。
二、高炉炼钢的基本原理高炉炼钢的基本原理是在高温下,利用还原剂(主要是焦炭)将铁矿石中的氧去除,从而得到生铁。
生铁再经过进一步处理,如炼钢炉中的氧化和精炼,最终得到所需的钢材。
高炉炼钢过程中涉及的主要化学反应包括:碳的燃烧、铁的还原和渣的形成。
1. 碳的燃烧在高炉内,焦炭与鼓入的高炉煤气(主要成分为氧气、氮气和二氧化碳)中的氧气发生燃烧反应,生成二氧化碳并放出大量的热量。
这些热量为高炉提供了还原铁矿石所需的温度。
2. 铁的还原在高温下,焦炭中的碳与铁矿石中的氧发生还原反应,生成二氧化碳和金属铁。
这一过程中,铁矿石中的铁氧化物被还原成金属铁,而焦炭则作为还原剂被消耗。
3. 渣的形成高炉炼钢过程中,除了金属铁外,还会产生一些无法还原的氧化物和其他杂质。
这些物质与焦炭中的灰分、熔剂(如石灰石、白云石等)结合,形成炉渣。
炉渣具有较低的密度,因此浮在铁水上面,便于从高炉中排出。
三、高炉炼钢的工艺流程高炉炼钢的工艺流程主要包括装料、鼓风、熔炼、出铁和出渣等环节。
1. 装料将铁矿石、焦炭和熔剂按一定比例混合后,从高炉顶部装入炉内。
为保证高炉的连续生产,装料过程需要自动化和精确控制。
2. 鼓风从高炉底部鼓入预热后的高炉煤气,为高炉提供氧气和热量,促进碳的燃烧和铁的还原反应进行。
鼓风参数(如风量、风温等)需要根据高炉的实际状况进行调整和优化。
3. 熔炼在高温和还原气氛下,铁矿石被还原成金属铁,并与炉渣分离。
熔炼过程中需要保持高炉内部的稳定和热平衡,以确保炉况良好和高炉的顺行。
4. 出铁当炉内积累了一定量的铁水后,通过出铁口将其排出。
出铁过程中需要注意控制铁水的温度和成分,以保证产品质量和生产安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
炼钢的基本原理:生铁,矿石或加工处理后的废钢氧气等为主要原料炼钢的方法,一般可分为转炉炼钢、平炉炼钢和电炉炼钢三种方法。
现分别介绍如下:1. 转炉炼钢法这种炼钢法使用的氧化剂是氧气。
把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。
在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。
因此转炉炼钢不需要另外使用燃料。
转炉炼钢是在转炉里进行。
转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。
开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。
这时液态生铁表面剧烈的反应,使铁、硅、锰氧化(FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。
几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。
炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。
最后,磷也发生氧化并进一步生成磷酸亚铁。
磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。
当磷于硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。
这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。
整个过程只需15分钟左右。
如果空气是从炉低吹入,那就是低吹转炉。
随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。
这种转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质量。
2. 平炉炼钢法(平炉炼钢法也叫马丁法)平炉炼钢使用的氧化剂通入的空气和炉料里的氧化物,(废铁,废钢,铁矿石)。
反应所需的热量是由燃烧气体燃料(高炉煤气,发生炉煤气)或液体燃料(重油)所提供。
平炉的炉膛是一个耐火砖砌成的槽,上面有耐火砖制成的炉顶盖住。
平炉的前墙上有装料口,装料机就从这里把炉料装进去。
熔炼时关上耐火砖造成的门。
炉膛的两端都筑有炉头,炉头各有两个孔道,供导入燃料与热空气,或从炉里导炉气之用。
平炉炼钢所用的原料有废钢、废铁、铁矿石和溶剂(石灰石和生石灰)。
开始冶炼时,燃料遇到导入的热空气就在燃料面上燃烧,温度高达1800摄氏度。
热量直接由火焰传给炉料,使炉料迅速熔化(铁的熔点是1535摄氏度,钢略低)。
同时有一部分熔化的生铁生成氧化亚铁,生铁里的杂质硅、锰被氧化亚铁氧化,声成炉渣。
由于炉里放有过量的石灰石,磷与硫等杂质就生成磷酸钙和硫化钙成为炉渣。
其次碳也进行氧化,生成一氧化碳从熔化的金属里冒出,好象金属在沸腾一样。
反应快要进行完毕的时候,加入脱氧剂并定时把炉渣扒出。
在冶炼将完成时要根据炉前分析(用快速分析法,几分钟可完成)来检验钢的成分是否合乎要求。
炼锝的钢从出钢口流入钢水包里,再从钢水包注入模子里铸成制品或钢锭。
为了提高炉温,气体燃料要在蓄热室(如图I,II,III,IV)里进行预热。
在平炉里不但可加入液态生铁,而且可以加入固态的生铁以及夹攻以后的废铁和铁矿石等。
另外,在平炉里如果用30%的富氧空气鼓风,同时在熔化的金属里吹入氧气,可使生产率提高80%,冶炼的时间缩短2~4小时,并可节约燃料,富氧空气也不需要预热。
3. 电炉炼钢法钢还可以在以电能为热源的电炉里冶炼。
使用电炉炼钢可以炼出优质的合金钢。
电炉的种类很多,应用最广泛的是电弧炉。
炼钢原理就是在高温条件下,用氧气或铁的氧化物把生铁中所含的过量的碳和其它杂质转为气体或炉渣而除去。
把生铁冶炼成钢的实质,就是适当地降低生铁里的含碳量,除去大部分硫、磷等有害杂质,调整钢里合金元素含量到规定范围之内。
炼钢的主要反应原理,也是利用氧化还原反应,在高温下,用氧化剂把生铁里过多的碳和其它杂质氧化成为气体或炉渣除去。
因此,炼钢和炼铁虽然都是利用的氧化还原反应,但是炼铁主要是用还原剂把铁从铁矿石里还原出来,而炼钢主要是用氧化剂把生铁里过多的碳和其它杂质氧化而除去。
炼钢时常用的氧化剂是空气、氧气或氧化铁。
主要化学方程式:大量铁变成氧化亚铁:2Fe+O2==2FeO+热量调整硅、锰:Si+2FeO==SiO2+2Fe+热量Mn+FeO ==MnO+Fe+热量降低碳量:C+FeO==CO+Fe-热量脱氧(除FeO因它会使钢具有热脆性)工业炼铁和炼钢原理的异同点:从简单的化学反应来看,炼铁是还原过程,即各类铁的化合物还原为铁单质。
炼钢属于氧化过程,把铁水中的各类杂质氧化为氧化物除去,比如脱碳等造渣:调整钢、铁生产中熔渣成分、碱度和粘度及其反应能力的操作。
目的是通过渣——金属反应炼出具有所要求成分和温度的金属。
例如氧气顶吹转炉造渣和吹氧操作是为了生成有足够流动性和碱度的熔渣,以便把硫、磷降到计划钢种的上限以下,并使吹氧时喷溅和溢渣的量减至最小。
出渣:电弧炉炼钢时根据不同冶炼条件和目的在冶炼过程中所采取的放渣或扒渣操作。
如用单渣法冶炼时,氧化末期须扒氧化渣;用双渣法造还原渣时,原来的氧化渣必须彻底放出,以防回磷等。
熔池搅拌:向金属熔池供应能量,使金属液和熔渣产生运动,以改善冶金反应的动力学条件。
熔池搅拌可藉助于气体、机械、电磁感应等方法来实现。
电炉底吹:通过置于炉底的喷嘴将N2、Ar、CO2、CO、CH4、O2等气体根据工艺要求吹入炉内熔池以达到加速熔化,促进冶金反应过程的目的。
采用底吹工艺可缩短冶炼时间,降低电耗,改善脱磷、脱硫操作,提高钢中残锰量,提高金属和合金收得率。
并能使钢水成分、温度更均匀,从而改善钢质量,降低成本,提高生产率。
熔化期:炼钢的熔化期主要是对平炉和电炉炼钢而言。
电弧炉炼钢从通电开始到炉料全部熔清为止、平炉炼钢从兑完铁水到炉料全部化完为止都称熔化期。
熔化期的任务是尽快将炉料熔化及升温,并造好熔化期的炉渣。
氧化期和脱炭期:普通功率电弧炉炼钢的氧化期,通常指炉料溶清、取样分析到扒完氧化渣这一工艺阶段。
也有认为是从吹氧或加矿脱碳开始的。
氧化期的主要任务是氧化钢液中的碳、磷;去除气体及夹杂物;使钢液均匀加热升温。
脱碳是氧化期的一项重要操作工艺。
为了保证钢的纯净度,要求脱碳量大于0.2%左右。
随着炉外精炼技术的发展,电弧炉的氧化精炼大多移到钢包或精炼炉中进行。
精炼期:炼钢过程通过造渣和其他方法把对钢的质量有害的一些元素和化合物,经化学反应选入气相或排、浮入渣中,使之从钢液中排除的工艺操作期。
还原期:普通功率电弧炉炼钢操作中,通常把氧化末期扒渣完毕到出钢这段时间称为还原期。
其主要任务是造还原渣进行扩散、脱氧、脱硫、控制化学成分和调整温度。
目前高功率和超功率电弧炉炼钢操作已取消还原期。
炉外精炼:将炼钢炉(转炉、电炉等)中初炼过的钢液移到另一个容器中进行精炼的炼钢过程,也叫二次冶金。
炼钢过程因此分为初炼和精炼两步进行。
初炼:炉料在氧化性气氛的炉内进行熔化、脱磷、脱碳和主合金化。
精炼:将初炼的钢液在真空、惰性气体或还原性气氛的容器中进行脱气、脱氧、脱硫,去除夹杂物和进行成分微调等。
将炼钢分两步进行的好处是:可提高钢的质量,缩短冶炼时间,简化工艺过程并降低生产成本。
炉外精炼的种类很多,大致可分为常压下炉外精炼和真空下炉外精炼两类。
按处理方式的不同,又可分为钢包处理型炉外精炼及钢包精炼型炉外精炼等。
钢液搅拌:炉外精炼过程中对钢液进行的搅拌。
它使钢液成分和温度均匀化,并能促进冶金反应。
多数冶金反应过程是相界面反应,反应物和生成物的扩散速度是这些反应的限制性环节。
钢液在静止状态下,其冶金反应速度很慢,如电炉中静止的钢液脱硫需30~60分钟;而在炉精炼中采取搅拌钢液的办法脱硫只需3~5分钟。
钢液在静止状态下,夹杂物*上浮除去,排除速度较慢;搅拌钢液时,夹杂物的除去速度按指数规律递增,并与搅拌强度、类型和夹杂物的特性、浓度有关。
钢包喂丝:通过喂丝机向钢包内喂入用铁皮包裹的脱氧、脱硫及微调成分的粉剂,如Ca-Si粉、或直接喂入铝线、碳线等对钢水进行深脱硫、钙处理以及微调钢中碳和铝等成分的方法。
它还具有清洁钢水、改善非金属夹杂物形态的功能。
钢包处理:钢包处理型炉外精炼的简称。
其特点是精炼时间短(约10~30分钟),精炼任务单一,没有补偿钢水温度降低的加热装置,工艺操作简单,设备投资少。
它有钢水脱气、脱硫、成分控制和改变夹杂物形态等装置。
如真空循环脱气法(RH、DH),钢包真空吹氩法(Gazid),钢包喷粉处理法(IJ、TN、SL)等均属此类。
钢包精炼:钢包精炼型炉外精炼的简称。
其特点是比钢包处理的精炼时间长(约60~180分钟),具有多种精炼功能,有补偿钢水温度降低的加热装置,适于各类高合金钢和特殊性能钢种(如超纯钢种)的精炼。
真空吹氧脱碳法(VOD)、真空电弧加热脱气法(VAD)、钢包精炼法(ASEA-SKF)、封闭式吹氩成分微调法(CAS)等,均属此类;与此类似的还有氩氧脱碳法(AOD)。
惰性气体处理:向钢液中吹入惰性气体,这种气体本身不参与冶金反应,但从钢水中上升的每个小气泡都相当于一个“小真空室”(气泡中H2、N2、CO的分压接近于零),具有“气洗”作用。
炉外精炼法生产不锈钢的原理,就是应用不同的CO分压下碳铬和温度之间的平衡关系。
用惰性气体加氧进行精炼脱碳,可以降低碳氧反应中CO分压,在较低温度的条件下,碳含量降低而铬不被氧化。
预合金化:向钢液加入一种或几种合金元素,使其达到成品钢成分规格要求的操作过程称为合金化。
多数情况下脱氧和合金化是同时进行的,加入钢中的脱氧剂一部分消耗于钢的脱氧,转化为脱氧产物排出;另一部则为钢水所吸收,起合金化作用。
在脱氧操作未全部完成前,与脱氧剂同时加入的合金被钢水吸收所起到的合金化作用称为预合金化。
成分控制:保证成品钢成分全部符合标准要求的操作。
成分控制贯穿于从配料到出钢的各个环节,但重点是合金化时对合金元素成分的控制。
对优质钢往往要求把成分精确地控制在一个狭窄的范围内;一般在不影响钢性能的前提下,按中、下限控制。
增硅:吹炼终点时,钢液中含硅量极低。
为达到各钢号对硅含量的要求,必须以合金料形式加入一定量的硅。
它除了用作脱氧剂消耗部分外,还使钢液中的硅增加。
增硅量要经过准确计算,不可超过吹炼钢种所允许的范围。
终点控制:氧气转炉炼钢吹炼终点(吹氧结束)时使金属的化学成分和温度同时达到计划钢种出钢要求而进行的控制。
终点控制有增碳法和拉碳法两种方法。
出钢:钢液的温度和成分达到所炼钢种的规定要求时将钢水放出的操作。
出钢时要注意防止熔渣流入钢包。
用于调整钢水温度、成分和脱氧用的添加剂在出钢过程中加入钢包或出钢流中。
炼钢过程造渣造渣:调整钢、铁生产中熔渣成分、碱度和粘度及其反应能力的操作。
目的是通过钢铁高炉渣——金属反应炼出具有所要求成分和温度的金属。
例如氧气顶吹转炉造渣和吹氧操作是为了生成有足够流动性和碱度的熔渣,能够向金属液面中传递足够的氧,以便把硫、磷降到计划钢种的上限以下,并使吹氧时喷溅和溢渣的量减至最小。