七年级数学线段的比较PPT优秀课件

合集下载

人教版七年级上册 4.2 线段的大小比较(15张PPT)

人教版七年级上册   4.2 线段的大小比较(15张PPT)

例:如图,AB=12cm,-点D是线段CB的中点, 那么AD有多长呢?
解法一:
A
C DB
解: ∵点C是线段AB的中点
∴ AC=CB= 1 AB 6cm
2
CD 1 CB 3cm 2
AD AC CD 9cm
解法二: ∵点C是线段AB的中点
∴AC=CB= 1 AB 6c.AC=BD
B.AC<BD
C.AC>BD
D.不能确定
AB C D
4.如图,点C是线段AB的中点,点D是线段BC
的中点,下面等式正确的是( D )
A.CD=AD-BC
B.CD=AC-DB
C.CD= AB-BD
D.CD=AB-AD
A
CD B
5.如图,点M是线段AB的中点,点C、D把线 段AB三等分。已知线段CM=2.5cm,求线段AB 的长等于__1_5___.
2
BD 1 CB 3cm 2
AD AB BD 9cm
练习
1.观察下列三组图形,分别比较线段a、b的长短
a
b
(1)
b
(2)
a
(3)
b
a
答:三个小题中都是a=b.
练习 2.如图所示,从A村出发到B村,最近的路线
是( B )
A.A—C—D—B B.A—C—F—B C.A—C—E—F—B D.A—C—M—B
郝芳平 2019.12.9
情境引入 小红站在 石头上和小明比身高.你们能马上判 断出他们的高矮吗? 有什么方法来判断他们的高矮?
不能
他们站在同位 置上,再比较。
用刻度尺来测 量他们身高。
探究新知
比较两条线段的长短方法 1 度量法

线段的比较课件

线段的比较课件
几何命题或解决几何问题。
04
线段的性质和定理
Chapter
线段的性质
01
02
03
线段的基本性质
线段是两点之间最短的距 离。
线段的延伸性质
线段可以向两个方向无限 延伸,但长度保持不变。
线段的垂直性质
通过线段的中点,有且仅 有一条与线段垂直的线。
线段的定理
线段的基本定理
两点确定一条线段。
线段的平行定理
线段在数学中的应用
距离问题
在解决距离问题时,线段是非常 重要的工具。例如,在求解两点 之间的最短距离时,通常需要使
用线段的性质和公式。
比例和分数
线段在数学中也被用于表示比例 和分数。通过将一个线段分成若 干等份或按照一定的比例分割, 可以得到不同的长度和比例关系

几何证明
在几何证明中,线段经常被用作 证明的工具。例如,通过使用线 段的性质和定理,可以证明某些
实例
在几何图形中,线段与直线的夹角可以通过量角器来测量。
线段与圆的关系
定义
线段与圆的关系是指线段与圆心和圆上的点之间的相对位置。
性质
线段可以与圆相交、相切或相离,这取决于线段的长度和圆的大小 。
实例
在几何问题中,线段与圆的关系可以通过比NKS
感谢观看
详细描述
线段之间的夹角是指两条线段在相交点形成的角度。在比较线段时,较大的夹角可以被认为是较大的 ,而较小的夹角可以被认为是较小的。角度可以用度数表示,例如90度、45度等。
位置比较
总结词
线段的位置是衡量线段在空间中的关系的重要标准,通过位置可以对线段进行比 较。
详细描述
线段的位置是指线段在空间中的位置关系。在比较线段时,位置的差异可以影响 到线段的比较结果。例如,一条水平线段和一条垂直线段在不同的位置上,它们 的长度和角度可能相同,但它们的位置不同,因此它们是不同的线段。

线段的长短比较 课件(共20张PPT) 华师大七年级数学上册

线段的长短比较  课件(共20张PPT)  华师大七年级数学上册

想一想
只有圆规和无刻度的直尺的情况下,那么线段如何
使用叠合法?
a
如何在线段 CD 上画出线段 AB, 实际 并且一个端点重合,另一个端点
A
B
要放在公共端点的同侧?
C
本质 D
已知线段 a,如何作一条
线段 AB,使 AB = a?
本质 作一条线段等于已知线段 “尺规作图”
a
a
M
N
总结
AC
B
先用直尺画射线,再用圆规在射线上截取已知线段.
因为 D 是线段 CB 的中点,
所以 CD = CB = ×3 = 1.5 (cm).
所以 AD = AC + CD = 3 + 1.5 = 4.5 (cm).
练一练
1. (成都期末) 如图,长度为 20 cm 的线段 AB 的中点为
M,点 C 在线段 MB 上,且 MC∶CB = 2∶3,则线段
叠合法
实际 如何在线段 CD 上画出线段 AB,并且一端端 点重合,另一个端点要放在公共端点的同侧?
A
B
C(A)
BD
归纳总结
叠合法比较线段的大小:
A(C)
DB
AB>CD
A(C)
B D AB<CD
AB = CD
A(C)
B(D)
试一试 用直尺和圆规作一条线段等于已知线段的 2 倍.
A0
1
B
23
4
C
5 6 0 7 1 8 2 9 3104
D
56
7
8
9 10
C
D
0 1 2 3 4 5 6 7 8 9 10
2 线段的和、差、倍、分
在直线上画出线段 AB = a,再在 AB 的延长线 上画线段 BC = b,线段 AC 就是 a 与 b 的和,记作 AC = a + b. 如果在 AB 上画线段 BD = b,那么线段 AD 就是 a 与 b 的差,记作 AD = a - b .

2024新人编版七年级数学上册《第六章6.2.2第1课时比较线段的长短》教学课件

2024新人编版七年级数学上册《第六章6.2.2第1课时比较线段的长短》教学课件

探究新知
作一条线段等于已知线段.
已知:线段 a,作一条线段 AB,使 AB=a.
第一步:用直尺画射线 AF;
第二步:用圆规在射线 AF 上截取
AB = a.
Aa
所以 线段 AB 为所求.
a BF
在数学中,我们常限定用无刻度的直尺和圆规作图,这就是
尺规作图.
探究新知
说一说
你们平时是如何比较两个同学的身高的?你能从比身 高的方法中得到启示来比较两条线段的长短吗?
义务教育(2024年)新人教版 七年级数学上册
第6章 几何图形初步 课件
第六章 几何图形初步
6.2.2 线段的比较与计算 第1课时 比较线段的长短
学习目标
1.用尺规画一条线段等于已知线段,会比较两条线段的长短. 2. 体会文字语言、符号语言和图形语言的相互转化;了解两 点间距离的意义,理解“两点之间,线段最短”的线段性 质,并学会运用.
两点的所有连线中,线段最短.
连接两点间的线段的长度,叫做 这两点的距离.
探究新知
1.如图,这是 A,B 两地之间的公路,在公路工程改造计 划时,为使 A,B 两地行程最短,应如何设计线路?请 在图中画出,并说明理由.
B. A.
两点之间线段最短.
探究新知
2.把原来弯曲的河道改直,A,B 两地间的河道长度 有什么变化?
两个端点的位置作比较.
C (A)
尺规作图
BD
探究新知
叠合法结论
A C (A)
A C(A) A (A)C
B
1. 若点 A 与点 C 重合,点 B 落
B D 在C,D之间,那么 AB <CD.
B (B) D
2. 若点 A 与点 C 重合,点 B 与 点 D 重合 ,那么 AB = CD.

6.3 线段的长短比较 教学课件 (共28张PPT)

6.3 线段的长短比较 教学课件 (共28张PPT)

讲授新课
作一条线段等于已知线段 已知:线段 a,作一条线段 AB,使 AB=a. 第一步:用直尺画射线 AF; 第二步:用圆规在射线 AF 上截取 AB = a. 所以线段 AB 为所求线段.
a Aa B F
在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.
讲授新课
尺规作图的要点: 1.直尺只能用来画线,不能量距; 2.尺规作图要求作出图形,说明结果,并保留作图痕迹.
生活中我们常常会比较两个物体的长短。如图两支铅笔 谁长?
我们可以把两支铅笔看成两条线段,这样我们就把实际 问题转化为了几何问题.
讲授新课
思考:怎样比较两条线段的长短??
Aa B
(1)度量法 用刻度尺量出它们的 长度,再进行比较.
Cb
D
(2) 叠合法 将其中一条线段“移动”, 使其一端点与另一线段的 一端点重合,两线段的另 一端点均在同一射线上.
(2)连接两点的线段叫两点间的距离;
(3)两点之间所有连线中,线段最短;
(4)射个
C.3个
D.4个
当堂检测
2.某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银
杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是(

A.两点之间线段最短 C.垂线段最短
解:作图步骤如下:
aa b
(1)作射线 AM;
A B1 B2
BM
(2)在 AM 上顺次截取 AB1=a,B1B2=a,
B2B=b,则线段 AB=2a+b.
讲授新课 知识点三 有关线段的基本事实
探究
我要去书店 怎么走呀?
商场
礼堂
书店
讲授新课
根据生活经验,容易发现: 两点之间的所有连线中,线段最短

6.2.2线段的比较与运算 课件(共14张PPT)初中数学人教版(2024)七年级上册

6.2.2线段的比较与运算 课件(共14张PPT)初中数学人教版(2024)七年级上册

(或AB=2AM=2MB)
反之也成立:因为AM=MB=
1 2
AB
(或AB=2AM=2MB)
所以M是线段AB的中点.
典例精讲
线段的运算
考点2-2
【例2】若AB=6cm,点C是线段AB的中点,点D是线段CB的中点,
求:线段AD的长是多少?
解:因为C是线段AB的中点.
A
所以AC=CB=
1 2
AB=
1 2
A.3 B.2 C.3或5 D.2或6
b
∴线段AB为所求.
A
B
CF
针对训练
线段的运算
考点3-1
1.如图1,点B,C在线段AD上则AB+BC=_A_C_,AD-CD=_A_C_,BC=_A_C_-_A_B_
=_B_D_-_C_D_. A
B
C
D
2.如图1,AB=CD,则图中另外两条相等的线段为_A_C_=_B_D__.
3.点A,B,C在同一条数轴上,其中点A,B表示的数分别是-3,1,若
方法总结:无图时求线段的长,应注意分类讨论,一般分以下 两种情况:点在某一线段上;点在该线段的延长线.
课堂小结
线段的比较与运算
中点
线段的和差
思想方法
方程思想 分类思想
知识梳理
针对训练
线段的比较与运算
查漏补缺
1.已知线段AB=6cm,延长AB到C,使BC=2AB,若D为AB的中点,则线段
DC的长为_1_5_c_m__.
BC=5,则AC=_1_1_或__1__.
目录
01
知识要点
02
线段的运算 线段的中点
精讲精练
新知探究
线段的运算---中点

数学沪科版七年级(上册)4.3线段的长短比较(共27张PPT)

数学沪科版七年级(上册)4.3线段的长短比较(共27张PPT)
PP
[解析] 在MN上任选一点P,它到A,B的距离即
线段PA与PB的长,结合两点之间线段最短可求. 解:连接AB,交MN于点P,则这个货站应建在点P处.
新知探究
归纳总结
(1)两点之间的距离的概念描述的是数量,而 不是图形,指的是连接两点的线段的长度,而不 是线段本身.
(2)在解决选择位置、求最短距离等问题时, 通常转化为“两点之间线段最短”.
课堂小结
比较线段大小的方法 比较线段的长短 线段的和、差及中点
度量法 叠合法
两点之间线段最短
课堂小测
先画出图形, 有两种情况 1.已知线段AB=6 cm,在直线AB上画线段AC= 2 cm,则BC的长是__4_c_m_或__8_c_m__.
2.如图,M、N把线段AB三等分,C为NB的中点, 且CN=5 cm,则AB=___3_0____cm.
二 线段的和差及线段的中点
合作探究
已知:点C在线段AB的延长线上,如果AB=a, 线段BC=b.那么AC与AB,BC之间有何关系?
a
b
A
B
C
线段AC为线段AB与线段BC的和.
记作
AC=AB+BC=a+b
新知探究
已知:点C在线段AB上,如果AB=a, 线段BC=b.那么AC与AB,BC之间有何关系?
9 2
x-4x=
2x =2.
解得x=4.
所以AD=9x=36(cm).
新知探究
(2)AB∶BE.
解:AB=2x=8cm,BC=3x=12cm. 由线段的和差, 得BE=BC-CE=12-2=10(cm). 所以 AB∶BE=8∶10=4∶5.
方法总结:在遇到线段之间比的问题时,往往 设出未知数,列方程解答.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线段的比较
问题导入
问题1:直线、射线、线段的区别与联系? 问题2:给出两条线段,怎样比较它们的大小? 问题3:怎样比较班级中任意两个同学的高矮? 问题4:问题3的解决,对问题2有什么启发? 问题5:你能想象出,任意两条线段,比较它们的长 度大小,可能得到几种结果?
直线、射线、线段的区别
问题:观察下图,分析直线、射线、线段的区别?
A
B


C
D
结论:
AB=CD.
(2)
• A

C
• B
• D
比较方法:如图,端点A和C重合,观察端点B 和D的位置关系.
A
B

••
C
D
结论:
AB>CD.
(3)
• A

C
• B
• D
比较方法:如图,端点A和C重合,观察端点B 和D的位置关系.
A
B

••
C
D
结论:
AB<CD.
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件



l
A
B
1.端点.直线无端点,射线有一个端点,线段有 两个端点.
2.度量.直线、线段不可度量,线段可度量.
问题:线段有它的长度,任意给出两条线段,应该怎 样比较它的大小?
线段的比较
1.如图,分别比较线段AB、CD的长短.
(1) •

A
B


C
D
比较方法:如图,端点A和C重合,观察端点B和D
的位置关系.
相关文档
最新文档