精密磨削和超精密磨削(精密加工)

合集下载

精密和超精密加工技术

精密和超精密加工技术
ELID磨削的应用
电子材料,磁性材料的镜面磨削:大尺寸硅片;铁金氧磁头 光学材料的镜面磨削:记录用光学材料,光学镜片研磨抛光前 陶瓷材料的镜面磨削 高精度钢铁材料及复合材料,硬质合金
4、脆性材料精密磨削
尖锐压头下的材料变形过程
(a) 初始加载: 接触区产生—永久塑性变形区,没有任何 裂纹破坏。变形区尺寸随载荷增加而变大。 (b) 临界区: 载荷增加到某一数值时,在压头正下方应力 集中处产生中介裂纹(M edian Crack)。 (c) 裂纹增长区: 载荷增加, 中介裂纹也随之增长。 (d) 初始卸载阶段: 中介裂纹开始闭合,但不愈合。 (e) 侧向裂纹产生: 进一步卸载,由于接触区弹塑性应力 不匹配,产生一个拉应力叠加在应力场中,产生系列向侧 边扩展的横向裂纹(L ateral Crack)。 (f) 完全卸载: 侧向裂纹继续扩展,若裂纹延伸到表面则 形成破坏的碎屑。
精密、超精密磨削、镜面磨削形成的零散刻痕
1、精密和超精密磨削加工基础
精密和超精密磨削分类
将磨料或微粉与结合剂粘合在一起, 形成一定的形状并具有一定强度,再 采用烧结、粘接、涂敷等方法形成砂 轮、砂条、油石、砂带等磨具。
精密和超精 密磨料加工 固结磨 料加工
磨料或微粉不是固结在一起, 而是成游离状态。
3、在线电解磨削技术
ELID磨削的特点
磨削过程具有良好的稳定性; ELID修整法使金刚石砂轮不会过快的磨耗,提高了贵重磨料的利用率; ELID修整法使磨削过程具有良好的可控性;
采用ELID磨削法,容易实现镜面磨削,并可大幅度减少超硬材料被磨零件的 残留裂纹。
3、在线电解磨削技术
1、精密和超精密磨削加工基础
切削和磨削的比较

精密和超精密加工

精密和超精密加工

1、精密和超精密加工的三大领域:超精密切削、精密和超精密磨削研磨、精密特种加工。

2、金刚石刀具进行超精密切削时,适合加工铝合金、无氧铜、黄铜、非电解镍等有色金属和某些非金属材料。

3、最硬的刀具是天然单晶金刚石刀具。

金刚石刀具的的寿命用切削路程的长度计算。

4、超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度、使用的超精密机床的性能状态、切削时的环境条件等直接相关。

5、影响超精密切削极限最小切削厚度最大的参数是切削刃钝圆半径r n。

6、金刚石晶体有3个主要晶面,即(100)、(110)、(111),(100)晶面的摩擦因数曲线有4个波峰和波谷,(110)晶面有2个波峰和波谷,(111)晶面有3个波峰和波谷。

以摩擦因数低的波谷比较,(100)晶面的摩擦因数最低,(111)晶面次之,(110)晶面最高。

比较同一晶面的摩擦因数值变化,(100)晶面的摩擦因数差别最大,(110)次之,(111)晶面最小。

7、实际金刚石晶体的(111)晶面的硬度和耐磨性最高。

推荐金刚石刀具的前面应选(100)晶面。

8、(110)晶面的磨削率最高,最容易磨;(100)晶面的磨削率次之,(111)晶面磨削率最低,最不容易磨。

9、金刚石的3个主要晶面磨削(研磨)方向不同时,磨削率相差很大。

现在习惯上把高磨削率方向称为“好磨方向”,把低磨削率方向称为“难磨方向”。

10、金刚石磨损本质是微观解离的积累;破损主要产生于(111)晶面的解离。

11、金刚石晶体定向方法:人工目测定向、X射线晶体定向、激光晶体定向。

其中激光晶体定向最常用。

12、金刚石的固定方法有:机械夹固、用粉末冶金法固定、使用粘结或钎焊固定。

13、精密磨削机理包括:微刃的微切削作用,微刃的等高切削作用,微刃的滑挤、摩擦、抛光作用。

14、超硬磨料砂轮修整的方法有:车削法、磨削法、滚压挤轧法、喷射法、电加工法、超声波振动修整法。

电解在线修锐法(ELID—electrolytic in—process dressing),原理是利用电化学腐蚀作用蚀出金属结合剂。

常用精密加工和超精密加工方法

常用精密加工和超精密加工方法

常用精密加工和超精密加工方法(1)钻削加工:是将工件上的金属材料在刀具作用下进行来回转动,把车削面旋转出来,是加工圆柱形、锥形、凹形孔和凹陷、螺纹等零部件表面等的单一机床加工方法。

(2)车削加工:是指加工零件时借助车刀切削,用于加工外螺纹、花键、形状方程式曲面及其他复杂曲面等外形精密零部件。

(3)铣削加工:是指利用滚筒式或刀片式的刀具的移动和旋转,把工件表面形成各种曲面的一种机床加工方法,主要用于加工工件体上的平面、槽、沟等工件表面。

(4)磨削加工:是指采用研磨轮加工工件表面,采用悬磨或抛光技术将其加工精度提高,使其表面光洁度、粗糙程度达到要求的一种机床加工方法。

(5)拉铆加工:是指拉铆头将两个工件紧固在一起,从而使两个工件处于相对固定的位置,而不受旋转影响的一种加工方法,是将机械元件拉铆加工的技术。

(1)水切削加工:是将工件表面由削刀削成薄片,然后由水冲刷把薄片去除,达到精密加工表面粗糙度和平整度要求的一种加工方法。

(2)气刀加工:是将刀具用空气喷射动力使得刀具旋转,切削工件的加工方法,可以实现高速、大功率的切削,适用于切削金属界面、铸件、钢材等表面加工。

(3)超声波加工:是指使用超声波让工件表面产生振动,来切削、拉分和焊接工件表面等加工方法,可以达到更高的精度和更小的表面粗糙度,并且可以实现连续加工。

(4)电火花加工:是一种快速高效的切削方法,主要是通过产生火花后,再通过冲击脉冲和热能来融化微小部份表面材料,从而实现准确切削的一种加工方法。

(5)激光加工:是通过产生强大的激光能,对工件表面进行破碎溶解而实现加工的一种加工方法,可以获得极高的切削精度、平整度和极好的加工质量,和小尺寸孔、槽加工。

精密和超精密加工的机床设备技术

精密和超精密加工的机床设备技术

精密和超精密加工的机床设备技术引言精密和超精密加工技术在现代制造业中扮演着重要的角色。

为了满足高质量、高精度、高效率的加工需求,机床设备技术不断得到改进和发展。

本文将介绍精密和超精密加工的机床设备技术,并探讨其在制造业中的应用。

1. 精密加工的机床设备技术精密加工是指在工程加工中,对尺寸精度和表面质量要求较高的加工方法。

精密加工的关键在于机床设备的稳定性、刚性和精度。

以下是精密加工机床设备的几个关键技术:1.1 数控技术数控技术是精密加工中最为关键的技术之一。

通过数控技术,可以实现机床的高精度和高效率加工。

数控技术的应用可以大大提高生产效率,并且减少操作人员的工作强度。

1.2 精密传动系统精密传动系统是精密加工机床设备的核心组成部分。

精密传动系统的设计与制造涉及到轴承、传动装置、伺服驱动装置等多个方面。

通过精确的传动系统,可以提高机床的精度和稳定性。

1.3 线性驱动技术线性驱动技术是现代机床设备中的重要发展方向之一。

相比传统的滚动轴承驱动,线性驱动技术能够实现更高的速度和更高的精度。

线性驱动技术可以用于各种类型的机床设备,包括数控机床和超精密加工机床。

2. 超精密加工的机床设备技术超精密加工是指在微米甚至纳米级别下进行加工的技术。

超精密加工在光学、光电子、半导体等领域具有重要的应用。

以下是超精密加工机床设备技术的几个关键技术:2.1 超精密控制系统超精密控制系统是实现超精密加工的关键技术之一。

通过超精密控制系统,可以实现对微小位移和应力的精确控制。

超精密控制系统需要具备高精度、高灵敏度和高稳定性的特点。

2.2 超精密磨削技术超精密磨削技术是超精密加工的核心技术之一。

超精密磨削技术可以实现对工件表面的精确修整和光洁度的提高。

超精密磨削技术需要借助特殊材料和磨削工具,并配合高精度的机床设备。

2.3 超精密检测技术超精密加工过程中,对工件的检测和测量要求非常高。

超精密检测技术可以实现对工件尺寸、形状和表面质量的高精度测量。

精密和超精密加工技术

精密和超精密加工技术

1、通常将加工精度在0.1-1um、加工表面粗糙度R在0.02-0.1um之间的加工方法称为精密加工。

而将加工精度高于0.1um、加工表面粗糙度R小于0.01um的加工方法称为超精密加工。

2、提高加工精度的原因:提高制造精度后可提高产品的性能和质量,提高其稳定性和可靠性;促进产品的小型化;增强零件的互换性,提高装配生产率,并促进自动化装配。

3、精密和超精密加工目前包含三个领域:超精密切削;精密和超精密磨削研磨‘精密特种加工。

4、金刚石刀具的超精密切削加工技术,主要应用于两个方面:单件的大型超精密零件的切削加工和大量生产的中小型零件的超精密切削加工技术。

5、金刚石刀具有两个比较重要的问题:晶面的选择;切削刃钝圆半径。

6、超稳定环境条件主要是指恒温、防振、超净和恒湿五个方面的条件。

7、我国应开展超精密加工技术基础的研究,其主要内容包括以下四个方面:1)超精密切削、磨削的基本理论和工艺。

2)超精密设备的关键技术、精度、动特性和热稳定性。

3)超精密加工的精度检测、在线检测和误差补偿。

4)超精密加工的环境条件。

5)超精密加工的材料。

8、超精密切削实际选择的切削速度,经常是根据所使用的超精密机床的动特性和切削系统的动特性选取,即选择振动最小的转速。

9、超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度、使用的超精密机床的性能状态、切削时的环境等都直接有关。

10、为实现超精密切削,刀具应具有如下性能:1)极高的硬度、极高的耐磨性和极高的弹性模量,以保证刀具有很长的寿命和很高的尺寸耐用度。

2)切削刃钝圆能磨得极其锋锐,切削刃钝圆半径r值极小,能实现超薄切削厚度。

3)切削刃无缺陷,切削时刃形将复印在加工表面上,能得到超光滑的镜面。

4)和工件材料的抗粘结性好、化学亲和性小、摩擦因素低,能得到极好的加工表面完整性。

11、SPDT——金刚石刀具切削和超精密切削。

12、晶体受到定向的机械力作用时,可以沿平行于某个平面平整地劈开的现象称为解理现象。

精密和超精密加工代表了加工精度发展的不同阶段

精密和超精密加工代表了加工精度发展的不同阶段

1、精密和超精密加工代表了加工精度发展的不同阶段,通常,按加工精度划分,可将机械加工分为一般加工、精密加工、超精密加工三个阶段2、什么叫精密加工?加工精度在0.1~1µm,加工表面粗糙度在Ra0.02~0.1µm之间的加工方法称为精密加工。

3、什么叫超精密加工?加工精度高于0.1µm,加工表面粗糙度小于Ra0.01µm之间的加工方法称为超精密加工。

4、以下哪些是精密和超精密加工的分类?A.去除加工B.结合加工;C.变形加工;D.切削加工;E.磨粒加工F.特种加工;G.复合加工;5、影响精密与超精密加工的因素有哪些?加工机理、被加工材料、加工设备及其基础元部件、加工工具、检测与误差补偿、工作环境等。

6、我国今后发展精密与超精密加工技术的重点研究内容包括什么?(1)超精密加工的加工机理;(2)超精密加工设备制造技术;(3)超精密加工刀具、磨具及刃磨技术;(4)精密测量技术及误差补偿技术;(5)超精密加工工作环境条件。

7、举例说明超精密切削的应用范围有哪些?陀螺仪、激光反射镜、天文望远镜的反射镜、红外反射镜和红外透镜、雷达的波导管内腔、计算机磁盘、激光打印机的多面棱镜、录像机的磁头、复印机的硒鼓、菲尼尔透镜等由有色金属和非金属材料制成的零件。

8、超精密切削速度是如何选择的?超精密切削实际速度的选择根据所使用的超精密机床的动特性和切削系统的动特性选取,即选择振动最小的转速。

9、金刚石刀具的尺寸寿命甚高,高速切削时刀具磨损亦甚慢,因此刀具是否磨损以加工表面质量是否下降超差为依据,切削速度并不受刀具寿命的制约。

10、单晶金刚石刀具破损或磨损不能继续使用的标志是?加工表面粗糙度超过规定值。

11、简述超精密切削时切削参数对积屑瘤生成的影响?见书本P13-14。

12、简述超精密切削时积屑瘤对切削力和加工表面粗糙度的影响?见书本P14-15。

13、分别用1-2句话总结切削速度、进给量、修光刃、切削刃、背吃刀量变化对加工表面质量的影响?在常用超精密切削速度范围内,切削速度对加工表面粗糙度基本无影响;带有修光刃的刀具,当f<0.02mm/r时,进给量再减小对表面粗糙度影响不大;修光刃的长度过长,对加工表面粗糙度影响不大。

《精密和超精密加工技术(第3版)》第3章精密磨削和超精密磨削

《精密和超精密加工技术(第3版)》第3章精密磨削和超精密磨削

2018/3/11
第1节 概述
二、精密和超精密砂轮磨料磨具
磨料及其选择
超硬磨料制作的磨具在以下几方面能够满足精密加工和超精密加工 的要求,因此使用广泛。
1)磨具在形状和尺寸上易于保持,使用寿命高,磨削精度高。
2)磨料本身磨损少,可较长时间保持切削性,修整次数少,易于保持精度。
3)磨削时,一般工件温度较低,因此可以减小内应力、裂纹和烧伤等缺
磨具的形状和尺寸及其基体材料
根据机床规格和加工情况选择磨具的 形状和尺寸。 基体材料与结合剂有关。
2018/3/11
第1节 概述
三、精密和超精密涂覆磨具
涂覆磨具分类
根据涂覆磨具的形状、基底材料和工作条件与用途等,分类见下表
涂 覆 磨 具
工 作 条 件
基 底 材 料
形 状
耐 水 (N)
2018/3/11
精密砂带磨削:砂带粒度F230~F320,加
工精度1μm,Ra0.025; 超精密砂带磨削:砂带粒度W28~W3,加工精 度0.1μm,Ra0.025~0.008μm。
2018/3/11
第1节 概述
一、精密和超精密加工分类
游离磨料加工
磨料或微粉不是固结在一起, 而是成游离状态。 传统方法:研磨和抛光 新方法:磁性研磨、弹性发射 加工、液体动力抛光、液中研 抛、磁流体抛光、挤压研抛、 喷射加工等。
第3章 精密磨削和超精密磨削 3.1 概述
3.2 精密磨削 3.3 超硬磨料砂轮磨削
3.4 超精密磨削
3.5 精密和超精密砂带磨削
2018/3/11
第1节 概述
精密和超精密磨料加工是利用细粒度的磨粒和 微粉对黑色金属、硬脆材料等进行加工,得到高 加工精度和低表面粗糙度值。对于铜、铝及其 合金等软金属,用金刚石刀具进行超精密车削是 十分有效的,而对于黑色金属、硬脆材料等,用 精密和超精密磨料加工在当前是最主要的精密 加工手段。

精密磨削和超精密磨削概述

精密磨削和超精密磨削概述

精密磨削和超精密磨削概述精密磨削和超精密磨削是现代机械加工中的高级技术,主要用于高精度、高效率的零件加工。

以下是关于这两种磨削技术的概述:1. 精密磨削:精密磨削是一种采用高精度磨具和磨削液,在精确控制磨削条件下进行的磨削工艺。

其目的是在保持高效率的同时,实现高精度、低表面粗糙度的磨削效果。

精密磨削的主要特点包括:* 高精度:磨削后的零件尺寸精度和表面粗糙度要求较高,通常达到微米甚至纳米级别。

* 高效率:精密磨削可实现高速磨削和高进给速度,提高生产效率,降低加工成本。

* 低损伤:磨具材质和磨削工艺能够减小对工件表面的损伤,延长零件使用寿命。

* 环保:精密磨削通常采用干式磨削和绿色制造技术,减少加工过程中的环境污染。

精密磨削广泛应用于航空航天、汽车、电子、光学等领域,特别适用于难加工材料和高精度零件的加工。

2. 超精密磨削:超精密磨削是一种在极高的工艺精度和极低的表面粗糙度下进行的磨削工艺。

它通过采用先进的磨具制造技术、高精度磨床和环境控制技术,实现微米甚至亚微米级别的加工精度和纳米级别的表面粗糙度。

超精密磨削的主要特点包括:* 高精度:超精密磨削的加工精度可达到微米甚至亚微米级别,满足高精度零件的加工要求。

* 超低表面粗糙度:超精密磨削能够实现纳米级别的表面粗糙度,提高零件的表面完整性,延长零件使用寿命。

* 高材料去除率:超精密磨削可实现高速磨削和高进给速度,提高材料去除率,缩短加工时间。

* 高度集成:超精密磨削技术通常与其他先进制造技术相结合,实现零件的高效制造和整体集成。

超精密磨削技术在航空航天、汽车制造、微电子、光学等领域具有广泛应用前景。

它特别适用于高效制造高精度零件,如精密轴承、齿轮、高速电机等。

总之,精密磨削和超精密磨削是现代机械加工中的重要技术,能够实现高精度、高效率、低损伤的零件制造。

随着制造业的不断发展,这些技术将在未来发挥更加重要的作用,为先进制造和高精度零件的生产提供有力支持。

磨削加工技术

磨削加工技术

微磨削加工技术微磨削加工技术主要分为精密和超精密磨削技术。

1 精密与超精密磨削的机理精密磨削一般使用金刚石和立方氮化硼等高硬度磨料砂轮,主要靠对砂轮的精细修整,使用金刚石修整刀具以极小而又均匀的微进给(1O一15 mm/min),获得众多的等高微刃,加工表面磨削痕迹微细,最后采用无火花光磨,由于微切削、滑移和摩擦等综合作用,达到低表面粗糙度值和高精度要求。

超精密磨削采用较小修整导程和吃刀量修整砂轮,靠超微细磨粒等高微刃磨削作用进行磨削u J。

精密与超精密磨削的机理与普通磨削有一些不同之处。

1)超微量切除。

应用较小的修整导程和修整深度精细修整砂轮,使磨粒细微破碎而产生微刃。

一颗磨粒变成多颗磨粒,相当于砂轮粒度变细,微刃的微切削作用就形成了低粗糙度。

2)微刃的等高切削作用。

微刃是砂轮精细修整而成的,分布在砂轮表层同一深度上的微刃数量多,等高性好,从而加工表面的残留高度极小。

3)单颗粒磨削加工过程。

磨粒是一颗具有弹性支承和大负前角切削刃的弹性体,单颗磨粒磨削时在与工件接触过程中,开始是弹性区,继而是塑性区、切削区、塑性区,最后是弹性区,这与切屑形成形状相符合。

超精密磨削时有微切削作用、塑性流动和弹性破坏作用,同时还有滑擦作用。

当刀刃锋利,有一定磨削深度时,微切削作用较强;如果刀刃不够锋利,或磨削深度太浅,磨粒切削刃不能切人工件,则产生塑性流动、弹性破坏以及滑擦。

4)连续磨削加工过程。

工件连续转动,砂轮持续切人,开始磨削系统整个部分都产生弹性变形,磨削切人量(磨削深度)和实际工件尺寸的减少量之间产生差值即弹性让刀量。

此后,磨削切人量逐渐变得与实际工件尺寸减少量相等,磨削系统处于稳定状态。

最后,磨削切入量到达给定值,但磨削系统弹性变形逐渐恢复为无切深磨削状态引。

2 精密与超精密磨床的发展精密磨床是精密磨削加工的基础。

当今精密磨床技术的发展方向是高精度化、集成化、自动化。

英国Cranfield大学精密工程公司(CUPE)是较早从事超精研制成功的OAGM2500大型超精密磨床是迄今为止最大的超精密磨削加工设备,主要用于光学玻璃等硬脆材料的超精密磨削加工 J。

对精密和超精密加工技术的认识

对精密和超精密加工技术的认识

对精密和超精密加工技术的认识一、引言精密加工技术是一种高精度、高效率的制造方法,广泛应用于电子、航空航天、医疗器械等领域。

而超精密加工技术则是在精密加工技术的基础上进一步提高了加工的精度和表面质量。

本文将对精密和超精密加工技术进行深入的探讨和分析。

二、精密加工技术的概念和应用精密加工技术是一种通过在加工过程中控制和调整各种工艺参数,使加工零件达到高精度要求的加工方法。

它主要包括数控加工、激光加工、电火花加工等多种技术手段。

精密加工技术在电子领域的应用尤为广泛,如半导体芯片加工、PCB板制造等。

三、精密加工技术的特点和优势1. 高精度:精密加工技术可以实现亚微米甚至纳米级别的加工精度,满足对零件精度要求极高的应用领域。

2. 高效率:精密加工技术采用自动化控制和高速切削等方法,加工效率高,能够大大提高生产效率和产品质量。

3. 灵活性:精密加工技术具有灵活性强的特点,可以根据不同产品的要求进行个性化加工,满足市场需求的多样化。

四、超精密加工技术的概念和原理超精密加工技术是在精密加工技术的基础上,通过进一步提高加工设备的精度和加工工艺的控制精度,实现更高精度加工的一种技术手段。

超精密加工技术主要包括超精密车削、超精密磨削、超精密拓扑等方法。

五、超精密加工技术的应用领域超精密加工技术在光学仪器、航空航天、精密仪器等领域具有广泛的应用。

例如,在光学仪器领域,超精密加工技术可以用于制造高精度的光学元件,提高光学系统的分辨率和成像质量。

六、精密和超精密加工技术的发展趋势随着科技的进步和工业制造的需求,精密和超精密加工技术也在不断发展和创新。

未来的发展趋势主要包括以下几个方面:1. 加工精度的提高:随着需求的增加,对加工精度的要求也越来越高,未来的精密和超精密加工技术将进一步提高加工的精度和表面质量。

2. 加工效率的提高:随着自动化技术和智能化技术的发展,精密和超精密加工技术将更加高效,加工速度更快,生产效率更高。

精密磨削加工

精密磨削加工
德州职业技术学院 机械工程系
精密与特种加工
第三章 精密磨削加工
超硬磨料砂轮
碗形金刚石砂轮
碟形金刚石砂轮
德州职业技术学院 机械工程系
精密与特种加工
第三章 精密磨削加工
超硬磨料的优点
磨具形状和尺寸易于保持,耐用度高、精度高 可长时间使用,修整次数少,易于保持精度
磨削温度较低,可减少内应力、裂纹和烧伤等
而切不下金属。
德州职业技术学院
机械工程系
精密与特种加工 一个有效磨粒切削过程分析如下:
第三章 精密磨削加工
德州职业技术学院
机械工程系
精密与特种加工 一个有效磨粒切削过程分析如下:
第三章 精密磨削加工
当磨粒刚进人切削区时,磨粒对切削层金属产生挤压和摩
擦;
随着切入,挤压力加大,磨粒切入工件,但只刻划出沟槽,
机械工程系
精密与特种加工
第三章 精密磨削加工
精密和超精密涂覆磨具
涂覆磨具的分类有如图所示,常用产品有干磨砂布、 砂纸、耐水砂布、砂纸、环状砂带、卷状砂带等 涂覆磨具 工作条件 基底材料 形 状
耐 水 N
干 磨 G
塑 化 棉 复 纸 料 纤 布 Z 合 膜 布 B
盘 带 卷 页 环 状 状 状 状 状 P D J Y
剂磨具多采用陶瓷。
超硬磨具的结构
平形金刚石砂轮
碗形金刚石砂轮
碟形金刚石砂轮
德州职业技术学院 机械工程系
精密与特种加工
第三章 精密磨削加工
精密和超精密涂覆磨具
涂覆磨具是将磨料用粘结剂均匀涂覆在纸、布或其 他复合材料基底上的磨具,也称为涂敷磨具。
常用涂覆磨具有:砂纸、砂布、砂带、砂盘等

精密和超精密加工,精密加工的技术手段有什么?

精密和超精密加工,精密加工的技术手段有什么?

精密和超精密加工,精密加工的技术手段有什么?制造业是一个国家或地区国民经济的重要支柱,所谓先进制造技术,就是将机械工程技术、电子信息技术(包括微电子、光电子、计算机软硬件、现代通信技术)和自动化技术,以及材料技术、现代管理技术综合集成的生产技术。

先进制造技术追求的目标就是实现优质、精确、省料、节能、清洁、高效、灵活生产,满足社会需求。

精密加工技术是为适应现代高技术需要而发展起来的先进制造技术,是其它高新技术实施的基础。

精密加工技术的发展也促进了机械、液压、电子、半导体、光学、传感器和测量技术以及材料科学的发展。

精密和超精密加工通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。

目前,精密加工是指加工精度为1~0.1µ;m,表面粗糙度为Ra0.1~0.01µ;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。

精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。

超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程。

当前的超精密加工是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。

超精密加工包括微细加工、超微细加工、光整加工、精整加工等加工技术。

微细加工技术是指制造微小尺寸零件的加工技术;超微细加工技术是指制造超微小尺寸零件的加工技术,它们是针对集成电路的制造要求而提出的,由于尺寸微小,其精度是用切除尺寸的绝对值来表示,而不是用所加工尺寸与尺寸误差的比值来表示。

光整加工一般是指降低表面粗糙度和提高表面层力学机械性质的加工方法,不着重于提高。

02213江苏自考复习宝典3_第三章 精密与超精密磨料加工

02213江苏自考复习宝典3_第三章 精密与超精密磨料加工

有一定的磨料嵌人性和浸含性。常用的研磨盘
材料有铸铁、黄铜 、玻璃等。
1.研磨盘 在研具表面开槽的目的: 1)在槽内存储多余的磨粒,以防止磨料堆积而
损伤工件表面。
2)加工过程中作为向工件供给磨粒的通道。
3)作为及时排屑的通道,以防止研磨表面被划
伤。
2.抛光盘
抛光盘平面精度及其精度保持性是实现高精度 平面抛光的关键。因此,抛光小面积的高精度
2.砂轮粒度
粗粒度砂轮经过精细修整形成微刃,以微切削作
用为主;
细粒度砂轮经过精细修整形成半钝态微刃,与工
件表面的摩擦抛光作用比较显著,可得到质量更 高的加工表面和砂轮耐用度。
三、精密磨削砂轮
3.砂轮结合剂
砂轮结合剂有树脂类、金属类、陶瓷类等,以树
脂类应用为广。
四、精密磨削中的砂轮修整
修整是整形和修锐的总称。整形是使砂轮具有
六、非接触抛光
非接触抛光是指在抛光中工件与抛光盘互不接 触,依靠抛光剂冲击工件表面,以获得加工表面完 美结晶性和精确形状的抛光方法。
六、非接触抛光
其去除量仅为几个到几十个原子级。 非接触抛光主要用于功能晶体材料抛光(注重结
晶完整性和物理性能),和光学零件的抛光(注重
表面粗糙度及形状精度)。
1.弹性发射加工
精度和优 良表面粗糙度的加工方法。属于游离
磨粒切削加工 。
一、研磨加工机理
1.硬脆材料的研磨
2.金属材料的研磨
1.硬脆材料的研磨
图3-8
研磨加工模型
2.金属材料的研磨
金属材料的研磨在加工机理上和脆性材料的研 磨有很大区别。研磨时,磨粒的研磨作用相当 于普通切削和磨削的切削深度极小时的状态,
没有裂纹的产生。

精密加工_第二讲__精密超精密加工

精密加工_第二讲__精密超精密加工

精密与特种加工
HIGH EDUCATION PRESS
2.精密和镜面磨削 磨削时尺寸精度和几何精度主要靠精密磨床保
证,可达亚微米级精度(指精度为1~10-2μm)。在 某些超精密磨床上可磨出十纳米精度的工件。在精
密磨床上使用细粒度磨粒砂轮可磨削出Ra=0.1~ 0.05μm的表面。使用金属结合剂砂轮的在线电解修 整砂轮的镜面磨削技术可得到 Ra0.01~0.002μm的 镜面。
精密与特种加工
加工4.5mm陶瓷球
HIGH EDUCATION PRESS
金刚石车床主要性能指标
最大车削直径和长度 /mm 最高转速 r/min
400×200 5000~10000
最大进给速度mm /min
5000
数控系统分辩率 /μm
0. 1~0.01
重复精度(±2σ) / μ m
≤0. 2/100
精密与特种加工
HIGH EDUCATION PRESS
性质
用途
自然界中存在的最硬物
经仔细琢磨后,成为
质,熔点高。
装饰品——钻石。
无色透明、正八面体形
划玻璃、切割大理石、
状的固体,加工后有夺目光 泽。
加工坚硬的金属,装在钻探 机的钻头钻凿坚硬的岩层。
精密与特种加工
HIGH EDUCATION PRESS
精密与特种加工
HIGH EDUCATION PRESS
精密加工机床 研究方向:提高机床主轴的回转精度、工作台
的直线运动精度以及刀具的微量进给精度。(主轴 轴承和导轨)
超精密级滚动轴承——液体静压或空气静压轴承。
金刚石刀具 金刚石晶面选择、金刚石刀具刃口的圆弧半径。
先进国家达到纳米级,我国0.1~0.3um。

2 精密磨削加工

2 精密磨削加工

砂轮磨削修整法
采用低速回转的超硬级碳化硅砂轮与
高速旋转的砂轮对磨,以达到修整的目的。
滚轧修整法
采用硬质合金圆盘、一组由波浪形白口铁
圆盘或带槽的淬硬钢片套装而成的滚轮,与砂轮对滚和 挤压进行修整。滚轮一般装在修整夹具上手动操作,修
整效率高,适于粗磨砂轮的修整。
精、细修整砂轮
(1)用金钢石笔精修,再用精车后的砂轮细修砂轮
2.精密磨削加工
2.1 概述
(1)磨削(加工的定义)是一种常用的半精加工和精加工方法,
砂轮是磨削的重要切削刀具。加工时通过刀具上的磨粒对工件
的表面不断进行划擦,耕犁,切削作用而获得较高精度和较好
表面质量,精度可达IT5以上Ra为1.25~0.01μm
(2)磨削的主要特点
磨削除了可以加工铸铁、碳钢、合金钢等一般结构材料外,还能加工一般刀具难
修整用量
修整用量包括修整导程、修整深度两项。
修整导程是指砂轮每转一转时金刚石沿砂轮表面的移动距离,
其大小应使砂轮上每颗磨粒都能得到修整, 可按照磨粒的平均尺寸来选择。
修整深度是指修整时金刚石的切削深度,
不能太大,否则会使颗粒随结合剂大量脱落或击碎, 因而既 损耗砂轮又不易将砂轮修整得平整。 修整时候要使用冷却液。
树脂
高分子 化合物
聚腊酸 乙烯脂
精密磨削。
④涂覆方法
重力落砂法:先将粘结剂均匀涂敷在基底上,在靠重力将
砂粒均匀地喷洒在涂层上,经过烘干去除浮面砂粒后即成卷
状砂带,裁剪后就可以制成涂覆磨具产品,整个过程自动进
行。一般的砂纸、砂布就是这样制成的,成本较低。
涂敷法:先将粘结剂和砂粒混合均匀,然后利用胶辊将砂
1)固结磨具
精密砂轮磨削是利用精细修整的粒度为60#~80#的 砂轮进行磨削,其加工精度可达1~0.1 µ 。表面粗糙度值 m Ra可达0.2~0.25µ m。 超精密砂轮磨削是利用经过精细修整的粒度为W40~ W5的砂轮进行磨削,其加工精度可达0.1 µ 。表面粗糙度 m 值Ra可达0.025 ~ 0.008 µ m。

精密磨削和超精密磨削

精密磨削和超精密磨削

五、超硬磨料砂轮的平衡
静平衡 力矩平衡,用于窄砂轮的平衡,是在一个平面上的平衡。 (1)机外静平衡架上平衡 (2)机上动态平衡 (3)机外动态平衡
动平衡
力偶平衡,用于宽砂轮和多砂轮轴的平衡,是在一个有一 定长度的体上进行力偶平衡。 一般在动平衡机上进行。
2016/6/6
超精密磨削
一、超精密磨削和镜面磨削
开式砂带磨削
闭式砂带削
砂带磨削分类: 按砂带与工件接触形式 分为接触轮式、支承板 (轮)式、自由浮动接 触式和自由接触式。 按加工表面类型分为外 圆、内圆、平面、成形 表面等磨削方式。
开式砂带磨削
一、砂带磨削方式、特点和应用
砂带磨削特点
1)砂带与工件是柔性接触,磨粒载荷小而均匀,砂带磨削 工件表面质量高,表 面粗糙度可达Ra 0.05~0.01μm,砂带磨削又称“弹性”磨削。 2)砂带制作时,用静电植砂法易于使磨粒有方向性,力、热作用小,有较好的 切削性,有效地减小了工件变形和表面烧伤。工件的尺寸精度可达5~0.5μm, 平面度可达1μm。砂带磨削又有“冷态” 磨削之称。 3)砂带磨削效率高,无需修整,有“高效”磨削之称。 4)砂带制作简单方便,无烧结、动平衡等问题,价格也便 宜,砂带磨削设备结 构简单,有“廉价”磨削之称。 5)砂带磨削有广阔的工艺性和应用范围、很强的适应性,有“万能”磨削之称。
磨削效率高。
综合成本低。
二、超硬磨料砂轮修整(修整过程)
整形
对砂轮进行微量切削,使砂轮达到所要求 的几何形状精度,并使磨料尖端细微破碎, 形成锋利的磨削刃。
修锐
去除磨粒间的结合剂,使磨粒间有一定的容 屑空间,并使磨刃突出于结合剂之外(一般 是磨粒尺寸的1/3左右),形成切削刃。
二、超硬磨料砂轮修整(修整方法) 车削法 磨削法

精密和超精密磨削机理

精密和超精密磨削机理

精密和超精密磨削机理摘要阐述了精密磨削与超精密磨削的机制,介绍了近年来精密与精密磨床的发展概况以及精密与超精密磨削技术的研究现状。

在分析了精密磨削与超精密磨削的发展趋势基础上提出了研究应关注的几个热点问题,如超精密磨削的基本理论和工艺研究、研制高精度的驱动导向机构、ELID 镜面磨削技术的攻关以及适用于超精密加工的新型材料。

关键词超精密磨削原理发展精密加工是指在一定发展时期中,加工精度和表面质量相对于一般加工能够达到较高程度的加工工艺,当前是指被加工零件的加工尺寸精度为1~0.1μm、Ra为0.2~0.01μm的加工技术;超精密加工是指加工精度和表面质量达到最高程度的精密加工工艺,当前是指被加工零件的尺寸精度高于0.1μm、Ra≤0.025μm的加工技术。

因此,一般加工、精密加工和超精密加工会随着科技的不断发展像更精密的方向发展。

随着电子技术、计算机技术以及航天技术的飞速发展,对加工质量的要求越来越高,故而使精密和超精密加工占有十分重要的地位。

一超精密磨削技术的内涵精密磨削主要靠对砂轮的精细修整,使用金刚石修整工具以极小而又均匀的微进给(10~15μm/ min)获得众多的等高微刃,加工表面磨削痕迹微细,最后采用无火花光磨。

由于微切削、滑移和摩擦等综合作用,达到低表面粗糙度值和高精度要求。

高精密磨削的切屑很薄,砂轮磨粒承受很高的应力,磨粒表面受高温、高压作用,一般使用金刚石和立方氮化硼等高硬度磨料砂轮磨削。

高精密磨削除有微切削作用外,还可能有塑性流动和弹性破坏等作用。

光磨时的微切削、滑移和摩擦等综合作用更强。

超精密磨削是当代能达到最低磨削表面粗糙度值和最高加工精度的磨削方法。

超精密磨削去除量最薄,采用较小修整导程和吃刀量来修整砂轮,是靠超微细磨粒等高微刃磨削作用,并采用较小的磨削用量磨削。

超精密磨削要求严格消除振动,并保证恒温及超净的工作环境。

超精密磨削的光磨微细摩擦作用带有一定的研抛作用性质。

精密和超精密磨削技术PPT课件

精密和超精密磨削技术PPT课件
游离磨 料加工
固结磨具
涂覆磨具 精密研磨 精密抛光
精密砂 轮磨削
油石研磨 精密珩磨
精密超 精加工
砂带磨削 砂带研磨
精密砂轮磨削:砂轮的粒度60 #~80#,加工精度1μm, Ra0.025μm; 超精密砂轮磨削:砂轮的粒度 W40~W50,加工精度0.1μm, Ra0.025~0.008μm。
精密砂带磨削:砂带粒度W63~ W28,加工精度1μm,Ra0.025; 超精密砂带磨削:砂带粒度 W28~W3,加工精度0.1μm, Ra0.025~0.008μm。
✓ 金属:金属结合剂砂轮耐磨耗性强,磨粒保持力大,砂轮寿命长,砂 轮自砺性差。
8
2、超硬磨料砂轮及修整
➢ 超硬磨料砂轮的修整
✓ 砂轮修整:用修整工具将砂轮修整成形或修去磨钝的表层的过程。 ✓ 修整方法
磨削修整 滚压挤扎 喷砂修锐 超声波振动修整 电解修整 电火花修整 激光修整 高压水喷射修整
✓ 超精密磨削中,微切削作用、塑性流动、 弹性破坏作用和滑擦作用依切削条件的变 化而顺序出现。
6
2、超硬磨料砂轮及修整
➢ 磨料、砂轮类型
✓ 普通磨料 AI2O3、SiC
✓ 超硬磨料 金刚石、立方碳化硼
金刚石砂轮
CBN砂轮 7
2、超硬磨料砂轮及修整
➢ 超硬磨料砂轮组成
✓ 磨料层:人造金刚石磨粒和结合剂 组成,厚度1.5~5mm31、精密和超精密磨削加基础➢ 切削和磨削的比较
4
1、精密和超精密磨削加工基础
➢ 精密磨削机理
(1) 微刃的微切削作用 (2) 微刃的等高切削作用 (3) 微刃的滑挤、摩擦、抛光作用
(a)砂轮
(b)磨粒 磨粒具有微刃性和等高性
(c) 微刃 (锐利、半钝化、钝化)

精密和超精密加工复习整理资料

精密和超精密加工复习整理资料

1.精密和超精密加工目前包含的三个领域:超精密切削、精密和超精密磨削研磨和精密特种加工2.超精密加工中超稳定的加工环境条件主要指(恒温)、(恒湿)、(防振)和(超净)四个方面的条件。

3.电火花型腔加工的工艺方法有:(单电极平动法)、(多电极更换法)、(分解电极法)、简单电极数控创成法等。

4.超精密加工机床的总体布局形式主要有以下几种:(T形布局)、(十字形布局)、(R-θ布局)、(立式结构布局)等。

5.实现超精密加工的技术支撑条件主要包括:(超精密加工机理与工艺方法)、(超精密加工机床设备)、(超精密加工工具)、(精密测量和误差补偿)、高质量的工件材料、超稳定的加工环境条件等。

6.激光加工设备主要包括电源、(激光器)、(光学系统)、(机械系统)、控制系统、冷却系统等部分。

7.精密和超精密加工机床主轴轴承的常用形式有(液体静压轴承)和(空气静压轴承)。

8.金刚石晶体的激光定向原理是利用金刚石在不同结晶方向上(因晶体结构不同而对激光反射形成不同的衍射图像)进行的。

9.电火花加工蚀除金属材料的微观物理过程可分为(介质电离击穿)、(介质热分解、电极材料熔化、气化)、(蚀除物抛出)和(间隙介质消电离)四个阶段。

10.超精密加工机床的关键部件主要有:(精密主轴部件)、(导轨部件)和(进给驱动系统)等。

11.三束加工是指电子束、离子束和激光束。

12.所谓空气洁净度是指空气中含尘埃量多少的程度。

13.工业生产中常见的噪声主要有空气动力噪声、机械噪声和电磁噪声。

14.纳米级加工精度包含:纳米级尺寸精度、纳米级几何形状精度、纳米级表面质量。

15.超精密切削时积屑瘤的生成规律:1)在低速切削时,h0值比较稳定;在中速时值不稳定。

2)在进给量f很小时,h0较大3)在背吃刀量a p<25um时,h0变化不大;在a p>25um时,h0将随a p的值增大而增大。

16.超精密切削时积屑瘤对切削过程的影响:积屑瘤高时切削力大,积屑瘤小时切削力小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档