人教版2020年八年级下第一次月考数学试卷含答案
天津市2020〖人教版〗八年级数学下册复习试卷第一次月考数学试卷17
天津市2020年〖人教版〗八年级数学下册复习试卷第一次月考数学试卷创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校一、选择题(本大题共12小题,每题4分,共48分)1.下列的式子一定是二次根式的是()A.B.C.D.2.下列根式中,最简二次根式是()A.B.C.D.3.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=54.若x<2,化简+|3﹣x|的正确结果是()A.﹣1 B.1 C.2x﹣5 D.5﹣2x5.已知x+,那么的值是()A.1 B.﹣1 C.±1 D.46.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.( +1)米D.3米7.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.8.下列命题中,正确的有()①Rt△ABC中,已知两边长分别为3和4,则第三边长为5;②有一个内角等于其他两个内角和的三角形是直角三角形;③三角形的三边分别为a,b,C,若a2+c2=b2,那么∠C=90°;④若△ABC中,∠A:∠B:∠C=1:5:6,则△ABC是直角三角形.A.1个B.2个C.3个D.4个9.能判定四边形ABCD是平行四边形的题设是()A.AD=BC,AB∥CD B.∠A=∠B,∠C=∠D C.AB=BC,AD=DC D.AB∥CD,CD=AB10.在平面直角坐标系中,四边形OABC是正方形,点A的坐标为(4,0).点P为边AB上一点,∠CPB=60°,沿CP折叠正方形后,点B落在平面内点B′处,则B′点坐标为()A.(4﹣2,2)B.(2,4﹣2)C.(2,1)D.(2,2﹣)11.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4 D.812.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.40二、填空题(本大题共6小题,每题4分,共24分)13.使有意义的x的取值范围是.14.已知直角三角形的两条边长分别是3cm和5cm,那么第三边长是.15.平行四边形ABCD中,对角线AC、BD交于点O,若∠BOC=120°,AD=7,BD=10,则平行四边形ABCD的面积为.16.已知实数a满足,则a﹣2的值为.17.如图,一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A点爬到B 点,则最少要爬行cm.18.如图,在梯形ABCD中,AD∥BC,AD=4,BC=12,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间为秒时,以点P,Q,E,D为顶点的四边形是平行四边形.三、解答题(19题6分,20题8分,共14分)19.计算题(1)(2).20.已知:如图,▱ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.四.解答题21.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.22.如图,▱ABCD中,∠ABC=60°,E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,求AB的长.23.已知:x,y为实数,且y=,化简:的值.24.如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AB=2,CD=1,求四边形ABCD的面积.五.解答题25.如图:在等腰直角三角形中,AB=AC,点D是斜边BC上的中点,点E、F分别为AB,AC上的点,且DE⊥DF.(1)若设BE=a,CF=b,满足+|b﹣5|=+,求BE及CF的长.(2)求证:BE2+CF2=EF2.(3)在(1)的条件下,求△DEF的面积.26.将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边AC与含45°角的三角尺(△ACD)的斜边AC恰好重合.已知AB=2,P是AC上的一个动点.(1)当点P在∠ABC的平分线上时,求DP的长;(2)当点PD=BC时,求此时∠PDA的度数;(3)当点P运动到什么位置时,以D、P、B、Q为顶点构成平行四边形的顶点Q恰好在BC边上,求出此时▱DPBQ的面积.参考答案与试题解析一、选择题(本大题共12小题,每题4分,共48分)1.下列的式子一定是二次根式的是()A.B.C.D.【考点】二次根式的定义.【专题】应用题.【分析】根据二次根式的被开方数是非负数对每个选项做判断即可.【解答】解:A、当x=0时,﹣x﹣2<0,无意义,故本选项错误;B、当x=﹣1时,无意义;故本选项错误;C、∵x2+2≥2,∴符合二次根式的定义;故本选项正确;D、当x=±1时,x2﹣2=﹣1<0,无意义;故本选项错误;故选:C.【点评】本题考查了二次根式的定义.一般形如(a≥0)的代数式叫做二次根式.当a≥0时,表示a的算术平方根;当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根).2.下列根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】要选择属于最简二次根式的答案,就是要求知道什么是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.由被选答案可以用排除法可以得出正确答案.【解答】A、可以化简,不是最简二次根式;B、,不能再开方,被开方数是整式,是最简二根式;C、,被开方数是分数,不是最简二次根式;D、,被开方数是分数,不是最简二次根式.故选B.【点评】本题考查了满足是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.3.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=5【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:A、∵1.52+22≠32,∴该三角形不是直角三角形,故A选项符合题意;B、∵72+242=252,∴该三角形是直角三角形,故B选项不符合题意;C、∵62+82=102,∴该三角形是直角三角形,故C选项不符合题意;D、∵32+42=52,∴该三角形不是直角三角形,故D选项不符合题意.故选:A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.若x<2,化简+|3﹣x|的正确结果是()A.﹣1 B.1 C.2x﹣5 D.5﹣2x【考点】二次根式的性质与化简.【分析】根据二次根式的性质,绝对值的性质,先化简代数式,再合并.【解答】解:∵x<2∴|x﹣2|=2﹣x,|3﹣x|=3﹣x原式=|x﹣2|+3﹣x=2﹣x+3﹣x=5﹣2x.故选D.【点评】本题考查实数的综合运算能力及绝对值的性质,是各地中考题中常见的计算题型.5.已知x+,那么的值是()A.1 B.﹣1 C.±1 D.4【考点】配方法的应用;完全平方式.【专题】计算题.【分析】由于(x﹣)2=x2﹣2+=(x+)2﹣2﹣2=1,再开方即可求x﹣的值.【解答】解:∵(x﹣)2=x2﹣2+=(x+)2﹣2﹣2=1,∴x﹣=±1,故选C.【点评】本题考查了配方法的应用,解题的关键是熟练掌握完全平方公式.6.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.( +1)米D.3米【考点】勾股定理的应用.【分析】在Rt△ACB中,根据勾股定理可求得BC的长,而树的高度为AC+BC,AC的长已知,由此得解.【解答】解:Rt△ABC中,AC=1米,AB=2米;由勾股定理,得:BC==米;∴树的高度为:AC+BC=(+1)米;故选C.【点评】正确运用勾股定理,善于观察题目的信息是解题的关键.7.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.【考点】勾股定理;点到直线的距离;三角形的面积.【专题】计算题.【分析】根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.【解答】解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=ACBC=ABCD,∴CD===,则点C到AB的距离是.故选A【点评】此题考查了勾股定理,点到直线的距离,以及三角形面积的求法,熟练掌握勾股定理是解本题的关键.8.下列命题中,正确的有()①Rt△ABC中,已知两边长分别为3和4,则第三边长为5;②有一个内角等于其他两个内角和的三角形是直角三角形;③三角形的三边分别为a,b,C,若a2+c2=b2,那么∠C=90°;④若△ABC中,∠A:∠B:∠C=1:5:6,则△ABC是直角三角形.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】利用分类讨论和勾股定理对①进行判断;根据三角形内角和定理对②④进行判断;根据勾股定理的逆定理对④进行判断.【解答】解:Rt△ABC中,已知两边长分别为3和4,则第三边长为5或,所以①错误;有一个内角等于其他两个内角和的三角形是直角三角形,所以②正确;三角形的三边分别为a,b,C,若a2+c2=b2,那么∠C=90°,所以③正确;若△ABC中,∠A:∠B:∠C=1:5:6,则△ABC是钝角三角形,所以④正确.故选B.【点评】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.9.能判定四边形ABCD是平行四边形的题设是()A.AD=BC,AB∥CD B.∠A=∠B,∠C=∠D C.AB=BC,AD=DC D.AB∥CD,CD=AB【考点】平行四边形的判定.【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定定理知,A、B、C均不符合是平行四边形的条件;D、满足一组对边相等且平行的四边形是平行四边形.故选D.【点评】本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.10.在平面直角坐标系中,四边形OABC是正方形,点A的坐标为(4,0).点P为边AB上一点,∠CPB=60°,沿CP折叠正方形后,点B落在平面内点B′处,则B′点坐标为()A.(4﹣2,2)B.(2,4﹣2)C.(2,1)D.(2,2﹣)【考点】翻折变换(折叠问题);坐标与图形性质;正方形的性质.【分析】过点B′作B′D⊥OC,因为∠CPB=60°,CB′=OC=OA=4,所以∠B′CD=30°,B′D=2,根据勾股定理得DC=2,故OD=4﹣2,即B′点的坐标即可求解.【解答】解:过点B′作B′D⊥OC∵∠CPB=60°,CB′=OC=OA=4∴∠B′CD=30°,B′D=2根据勾股定理得DC=2∴OD=4﹣2,即B′点的坐标为(2,4﹣2)故选B.【点评】主要考查了图形的翻折变换和正方形的性质,要会根据点的坐标求出所需要的线段的长度,灵活运用勾股定理.11.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4 D.8【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE 平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.12.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.40【考点】规律型:图形的变化类.【专题】规律型.【分析】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=,进一步求得第(6)个图形中面积为1的正方形的个数即可.【解答】解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选:B.【点评】此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.二、填空题(本大题共6小题,每题4分,共24分)13.使有意义的x的取值范围是x≤2且x≠0.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:由题意得:2﹣x≥0且x≠0,解得:x≤2且x≠0,故答案为:x≤2且x≠0.【点评】此题主要考查了二次根式的意义和性质,以及分式有意义的条件.关键是掌握二次根式中的被开方数必须是非负数,分式的分母≠0.14.已知直角三角形的两条边长分别是3cm和5cm,那么第三边长是4cm或cm.【考点】勾股定理.【专题】分类讨论.【分析】设第三边为x,再根据5cm是直角边和斜边两种情况进行讨论即可.【解答】解:设第三边为x,当5cm是直角边时,则第三边x是斜边,由勾股定理得,32+52=x2,解得:x=cm;若5cm是斜边,则第三边x为直角边,由勾股定理得,32+x2=52,解得x=4cm,故答案为:4cm或cm.【点评】本题考查的是勾股定理,在解答此类问题时要注意进行分类讨论,不要漏解.15.平行四边形ABCD中,对角线AC、BD交于点O,若∠BOC=120°,AD=7,BD=10,则平行四边形ABCD的面积为15.【考点】平行四边形的性质.【分析】过点A作AE⊥BD于E,设OE=a,则AE=a,OA=2a,在直角三角形ADE 中,利用勾股定理可得DE2+AE2=AD2,进而可求出a的值,△ABD的面积可求出,由平行四边形的性质可知:▱ABCD的面积=2S△ABD,问题得解.【解答】解:过点A作AE⊥BD于E,∵四边形ABCD是平行四边形,∴OD=BD=×10=5,∵∠BOC=120°,∴∠AOE=60°,设OE=a,则AE=a,OA=2a,∴DE=5+a,在直角三角形ADE中,由勾股定理可得DE2+AE2=AD2,∴(5+a)2+(a)2=72,解得:a=,∴AE=×=,∴▱ABCD 的面积=2S△ABD=2×10××=15.故答案为:15.【点评】此题考查了平行四边形的性质以及勾股定理,注意掌握数形结合思想与方程思想的应用,利用勾股定理得出a的值是解题关键.16.已知实数a满足,则a﹣2的值为.【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式求出a的取值范围,再去掉绝对值号,整理后两边平方整理即可得解.【解答】解:由题意得,a﹣≥0,∴a≥,去掉绝对值号得,a﹣+=a,=,两边平方得,a﹣=2,∴a﹣2=.故答案为:.【点评】本题考查的知识点为:二次根式的被开方数是非负数,绝对值的性质,求出a的取值范围是解题的关键.17.如图,一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A点爬到B 点,则最少要爬行5cm.【考点】平面展开-最短路径问题.【分析】要求蚂蚁爬行的最短距离,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将圆柱展开,侧面为矩形,如图所示:∵底面⊙O的周长为6cm,∴AC=3cm,∵高BC=4cm,∴AB==5cm.故答案为:5.【点评】此题考查了圆柱的平面展开﹣﹣﹣最短路径问题,将圆柱展成矩形,求对角线的长即为最短路径18.如图,在梯形ABCD中,AD∥BC,AD=4,BC=12,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间为2或秒时,以点P,Q,E,D为顶点的四边形是平行四边形.【考点】梯形;平行四边形的判定.【专题】动点型.【分析】分别从当Q运动到E和B之间与当Q运动到E和C之间去分析,根据平行四边形的性质,可得方程,继而可求得答案.【解答】解:∵E是BC的中点,∴BE=CE=BC=×12=6,①当Q运动到E和C之间,设运动时间为t,则AP=t,DP=AD﹣AP=4﹣t,CQ=2t,EQ=CE﹣CQ=6﹣2t,∴4﹣t=6﹣2t,解得:t=2;②当Q运动到E和B之间,设运动时间为t,则AP=t,DP=AD﹣AP=4﹣t,CQ=2t,EQ=CQ﹣CE=2t﹣6,∴4﹣t=2t﹣6,解得:t=,∴当运动时间t为2或秒时,以点P,Q,E,D为顶点的四边形是平行四边形.故答案为:2或.【点评】此题考查了梯形的性质以及平行四边形的判定与性质.此题难度适中,注意掌握数形结合思想、分类讨论思想与方程思想的应用.三、解答题(19题6分,20题8分,共14分)19.计算题(1)(2).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)根据零指数幂、负整数指数幂和分母有理化得到原式=4+×2+1+﹣1,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=4+×2+1+﹣1=4++1+﹣1=4+2;(2)原式=(6+﹣2)÷4=5÷4=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.20.已知:如图,▱ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】证明题.【分析】利用平行四边形的性质得出AD=BC,∠DAE=∠BCA,进而利用全等三角形的判定得出即可.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,∠DAE=∠BCF,∵DE⊥AC,BF⊥AC∴∠DEA=∠BFC在△ADE和△CBF中,,∴△ADE≌△CBF(AAS),∴DE=BF.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,得出△ADE≌△CBF是解题关键.四.解答题21.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.【考点】角平分线的性质;勾股定理.【分析】(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算△ADB的面积.【解答】解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=ABDE=×10×3=15.【点评】本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.22.如图,▱ABCD中,∠ABC=60°,E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,求AB的长.【考点】平行四边形的判定与性质;含30度角的直角三角形;勾股定理.【分析】首先证明四边形ABDE是平行四边形,AB=DE=CD,即D是CE的中点,在直角△CEF中利用三角函数即可求得到CE的长,则求得CD,进而根据AB=CD求解.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵EF=,∴CE=2,∴AB=1.【点评】本题考查了平行四边形的判定与性质,以及三角函数的应用,正确理解D是CE 的中点是关键.23.已知:x,y为实数,且y=,化简:的值.【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式求出x,再求出y,然后代入代数式进行计算即可得解.【解答】解:由题意得:x2﹣4≥0,x2﹣4≤0,x2≥4,x2≤4,所以,x2=4,∵x+2≠0,∴x=2,y=,所以, ==.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.24.如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AB=2,CD=1,求四边形ABCD的面积.【考点】勾股定理;含30度角的直角三角形.【分析】延长AD、BC交于E,根据直角三角形两锐角互余求出∠E=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出AE、CE,再利用勾股定理列式求出BE、DE,然后根据四边形的面积等于两个直角三角形的面积的差列式计算即可得解.【解答】如图,延长AD、BC交于E.∵∠B=90°,∠A=60°,∴∠E=90°﹣60°=30°,在Rt△ABE和Rt△CDE中,∵AB=2,CD=1,∴AE=2AB=2×4,CE=2CD=2×1=2,由勾股定理得,BE==2,DE==,∴S=×2×2﹣××1,四边形ABCD=2﹣,=.【点评】本题考查了勾股定理的运用、直角三角形30°角所对的直角边等于斜边的一半的性质以及三角形的面积公式运用,作辅助线构造出直角三角形是解题的关键.五.解答题25.如图:在等腰直角三角形中,AB=AC,点D是斜边BC上的中点,点E、F分别为AB,AC上的点,且DE⊥DF.(1)若设BE=a,CF=b,满足+|b﹣5|=+,求BE及CF的长.(2)求证:BE2+CF2=EF2.(3)在(1)的条件下,求△DEF的面积.【考点】勾股定理;非负数的性质:绝对值;非负数的性质:算术平方根;二次根式有意义的条件;等腰直角三角形.【分析】(1)先根据二次根式的非负性求出m=2,再由非负数的性质求出a、b的值,进而得到BE及CF的长;(2)延长ED到P,使DP=DE,连接FP,CP,利用SAS得到三角形BED与三角形CPD 全等,利用全等三角形对应边相等得到BE=CP,再利用SAS得到△EDF和△PDF全等,利用全等三角形对应边相等得到EF=FP,利用等角的余角相等得到∠FCP为直角,在直角三角形FCP中,利用勾股定理列出关系式,等量代换即可得证;(3)连接AD,由AB=AC,且D为BC的中点,利用三线合一得到AD垂直于BC,AD 为角平分线,再由三角形ABC为等腰直角三角形,得到一对角相等,利用同角的余角相等得到一对角相等,再由AD=CD,利用ASA得到三角形AED与三角形CFD全等,利用全等三角形对应边相等得到AE=CF=5,DE=DF,由AE+EB求出AB的长,即为AC的长,再由AC﹣CF求出AF的长,在直角三角形AEF中,利用勾股定理求出EF的长,再根据三角形DEF为等腰直角三角形求出DE与DF的长,即可确定出三角形DEF的面积.【解答】(1)解:由题意得,解得m=2,则+|b﹣5|=0,所以a﹣12=0,b﹣5=0,a=12,b=5,即BE=12,CF=5;(2)证明:延长ED到P,使DP=DE,连接FP,CP,在△BED和△CPD中,,∴△BED≌△CPD(SAS),∴BE=CP,∠B=∠CDP,在△EDF和△PDF中,,∴△EDF≌△PDF(SAS),∴EF=FP,∵∠B=∠DCP,∠A=90°,∴∠B+∠ACB=90°,∴∠ACB+∠DCP=90°,即∠FCP=90°,在Rt△FCP中,根据勾股定理得:CF2+CP2=PF2,∵BE=CP,PF=EF,∴BE2+CF2=EF2;(3)解:连接AD,∵△ABC为等腰直角三角形,D为BC的中点,∴∠BAD=∠FCD=45°,AD=BD=CD,AD⊥BC,∵ED⊥FD,∴∠EDA+∠ADF=90°,∠ADF+∠FDC=90°,∴∠EDA=∠FDC,在△AED和△CFD中,,∴△AED≌△CFD(ASA),∴AE=CF=5,DE=DF,即△EDF为等腰直角三角形,∴AB=AE+EB=5+12=17,∴AF=AC﹣FC=AB﹣CF=17﹣5=12,在Rt△EAF中,根据勾股定理得:EF==13,设DE=DF=x,根据勾股定理得:x2+x2=132,解得:x=,即DE=DF=,则S△DEF=DEDF=××=.【点评】此题考查了非负数的性质,全等三角形的判定与性质,等腰直角三角形的性质,以及勾股定理,熟练掌握全等三角形的判定与性质是解本题的关键.26.将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边AC与含45°角的三角尺(△ACD)的斜边AC恰好重合.已知AB=2,P是AC上的一个动点.(1)当点P在∠ABC的平分线上时,求DP的长;(2)当点PD=BC时,求此时∠PDA的度数;(3)当点P运动到什么位置时,以D、P、B、Q为顶点构成平行四边形的顶点Q恰好在BC边上,求出此时▱DPBQ的面积.【考点】勾股定理;平行四边形的性质.【分析】(1)作DF⊥AC于F,由AB的长求得BC、AC的长.在等腰Rt△DAC中,DF=FA=FC;在Rt△BCP中,求得PC的长.则由勾股定理即可求得DP的长.(2)由(1)得BC与DF的关系,则DP与DF的关系也已知,先求得∠PDF的度数,则∠PDA的度数也可求出,需注意有两种情况.(3)由于四边形DPBQ为平行四边形,则BC∥DF,P为AC中点,作出平行四边形,求得面积.【解答】解:在Rt△ABC中,AB=2,∠BAC=30°,∴BC=,AC=3.(1)如图(1),作DF⊥AC于F.∵Rt△ACD中,AD=CD,∴DF=AF=CF=.∵BP平分∠ABC,∴∠PBC=30°,∴CP=BCtan30°=1,∴PF=,∴DP==.(2)当P点位置如图(2)所示时,根据(1)中结论,DF=,∠ADF=45°,又∵PD=BC=,∴cos∠PDF==,∴∠PDF=30°.∴∠PDA=∠ADF﹣∠PDF=15°.当P点位置如图(3)所示时,同(2)可得∠PDF=30°.∴∠PDA=∠ADF+∠PDF=75°.故∠PDA的度数为15°或75°;(3)当点P运动到边AC中点(如图4),即CP=时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上.∵四边形DPBQ为平行四边形,∴BC∥DP,∵∠ACB=90°,∴∠DPC=90°,即DP⊥AC.而在Rt△ABC中,AB=2,BC=,∴根据勾股定理得:AC=3,∵△DAC为等腰直角三角形,∴DP=CP=AC=,∵BC∥DP,∴CP是平行四边形DPBQ的高,∴S=DPCP=.平行四边形DPBQ【点评】本题考查了勾股定理,解直角三角形的应用,平行四边形的性质,综合性较强,难度系数较大,关键是熟练掌握好边角之间的关系创作人:百里公地创作日期:202X.04.01。
重庆市江津中学校2023-2024学年八年级下学期4月月考数学试卷(含答案)
2023—2024学年下期初二第一次定时作业数学试题(满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答.2.作答前请你先通览全卷且认真阅读答题卡上的注意事项.3.作图(包括作辅助线)请一律用黑色2B铅笔完成.4.作答时,请你认真审题,做到先易后难;作答后,要注意检查.祝你成功!一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.若二次根式在实数范围内有意义,则的取值范围是()A.B.C.D.2.已知的三边长分别为,,,则下列条件中不能判定是直角三角形的是()A.,,B.,,C.,,D.,,3.下列命题的逆命题不成立的是()A.两直线平行,内错角相等B.全等三角形的对应角相等C.两组对边分别相等的四边形是平行四边形D.若,则4.估算的运算结果应在()A.4与5之间B.5与6之间C.6与7之间D.7与8之间5.如图,在矩形中对角线、相交于点,,则的大小为()A.35°B.70°C.120°D.140°6.如图,矩形的边在数轴上,点表示数0,点表示数4,.以点为圆心,长为半径作弧,与数轴正半轴交于点,则点表示的数为()A.B.C.D.7.如图,在中,,,对角线,相交于点,则的取值范围是()A.B.C.D.8.如图,的顶点,,在边长为1的正方形网格的格点上,于点,则的长为()A.B.C.D.9.在以“长方形的折叠”为主题的数学活动课上,某同学进行了如下操作:第一步:在长方形纸片的边上取一点,将沿翻折,使点落在点处,边交于点,第二步:将沿翻折,点的对应点恰好落在线段上.根据以上的操作,若,则线段的长为()A.3B.C.4D.10.某数学兴趣小组在学习二次根式的时候发现:有时候两个含有二次根式的代数式相乘,积不含有二次根式,如,.通过查阅相关资料发现,这样的两个代数式互为有理化因式.小组成员利用有理化因式,得到了一些结论:①;②设有理数,满足:,则;③;④已知,则;⑤.以上结论正确的有()个A.1B.2C.3D.4二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.如果最简二次根式与是同类二次根式,则______.12.如图,在中,,,的平分线交于,则的长为______.13.若,为实数,且,则______.14.《九章算术》中有一个“折竹抵地”问题:“今有竹高二十五尺,末折抵地,去本五尺,问折者高几何?”意思是:现有竹子高25尺,折后竹尖抵地与竹子底部的距离为5尺,问折处高几尺?即:如图,尺,尺,则______尺.15.如图,,,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当,时,则阴影部分的面积为______.16.如图,是矩形的对角线的中点,是的中点.若,,则四边形周长为______.17.若关于的不等式组的解集为,且关于的分式方程的解为正整数,则所有满足条件的整数的值之和为______.18.对于一个三位自然数,将各个数位上的数字分别3倍后取个位数字,得到三个新的数字,,,我们对自然数规定一个运算:,例如:,其各个数位上的数字分别3倍后再取个位数字分别是:3,9,8,则.则______;若已知两个三位数,(,为整数,且,),若能被17整除,则的最大值是______.三、解答题(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1);(2).20.如图,四边形是平行四边形.(1)用尺规完成下列基本作图:在上取点,使,连接,作的平分线交于(保留作图痕迹,不写作法)(2)根据(1)中作图,求证:,补充完成下列证明过程(答案填写在答题对应标号位置).证明:平分,①,四边形是平行四边形,,,②,,③,,,,④,四边形为⑤,.21.如图,在中,,,点是线段上一点,连接,,.(1)证明:;(2)求的长.22.如图,在平行四边形中,对角线、相交于点,分别过点、作,,垂足分别为、,平分.(1)若,求的度数;(2)求证:.23.为了满足市民的需求,我市在一条小河两侧开辟了两条长跑锻炼线路,如图;①;②.经勘测,点在点的正东方,点在点的正北方5千米处,点在点的正西方,点在点的北偏东45°方向,点在点的正南方千米处,点在点的南偏西60°方向.(结果精确到十分位,参考数据:,)(1)求的长度;(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?24.阅读下面的文字,解答问题,大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分,又例如:,即,的整数部分是2,小数部分是.(1)请解答:的整数部分是______,小数部分是______;(2)如果的小数部分是,的整数部分是,求的值.(3)已知:是的整数部分,是其小数部分,求的值.25.如图,在中,是边上的一点,是的中点,过点作的平行线交的延长线于,且,连接.(1)求证:是的中点;(2)如果,试猜测四边形的形状,并证明你的结论.26.已知是等边三角形,(1)如图1,若,点在线段上,且,连接,求的长;(2)如图2,点是延长线上一点,,交的外角平分线于点,求证::(3)如图3,若,动点从点出发,沿射线方向移动,以为边在右侧作等边,取中点,连接,请直接写出的最小值及此时的长.2023—2024学年下期初二第一次定时作业数学答案1—5.CABCD 6-10.CACDB11.5 12.3 13.14.12 15.54 16.28 17.10 18.121 162 19.(1)原式;(2)原式.20.(1)(2);;;;平行四边形21.(1)在中,,,,是直角三角形,且,即.(2)设,则由(1)可知,所以.在中,,,解得22.解析:(1),,,,平分,,四边形是平行四边形,,;(2)证明:四边形是平行四边形,,,,,在和中,,.23.解析:(1)如图,过点作于点,则四边形为矩形,在中,,答:的长度约为7.1千米.(2)如图,在中,,在中,,四边形为矩形,路线①的长度为路线②的长度为小明应选择路线①.24.解析:(1),即,的整数部分是3,小数部分是,故答案为:3;;(2),即,的整数部分是2,小数部分是,,,即,的整数部分是5,小数部分是,,;(3)由(1)得,,的整数部分为8,小数部分为,,,.25.解析:证明:是的中点,.,,.在和中,,..,.即:是的中点;(2)解析:四边形是矩形;证明:,,四边形是平行四边形.,,,即.平行四边形是矩形.26.解析:(1)过点作于点,如图所示:是等边三角形,,,,,,,在中,由勾股定理得:;(2)证明:在线段上截取一点,使得,连接,如图所示:是等边三角形,,,平分,,是等边三角形,,,,,,,,;(3)连接,如图所示:,是等边三角形,,,,,,,,,,,点在的外角的角平分线上运动,由垂线段最短可知当时,最短,点是的中点,,,,,,。
人教版2021-2022学年八年级数学下册第一次月考测试题(附答案)
2021-2022学年八年级数学下册第一次月考测试题(附答案)一、选择题(共30分)1.下列二次根式中是最简二次根式的是()A.B.C.D.2.下列计算正确的是()A.4•=4B.5•5=5C.4•2=6D.4•=4 3.若代数式在实数范围内有意义,则x的取值范围是()A.x<3B.x≤3C.x>3D.x≥34.若的整数部分为x,小数部分为y,则的值是()A.B.C.1D.35.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.806.如图,在△ABC中,AB=AC,AD是BC边上的高.已知AB=5,BC=8,则AD的长为()A.6B.5C.4D.37.如图,四边形ABCD是矩形,BC=1,则点M表示的数是()A.2B.C.D.8.已知△ABC的三边分别长为a、b、c,且满足(a﹣17)2+|b﹣15|+c2﹣16c+64=0,则△ABC是()A.以a为斜边的直角三角形B.以b为斜边的直角三角形C.以c为斜边的直角三角形D.不是直角三角形9.若直角三角形的两条直角边各扩大一倍,则斜边()A.不变B.扩大一倍C.扩大两倍D.扩大四倍10.如图,已知1号,4号两个正方形的面积和为7,2号,3号两个正方形的面积和为4,则a,b,c三个方形的面积和为()A.10B.13C.15D.22二、填空题(共24分)11.在,,中与可以合并的二次根式是.12.已知直角三角形的两边长为3、2,则另一条边长是.13.如果=1﹣2a,则a的取值范围是.14.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是.15.如图,一只蚂蚁从长、宽都是6,高是16的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长为.16.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD 的长为.三、解答题(共66分)17.计算:(1);(2).18.分别在以下网格中画出图形.(1)在网格中画出一个腰长为,面积为3的等腰三角形.(2)在网格中画出一个腰长为的等腰直角三角形.19.先化简,后求值:÷(1﹣),其中x=2+1.20.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.21.已知x=2+,y=2﹣,求下列各式的值:(1)x2+xy+y2;(2).22.[阅读材料]我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用秦九韶公式可以更简便地求出面积,比如说在测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地求出答案,即三角形的三边长分别为a、b、c,则其面积S=(秦九韶公式),此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a、b、c,记p=,则其面积S =(海伦公式),虽然这两个公式形式上有所不同,但它们本质是等价的,计算各有优劣,它填补了中国数学史中的一个空白,从中可以看出中国古代已经具有很高的数学水平.[解决问题](1)当三角形的三边a=7,b=8,c=9时,请你从上面两个公式里,选择合适的公式计算出三角形的面积.(2)当三角形的三边a=,b=2,c=3时,请你从上面两个公式里,选择合适的公式计算出三角形的面积.23.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(门槛)一尺,不合四寸,问门广几何?其大意:如图,推开双门(大小相同),双门间隙CD=4寸,点C、点D与门槛AB的距离CE=DF=1尺(1尺=10寸),求AB的长.24.如图,在Rt△ABC中,∠C=90°,AC=BC,在Rt△ABD中,∠D=90°,AD与BC 交于点E,且∠DBE=∠DAB.求证:(1)∠CAE=∠DBC;(2)AC2+CE2=4BD2.25.今年第6号台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,在A处测得C港在北偏东45°方向上,在B处测得C港在北偏西60°方向上,且AB=(400+400)千米,以台风中心为圆心,周围600千米以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为20千米/时,则台风影响该海港持续的时间有多长?(结果保留整数,参考数据≈1.41,≈1.73,≈2.24)参考答案一、选择题(共30分)1.解:A、被开方数含开得尽的因数或因式,故A不符合题意;B、被开方数含开得尽的因数或因式,故B不符合题意;C、被开方数不含分母,被开方数不含开得尽的因数或因式,故C符合题意;D、被开方数含开得尽的因数或因式,故D不符合题意;故选:C.2.解:A、4•=4×3=12,错误;B、5•5=5×5×=25,错误;C、4•2=4×2×=8,错误;D、正确.故选:D.3.解:由题意得,3﹣x≥0,解得,x≤3,故选:B.4.解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.5.解:∵∠AEB=90°,AE=6,BE=8,∴AB===10,∵四边形ABCD是正方形,∴S正方形ABCD=AB2=102=100,∵S△AEB=AE•BE=×6×8=24,∴S阴影=S正方形ABCD﹣S△AEB=100﹣24=76,∴阴影部分的面积是76,故选:C.6.解:在△ABC中,AB=AC,AD⊥BC,BC=8,则BD=CD=BC=4.在直角△ABD中,AB=5,BD=4,由勾股定理,得AD===3.故选:D.7.解:AC==,AM=AC=,点M表示的数是﹣1.故选:D.8.解:∵(a﹣17)2+|b﹣15|+c2﹣16c+64=0,∴(a﹣17)2+|b﹣15|+(c﹣8)2=0,∴a﹣17=0,b﹣15=0,c﹣8=0,∴a=17,b=15,c=8,∵82+152=172,∴△ABC是以a为斜边的直角三角形;故选:A.9.解:设一直角三角形直角边为a、b,斜边为c,则a2+b2=c2;扩大2倍后,直角三角形直角边为2a、2b,则根据勾股定理知斜边为:=2c.即直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的2倍.故选:C.10.解:利用勾股定理可得S a=S1+S2,S b=S2+S3,S c=S3+S4,∴S a+S b+S c=S a=S1+S2+S2+S3+S3+S4=7+4+4=15.故选:C.二、填空题(共24分)11.解:=2,=2,=3,则与可以合并的二次根式是,故答案为:12.解:①长为2的边是直角边,长为3的边是斜边时:第三边的长为:=;②长为2、3的边都是直角边时:第三边的长为:=,所以第三边的长为:或,故答案为:或.13.解:∵=|2a﹣1|,∴|2a﹣1|=1﹣2a,∴2a﹣1≤0,∴a≤.故答案为a≤.14.解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,,∴△ABD≌△ECD(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=AD•AB=15,故答案为:15.AB==2;如图(2)所示:AB==20.由于2>20,所以最短路径为20cm.故答案为:20cm.16.解:在Rt△AOB中,AO2=AB2﹣BO2;Rt△DOC中可得:DO2=DC2﹣CO2;∴可得AD2=AO2+DO2=AB2﹣BO2+DC2﹣CO2=18,即可得AD==3.故答案为:3.三、解答题(共66分)17.解:(1)原式=10﹣6+4=20﹣9+4=15;(2)原式=+﹣2=4+﹣2=4﹣.(2)如图2所示:19.解:原式====,当时,原式==.20.解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.21.解:∵x=2+,y=2﹣,∴x+y=4,xy=1,∴(1)x2+xy+y2=(x+y)2﹣xy=42﹣1=15;(2)===4.22.解:(1)∵p==12,∴由海伦公式得:S===12;(2)由秦九韶公式得:S====.23.解:设AE=BF=x寸,则AC=(x+2)寸,∵AE2+CE2=AC2,∴x2+102=(x+2)2,解得:x=24,则AB=24+24+4=52(寸),答:AB的长为52寸.24.证明:(1)∵∠ACB=∠D=90°,∴∠CEA+∠CAE=∠BED+∠CBD=90°,∴∠CEA=∠BED,∴∠CAE=∠DBC;(2)延长BD交AC延长线于点F,∵∠DBE=∠DAB,∴∠DAB=∠CAE,在△ADB和△ADF中,,∴△ADB≌△ADF(ASA),∴BD=DF,∴BF=2BD,在△ACE和△BCF中,,∴△ACE≌△BCF(ASA),∴AE=BF,∴AE=2BD,在Rt△ACE中,AC2+CE2=AE2,∴AC2+CE2=(2BD)2=4BD2.25.解:(1)海港C受台风影响,理由:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠CAD=45°,∴∠ACD=45°,∴AD=CD,∵∠DBC=30°,∴BD=CD,∵AB=(400+400)千米,∴AB=AD+BD=CD+CD=400+400,∴CD=400千米,∵以台风中心为圆心,周围600千米以内为受影响区域,∴海港C受台风影响;(2)当EC=600km,FC=600km时,正好影响C港口,∵ED==200(km),∴EF=400km,∵台风的速度为20千米/小时,∴400÷20≈45(小时).答:台风影响该海港持续的时间大约为45小时.。
人教版八年级下学期第一次月考数学试卷含答案解析
八年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>32.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣24.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是35.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.37.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,408.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2二、填空题(每空3分,共24分)11.当x时,式子有意义;当x时,式子有意义.12.已知:,则x2﹣xy=.13.当x时,.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.18.已知,则=.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=.化简计算:(+++…+).-湖北省黄石市慧德学校八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>3【考点】二次根式有意义的条件.【分析】根据二次根式的意义,被开方数大于或等于0.【解答】解:根据二次根式的意义,得3﹣m≥0,解得m≤3.故选A.【点评】主要考查了二次根式的意义和性质.二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个【考点】二次根式的定义.【分析】根据二次根式的概念“形如(a≥0)的式子,即为二次根式”,进行分析.【解答】解:根据二次根式的概念,知(2)(6)中的被开方数都不会恒大于等于0,故不是二次根式;(4)中的根指数是3,故不是二次根式;故二次根式是(1)(3)(5)(7),共4个.故选C.【点评】此题考查了二次根式的概念,特别要注意a≥0的条件.3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣2【考点】二次根式有意义的条件;分式有意义的条件.【分析】本题主要考查代数式中字母的取值范围,代数式中主要有二次根式和分式两部分.【解答】解:根据二次根式的意义,被开方数a﹣2≥0,解得a≥2;根据分式有意义的条件,a﹣2≠0,解得a≠2.∴a>2.故选B.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.4.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是3【考点】最简二次根式.【分析】根据二次根式的性质,被开方数大于等于0,根据非负数的性质,逐一判断.【解答】解:∵x2+9总是正数,∴当x=0时,二次根式==3,是个有理数,∴B错.故选B.【点评】本题考查了两个非负数的性质:≥0(a≥0),a2≥0.5.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m【考点】勾股定理的应用.【分析】如(解答)图,AB为梯子长,AC为底端离建筑物的长5m,BC为顶端离地面的长12m;根据勾股定理即可求得.【解答】解:如图:∵AC=5m,BC=12m,∠C=90°∴AB==13m故选B.【点评】此题考查了勾股定理的应用.解题时要注意数形结合思想的应用.6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.3【考点】勾股定理.【分析】由AB垂直于BC,得到三角形ABC为直角三角形,进而由AB及BC的长,利用勾股定理求出AC的长,由AC垂直于CD,得到三角形ACD为直角三角形,由AC及CD 的长,利用勾股定理求出AD的长,由DE垂直于AD,得到三角形ADE为直角三角形,由AD及DE的长,利用勾股定理即可求出AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴由勾股定理得:AC==;AD==;AE==2.故选B.【点评】此题考查了勾股定理的运用,熟练掌握勾股定理是解本题的关键.7.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,40【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【解答】解:A、1.52+22=2.52,符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故错误;C、52+122=132,符合勾股定理的逆定理,故错误;D、202+302≠402,不符合勾股定理的逆定理,故正确.故选D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.【考点】正方形的性质.【分析】根据正方形的面积等于对角线乘积的一半得出AC的长即可.【解答】解:∵正方形ABCD的面积为,AC=BD,∴AC×BD=,则AC2=,故AC=,故选:A.【点评】此题主要考查了正方形的性质,利用正方形的面积等于对角线乘积的一半得出是解题关键.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.【点评】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2【考点】翻折变换(折叠问题).【分析】首先根据翻折的性质得到ED=BE,再设出未知数,分别表示出线段AE,ED,BE 的长度,然后在Rt△ABE中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.【解答】解:∵长方形折叠,使点B与点D重合,∴ED=BE,设AE=,在Rt△ABE中,AB2+AE2=BE2,∴32+x2=(9﹣x)2,解得:x=4,∴△ABE的面积为:3×4×=6(cm2).故选:A.【点评】此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.二、填空题(每空3分,共24分)11.当x≥﹣1时,式子有意义;当x>2时,式子有意义.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式有意义的条件可得x+1≥0,再解即可;根据二次根式有意义的条件和分式有意义的条件可得,再解不等式组即可.【解答】解:由题意得:x+1≥0,解得:x≥﹣1;由题意得:,解得:x>2,故答案为:≥﹣1;>2.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.12.已知:,则x2﹣xy=8.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质列出方程求出x、y的值,然后代入所求代数式计算即可.【解答】解:∵,∴,解得,∴x2﹣xy=4+4=8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.当x≤时,.【考点】二次根式的性质与化简.【专题】计算题.【分析】因为=|2x﹣1|,结合二次根式以及绝对值的性质求解.【解答】解:∵=1﹣2x根据算术平方根的结果为非负数,可知1﹣2x≥0,解得x≤,故当x≤时,=1﹣2x.【点评】根据算术平方根的结果为非负数,列不等式是解题的关键.故答案为:“两直线平行,同位角相等”.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为6和4.【考点】勾股定理.【分析】设全等的直角三角形的两直角边长分别为a,b(a>b),则根据已知条件和勾股定理得到a2+b2=52,(a﹣b)2=4,根据这两个等式可以求出a,b的长.【解答】解:设全等的直角三角形的两直角边长分别为a,b(a>b>0),∵图中大小正方形的面积分别为52和4,∴a2+b2=52,(a﹣b)2=4,∴a﹣b=2,∴a=b+2,代入a2+b2=52中得:(b+2)2+b2=52,整理得(x﹣4)(x+6)=0∴b1=4,b2=﹣6(不合题意舍去),∴a=4+2=6,∴直角三角形的两条直角边的长分别为4,6,故答案为:6和4.【点评】此题主要考查了勾股定理和三角形,正方形的面积公式,解题关键在于找出各边关系列出方程.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是10.【考点】平面展开-最短路径问题.【专题】应用题.【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.【解答】解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB==10,即蚂蚁所行的最短路线长是10.故答案为:10.【点评】本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.18.已知,则=.【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,求出满足两个被开方数条件的x的值.【解答】解:依题意有x﹣2≥0且2﹣x≥0,解得x=2,此时y=,则=.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式,此时≥0;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)根据二次根式的乘法法则运算;(2)利用平方差公式计算;(3)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算;(4)先把各二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=﹣=﹣=﹣46=﹣24;(2)原式=16﹣5=11;(3)原式=(6﹣+4)÷2=÷2=;(4)原式=++=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.【考点】二次根式的化简求值.【分析】(1)把式子写成(x﹣y)2﹣xy的形式,然后代入求值即可;(2)把式子写成(x+y)(x﹣y)的形式,然后代入求解即可.【解答】解:(1)原式=(x﹣y)2+xy=22+(+1)(﹣1)=4+2=6;(2)原式=(x+y)(x﹣y)=2×2=4.【点评】本题考查了求代数式的值,正确对代数式进行变形可以简化运算过程.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.【考点】二次根式的应用.【分析】(1)利用二次根式的乘法运算公式直接求出即可;(2)利用勾股定理和完全平方公式求出AB即可.【解答】解:(1)Rt△ABC的面积=AC×BC=×(+)(﹣)=;(2)斜边AB的长==.答:斜边AB的长为.【点评】此题主要考查了二次根式的应用,正确利用乘法公式进行计算求出是解题关键.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.【考点】勾股定理;勾股定理的逆定理.【专题】计算题.【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD 的形状,最后利用三角形的面积公式求解即可.【解答】解:连接AC,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴AC==5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,∴S=ABBC+ACCD=×3×4+×5×12=36.四边形ABCD【点评】本题考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键,难度适中.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?【考点】生活中的平移现象;勾股定理.【专题】几何图形问题.【分析】根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.【解答】解;路等宽,得BE=DF,△ABE≌△CDF,由勾股定理,得BE==80(m)S△ABE=60×80÷2=2400(m2)路的面积=矩形的面积﹣两个三角形的面积=84×60﹣2400×2=240(m2).答:这条小路的面积是240m2.【点评】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三角形的面积.24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.【考点】矩形的性质;翻折变换(折叠问题).【专题】应用题.【分析】(1)由于△ADE翻折得到△AEF,所以可得AF=AD,则在Rt△ABF中,第一问可求解;(2)由于EF=DE,可设EF的长为x,进而在Rt△EFC中,利用勾股定理求解直角三角形即可.【解答】解:(1)由题意可得,AF=AD=10cm,在Rt△ABF中,∵AB=8,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4cm.(2)由题意可得EF=DE,可设DE的长为x,则在Rt△EFC中,(8﹣x)2+42=x2,解得.【点评】本题主要考查了矩形的性质以及翻折的问题,能够熟练运用矩形的性质求解一些简答的问题.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=﹣.化简计算:(+++…+).【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,发现:连续两个正整数的算术平方根的和乘以这两个算术平方根的差积是1,根据二次根式的乘法,可得答案;(2)根据上述规律,可得答案.【解答】解:(1)请用字母表示你所发现的律:即=﹣(n为正整数),故答案为:﹣;(2)原式=﹣1+﹣+﹣+…+﹣+﹣=﹣1=2﹣1.【点评】本题考查了分母有理化,认真观察等式,发现规律是解题关键.。
人教版数学八年级(下)第一次月考测试卷(含答案)
人教版数学八年级(下)第一次月考测试卷(含答案)一.选择题(每小题3分,共30分)1.(3分)下列计算不正确的是()A.B.C.D.=2+32.(3分)下列根式中,属于最简二次根式的是()A.B.C.D.3.(3分)有下列各组数:①3,4,5;②62,82,102;③0.5,1.2,1.3;④1,,.其中勾股数有()A.1组B.2组C.3组D.4组4.(3分)下列条件中,不能判断一个三角形是直角三角形的是()A.三个角的比为1:2:3B.三条边满足关系a2=b2﹣c2C.三条边的比为1:2:3D.三个角满足关系∠B+∠C=∠A5.(3分)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,AD为△ABC的高,则AD的长为()A.B.C.D.6.(3分)如图,在平面直角坐标系中,点P坐标为(﹣3,2),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.﹣5和﹣4之间C.3和4之间D.4和5之间7.(3分)国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8km,又往北走2km,遇到障碍后又往西走3km,再向北走到6km处往东拐,仅走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.20km B.14km C.11km D.10km8.(3分)如果一个三角形的三边长分别为、k、,则化简﹣|2k﹣5|的结果是()A.﹣k﹣1B.k+1C.3k﹣11D.11﹣3k9.(3分)如图,是由四个全等的直角三角形拼成的“赵爽弦图”,得到正方形ABCD与正方形EFGH,连结DF.若S正方形ABCD=5,EF=BG,则DF的长为()A.2B.C.3D.10.(3分)如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是(用含n的代数式表示)()A.B.C.D.二.填空题(每小题3分,共15分)11.(3分)式子在实数范围内有意义,则实数x的取值范围是.12.(3分)α=﹣的倒数是.13.(3分)在△ABC中,若AB=AC=5,BC=6,则AC边上的高h=.14.(3分)若关于x的一元一次不等式组无解,则a的取值范围是.15.(3分)如图,△ABC中,∠ACB=90°,分别以AC、BC为斜边作等腰直角三角形S1、S2,以AB为边作正方形S.若S1与S2的面积和为9,则正方形S的边长等于.三.解答题(共9小题,共72分)16.(6分)计算:(1);(2).17.(6分)已知最简二次根式和可以合并,你能求出使有意义的x的取值范围吗?18.(6分)如图,有一个池塘,其底边长为10尺,一根芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B'.请你计算这个池塘水的深度和这根芦苇的长度各是多少?19.(8分)如图,学校有一块三角形空地ABC,计划将这块三角形空地分割成四边形ABDE 和△EDC,分别摆放“秋海棠”和“天竺葵”两种不同的花卉,经测量,∠EDC=90°,DC=3,CE=5,BD=7,AB=8,AE=1,求四边形ABDE的面积.20.(8分)如图,在梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.求AB的长.21.(8分)定义:若两个二次根式a,b满足ab=c,且c是有理数,则称a与b是关于c 的共轭(è)二次根式.问题解决:(1)若a与2是关于6的共轭二次根式,则a=;(2)若4+与8﹣m是关于26的共轭二次根式,求m的值.22.(10分)实数a在数轴上的对应点A的位置如图所示,b=|a﹣|+|2﹣a|.(1)求b的值;(2)已知b+2的小数部分是m,8﹣b的小数部分是n,求2m+2n+1的平方根.23.(11分)如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若动点P从点A出发,以每秒1cm的速度沿折线A﹣C﹣B运动,设运动时间为t秒(t>0).(1)当点P在AB边的垂直平分线上时,求t的值;(2)当点P在∠BAC的平分线上时,求t的值.24.(12分)规律探索题:细心观察如图,认真分析各式,然后解答问题.;(S1是△OA1A2的面积);;(S2是△OA2A3的面积);;(S3是△OA3A4的面积);…(1)请用含有n(n为正整数)的等式S n=;(2)推算出OA10=;(3)求出的值.参考答案一.选择题(每小题3分,共30分)1.D;2.C;3.A;4.C;5.D;6.A;7.D;8.D;9.B;10.C;二.填空题(每小题3分,共15分)11.x>5;12.+;13.;14.a≥1;15.6;三.解答题(共9小题,共72分)16.(1);(2).;17.x≥2.;18.;19.四边形ABDE的面积为18.;20.6.;21.;22.(1);(2)±.;23.;24.;.。
八年级下学期第一次月考数学试题含答案
一、选择题1.如图,点A 的坐标是(2)2,,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0)2.如图,等腰直角△ABC 中,∠C =90°,点F 是AB 边的中点,点D 、E 分别在AC 、BC 边上运动,且∠DFE =90°,连接DE 、DF 、EF ,在此运动变化过程中,下列结论:①图中全等的三角形只有两对;②△ABC 的面积是四边形CDFE 面积的2倍;③CD +CE =2FA ;④AD 2+BE 2=DE 2.其中错误结论的个数有( )A .1个B .2个C .3个D .4个3.如图,在长方形纸片ABCD 中,8AB cm =,6AD cm =. 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为( )A .254cmB .152cmC .7cmD .132cm 4.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A.62B.22C.210D.6 5.在Rt△ABC中,∠C=90°,AC=3,BC=4,则点C到AB的距离是()A.34B.35C.45D.1256.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为()A.12cm B.14cm C.20cm D.24cm7.长度分别为9cm、12cm、15cm、36cm、39cm五根木棍首尾连接,最多可搭成直角三角形的个数为()A.1个B.2个C.3个D.4个8.如图,点A和点B在数轴上对应的数分别是4和2,分别以点A和点B为圆心,线段AB的长度为半径画弧,在数轴的上方交于点C.再以原点O为圆心,OC为半径画弧,与数轴的正半轴交于点M,则点M对应的数为()A.3.5 B.23C.13D.369.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.17B.5C.2D.710.一个直角三角形的两条边的长度分别为3和4,则它的斜边长为()A.5 B.4 C7D.4或5二、填空题11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S1,S2,S3,若S 1+S 2+S 3=10,则S2的值是_________.12.如图,∠MON =90°,△ABC 的顶点A 、B 分别在OM 、ON 上,当A 点从O 点出发沿着OM 向右运动时,同时点B 在ON 上运动,连接OC .若AC =4,BC =3,AB =5,则OC 的长度的最大值是________.13.如图,现有一长方体的实心木块,有一蚂蚁从A 处出发沿长方体表面爬行到C '处,若长方体的长4cm AB =,宽2cm BC =,高1cm BB '=,则蚂蚁爬行的最短路径长是___________.14.如图,在四边形ABCD 中,AB =AD ,BC=DC ,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,若∠A =60°,AB=4,CE=3,则BC 的长为_______.15.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.16.如图,四边形ABDC 中,∠ABD =120°,AB ⊥AC ,BD ⊥CD ,AB =4,CD =43,则该四边形的面积是______.17.如图是由边长为1的小正方形组成的网格图,线段AB ,BC ,BD ,DE 的端点均在格点上,线段AB 和DE 交于点F ,则DF 的长度为_____.18.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123,,S S S ,已知12310S S S ++=,则2S 的值是____.19.如图,在矩形ABCD 中,AD >AB ,将矩形ABCD 折叠,使点C 与点A 重合,折痕为MN ,连接CN .若△CDN 的面积与△CMN 的面积比为1:3,则22MN BM的值为______________.20.如图的实线部分是由Rt ABC ∆经过两次折叠得到的.首先将Rt ABC ∆沿高CH 折叠,使点B 落在斜边上的点B '处,再沿CM 折叠,使点A 落在CB '的延长线上的点A '处.若图中90ACB ∠=︒,15cm BC =,20cm AC =,则MB '的长为______.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图,在两个等腰直角ABC 和CDE △中,∠ACB = ∠DCE=90°.(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的数量关系是 ,位置关系是 ;(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把CDE △绕点C 在平面内自由旋转,若AC = BC=10,DE=12,当A 、E 、D 三点在直线上时,请直接写出 AD 的长.23.如图,△ABC 和△ADE 都是等腰三角形,其中AB =AC ,AD =AE ,且∠BAC =∠DAE . (1)如图①,连接BE 、CD ,求证:BE =CD ;(2)如图②,连接BE 、CD ,若∠BAC =∠DAE =60°,CD ⊥AE ,AD =3,CD =4,求BD 的长;(3)如图③,若∠BAC =∠DAE =90°,且C 点恰好落在DE 上,试探究CD 2、CE 2和BC 2之间的数量关系,并加以说明.24.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD中,∠ABC=70°,∠BAC=40°,∠ACD=∠ADC=80°,求证:四边形ABCD是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A、B、C三点的位置如图,请在网格图中标出所有的格点.......D.,使得以A、B、C、D为顶点的四边形为邻和四边形.(3)如图3,△ABC中,∠ABC=90°,AB=2,BC=23,若存在一点D,使四边形ABCD是邻和四边形,求邻和四边形ABCD的面积.25.在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D、E、C三点在同一条直线上,连接BD.(1)如图1,求证:△ADB≌△AEC(2)如图2,当∠BAC=∠DAE=90°时,试猜想线段AD,BD,CD之间的数量关系,并写出证明过程;(3)如图3,当∠BAC=∠DAE=120°时,请直接写出线段AD,BD,CD之间的数量关系式为:(不写证明过程)26.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm 的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.27.如图1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,(1)试说明△ABC是等腰三角形;(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A 运动,同时动点N从点A出发以每秒1cm速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止. 设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.图1 图2 备用图28.如图1,在正方形ABCD中,点E,F分别是AC,BC上的点,且满足DE⊥EF,垂足为点E,连接DF.(1)求∠EDF= (填度数);(2)延长DE交AB于点G,连接FG,如图2,猜想AG,GF,FC三者的数量关系,并给出证明;(3)①若AB=6,G是AB的中点,求△BFG的面积;②设AG=a,CF=b,△BFG的面积记为S,试确定S与a,b的关系,并说明理由.29.已知ABC是等边三角形,点D是BC边上一动点,连结AD()1如图1,若2DC=,求AD的长;BD=,4()2如图2,以AD为边作60∠=∠=,分别交AB,AC于点E,F.ADE ADF①小明通过观察、实验,提出猜想:在点D 运动的过程中,始终有AE AF =,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.30.如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =2,CD 是边AB 的高线,动点E 从点A 出发,以每秒1个单位的速度沿射线AC 运动;同时,动点F 从点C 出发,以相同的速度沿射线CB 运动.设E 的运动时间为t (s )(t >0).(1)AE = (用含t 的代数式表示),∠BCD 的大小是 度;(2)点E 在边AC 上运动时,求证:△ADE ≌△CDF ;(3)点E 在边AC 上运动时,求∠EDF 的度数;(4)连结BE ,当CE =AD 时,直接写出t 的值和此时BE 对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:(1)当点P 在x 轴正半轴上,①以OA 为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,∴P的坐标是(4,0)或(22,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA= 22∴OA=AP=2∴P的坐标是(-220).故选D.2.B解析:B【分析】结论①错误,因为图中全等的三角形有3对;结论②正确,由全等三角形的性质可以判断;结论③错误,利用全等三角形和等腰直角三角形的性质可以判断;结论④正确,利用全等三角形的性质以及直角三角形的勾股定理进行判断.【详解】连接CF,交DE于点P,如下图所示结论①错误,理由如下:图中全等的三角形有3对,分别为△AFC ≌△BFC ,△AFD ≌△CFE ,△CFD ≌△BFE . 由等腰直角三角形的性质,可知FA=FC=FB ,易得△AFC ≌△BFC .∵FC ⊥AB ,FD ⊥FE ,∴∠AFD=∠CFE .∴△AFD ≌△CFE (ASA ).同理可证:△CFD ≌△BFE .结论②正确,理由如下:∵△AFD ≌△CFE ,∴S △AFD =S △CFE ,∴S 四边形CDFE =S △CFD +S △CFE =S △CFD +S △AFD =S △AFC =12S △ABC , 即△ABC 的面积等于四边形CDFE 的面积的2倍.结论③错误,理由如下:∵△AFD ≌△CFE ,∴CE=AD ,∴2FA .结论④正确,理由如下:∵△AFD ≌△CFE ,∴AD=CE ;∵△CFD ≌△BFE ,∴BE=CD .在Rt △CDE 中,由勾股定理得:222CD CE DE +=,∴222AD BE DE += .故选B .【点睛】本题是几何综合题,考查了等腰直角三角形、全等三角形和勾股定理等重要几何知识点,综合性比较强.解决这个问题的关键在于利用全等三角形的性质.3.A解析:A【分析】由已知条件可证△CFE≌△AFD,得到DF=EF,利用折叠知AE=AB=8cm ,设AF=xcm ,则DF=(8-x)cm ,在Rt△AFD 中,利用勾股定理即可求得x 的值.【详解】∵四边形ABCD 是长方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m ,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=DF设AF=xcm ,则DF=(8-x )cm在Rt△AFD 中,AF 2=DF 2+AD 2,AD=6cm , 222(8)6x x =-+ 254x cm = 故选择A.【点睛】此题是翻折问题,利用勾股定理求线段的长度.4.C解析:C【解析】试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE '为矩形,6, 2.B E CD EC B D BD ∴=====''2.AE ∴=22210.AB AE B E ''=+=PA PB -的最大值为:210.故答案为:210.5.D解析:D【解析】在Rt △ABC 中 ∠C=90°,AC=3,BC=4,根据勾股定理求得AB=5,设点C 到AB 的距离为h ,即可得12h×AB=12AC×BC ,即12h×5=12×3×4,解得h=125,故选D. 6.D解析:D【分析】将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为所求.【详解】解:如图:将圆柱展开,EG 为上底面圆周长的一半,作A 关于E 的对称点A',连接A'B 交EG 于F ,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm ,延长BG ,过A'作A'D ⊥BG 于D ,∵AE=A'E=DG=4cm ,∴BD=16cm ,Rt △A'DB 中,由勾股定理得:22201612-=cm∴则该圆柱底面周长为24cm .故选:D .【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.7.B解析:B【解析】试题分析:解:∵92=81,122=144,152=225,362=1296,392=1521,∴81+144=225,225+1296=1521,即92+122=152,152+362=392,故选B .考点:勾股定理的逆定理点评:本题难度中等,主要考查了勾股定理的逆定理,解题的关键熟知勾股定理逆定理的内容.8.B解析:B【分析】如图,作CD ⊥AB 于点D ,由题意可得△ABC 是等边三角形,从而可得BD 、OD 的长,然后根据勾股定理即可求出CD 与OC 的长,进而可得OM 的长,于是可得答案.【详解】解:∵点A 和点B 在数轴上对应的数分别是4和2,∴OB=2,OA=4,如图,作CD ⊥AB 于点D ,则由题意得:CA=CB=AB=2,∴△ABC 是等边三角形,∴BD=AD=112AB =, ∴OD=OB+BD=3,223CD BC BD =-=,∴()22223323OC OD CD =+=+=,∴OM=OC=23,∴点M 对应的数为23.故选:B .【点睛】本题考查了实数与数轴、等边三角形的判定与性质以及勾股定理等知识,属于常见题型,正确理解题意、熟练掌握上述知识是解题的关键.9.A解析:A【解析】试题解析:作AD ⊥l 3于D ,作CE ⊥l 3于E ,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,{BAD CBE AB BCADB BEC∠=∠=∠=∠,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得25+9=34,在Rt△ABC中,根据勾股定理,得342=217.故选A.考点:1.勾股定理;2.全等三角形的性质;3.全等三角形的判定.10.D解析:D【分析】根据题意,可分为已知的两条边的长度为两直角边,或一直角边一斜边两种情况,根据勾股定理求斜边即可.【详解】当3和4为两直角边时,由勾股定理,得:22345+=;当3和4为一直角边和一斜边时,可知4为斜边.∴斜边长为4或5.故选:D.【点睛】本题考查了勾股定理,关键是根据题目条件进行分类讨论,利用勾股定理求解.二、填空题11.103.【解析】试题解析:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=10,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=10,故3x+12y=10,x+4y=103,所以S2=x+4y=103.考点:勾股定理的证明.12.5【解析】试题分析:取AB中点E,连接OE、CE,在直角三角形AOB中,OE=AB,利用勾股定理的逆定理可得△ACB是直角三角形,所以CE=AB,利用OE+CE≥OC,所以OC的最大值为OE+CE,即OC的最大值=AB=5.考点:勾股定理的逆定理,13.5cm【分析】连接AC',分三种情况进行讨论:画出图形,用勾股定理计算出AC'长,再比较大小即可得出结果.【详解】解:如图展开成平面图,连接AC',分三种情况讨论:如图1,AB=4,BC'=1+2=3,∴在Rt△ABC'中,由勾股定理得AC'2243(cm),如图2,AC=4+2=6,CC'=1∴在Rt△ACC'中,由勾股定理得AC'=22+=37(cm),61如图3,AD =2,DC'=1+4=5,∴在Rt△ADC'中,由勾股定理得AC'=22+=29(cm)25∵5<29<37,∴蚂蚁爬行的最短路径长是5cm,故答案为:5cm.【点睛】本题考查平面展开-最短路线问题和勾股定理,本题具有一定的代表性,是一道好题,注意要分类讨论.14.7【分析】连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD,BO=OD,通过证明△EDF是等边三角形,可得DE=EF=DF,由勾股定理可求OC,BC的长.【详解】连接AC,交BD于点O,∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形,∴∠BAO=∠DAO=30°,AB=AD=BD=4,BO=OD=2,∵CE∥AB,∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°,∴∠DAO=∠ACE=30°,∴AE=CE=3,∴DE=AD−AE=1,∵∠CED=∠ADB=60°,∴△EDF是等边三角形,∴DE=EF=DF=1,∴CF=CE−EF=2,OF=OD−DF=1,OC ∴=∴【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.15.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.16.【分析】延长CA 、DB 交于点E ,则60C ∠=°,30E ∠=︒,在Rt ABE ∆中,利用含30角的直角三角形的性质求出28BE AB ==,根据勾股定理求出AE =.同理,在Rt DEC ∆中求出2CE CD ==12DE ==,然后根据CDE ABE ABDC S S S ∆∆=-四边形,计算即可求解.【详解】解:如图,延长CA 、DB 交于点E ,∵四边形ABDC 中,120ABD ∠=︒,AB AC ⊥,BD CD ⊥,∴60C ∠=°,∴30E ∠=︒,在Rt ABE ∆中,4AB =,30E ∠=︒,∴28BE AB ==,AE ∴=.在Rt DEC ∆中,30E ∠=︒,CD =2CE CD ∴==12DE ∴=,∴142ABE S ∆=⨯⨯= 1122CDE S ∆=⨯=CDE ABE ABDC S S S ∆∆∴=-=四边形.故答案为:【点睛】本题考查了勾股定理,含30角的直角三角形的性质,图形的面积,准确作出辅助线构造直角三角形是解题的关键.17.2【分析】连接AD 、CD ,由勾股定理得:22435AB DE ==+=,224225BD =+=,22125CD AD ==+=,得出AB =DE =BC ,222BD AD AB +=,由此可得△ABD 为直角三角形,同理可得△BCD 为直角三角用形,继而得出A 、D 、C 三点共线.再证明△ABC ≌△DEB ,得出∠BAC =∠EDB ,得出DF ⊥AB ,BD 平分∠ABC ,再由角平分线的性得出DF =DG =2即可的解.【详解】连接AD 、CD ,如图所示:由勾股定理可得,22435AB DE ==+=,224225BD =+=22125CD AD ==+, ∵BE=BC=5,∴AB=DE =AB =BC ,222BD AD AB +=,∴△ABD 是直角三角形,∠ADB =90°,同理可得:△BCD 是直角三角形,∠BDC =90°,∴∠ADC =180°,∴点A 、D 、C 三点共线,∴225AC AD BD ===,在△ABC 和△DEB 中,AB DE BC EB AC BD =⎧⎪⎨⎪=⎩=,∴△ABC ≌△DEB(SSS),∴∠BAC =∠EDB ,∵∠EDB+∠ADF =90°,∴∠BAD+∠ADF =90°,∴∠BFD =90°,∴DF ⊥AB ,∵AB=BC ,BD ⊥AC ,∴BD 平分∠ABC ,∵DG ⊥BC ,∴DF =DG =2.【点睛】本题考查全等三角形的性质与判定以及勾股定理的相关知识,解题的关键是熟练掌握勾股定理和过股定理的逆定理.18.103. 【分析】 根据八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,得出CG=NG ,CF=DG=NF ,再根据()21S CG DG =+,22S GF =,()23S NG NF =-,12310S S S ++=,即可得出答案.【详解】∵八个直三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形∴CG=NG ,CF=DG=NF∴()2222122S CG DG CG DG CG DG GF CG DG =+=++=+ 22S GF =()22232S NG NF NG NF NG NF =-=+-∴2222212322310S S S GF CG DG GF NG NF NG NF GF ++=+⋅+++-⋅== ∴2103GF =故2103S = 故答案为103. 【点睛】 本题主要考查了勾股定理的应用,用到的知识点由勾股定理和正方形、全等三角形的性质. 19.12【解析】如图,过点N 作NG ⊥BC 于点G ,连接CN ,根据轴对称的性质有:MA=MC ,NA=NC ,∠AMN=∠CMN.因为四边形ABCD 是矩形,所以AD ∥BC ,所以∠ANM=∠CMN.所以∠AMN=∠ANM,所以AM=AN.所以AM=AN=CM=CN.因为△CDN 的面积与△CMN 的面积比为1:3,所以DN:CM=1:3.设DN=x ,则CG=x ,AM=AN=CM=CN=3x ,由勾股定理可得()22322x x x -=, 所以MN 2=()()2222312x x x x +-=,BM 2=()()22232x x x -=.所以222212MN x BM x==12. 枚本题应填12.点睛:矩形中的折叠问题,其本质是轴对称问题,根据轴对称的性质,找到对应的线段和角,也就找到了相等的线段和角,矩形中的折叠一般会伴随着等腰三角形(也就是基本图形“平行线+角平分线→等腰三角形”),所以常常会结合等腰三角形,勾股定理来列方程求解. 20.3【分析】根据题意利用折叠后图形全等,并利用等量替换和等腰三角形的性质进行综合分析求解.【详解】解:由题意可知','ACM A CM BCH B CH ≅≅,∵15cm BC =,20cm AC =,∴'15,'20,BC B C cm AC A C cm ====''20155A B cm =-=,∵90ACB ∠=︒,∴'A M AB ⊥(等量替换),CH AB ⊥(三线合一),∴25,AB cm = 利用勾股定理假设MB '的长为m ,'257AM AM m ==-,则有222(257)5m m +-=,解得3m =,所以MB '的长为3.【点睛】本题考查几何的翻折问题,熟练掌握并综合利用等量替换和等腰三角形的性质以及勾股定理分析是解题的关键.三、解答题21.(1)BE =1;(2)见解析;(3)()23y x =-【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DM =3BM ,进而可得BE +CF =3(BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D 是线段BC 的中点,∴BD =DC =12BC =2. ∵DF ⊥AC ,即∠AFD =90°,∴∠AED =360°﹣60°﹣90°﹣120°=90°,∴∠BED =90°,∴∠BDE =30°,∴BE =12BD =1;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,则有∠AMD =∠BMD =∠AND =∠CND =90°.∵∠A =60°,∴∠MDN =360°﹣60°﹣90°﹣90°=120°.∵∠EDF =120°,∴∠MDE =∠NDF .在△MBD 和△NCD 中,∵∠BMD =∠CND ,∠B =∠C ,BD =CD ,∴△MBD ≌△NCD (AAS ),∴BM =CN ,DM =DN .在△EMD 和△FND 中,∵∠EMD =∠FND ,DM =DN ,∠MDE =∠NDF ,∴△EMD ≌△FND (ASA ),∴EM =FN ,∴BE +CF =BM +EM +CN -FN =BM +CN =2BM =BD =12BC =12AB ;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法可得:BM =CN ,DM =DN ,EM =FN .∵DN =FN ,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.(1)AE BD =,AE BD ⊥;(2)成立,理由见解析;(3)14或2.【分析】(1)先根据等腰三角形的定义可得AC BC =,CE CD =,再根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,然后根据直角三角形两锐角互余、等量代换即可得90AHD ∠=︒,由此即可得;(2)先根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,再根据直角三角形两锐角互余可得90EAC AOC ∠+∠=︒,然后根据对顶角相等、等量代换可得90BOH DBC ∠∠+=︒,从而可得90OHB ∠=︒,由此即可得;(3)先利用勾股定理求出102AB =,再分①点,,A E D 在直线上,且点E 位于中间,②点,,A E D 在直线上,且点D 位于中间两种情况,结合(1)(2)的结论,利用勾股定理求解即可得.【详解】(1)AE BD =,AE BD ⊥,理由如下:如图1,延长AE 交BD 于H ,由题意得:AC BC =,90ACE BCD ∠=∠=︒,CE CD =,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90DBC BDC ∠+∠=︒,∴90EAC BDC ∠+∠=︒,∴0)9018(EAC BD A D C H ∠+∠∠︒==-︒,即AE BD ⊥,故答案为:AE BD =,AE BD ⊥;(2)成立,理由如下:如图2,延长AE 交BD 于H ,交BC 于O ,∵90ACB ECD ∠=∠=︒,∴ACB BCE ECD BCE ∠-∠=∠-∠,即ACE BCD ∠=∠,在ACE △和BCD 中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90ACB ∠=︒,∴90EAC AOC ∠+∠=︒,∵AOC BOH ∠=∠,∴90BOH DBC ∠∠+=︒,即90OBH BOH ∠+∠=︒,∴180()90OHB OBH BOH ∠=︒-∠+∠=︒,即AE BD ⊥;(3)设AD x =,10,90AC BC ACB ==∠=︒,2102AB AC ∴==,由题意,分以下两种情况:①如图3-1,点,,A E D 在直线上,且点E 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==-=-,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x +-=,解得14x =或2x =-(不符题意,舍去),即14AD =,②如图3-2,点,,A E D 在直线上,且点D 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==+=+,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x ++=,解得2x =或14x =-(不符题意,舍去),即2AD =,综上,AD 的长为14或2.【点睛】本题考查了三角形全等的判定与性质、勾股定理等知识点,较难的是题(3),正确分两种情况讨论,并画出图形是解题关键.23.(1)证明见解析;(2)5;(3)CD 2+CE 2=BC 2,证明见解析.【分析】(1)先判断出∠BAE=∠CAD ,进而得出△ACD ≌△ABE ,即可得出结论.(2)先求出∠CDA=12∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论. (3)方法1、同(2)的方法即可得出结论;方法2、先判断出CD 2+CE 2=2(AP 2+CP 2),再判断出CD 2+CE 2=2AC 2.即可得出结论.【详解】解:∵∠BAC =∠DAE ,∴∠BAC +∠CAE =∠DAE +∠CAE ,即∠BAE =∠CAD .又∵AB =AC ,AD =AE ,∴△ACD ≌△ABE (SAS ),∴CD =BE .(2)如图2,连结BE ,∵AD =AE ,∠DAE =60°,∴△ADE 是等边三角形,∴DE =AD =3,∠ADE =∠AED =60°,∵CD ⊥AE ,∴∠CDA =12∠ADE =12×60°=30°, ∵由(1)得△ACD ≌△ABE ,∴BE =CD =4,∠BEA =∠CDA =30°,∴∠BED =∠BEA +∠AED =30°+60°=90°,即BE ⊥DE ,∴BD 22BE DE +2234+5.(3)CD 2、CE 2、BC 2之间的数量关系为:CD 2+CE 2=BC 2,理由如下:解法一:如图3,连结BE .∵AD=AE,∠DAE=90°,∴∠D=∠AED=45°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=45°,∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC2=BE2+CE2.∴BC2=CD2+CE2.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE为等腰直角三角形,AP⊥DE,∴AP=EP=DP.∵CD2=(CP+PD)2=(CP+AP)2=CP2+2CP•AP+AP2,CE2=(EP﹣CP)2=(AP﹣CP)2=AP2﹣2AP•CP+CP2,∴CD2+CE2=2AP2+2CP2=2(AP2+CP2),∵在Rt△APC中,由勾股定理可知:AC2=AP2+CP2,∴CD2+CE2=2AC2.∵△ABC为等腰直角三角形,由勾股定理可知:∴AB2+AC2=BC2,即2AC2=BC2,∴CD2+CE2=BC2.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD,解(2)(3)的关键是判断出BE ⊥DE ,是一道中等难度的中考常考题.24.(1)见解析;(2)见解析;(3)43或63【分析】(1)先由三角形的内角和为180°求得∠ACB 的度数,从而根据等腰三角形的判定证得AB=AC=AD ,按照邻和四边形的定义即可得出结论.(2)以点A 为圆心,AB 长为半径画圆,与网格的交点,以及△ABC 外侧与点B 和点C 组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC 的长,再分类计算即可:①当DA=DC=AC 时;②当CD=CB=BD 时;③当DA=DC=DB 或AB=AD=BD 时.【详解】(1)∵∠ACB =180°﹣∠ABC ﹣∠BAC =70°,∴∠ACB =∠ABC ,∴AB =AC .∵∠ACD =∠ADC ,∴AC =AD ,∴AB =AC =AD .∴四边形ABCD 是邻和四边形;(2)如图,格点D 、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =23,∴AC =()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论:①当DA =DC =AC=4时,如图所示:∴△ADC 为等边三角形,过D作DG⊥AC于G,则∠ADG=160302⨯︒=︒,∴122AG AD==,22224223DG AD AG=-=-=,∴S△ADC=1423432⨯⨯=,S△ABC=12AB×BC=23,∴S四边形ABCD=S△ADC+S△ABC=63;②当CD=CB=BD=23时,如图所示:∴△BDC为等边三角形,过D作DE⊥BC于E,则∠BDE=160302⨯︒=︒,∴132BE BD==()()22222333DE BD BE=-=-=,∴S△BDC=123333 2⨯=过D作DF⊥AB交AB延长线于F,∵∠FBD=∠FBC-∠DBC=90︒-60︒=30︒,∴DF=123S△ADB=12332⨯=,∴S四边形ABCD=S△BDC+S△ADB=3;③当DA=DC=DB或AB=AD=BD时,邻和四边形ABCD不存在.∴邻和四边形ABCD的面积是3或3【点睛】本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.25.(1)见解析;(2)CD2AD+BD,理由见解析;(3)CD3+BD【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE=2AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH=3AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD=2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH 2AD , ∵AD =AE ,AH ⊥DE ,∴DH =HE ,∴CD =DE +EC =2DH +BD +BD ,故答案为:CD +BD .【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.26.(1)2516;(2)83t =或6;(3)当153,5,210t =或194时,△BCP 为等腰三角形. 【分析】(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论;(2)当点P 在CAB ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论; (3)在Rt ABC 中,根据勾股定理得到4AC cm =,根据题意得:2AP t =,当P 在AC上时,BCP 为等腰三角形,得到PC BC =,即423t -=,求得12t =,当P 在AB 上时,BCP 为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,求得194t =,若PB BC =,即2343t --=,解得5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,由射影定理得;2BC BF AB =⋅,列方程2234352t --=⨯,即可得到结论. 【详解】 解:在Rt ABC 中,5AB cm =,3BC cm =,4AC cm ∴=,(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,在Rt PCB 中,222PC CB PB +=,即:222(42)3(2)t t -+=, 解得:2516t =, ∴当2516t =时,PA PB =; (2)当点P 在BAC ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,在Rt BEP 中,222PE BE BP +=,即:222(24)1(72)t t -+=-, 解得:83t =, 当6t =时,点P 与A 重合,也符合条件,∴当83t =或6时,P 在ABC ∆的角平分线上; (3)根据题意得:2AP t =,当P 在AC 上时,BCP 为等腰三角形,PC BC ∴=,即423t -=,12t ∴=, 当P 在AB 上时,BCP 为等腰三角形,CP PB =①,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,1322BE BC ∴==, 12PB AB ∴=,即52342t --=,解得:194t =, PB BC =②,即2343t --=,解得:5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,12BF BP ∴=, 90ACB ∠=︒,由射影定理得;2BC BF AB =⋅, 即2234352t --=⨯, 解得:5310t =, ∴当15319,5,2104t =或时,BCP 为等腰三角形. 【点睛】本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.27.(1)见详解;(2)①t 值为:103s 或6s ;②t 值为:4.5或5或4912. 【分析】(1)设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,由勾股定理求出AC ,即可得出结论;(2)由△ABC 的面积求出BD 、AD 、CD 、AC ;①当MN ∥BC 时,AM=AN ;当DN ∥BC 时,AD=AN ;得出方程,解方程即可;②根据题意得出当点M 在DA 上,即2<t ≤5时,△MDE 为等腰三角形,有3种可能:如果DE=DM ;如果ED=EM ;如果MD=ME=2t-4;分别得出方程,解方程即可.【详解】解:(1)证明:设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,在Rt △ACD 中,AC=5x ,∴AB=AC ,∴△ABC 是等腰三角形;(2)解:由(1)知,AB=5x ,CD=4x ,∴S △ABC =12×5x×4x=40cm 2,而x >0, ∴x=2cm ,则BD=4cm ,AD=6cm ,CD=8cm ,AB=AC=10cm .由运动知,AM=10-2t ,AN=t ,①当MN ∥BC 时,AM=AN ,。
人教版八年级下册数学第一次月考试题含答案
2021年八年级下册第一次月考数学试题一.选择题(共10小题,满分30分,每小题3分)1.下列式子一定是二次根式的是()A.B.C.D.2.下列四组线段中,可以构成直角三角形的是()A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,63.要使在实数范围内有意义,则()A.x为任何值B.x≤﹣C.x≥D.x≥﹣4.下列计算正确的是()A.=2 B.C.×D.5.以下二次根式:①;②;③;④中,与是同类二次根式的是()A.①和②B.②和③C.①和④D.③和④6.如图所示,点C的表示的数为2,BC=1,以O为圆心,OB为半径画弧,交数轴于点A,则点A表示的数是()A.B.C.﹣D.﹣7.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13 B.26 C.47 D.94姓名:学号:8.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.9 B.10 C.D.9.如图,由四个全等的直角三角形与中间的小正方形拼成的大正方形图案是某届国际数学大会的会标,如果大正方形的面积为16,小正方形的面积为3,直角三角形的两直角边分别为a和b,那么(a+b)2的值为()A.256 B.169 C.29 D.4810.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A.11 B.13 C.15 D.17二.填空题(共8小题,满分24分,每小题3分)11.的计算结果是.12.若+|5﹣n|=0,则m+n=.13.若正方形的面积是9,则它的对角线长是.14.已知直角三角形两边的长为5和12,则此三角形斜边上的高为.15.点A的坐标为(﹣2,0),点B的坐标(0,4),那么A、B两点间的距离是.16.化简后值为.17.探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…,请写出第6个数组: .18.已知a 、b 、c 为△ABC 的三边,且满足a 2c 2﹣b 2c 2=a 4﹣b 4,则△ABC 为 三角形. 三、解答题(共66分)19、(6分)如图,字母b 的取值如图所示,化简251022+-+-b b b =________20、计算下列各题:(每小题5分,共20分) (1)0)2(218+⨯ (2))5.02313()81448(--- (3)520)61(2÷+- (4)020142013)3(232)32()32(----+⋅-21、(7分)先化简,再求值:)111(1222+-+÷+-x x x x x ,其中12+=x .22、(8分)已知13+=x ,13-=y ,求下列各式的值:(1)222y xy x ++, (2)22y x -.23、(6分)如图,在四边形ABCD 中,AB=AD=8cm ,∠A=60°,∠ADC=150°,已知四边形ABCD 的周长为32cm ,求△BCD 的面积.24、(6分)如图,在矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在点D ′处,求重叠部分△AFC 的面积.25、(6分)如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米, 问:发生火灾的住户窗口距离地面多高?26、(7分)在ABC ∆中,BC a =,AC b =,AB c =.设c 为最长边.当222+=a b c 时,ABC ∆是直角三角形;当222a b c +≠时,利用代数式22a b +和2c 的大小关系,探究ABC ∆的形状(按角分类). (1)、当ABC ∆三边分别为6、8、9时,ABC ∆为______三角形;当ABC ∆三边分别为6、8、11时,ABC ∆为______三角形.(2)、猜想,当22a b +______2c 时,ABC ∆为锐角三角形;当22a b +______2c 时,ABC ∆为钝角三角形.(3)判断当2a =,4b =时,ABC ∆的形状,并求出对应的c 的取值范围参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:(B)当x<0时,此时二次根式无意义,故B不一定是二次根式;(C)当x+2<0时,此时二次根式无意义,故C不一定是二次根式;(D)当x2﹣2<0,此时二次根式无意义,故D不一定是二次根式;故选:A.2.【解答】解:A、12+22≠32,不能构成直角三角形,故不符合题意;B、22+32≠42,不能构成直角三角形,故不符合题意;C、32+42=52,能构成直角三角形,故符合题意;D、42+52≠62,不能构成直角三角形,故不符合题意.故选:C.3.【解答】解:依题意得:9+2x≥0.解得x≥﹣.故选:D.4.【解答】解:A、=4,此选项错误;B、与不是同类二次根式,不能合并,此选项错误;C、×==,此选项正确;D、÷==,此选项错误;故选:C.5.【解答】解:∵,,,,∴与是同类二次根式的是①和④,故选:C.6.【解答】解:∵点C的表示的数为2,BC=1,以O为圆心,OB为半径画弧,交数轴于点A,∴BO==,则A表示﹣.故选:D.7.【解答】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=9+25+4+9=47.故选:C.8.【解答】解:如图(1),AB==;如图(2),AB===10.故选B.9.【解答】解:大正方形的面积为16,得到它的边长为4,即得a2+b2=42=16,由题意,2ab=13,所以(a+b)2=a2+2ab+b2=16+13=29.故选:C.10.【解答】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑥个图形有3+2×5=13(个),故选:B.二.填空题(共8小题,满分24分,每小题3分)11.【解答】解:﹣=4﹣=3.5故答案为:3.5.12.【解答】解:根据题意得,m+2=0,5﹣n=0,解得m=﹣2,n=5,则m+n=﹣2+5=3.故答案为:3.13.【解答】解:若正方形的面积是9,则它的边长是3,根据勾股定理得到则它的对角线长===3.故答案为314.【解答】解:设斜边的长为c,斜边上的高为h,分两种情况:①直角三角形的两直角边长分别为5和12时,则c==13,∴×5×12=×13h,解得:h=.②直角三角形的斜边长为12时,则另一条直角边长==,∴×5×=×12h,解得:h=;故答案为:或.15.【解答】解:A、B两点间的距离==2.故答案为2.16.【解答】解:由题意得1﹣a<0,∴=.故答案为﹣.17.【解答】解:∵①3=2×1+1,4=2×12+2×1,5=2×12+2×1+1;②5=2×2+1,12=2×22+2×2,13=2×22+2×2+1;③7=2×3+1,24=2×32+2×3,25=2×32+2×3+1;④9=2×4+1,40=2×42+2×4,41=2×42+2×4+1;⑤11=2×5+1,60=2×52+2×5,61=2×52+2×5+1,则⑥13=2×6+1,2×62+2×6=84,2×62+2×6+1=85,故答案为:13,84,85.18.【解答】解:∵a2c2﹣b2c2=a4﹣b4,∴c2(a+b)(a﹣b)=(a2+b2)(a+b)(a﹣b),∴当a=b,则△ABC是等腰三角形;当a≠b,则c2=(a2+b2),故△ABC是直角三角形,当a=b,且c2=(a2+b2),故△ABC是等腰直角三角形,∴△ABC为等腰三角形或直角或等腰直角三角形.故答案为:等腰或直角或等腰直角.。
2022-2023学年度第一学期八年级第一次月考 (数学)(含答案)063108
2022-2023学年度第一学期八年级第一次月考 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 下列各组数不能构成一个三角形的三边长的是( )A.,,B.,,C.,,D.,,2. 如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是 ( )A.锐角三角形B.钝角三角形C.直角三角形D.都有可能3. 如图,从下列四个条件:①;②;③;④中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( )A.B.C.D.4. 若正多边形的一个外角是,则该正多边形的内角和为 A.B.C.D.5. 在中,,则( )A.B.C.D.123234345456BC =C B ′AC =C A ′∠CA =∠CB A ′B ′AB =A ′B ′123472∘()360∘540∘720∘900∘Rt △ABC ∠C =,∠B =90∘35∘∠A =45∘55∘65∘75∘6. 如图,中,则下列结论正确的是( )A.B.C.D.7. 如图,已知为中点,,,,那么下列结论中不正确的是( )A.B.C.D.8. 如图,在中,,平分于点,,则的长为 ( )A.B.C.D. 9.以下四种沿折叠的方法中,不一定能判定纸带两条边线,互相平行的是 A.图,展开后测得B.图,展开后测得且C.图,测得△ABC ∠B =∠C,BD =CF,BE =CD,∠EDF =α,2α+∠A =180∘α+∠A =90∘2α+∠A =90∘α+∠A =180∘2D AB EA ⊥AB CB ⊥AB AE =AB =2BC ∠E =30∘∠EAF =∠ADEDE =AC∠C +∠E =90∘△ABC ∠C =90∘AD ∠BAC ,DE ⊥AB E DE =3,BD =2CD BC 78910AB a b ()1∠1=∠22∠1=∠2∠3=∠43∠1=∠2D.图,展开后再沿折叠,两条折痕的交点为,测得,10. 如图所示,在中,分别是,的角平分线,且交于点,于,下列结论:①;②;③;④.其中正确的结论是( )A.①②③B.①②④C.②③④D.①②③④二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )11. 如图,点在线段上,若在的同侧作等边 和等边 ,连接、,若 ,则的度数为________.12. 一个三角形的两边长为和,则第三边的取值范围是________.13. 如图,在中,,平分.若,则________.14. 如图,在中,点,,分别是,,的中点,若的面积等于,则的面积为________.三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )15. 已知:如图,点,,,在同一条直线上, ,,求证: .4CD O OA =OB OC =OD△ABC AD ,CF ∠BAC ,∠ACB AD ,CF I IE ⊥BC E ∠BIE =∠CID =IE(AB+BC +AC)S △ABC 12BE =(AB+BC −AC)12AC =AF +DC C AB AB △ACM △BCN AN BM ∠MBA =28∘∠ANC 57a △ABC AD ⊥BC AE ∠BAC ∠1=,∠2=30∘20∘∠B =△ABC D E F BC AD EC △ABC 36△BEF A E F C DF =BE ∠B =∠D AD//BC.AE =CF16.【操作】填写下表:正边形内角和每一个内角的度数【猜想】根据上表数据猜想,正边形的每一个内角的度数都是________;(用含的代数式表示)【应用】是否存在一个正边形,它的每一个内角都是?若存在,求出的值;若不存在,请说明理由. 17. 在平面直角坐标系中,描出以下各点:.在平面直角坐标系中画出.计算的面积. 18.如图,是的直径,是的切线,切点为,交于点,点是的中点.试判断直线与的位置关系,并说明理由;若的直径为,,,求图中阴影部分的面积. 19. 如图,在中,是边上的高,平分,,.你会求的度数吗?你能发现与,之间的关系吗?20. 如图,正方形的边长为,边上有一动点,连结,线段绕点顺时针旋转后,得到线段,且交于,连结,过点作的延长线于点.求证:;(1)n n =4360∘90∘n =5n =6(2)n n (3)n 130∘n A(−2,−1),B(−4,2),C(3,5)(1)△ABC (2)△ABC AB ⊙O AC ⊙O A BC ⊙O D E AC (1)DE ⊙O (2)⊙O 4∠B =50∘AC =5△ABC AD BC AE ∠BAC ∠B =80∘∠C =46∘(1)∠DAE (2)∠DAE ∠B ∠C ABCD 1AB P PD PD P 90∘PE PE BC F DF E EQ ⊥AB Q (1)PQ =AD求证:;问:点在何处时,,并说明理由.在条件下,求的值.21.如图,,,,,垂足为.求证:;求的度数.22. 如图,在中,是边上的中线,是边上一点,过点作交的延长线于点.求证:;当,,时,求的长.23. 如图,直线,点是,之间(不在直线,上)的一个动点.若与都是锐角,如图甲,写出与,之间的数量关系并说明原因;若把一块三角尺(,)按如图乙方式放置,点,,是三角尺的边与平行线的交点,若,求的度数;将图乙中的三角尺进行适当转动,如图丙,直角顶点始终在两条平行线之间,点在线段上,连接,且有,求与之间的数量关系.(1)PQ =AD (2)P △PFD ∼△BFP (3)(2)cos ∠DFP ∠BAD =∠CAE =90∘AB =AD AE =AC AF ⊥CB F (1)△ABC ≅△ADE (2)∠FAE △ABC AD BC E AB C CF //AB ED F (1)△BDE ≅△CDF (2)AD ⊥BC AE =1CF =2AC PQ//MN C PQ MN PQ MN (1)∠1∠2∠C ∠1∠2(2)∠A =30∘∠C =90∘D E F ∠AEN =∠A ∠BDF (3)C G CD EG ∠CEG =∠CEM ∠GEN ∠BDF参考答案与试题解析2022-2023学年度第一学期八年级第一次月考 (数学)试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】A【考点】三角形三边关系【解析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:,因为,所以本组数不能构成三角形.故本选项符合题意;,因为,所以本组数能构成三角形.故本选项不符合题意;,因为,所以本组数能构成三角形.故本选项不符合题意;,因为,所以本组数能构成三角形.故本选项不符合题意.故选.2.【答案】C【考点】三角形的高【解析】【解答】解:因为直角三角形的三条高线的交点是直角顶点,而其他三角形三条高线的交点都不在顶点上,所以如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是直角三角形.故选.3.【答案】B【考点】全等三角形的性质与判定【解析】根据全等三角形的判定定理,可以推出当①②③为条件,④为结论时 ,根据判断出,根据全等三角形的性质得出;当①②④为条件,③为结论时:由判断出,根据全等三角形的性质得出, 从而得出.【解答】A 1+2=3B 2+3>4C 4+3>5D 4+5>6A C SAS △A'CB'≅△ACB AB =A'B'SSS △A'CB'≅△ACB ∠A'CB'=∠ACB ∠A'CA =∠B'CB解:当①②③为条件,④为结论时:∵,∴,即,∵,,∴,∴;当①②④为条件,③为结论时:∵,,,∴,∴,∴,即.若②③④为条件,通过两边及其一边的对角无法判定三角形相似,从而无法得出结论.故选.4.【答案】B【考点】多边形内角与外角【解析】外角和是,除以一个外角度数即为多边形的边数.根据多边形的内角和公式可求得该多边形的内角和.【解答】解:∵正多边形的每一个外角都是,∴正多边形的边数为:,∴该正多边形的内角和为:.故选.5.【答案】B【考点】三角形内角和定理【解析】此题暂无解析【解答】解:因为三角形内角和为,所以.故选.6.【答案】A【考点】全等三角形的判定∠CA =∠CB A ′B ′∠CA+∠AC =∠CB+∠AC A ′B ′B ′B ′∠C =∠ACB A ′B ′BC =C B ′AC =C A ′△C ≅△ACB(SAS)A ′B ′AB =A ′B ′BC =C B ′AC =C A ′AB =A ′B ′△C ≅△ACB(SSS)A ′B ′∠C =∠ACB A ′B ′∠C −∠AC =∠ACB−∠AC A ′B ′B ′B ′∠CA =∠CB A ′B ′B 360∘72∘=536072(5−2)×=180∘540∘B 180∘∠A =−∠B−∠C180∘=−−180∘35∘90∘=55∘B【解答】解:在和中,,∴,∴,∵,∴,∵,∴.故选.7.【答案】A【考点】全等三角形的性质与判定【解析】本题条件较为充分,,,,为中点可得两直角三角形全等,然后利用三角形的性质问题可解决.做题时,要结合已知条件与全等的判定方法对选项逐一验证.【解答】解:,,,∵为中点,∴,又,,∴,,,,故正确;∵,∴,∴,即,∴,,∴,,,,故,正确.故选.8.【答案】C【考点】角平分线的性质全等三角形的判定【解析】△BDE △CFD BE =CD∠B =∠C BD =CF△BDE ≅△CFD(SAS)∠BED =∠CDF ∠EDC =∠B+∠BED =∠EDF +∠FDC∠B =∠EDF =α∠B =∠C =α2a +∠A =180∘A EA ⊥AB BC ⊥AB EA =AB =2BC D AB ∵EA ⊥AB BC ⊥AB ∴∠EAB =∠ABC =90∘D AB AB =2AD EA =AB =2BC ∴AD =BC Rt △EAD ≅Rt △ABC ∴DE =AC ∠C =∠ADE ∠E =∠FAD C ∠EAF +∠DAF =90∘∠EAF +∠E =90∘∠EFA =−=180∘90∘90∘DE ⊥AC ∠EAF +∠DAF =90∘∠C +∠DAF =90∘∠C =∠EAF ∠C =∠ADE ∴∠EAF =∠ADE ∠C +∠E =90∘B D A解:∵在和中,,∴,∴.∵,∴.故选.9.【答案】C【考点】全等三角形的性质与判定平行线的判定【解析】根据平行线的判定定理,进行分析,即可解答.【解答】解:、,根据内错角相等,两直线平行进行判定,故正确;、∵且,由图可知,,∴,∴(内错角相等,两直线平行),故正确;、测得,∵与即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;、在和中,,∴,∴,∴(内错角相等,两直线平行),故正确.故选.10.【答案】A【考点】全等三角形的性质与判定三角形内角和定理角平分线的性质【解析】①由为三条角平分线的交点,于,得到,由于,即,由已知条件得到,于是得到;即①成立;②由△ADE △ADC ∠DAE =∠DACDA =DA ∠AED =∠ACD△ADE ≅△ADC CD =DE BD =2CD BC =BD+CD =3DE =9C A ∠1=∠2B ∠1=∠2∠3=∠4∠1+∠2=180∘∠3+∠4=180∘∠1=∠2=∠3=∠4=90∘a//b C ∠1=∠2∠1∠2D △AOC △BOD OA =OB∠AOC =∠BOD OC =OD△AOC ≅△BOD ∠CAO =∠DBO a//b C I △ABC IE ⊥BC E ∠ABI =∠IBD ∠CID+∠ABI =90∘∠CIE+∠DIE+∠IBD =90∘∠IBD+∠BID+∠DIE =90∘∠BIE =∠CID是三内角平分线的交点,得到点到三边的距离相等,根据三角形的面积即可得到即②成立;③如图过作于,于,有是三内角平分线的交点,得到,通过,得到,同理,,于是得到即③成立;④由③证得,,于是得到与不一定全等,即④错误.【解答】解:①,故正确,②∵是三内角平分线的交点,∴点到三边的距离相等,∴,即②正确;③如图过作于,于,∵是三内角平分线的交点,∴,在与中,,∴,∴,同理,,∴,∴,即③正确;④只有在 的条件下, ,即④错误.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )11.【答案】【考点】全等三角形的性质【解析】此题暂无解析【解答】此题暂无解答12.【答案】【考点】I △ABC I △ABC I IH ⊥AB H IG ⊥AC G I △ABC IE =IH =IG △AHT ≅△AGI R t R t AH =AG BE =BF CE =CG IH =IE ∠FHI =∠IED =90∘△IHF △DEI ∠ABC +∠ACB+∠BAC =,180∘∠IBE =∠ABC ,12∠IAC =∠BAC 12∠ICA =∠ACB ,12∠IBE +∠IAC +∠ICA =,90∘∠CID =∠IAC +∠ICA =−∠IBE =∠BIE.90∘①I △ABC I △ABC =++S △ABC S △ABI S △BCI S △ACI =⋅AB ⋅IE+BC ⋅IE+AC ⋅IE 121212=IE(AB+BC +AC)12I IH ⊥AB H IG ⊥AC G I △ABC IE =IH =IG Rt △AHI Rt △AGI {AI =AI ,IH =IG ,Rt △AHI ≅Rt △AGI AH =AG BE =BH CE =CG BE+BH =AB+BC −AH−CE =AB+BC −ACBE =(AB+BC −AC)12∠ABC =60∘AC =AF +DCA 28∘2<a <12三角形三边关系【解析】根据三角形三边关系,两边之和大于第三边,两边之差小于第三边即可求解.【解答】解:三角形的两边长分别为,,则第三边的取值范围是,即.故答案为:.13.【答案】【考点】三角形的外角性质三角形内角和定理【解析】此题暂无解析【解答】解:∵平分,∴,∴,在 中,,故答案为:.14.【答案】【考点】三角形的面积【解析】此题暂无解析【解答】此题暂无解答三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )15.【答案】证明:∵,∴,且,,∴(),∴,∴,57a 7−5<a <7+52<a <122<a <1250∘AE ∠BAC ∠1=∠EAD+∠2∠EAD =∠1−∠2=−30∘20∘=1Rt △ABD ∠B =−∠BAD 90∘=−−=90∘30∘10∘50∘50∘9AD//BC ∠A =∠C ∠B =∠D DF =BE △ADF ≅△CBE AAS AF =CE AF −EF =CE−EF∴.【考点】全等三角形的性质与判定平行线的性质【解析】【解答】证明:∵,∴,且,,∴(),∴,∴,∴.16.【答案】解:填表如下:正边形内角和每一个内角的度数根据可得,,解得.因为为整数,所以不存在一个正边形,它的每一个内角都是.【考点】多边形的内角和多边形内角与外角【解析】根据得,正边形的每一个内角度数为.故答案为:.【解答】解:填表如下:正边形内角和每一个内角的度数根据得,正边形的每一个内角度数为.AE =CF AD//BC ∠A =∠C ∠B =∠D DF =BE △ADF ≅△CBE AAS AF =CE AF −EF =CE−EF AE =CF (1)n n =4360∘90∘n =5540∘108∘n =6720∘120∘(n−2)×180∘n (3)(2)=(n−2)×180∘n 130∘n =7.2n n 130∘(2)(1)n (n−2)×180∘n (n−2)×180∘n(1)n n =4360∘90∘n =5540∘108∘n =6720∘120∘(2)(1)n (n−2)×180∘n(n−2)×180∘故答案为:.根据可得,,解得.因为为整数,所以不存在一个正边形,它的每一个内角都是.17.【答案】解:如图所示:的面积.【考点】网格中点的坐标三角形的面积【解析】无无【解答】解:如图所示:的面积.18.【答案】解:直线与相切.理由如下:(n−2)×180∘n (3)(2)=(n−2)×180∘n 130∘n =7.2n n 130∘(1)△ABC (2)△ABC =7×6−×2×312−×3×712−×5×612=42−3−10.5−15=13.5(1)△ABC (2)△ABC =7×6−×2×312−×3×712−×5×612=42−3−10.5−15=13.5(1)DE ⊙O连接,,如图,∵是的切线,∴,∴.∵点是的中点,点为的中点,∴,∴,.∵,∴,∴.在和中,∴,∴,∴,∵为的半径,∴直线与相切.∵,是的切线,∴,∵点是的中点,∴ ,,∴图中阴影部分的面积为.【考点】全等三角形的性质与判定切线的判定三角形中位线定理扇形面积的计算求阴影部分的面积三角形的面积【解析】连接、,根据切线的性质得到根据三角形中位线定理得到,证明根据全等三角形的性质、切线的判定定理证明;【解答】解:直线与相切.理由如下:连接,,如图,OE OD AC ⊙O AB ⊥AC ∠OAC =90∘E AC O AB OE//BC ∠1=∠B ∠2=∠3OB =OD ∠B =∠3∠1=∠2△AOE △DOE OA =OD ,∠1=∠2,OE =OE ,△AOE ≅△DOE(SAS)∠ODE =∠OAE =90∘DE ⊥OD OD ⊙O DE ⊙O (2)DE AE ⊙O DE =AE E AC AE =AC =1252∠AOD =2∠B =2×=50∘100∘S =+−S △AOE S △DOE S 扇形AOD =2−S △AOE S 扇形AOD=2××2×−1252100×π×22360=5−π109(1)OE OD ∠OAC =90∘OE//BC△AOE ≅△DOE (1)DE ⊙O OE OD∵是的切线,∴,∴.∵点是的中点,点为的中点,∴,∴,.∵,∴,∴.在和中,∴,∴,∴,∵为的半径,∴直线与相切.∵,是的切线,∴,∵点是的中点,∴ ,,∴图中阴影部分的面积为.19.【答案】解:在中,,,∴.∵平分,∴.∵是边上的高,∴,∴;∵是的高,∴,∵,∴,∵,,∴,∵是的角平分线,∴,∵,∴当时,;∴.AC ⊙O AB ⊥AC ∠OAC =90∘E AC O AB OE//BC ∠1=∠B ∠2=∠3OB =OD ∠B =∠3∠1=∠2△AOE △DOE OA =OD ,∠1=∠2,OE =OE ,△AOE ≅△DOE(SAS)∠ODE =∠OAE =90∘DE ⊥OD OD ⊙O DE ⊙O (2)DE AE ⊙O DE =AE E AC AE =AC =1252∠AOD =2∠B =2×=50∘100∘S =+−S △AOE S △DOE S 扇形AOD =2−S △AOE S 扇形AOD=2××2×−1252100×π×22360=5−π109(1)△ABC ∠B =80∘∠C =46∘∠BAC =−−=180∘80∘46∘54∘AE ∠BAC ∠BAE =∠BAC =1227∘AD BC ∠BAD =−∠B =−=90∘90∘80∘10∘∠DAE =∠BAE−∠BAD =−=27∘10∘17∘(2)AD △ABC ∠ADC =90∘∠C =β∠DAC =−β90∘∠B =α∠C =β∠BAC =−∠B−∠C =−α−β180∘180∘AE △ABC∠EAC =∠BAC =(−α−β)=−α−β1212180∘90∘1212∠B >∠C α>β∠DAE =∠DAC −∠EAC=−β−(−α−β)90∘90∘1212=(α−β)12∠DAE =(∠B−∠C)12【考点】三角形的外角性质三角形内角和定理【解析】(1)先根据三角形内角和定理求出的度数,再根据平分求出的度数,根据求出的度数,由即可得出结论;(2)设,,,同(1)即可得出结论;【解答】解:在中,,,∴.∵平分,∴.∵是边上的高,∴,∴;∵是的高,∴,∵,∴,∵,,∴,∵是的角平分线,∴,∵,∴当时,;∴.20.【答案】证明:根据题意得:,,∴,∵四边形是正方形,∴,∴,∴,∵,∴,在和中,,∴,∴;解:∵,∴,∵,,∴,∴,∴,∴,∠BAC AE ∠BAC ∠BAE AD ⊥BC ∠BAD ∠DAE =∠BAE−∠BAD ∠C =α∘∠B =β∘α>β(1)△ABC ∠B =80∘∠C =46∘∠BAC =−−=180∘80∘46∘54∘AE ∠BAC ∠BAE =∠BAC =1227∘AD BC ∠BAD =−∠B =−=90∘90∘80∘10∘∠DAE =∠BAE−∠BAD =−=27∘10∘17∘(2)AD △ABC ∠ADC =90∘∠C =β∠DAC =−β90∘∠B =α∠C =β∠BAC =−∠B−∠C =−α−β180∘180∘AE △ABC∠EAC =∠BAC =(−α−β)=−α−β1212180∘90∘1212∠B >∠C α>β∠DAE =∠DAC −∠EAC=−β−(−α−β)90∘90∘1212=(α−β)12∠DAE =(∠B−∠C)12(1)PD =PE ∠DPE =90∘∠APD+∠QPE =90∘ABCD ∠A =90∘∠ADP +∠APD =90∘∠ADP =∠QPE EQ ⊥AB ∠A =∠Q =90∘△ADP △QPE ∠A =∠Q∠ADP =∠QPE PD =PE△ADP ≅△QPE(AAS)PQ =AD (2)△PFD ∼△BFP =PB BF PD PF ∠ADP =∠EPB ∠CBP =∠A △DAP ∼△PBF=PD PF AP BF=AP BF PB BF PA =PB A =AB =11∴∴当,即点是的中点时,.解:∵为的中点,,,,,,,在中,,在中在中.【考点】相似三角形的性质与判定锐角三角函数的定义正方形的性质全等三角形的性质【解析】(1)由题意得:,,又由正方形的边长为,易证得,然后由全等三角形的性质,求得线段的长;(2)易证得,又由,根据相似三角形的对应边成比例,可得证得,则可求得答案.【解答】证明:根据题意得:,,∴,∵四边形是正方形,∴,∴,∴,∵,∴,在和中,PA =AB =1212PA =12P AB △PFD ∼△BFP (3)P AB ∴PA =PB =AB =1212∵△DAP ∼△PBF ∴=BF PB AP AD ∴=BF 12121∴BF =14∴CF =CB−BF =1−=1434Rt △PBF PF =P +B B 2F 2−−−−−−−−−−√===+()122()142−−−−−−−−−−−−√516−−−√5–√4Rt △DCF DF =+CD 2CF 2−−−−−−−−−−√==+12()342−−−−−−−−−√54Rt △DPF cos ∠DFP =PF DF ==5–√4545–√5PD =PE ∠DPE =90∘ABCD 1△ADP ≅△QPE PQ △DAP ∽△PBF △PFD ∽△BFP PA =PB (1)PD =PE ∠DPE =90∘∠APD+∠QPE =90∘ABCD ∠A =90∘∠ADP +∠APD =90∘∠ADP =∠QPE EQ ⊥AB ∠A =∠Q =90∘△ADP △QPE,∴,∴;解:∵,∴,∵,,∴,∴,∴,∴,∴∴当,即点是的中点时,.解:∵为的中点,,,,,,,在中,,在中在中.21.【答案】证明:∵,∴,,∴,在和中,∴.解:∵,,∴.由知,∴. ∠A =∠Q∠ADP =∠QPE PD =PE△ADP ≅△QPE(AAS)PQ =AD (2)△PFD ∼△BFP =PB BF PD PF ∠ADP =∠EPB ∠CBP =∠A △DAP ∼△PBF =PD PF AP BF=AP BF PB BFPA =PB PA =AB =1212PA =12P AB △PFD ∼△BFP(3)P AB∴PA =PB =AB =1212∵△DAP ∼△PBF ∴=BF PB AP AD ∴=BF 12121∴BF =14∴CF =CB−BF =1−=1434Rt △PBF PF =P +B B 2F 2−−−−−−−−−−√===+()122()142−−−−−−−−−−−−√516−−−√5–√4Rt △DCF DF =+CD 2CF 2−−−−−−−−−−√==+12()342−−−−−−−−−√54Rt △DPF cos ∠DFP =PF DF==5–√4545–√5(1)∠BAD =∠CAE =90∘∠BAC +∠CAD =90∘∠CAD+∠DAE =90∘∠BAC =∠DAE △ABC △ADE AB =AD,∠BAC =∠DAE,AC =AE,△ABC ≅△ADE(SAS)(2)∠CAE =90∘AC =AE ∠E =45∘(1)△ABC ≅△ADE ∠BCA =∠E =45∘∵,∴,∴,∴.【考点】全等三角形的判定全等三角形的性质三角形内角和定理【解析】此题暂无解析【解答】证明:∵,∴,,∴,在和中,∴.解:∵,,∴.由知,∴.∵,∴,∴,∴.22.【答案】证明:∵,∴,.∵是边上的中线,∴,∴.解:∵,∴,∴.∵,,∴.【考点】全等三角形的判定全等三角形的性质平行线的性质【解析】(1)根据平行线的性质得到=,=,由是边上的中线,得到=,于是得到结论;(2)根据全等三角形的性质得到==,求得===,于是得到结论.【解答】证明:∵,AF ⊥BC ∠CFA =90∘∠CAF =45∘∠FAE =∠FAC +∠CAE =+=45∘90∘135∘(1)∠BAD =∠CAE =90∘∠BAC +∠CAD =90∘∠CAD+∠DAE =90∘∠BAC =∠DAE △ABC △ADE AB =AD,∠BAC =∠DAE,AC =AE,△ABC ≅△ADE(SAS)(2)∠CAE =90∘AC =AE ∠E =45∘(1)△ABC ≅△ADE ∠BCA =∠E =45∘AF ⊥BC ∠CFA =90∘∠CAF =45∘∠FAE =∠FAC +∠CAE =+=45∘90∘135∘(1)CF //AB ∠B =∠FCD ∠BED =∠F AD BC BD =CD △BDE ≅△CDF(AAS)(2)△BDE ≅△CDF BE =CF =2AB =AE+BE =1+2=3AD ⊥BC BD =CD AC =AB =3∠B ∠FCD ∠BED ∠F AD BC BD CD BE CF 2AB AE+BE 1+23(1)CF //AB∴,.∵是边上的中线,∴,∴.解:∵,∴,∴.∵,,∴.23.【答案】解:.理由如下:如图,过作,∵,∴,∴,,∴,即.∵,∴,由可得,,∴,∴.设,则,由可得,,∴,∴,∴.即.【考点】平行线的判定与性质平行线的性质角的计算【解析】无无无【解答】解:.理由如下:如图,过作,∵,∴,∴,,∴,即.∵,∴,由可得,,∠B =∠FCD ∠BED =∠F AD BC BD =CD △BDE ≅△CDF(AAS)(2)△BDE ≅△CDF BE =CF =2AB =AE+BE =1+2=3AD ⊥BC BD =CD AC =AB =3(1)∠C =∠1+∠2C CD//PQ PQ//MN PQ//CD//MN ∠1=∠ACD ∠2=∠BCD ∠ACB =∠ACD+∠BCD =∠1+∠2∠C =∠1+∠2(2)∠AEN =∠A =30∘∠MEC =30∘(1)∠C =∠MEC +∠PDC =90∘∠PDC =−∠MEC =90∘60∘∠BDF =∠PDC =60∘(3)∠CEG =∠CEM =x ∠GEN =−2x 180∘(1)∠C =∠CEM +∠CDP ∠CDP =−∠CEM =−x 90∘90∘∠BDF =−x 90∘==2∠GEN ∠BDF −2x 180∘−x 90∘∠GEN =2∠BDF (1)∠C =∠1+∠2C CD//PQ PQ//MN PQ//CD//MN ∠1=∠ACD ∠2=∠BCD ∠ACB =∠ACD+∠BCD =∠1+∠2∠C =∠1+∠2(2)∠AEN =∠A =30∘∠MEC =30∘(1)∠C =∠MEC +∠PDC =90∘∴,∴.设,则,由可得,,∴,∴,∴.即.∠PDC =−∠MEC =90∘60∘∠BDF =∠PDC =60∘(3)∠CEG =∠CEM =x ∠GEN =−2x 180∘(1)∠C =∠CEM +∠CDP ∠CDP =−∠CEM =−x 90∘90∘∠BDF =−x 90∘==2∠GEN ∠BDF −2x 180∘−x 90∘∠GEN =2∠BDF。
人教版八年级(下)数学月考(5月)试卷
人教版八年级(下)数学月考(5月)试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知函数,则x的取值范围是()A.x<2B.x<2且x≠0C.x≤2D.x≤2且x≠0 2.(3分)下列计算正确的是()A.×=B.C.+=3D.=﹣1 3.(3分)如果函数y=kx﹣2021中的y随x的增大而减小,那么这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)如图,直线y=kx+b(k≠0)经过点(2,0)和点(0,﹣3),当y>0时,x的取值范围为()A.x>2B.x>﹣3C.x>0D.x<25.(3分)通过平移y=﹣2x的图象,可得到y=﹣2(x﹣1)+3的图象,平移方法正确的是()A.向左移动1个单位,再向上移动3个单位B.向右移动1个单位,再向上移动3个单位C.向左移动1个单位,再向下移动3个单位D.向右移动1个单位,再向下移动3个单位6.(3分)对于函数y=﹣2x+4,下列说法正确的是()A.y随x的增大而增大B.它的图象与y轴的交点是(0,4)C.它的图象经过点(2,8)D.它的图象不经过第一象限7.(3分)下列条件中,不能判定四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CDC.AB∥CD,AD∥BC D.AB=CD,AD∥BC8.(3分)矩形、菱形、正方形都一定具有的性质是()A.邻边相等B.对角线互相平分C.四个角都是直角D.对角线相等9.(3分)已知一次函数y=mx﹣(m﹣1),则在直角坐标系内它的大致图象不可能是()A.B.C.D.10.(3分)如图,直线l1:y=x+1与直线l2:相交于点P,直线l1与y轴交于点A,一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,B2020,A2020……则A2022B2022的长度为()A.22021B.22022C.2022D.4044二.填空题(共6小题,满分18分,每小题3分)11.(3分)化简+的结果为.12.(3分)已知函数y=2x m﹣1是正比例函数,则m=.13.(3分)已知一次函数y=kx+b的函数值y随x值的增大而减小,它的图象与x轴交于点(﹣,0),那么不等式kx+b<0的解集是.14.(3分)A、B两地相距12千米,甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,甲、乙两人之间的距离y(单位:km)与乙步行时间x(单位:h)之间的对应关系如图所示,则a=.15.(3分)在△ABC中,AB=1,AC=2,BC=,点D是AB延长线上一点(点D与点B不重合),过点D作线段DE⊥AB,使△BDE与△ABC全等,则点C到点E的距离为.16.(3分)如图,点A(3,0)在x轴上,直线y=﹣x+6与两坐标轴分别交于B,C两点,D,P分别是线段OC,BC上的动点,则PD+DA的最小值为.三.解答题(共8小题,满分72分)17.(8分)计算.(1)3(2)2(3)18.(8分)如图,在四边形ABCD中,AD∥BC,AD=2BC,∠ABD=90°,点E是AD的中点.求证:四边形BCDE为菱形.19.(8分)已知关于x的方程mx﹣2=3x+n有无数个解.(1)求出m、n的值.(2)求一次函数y=mx+n与坐标轴围成的三角形的面积.20.(8分)按要求画图:(1)如图1,正方形网格中的每个小正方形的边长都是1,每个小格的顶点就做格点,以格点为顶点画一个三角形,使它的三边长分别为,3,(在图中画出一个既可);(2)如图2,现有一张长10cm,宽为2cm的长方形纸片,请你将它分成5块,再拼合成一个正方形(在图3中画出).(要求分割的5块分别标上序号并在拼成的正方形中标上相应序号)21.(8分)直线y=kx+b经过A(﹣2,0),B(0,4)两点,C点的坐标为(0,﹣1).(1)求k和b的值;(2)点E为线段AB上一点,点F为直线AC上一点,EF=3.①如图1,若EF∥BC,求E点坐标;②如图2,若EF∥AO,请直接写出E点坐标.22.(10分)疫情发生后,口罩成了人们生活的必需品某药店销售A,B两种口罩,今年3月份的进价是:A种口罩每包12元,B种口罩每包28元,已知B种口罩每包售价比A 种口罩贵20元,9包A种口罩和4包B种口罩总售价相同.(1)求A种口罩和B种口罩每包售价.(2)若该药店3月份购进A种和B种口罩共1500包进行销售,且B种口罩数量不超过A种口罩的,若所进口罩全部售出,则应该购进A种口罩多少包,才能使利润最大,并求出最大利润.23.(10分)如图,四边形OABC为矩形,OA=4,OC=5,正比例函数y=2x的图象交AB 于点D,连接DC,动点Q从D点出发沿DC向终点C运动,动点P从C点出发沿CO 向终点O运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了ts.(1)求△PCQ的面积S△PCQ=?(用t的代数式表示);(2)问:是否存在时刻t使S△DOP=S△PCQ?为什么?(3)当t为何值时,△DPQ是一个以DP为腰的等腰三角形?24.(12分)直线y=2x+4与x轴交于点A,与y轴交于点B,点C在x轴的正半轴上,△ABC面积为10.(1)直接写出点C的坐标;(2)如图1,F为线段AB的中点,点G在y轴上,以FG为边,向右作正方形FGQP,点Q落在直线BC上,求点G的坐标;(3)如图2,M在射线BA上,点N在射线BC上,直线MN交y轴于H点,若HB=HM,求的值.。
人教版2021-2022学年八年级数学下册第一次月考测试题(附答案) (2)
2021-2022学年八年级数学下册第一次月考测试题(附答案)一、选择题(共40分.)1.下列各组数据中,能构成直角三角形的是()A.,,B.6,8,9C.3,5,4D.8,12,15 2.下列二次根式中,最简二次根式是()A.B.C.D.3.若是整数,则a的最小值为()A.3B.4C.5D.64.下列运算正确的是()A.B.C.D.5.下列计算正确的是()A.5﹣4=1B.+=C.3=D.2+2=4 6.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为()cm2.A.3cm2B.4cm2C.7cm2D.49cm27.一直角三角形的两边分别是2和3,则第三边是()A.2或3B.C.D.或8.如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4cm B.5cm C.6cm D.10cm9.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm.A.14B.15C.16D.1710.对于任意的正数m,n定义运算※为m※n=计算(3※2)×(8※12)的结果为()A.B.20C.D.2二、填空题(满分24分)11.二次根式在实数范围内有意义,则x的取值范围是.12.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB长度为.13.如果+(b﹣3)2=0,则的算术平方根为.14.若,则y x=.15.已知x+y=﹣5,xy=4,则=.16.若m满足等式+|2019﹣m|=m,则m﹣20192的值为.三、解答题(共56分)17.计算:(+1)(﹣1)+(1﹣)0.18.计算:(+)﹣(﹣).19.已知三角形两边长为3,5,要使这个三角形是直角三角形,求出第三边的长.20.若实数a、b、c在数轴上的对应点如图所示,试化简:﹣+|b+c|+|a﹣c|.21.阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:因为,即2<3,所以的整数部分为2,小数部分为﹣2.请解答:(1)如果的小数部分为a,的整数部分为b,求a﹣b﹣的值;(2)已知:10+=2x+y,其中x是整数,且0<y<1,求3x﹣y的值.22.如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为ts.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值.23.如图,一根长度为50cm的木棒的两端系着一根长度为70cm的绳子,现准备在绳子上找一点,然后将绳子拉直,使拉直后的绳子与木棒构成一个直角三角形,这个点将绳子分成的两段各有多长?24.先阅读下列材料,再解决问题.阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:====|1+|=1+.解决问题:(1)模仿上例的过程填空:=====;(2)根据上述思路,试将下列各式化简:①;②.25.如图,在△ABC中,∠ACB=90°,AC=BC,过顶点A作射线AP.(1)如图1,当射线AP在∠BAC的外部时,点D在射线AP上,连接CD,BD,若AD =8,BD=6,AC=5.①试判断△ABD的形状,并说明理由;②求线段CD的长;(2)如图2,当射线AP在∠BAC的内部时,过点B作BD⊥AP于点D,连接CD,试判断线段AD,BD,CD之间的数量关系,并说明理由.参考答案一、选择题(共40分.)1.解:A、()2+()2≠()2,故不是直角三角形,不符合题意;B、62+82≠92,故不是直角三角形,不符合题意;C、32+42=52,故是直角三角形,符合题意;D、82+122≠152,故不是直角三角形,不符合题意;故选:C.2.解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:A.3.解:∵=2,是整数,∴3a是一个完全平方数.∴a的最小值是3.故选:A.4.解:A、与不能合并,所以A选项错误;B、原式=6×2=12,所以B选项错误;C、原式==2,所以C选项准确;D、原式=2,所以D选项错误.故选:C.5.解:A、5﹣4=,故A选项错误;B、与不是同类二次根式,不能进行合并,故B选项错误;C、3=3×=,故C选项正确;D、2与2不是同类二次根式,不能进行合并,故D选项错误,故选:C.6.解:∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49cm2.故选:D.7.解:第三边为x,当3为斜边时,即32=22+x2,解得:x=,当x为斜边时,即x2=32+22,解得:x=,即x为或,故选:D.8.解:∵△ABC是直角三角形,两直角边AC=6cm、BC=8cm,∴AB===10cm,∵△ADE由△BDE折叠而成,∴AE=BE=AB=×10=5cm.故选:B.9.解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C==15cm,故选:B.10.解:(3※2)×(8※12)=(﹣)×(+)=(﹣)×(2+2)=(﹣)×2×(+)=2[()2﹣()2]=2(3﹣2)=2×1=2.故选:D.二、填空题(满分24分)11.解:∵二次根式在实数范围内有意义,∴2x+6≥0,解得x≥﹣3.故答案为:x≥﹣3.12.解:如图所示:AB=,故答案为:13.解:∵+(b﹣3)2=0,而≥0,(b﹣3)2≥0,∴a﹣6=0,b﹣3=0,解得a=6,b=3,∴=3,∴的算术平方根为.故答案为:.14.解:∵,∴x=±2,∴y=3,∴y x=32=9或y x=3﹣2=.故答案为:9或.15.解:当x+y=﹣5,xy=4时,======,故答案为:.16.解:∵m﹣2020≥0,∴m≥2020,∴+|2019﹣m|=m,+m﹣2019=m,=2019,∴m﹣2020=20192,m﹣20192=2020,故答案为:2020.三、解答题(共56分)17.解:(+1)(﹣1)+(1﹣)0==5﹣1+1=5.18.解:原式=4+2﹣2+,=2+3.19.解:设第三边为x,可使已知的三角形构成直角三角形,当5为斜边时,有52=32+x2,解得x=4,(负值舍去),当x为斜边时,有x2=32+52,解得x=(负值舍去),则第三边的长为4或者,答:第三边的长为4或者.20.解:根据题意得:a<b<0<c,且|c|<|b|<|a|,∴a+b<0,b+c<0,a﹣c<0,则原式=|a|﹣|a+b|+|b+c|+|a﹣c|=﹣a+a+b﹣b﹣c﹣a+c=﹣a.21.解:(1)∵5<<6,∴b=5,a=﹣5,∴a﹣b﹣=﹣5﹣5﹣=﹣10;(2)∵2<<3,又∵10+=2x+y,x是整数,且0<y<1,∴2x=12,y=10+﹣12=﹣2,x=6,∴3x﹣y=3×6﹣(﹣2)=20﹣.22.解:(1)在Rt△ABC中,由勾股定理得:BC2=AB2﹣AC2=52﹣32=16,∴BC=4cm.(2)由题意得:BP=tcm.①当∠APB为直角时,如图①,点P与点C重合,BP=BC=4cm,∴t=4;②当∠BAP为直角时,如图②,BP=tcm,CP=(t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2=32+(t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,即52+32+(t﹣4)2=t2,解得t=.答:当△ABP为直角三角形时,t=4或.23.解:已知如图:设AC=x,则BC=(70﹣x)cm,由勾股定理得:502=x2+(70﹣x)2,解得:x=40或30,若AC为斜边,则502+(70﹣x)2=x2,解得:x=,若BC为斜边,则502+x2=(70﹣x)2,解得:x=.故这个点将绳子分成的两段各有30cm或40cm或cm或cm.24.解:(1)原式====|3+|=3+;故答案为:,,|3+|,3+;(2)①原式===|5﹣|=5﹣;②原式===||=.25.解:(1)①结论:△ABD是以AB为斜边的直角三角形.理由:∵在△ABC中,∠ACB=90°,AC=BC,∴△ABC为等腰直角三角形,∵AC=5,∴AB=AC=×5=10,又∵AD2+BD2=62+82=AB2,∴△ABD是以AB为斜边的直角三角形;②如图,作CE⊥AD于E,CF⊥DB交DB的延长线于F,∵∠CED=∠EDF=∠DFC=90°,∴四边形DECF是矩形,∴∠ECF=∠ACB=90°,∴∠ACE=∠BCF,在△CEA和△CFB中,,∴△CEA≌△CFB(AAS),∴CE=CF,AE=BF,∴四边形DECF是正方形,∴DE=DF=CE=CF,∵AD+DB=DE+AE+DF﹣BF=2DE,∴2DE=14,∴DE=7,∴CD=DE=7.(2)如图,结论AD﹣BD=CD.理由:作CE⊥CD交AD于E,∵CA=CB,∠ACB=90°∴∠CAB=∠CBA=45°,∵∠ADB=∠ACB=90°,∴四边形A,B,C,D四点共圆,∴∠BDC=180°﹣∠CAB=135°,∠CDA=∠BDC﹣∠ADB=45°,∵∠ECD=90°,∴∠CED=∠CDE=45°,∴△CDE是等腰直角三角形,∴CE=CD,DE=CD,∵∠ACB=∠ECD=90°,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∴AD﹣BD=DE=CD,∴AD﹣BD=CD.。
部编数学八年级下册第一次月考阶段性测试卷01(3月卷,八下册人教1617章)2023复习备考含答案
2022-2023学年八年级数学下学期复习备考高分秘籍【人教版】第一次月考阶段性测试卷01(3月卷,八下人教16-17章)班级:_______________ 姓名:____________________ 得分:__________________注意事项:本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•伊川县期末)下列各式是最简二次根式的是( )A B C D【分析】根据最简二次根式的概念判断即可.【解答】解:ABC=|a|,不是最简二次根式;D故选:B.【点评】本题考查的是最简二次根式的概念,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2.(2022•x满足的条件是( )A.x<2B.x>2C.x≥2D.x≤2【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.【解答】解:根据题意得:x﹣2>0,解得,x>2.故选:B.a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.3.(2021秋•湖口县期中)如图为小明的答卷,他的得分应是( )A.40B.60C.80D.100【分析】根据二次根式的性质,二次根式的加法,乘法,除法法则进行计算即可解答.【解答】解:15,正确;2、(2=2,正确;34、×=5故选:B.【点评】本题考查了二次根式的混合运算,准确熟练地进行计算是解题的关键.4.(2022秋•=x−3,则x的取值范围是( )A.x>3B.x≥3C.x<3D.x≤3【分析】根据题意可知x﹣3≥0,直接解答即可.=x−3,即x﹣3≥0,解得x≥3,故选:B.【点评】考查二次根式的性质与化简,掌握二次根式的化简方法是解题的关键.5.(2022春•白碱滩区期末)如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的边长为( )A.64B.16C.8D.4【分析】根据勾股定理求出正方形A的面积,根据算术平方根的定义计算即可.【解答】解:由勾股定理得,正方形A的面积=289﹣225=64,∴字母A8,故选:C.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.6.(2023•义乌市校级开学)在△ABC中,BC=a,AC=b,AB=c,根据下列条件不能判断△ABC是直角三角形的是( )A.∠B=50°,∠C=40°B.∠A=2∠B=3∠CC.a=4,b=c=5D.a:b:c=1【分析】根据三角形内角和定理,勾股定理的逆定理一一判断即可.【解答】解:A、∵∠B=50°,∠C=40°,∴∠A=180°﹣50°﹣40°=90°,∴△ABC是直角三角形;B、∵∠A=2∠B=3∠C,∴∠A≠∠B+∠C,∴△ABC不是直角三角形;C、∵a=4,b=c=5,∴a2+c2=b2,∴∠B=90°,∴△ABC是直角三角形.D、∵a:b:c=1∴可以假设a=k,b=,c=,∴a2+b2=c2,∴∠C=90°,∴△ABC是直角三角形,故选:B.【点评】本题考查勾股定理的逆定理,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(2021•张家口一模)如图,在6×4的小正方形网格中,小正方形的边长均为1,点A,B,C,D,E均在格点上.则∠ABC﹣∠DCE=( )A.30°B.42°C.45°D.50°【分析】根据勾股定理得出AD,CD,进而利用勾股定理的逆定理得出△ACD是直角三角形,进而利用三角形内角和解答.【解答】解:连接AC,AD,如图,根据勾股定理可得:AD=AC=BC=CD=∴∠ABC=∠BAC,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣2∠ABC,在△ACD中,A D2+AC2=22=10,C D2=2=10,∴AD2+AC2=CD2,∴△ACD是直角三角形,∠DAC=90°,∵AD=CD,∴△ACD是等腰直角三角形,∴∠ACD=45°,∵AB∥EC,∴∠ABC+∠BCE=180°,∴∠ABC+∠ACB+∠ACD+∠DCE=180°,∴∠ABC+(180°﹣2∠ABC)+45°+∠DCE=180°,∴∠ABC﹣∠DCE=45°,故选:C.【点评】此题考查勾股定理,关键是根据勾股定理和三角形内角和以及等腰直角三角形的判定和性质解答.8.(2022春•邹城市校级月考)2022)2023的值等于( )A .2B .﹣2CD .2【分析】逆用积的乘方公式,将原式变形后可算得答案.【解答】解:原式=[2)2)]2022×2)=(﹣1)2022×2)=2,故选:C .【点评】本题考查实数的运算,解题的关键是能逆用积的乘方公式.9.(2022秋•平顶山期末)如图,Rt △ABO 中,∠A =90°,AO =2,AB =1.以BC =1,OB 为直角边,构造Rt △OBC ;再以CD =1,OC 为直角边,构造Rt △OCD ;…,按照这个规律,在Rt △OHI 中,点H 到OI 的距离是( )A .3B .6C .10D .11【分析】根据勾股定理得OB ==OC =OD =OI ==HM ⊥OI 于点M ,根据三角形的面积公式即可求出答案.【解答】解:在Rt △ABO 中,∠A =90°,AO =2,AB =1,根据勾股定理得OB =在Rt △OBC ,根据勾股定理得OC在Rt △OCD ,根据勾股定理得OD =按照这个规律,在Rt △OHI 中,根据勾股定理得OI 如图,作HM ⊥OI 于点M ,∴12OI •HM =12OH •HI ,∴12×HM =12×1,∴HM =∴点H 到OI 的距离是6.故选:B .【点评】本题考查了勾股定理,熟练掌握勾股定理和规律是解题的关键.10.(2022•渠县二模)若a x =N (a >0且a ≠1),则x =log a N ,结出如下几个结论:①log 20221=log 20211;②log20212022=2022;③log 2022101+1og 20224+log 20225=1;④式子lo g 2≤x ≤4,其中正确的共有( )个A .4B .3C .2D .1【分析】根据已知的定义判断即可.【解答】解:∵20220=1,则log 20221=0,同理log 20211=0,故①正确;设=m ,根据定义得m =2022,即=2022,故②正确;设log 2022101=a ,1og 20224=b ,log 20225=c ,则2022a =101,2022b =4,2022c =5;2022a ×2022b ×2022c =2022a +b +c =101×4×5=2020,∴a +b +c ≠1,∴log 2022101+1og 20224+log 20225≠1,故③错误;根据定义,式子lo g x ﹣1>0且x ﹣1≠1且4﹣x ≥0,解得1<x ≤4且x ≠2,故④错误.故选:C .【点评】本题考查了新定义和有理数的乘方,正确理解定义和掌握有理数的乘方和运算法则是关键.二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2022春•广信区期末)若一直角三角形两直角边长分别为6和8,则斜边长为 10 .【分析】已知两直角边求斜边可以根据勾股定理求解.【解答】解:在直角三角形中,斜边的平方等于两条直角边平方和,故斜边长=10,故答案为 10.【点评】本题考查了根据勾股定理计算直角三角形的斜边,正确的运用勾股定理是解题的关键.12.(2022秋•宁德期末)若最简二次根式m= 4 .【分析】根据同类二次根式定义可得2m+5=4m﹣3,再解即可.【解答】解:由题意得:2m+5=4m﹣3,解得:m=4,故答案为:4.【点评】此题主要考查了同类二次根式,关键是掌握二次根式化为最简二次根式以后,如果被开方数相同,则称为同类二次根式.13.(2022春•南陵县校级月考)如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为 2 .【分析】由AB垂直于BC,得到三角形ABC为直角三角形,进而由AB及BC的长,利用勾股定理求出AC的长,由AC垂直于CD,得到三角形ACD为直角三角形,由AC及CD的长,利用勾股定理求出AD 的长,由DE垂直于AD,得到三角形ADE为直角三角形,由AD及DE的长,利用勾股定理即可求出AE的长.【解答】解:∵BC⊥AB,CD⊥AC,DE⊥AD,∴∠B=∠ACD=∠ADE=90°,在Rt△ABC中,AB=BC=1,根据勾股定理得:AC==在Rt△ACD中,CD=1,AD=根据勾股定理得:AD=在Rt△ADE中,DE=1,AD根据勾股定理得:AE=2.【点评】此题考查了勾股定理的运用,熟练掌握勾股定理是解本题的关键.14.(2021秋•双阳区期末)如图,已知△ABC的三边长分别为6cm、8cm、10cm,分别以它的三边为直径向上作三个半圆,则图中阴影部分的面积= 24cm2 .【分析】阴影部分的面积等于中间直角三角形的面积加上两个小半圆的面积,减去其中下面面积较大的半圆的面积.【解答】解:∵直角△ABC的两直角边分别为6cm,8cm,∴AB=10(cm),∵以BC为直径的半圆的面积是12π(82)2=8π(cm2),以AC为直径的半圆的面积是12π(3)2=9π2(cm2),以AB为直径的面积是12×π(5)2=25π2(cm2),△ABC的面积是12AC•BC=24(cm2),∴阴影部分的面积是8π+9π2+24−25π2=24cm2.故答案为24.【点评】本题考查勾股定理的知识,难度一般,注意图中不规则图形的面积可以转化为不规则图形面积的和或差的问题.15.(2022秋•…=a,b为正整数),则a+b= 73 .n≥1的正整数),令n=8求出a与b的值,即可确定出a+b的值.【解答】解:根据题中的规律得:a=8,b=82+1=65,则a+b=8+65=73.故答案为:73.【点评】此题考查了二次根式的性质及化简,找出题中的规律是解本题的关键.16.(2011•綦江县)一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米.当正方形DEFH运动到什么位置,即当AE= 143 米时,有DC2=AE2+BC2.【分析】根据已知得出设AE=x米,可得EC=(12﹣x)米,利用勾股定理得出DC2=DE2+EC2=4+(12﹣x)2,AE2+BC2=x2+36,即可求出x的值.【解答】解:如图,连接CD,设AE=x米,∵坡角∠A=30°,∠B=90°,BC=6米,∴AC=12米,∴EC=(12﹣x)米,∵正方形DEFH的边长为2米,即DE=2米,∴DC2=DE2+EC2=4+(12﹣x)2,AE2+BC2=x2+36,∵DC2=AE2+BC2,∴4+(12﹣x)2=x2+36,解得:x=143米.故答案为:14 3.【点评】此题主要考查了勾股定理的应用以及一元二次方程的应用,根据已知表示出CE,AE的长度是解决问题的关键.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2022春•邹城市校级月考)计算:(1)×(2(3;(4)2.【分析】(1)先用乘法分配律,再把各数化为最简二次根式,合并即可;(2)先作除法,化为最简二次根式,再合并;(3)用乘法分配律计算即可;(4)先用平方差、完全平方公式展开,再去括号,合并即可.【解答】解:(1)原式==﹣(2)原式==(3)原式=3﹣(4)原式=20﹣3﹣(2﹣10)=20﹣3﹣10=【点评】本题考查实数的运算,解题的关键是掌握实数运算的顺序及相关运算的法则.18.(2022秋•海曙区期中)如图,4×4的方格中,每个小正方形的边长为1.(1)图①中正方形ABCD的边长为(2)在图②中画一个面积为10的正方形;(3)把图②【分析】(1)结合网格和利用勾股定理即可算出正方形ABCD的边长;(2)画出边长为3和1(3E,则点E【解答】解:(1)正方形ABCD的边长CD==(2)如图所示:(3)如图所示,点E【点评】此题主要考查了勾股定理,以及勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.19.(2021秋•汝阳县期末)如图,已知在△ABC中,CD⊥AB于点D,AC=20,BC=15,DB=9,(1)求DC、AB的长;(2)求证:△ABC是直角三角形.【分析】(1)在Rt△BCD中利用勾股定理求得CD的长,然后在Rt△ADC中求得AD的长,根据AB=AD+DB即可求解;(2)利用勾股定理的逆定理即可判断.【解答】解:(1)∵在Rt△BCD中,BC=15,BD=9,∴CD12.在Rt△ADC中,AC=20,CD=12,∴AD16.∴AB=AD+DB=16+9=25.(2)∵AB=25,AC=20,BC=15,∴AB2=252=625,AC2+BC2=202+152=625,∴AB2=AC2+BC2,∴△ABC是直角三角形.【点评】本题考查了勾股定理和勾股定理的逆定理,正确理解定理的内容是关键.20.(2022秋•天元区校级期末)已知a=4﹣b=(1)求ab,a﹣b的值;(2)求2a2+2b2﹣a2b+ab2的值.【分析】(1)根据二次根式的乘法法则和二次根式的减法法则求出即可;(2)先分解因式得出原式=2[(a﹣b)2+2ab]﹣ab(a﹣b),代入后根据二次根式的运算法则进行计算即可.【解答】解:(1)∵a=4﹣b=∴ab=(4﹣×(=42﹣(2=16﹣12=4;a﹣b=(4﹣=4﹣4﹣=﹣(2)由(1)知:ab=4,a﹣b=﹣所以2a2+2b2﹣a2b+ab2=2(a2+b2)﹣ab(a﹣b)=2[(a﹣b)2+2ab]﹣ab(a﹣b)=2×[(﹣2+2×4]﹣4×(﹣=2×(48+8)=2×=【点评】本题考查了二次根式的化简求值和乘法公式,能正确根据二次根式的运算法则进行计算是解此题的关键.21.(2021秋•昆明期末)台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向AB由A行驶向B,已知点C为一海港,且点C 与直线AB上的两点A,B的距离分别为AC=300km,BC=400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)求∠ACB的度数;(2)海港C受台风影响吗?为什么?(3)若台风的速度为20千米/小时,当台风运动到点E处时,海港C刚好受到影响,当台风运动到点F 时,海港C刚好不受影响,即CE=CF=250km,则台风影响该海港持续的时间有多长?【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而得出∠ACB的度数;(2)利用三角形面积得出CD的长,进而得出海港C是否受台风影响;(3)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间.【解答】解:(1)∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)海港C受台风影响,理由:过点C作CD⊥AB,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围250km以内为受影响区域,∴海港C受台风影响;(3)当EC=250km,FC=250km时,正好影响C港口,∵ED70(km),∴EF=140km,∵台风的速度为20千米/小时,∴140÷20=7(小时).答:台风影响该海港持续的时间为7小时.【点评】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.22.(2022秋•吉州区期末)定义:若两个二次根式a,b满足a•b=c,且c是有理数,则称a与b是关于c 的共轭二次根式.(1)若a4的共轭二次根式,则a(2)若3+6+是关于12的共轭二次根式,求m的值.【分析】(1)根据共轭二次根式的定义,先列出关于a的等式,再求出a;(2)根据共轭二次根式的定义,先列出关于m的方程,求解即可.【解答】解:(1)∵a4的共轭二次根式,=4.∴a故答案为:(2))∵3+6+是关于12的共轭二次根式,∴(3++=12.∴++3m=12.∴m(3)=﹣6﹣∴m=﹣2.【点评】本题主要考查了二次根式的计算,掌握二次根式的运算法则,理解共轭二次根式的定义是解决本题的关键.23.(2022秋·江苏·八年级统考期中)我国三国时期的数学家赵爽利用四个全等的直角三角形拼成如图1的“弦图”(史称“赵爽弦图”).(1)弦图中包含了一大一小两个正方形,已知每个直角三角形较长的直角边为a,较短的直角边为b,斜边长为c,结合图1,试验证勾股定理;(2)如图2,将四个全等的直角三角形紧密地拼接,形成“勾股风车”,已知外围轮廊(粗线)的周长为24,OC=3,求该“勾股风车”图案的面积;(3)如图3,将八个全等的直角三角形(外围四个和内部四个)紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1、S2、S3,若S1+2S2+S3=20,则S2=.。
镇江市京口区江南学校2019-2020学年八年级(下)第一次月考数学试卷(含答案解析)
重庆市渝中区巴蜀中学2019-2020学年八年级(下)第一次月考数学试卷一、选择题(本大题共12小题,共48.0分)1.下列各式a5,n2m,ab+1,a+b3中分式有().A. 2个B. 3个C. 4个D. 5个2.如果分式|x|−1x−1的值为零,那么x等于()A. 1B. −1C. 0D. ±13.下列化简正确的是()A. a6a2=a3 B. a+xb−x=abC. −a−bb+a=−1 D. x+yx+y=04.下列条件中,能判定四边形为平行四边形的是()A. 对角线相互垂直B. 对角线互相平分C. 一组对角相等D. 一组对边相等5.若一个多边形的每个内角都为135°,则它的边数为()A. 8B. 9C. 10D. 126.如图,在▱ABCD中,AB=4,AD=7,∠ABC的平分线BE交AD于点E,则DE的长是()A. 4B. 3C. 3.5D. 27.如图,在菱形ABCD中,∠BAD=60°,点M是AB的中点,P是对角线AC上的一个动点,若PM+PB的最小值是9,则AB的长是()A. 3√3B. 6√3C. 9D. 4.58.如图,E是平行四边形内任一点,若S平行四边形ABCD=8,则图中阴影部分的面积是()A. 3B. 4C. 5D. 69.轮船在顺水中航行30km时间与在逆水中航行20km所用时间相等.已知水流速度为2km/ℎ,设轮船在静水中速度为xkm/ℎ,下列方程不正确的是()A. 3020=x+2x−2B. 30(x−2)=20(x+2)C. 3x+2=2x−2D. 20x+2=30x−210.化简:x2x+1+xx+1=()A. 1B. 0C. xD. x211.如图,▱ABCD中,E、F经过对角线的交点O,分别交AD、BC于M、N,交BA、DC延长线于E、F.下列结论:①AO=CO;②MO=NO;③AE=CF;④△AOB≌△COD;⑤△AOE≌△COF.其中正确的是()A. ①②B. ①②③C. ①②③④D. ①②③④⑤12.若整数a使关于x的不等式组{x−33<6−x,x+a≥5(1−2x)有且仅有四个整数解,且使关于y的分式方程ay+2−y−3y+2=2有整数解.则所有满足条件的整数a的值之和是()A. 50B. −20C. 20D. −50二、填空题(本大题共8小题,共32.0分)13.一个多边形的内角和等于它的外角和的3倍,它是______ 边形.14.化简2xx2−64y2−1x+8y结果是______.15.分式方程xx+2=x−1x的解为x=______ .16.分式方程mx−3−23−x=1有增根,则m=______.17.如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是.18.如图,▱ABCD中,∠A=50°,AD⊥BD,沿直线DE将△ADE翻折,使点A落在点A′处,AE交BD于F,则∠DEF=______ .19.如图,在▱ABCD中,对角线AC平分∠BAD,MN与AC交于点E,M、N分别在AB、CD上,且AM=CN,连接BE,若∠DAC=28∘,则∠EBC的度数为∘.20.在▱ABCD中,已知∠A=25°,将△BDA沿BD翻折至△BDA′,连接CA′,∠DA′C=55°,则∠ABD=______.三、计算题(本大题共3小题,共30.0分)21.计算:(1)16a2−64−1a−8(2)(1−1x−1)÷x2−4x+4x2−122.解分式方程:2 1+x −31−x=5x2−123.先化简,再求值:x2−4x−1÷(x+1−4x−5x−1),其中x是不等式组{2(x−1)>x−312x−1≤3−32x的整数解.四、解答题(本大题共4小题,共40.0分)24.如图,在▱ABCD中,延长BA到F,使得AF=BA,连接CF交AD于点E.求证:AE=DE.25.东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?26.阅读下面材料,并解答问题.材料:将分式−x4−x2+3拆分成一个整式与一个分式(分子为整数)的和的形式.−x2+1解:由分母为−x2+1,可设−x4−x2+3=(−x2+1)(x2+a)+b则−x4−x2+3=(−x2+1)(x2+a)+b=−x4−ax2+x2+a+b=−x4−(a−1)x2+(a+ b)∵对应任意x ,上述等式均成立,∴{a −1=1a +b =3,∴a =2,b =1. ∴−x 4−x 2+3−x 2+1=(−x 2+1)(x 2+2)+1−x 2+1=(−x 2+1)(x 2+2)−x 2+1+1−x 2+1=x 2+2+1−x 2+1.这样,分式−x 4−x 2+3−x 2+1被拆分成了一个整式(x 2+2)与一个分式1−x 2+1的和. 解答:(1)将分式−x 4−6x 2+8−x 2+1拆分成一个整式与一个分式(分子为整数)的和的形式. (2)试求−x 4−6x 2+8−x 2+1的最小值.(3)如果2x−1x+1的值为整数,求x 的整数值.27.在△ABC中,∠ACB=90°,分别以AB、BC为边向外作正方形ADEB和正方形BCFH.(1)当BC=a时,正方形BCFH的周长=________(用含a的代数式表示);(2)连接CE.试说明:三角形BEC的面积等于正方形BCFH面积的一半.(3)已知AC=BC=1,且点P是线段DE上的动点,点Q是线段BC上的动点,当P点和Q点在移动过程中,△APQ的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.【答案与解析】1.答案:A解析:此题考查了分式的定义,熟练掌握分式的定义是解本题的关键.利用分式的分母中必须含有未知数判断即可.解:a5,n2m,ab+1,a+b3中分式有n2m,ab+1这2个,另外两个分母中不含有未知数.故选A.2.答案:B解析:根据分式的值为0的条件及分式有意义的条件列出关于x的不等式组,求出x的值即可.本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.解:∵分式|x|−1x−1的值为零,∴{|x|−1=0x−1≠0,解得x=−1.故选:B.3.答案:C解析:解:A、a6a2=a4,故本选项错误;B、a+xb−x ≠ab,故本选项错误;C、−a−bb+a =−(a+b)a+b=−1,正确;D、x+yx+y=1,故本选项错误;故选:C.根据分式的基本性质,即可解答.本题考查了分式的基本性质,解决本题的关键是熟记分式的基本性质.4.答案:B解析:本题主要考查了对平行四边形的判定定理,熟记平行四边形的判定方法是解决问题的关键.根据平行四边形的判定定理(①两组对角分别相等的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③对角线互相平分的四边形是平行四边形,④有一组对边相等且平行的四边形是平行四边形)进行判断即可.解:A.对角线互相平分的四边形才是平行四边形,而对角线互相垂直的四边形不一定是平行四边形,故本选项错误;B.对角线互相平分的四边形是平行四边形,故本选项正确;C.两组对角分别相等的四边形是平行四边形,故本选项错误;D.两组对边分别相等的四边形是平行四边形,故本选项错误.故选B.5.答案:A解析:解:∵一个正多边形的每个内角都为135°,∴这个正多边形的每个外角都为:180°−135°=45°,∴这个多边形的边数为:360°÷45°=8,故选:A.由一个正多边形的每个内角都为135°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握多边形的内角和与外角和定理是关键.6.答案:B解析:解:∵四边形ABCD是平行四边形,∴AD//BC,∴∠AEB=∠EBC,又∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴ED=AD−AE=AD−AB=7−4=3.故选:B.根据角平分线及平行线的性质可得∠ABE=∠AEB,继而可得AB=AE,根据ED=AD−AE=AD−AB即可得出答案.本题考查了平行四边形的性质,解答本题的关键是得出∠ABE=∠AEB,判断三角形ABE中,AB=AE,难度一般.7.答案:B解析:本题考查菱形的性质,等边三角形的判定与性质,勾股定理等有关知识,点B关于直线AC的对称点是点D,连接DM,则线段DM的长就是PM+PB最小值.由PM+PB最小,所以连接DM交AC于P,连接BD,则PM+PB=DM,由菱形性质得AB=AD,∠BAD=60°,所以△ABD是等边三角形,又因为M是AB的中点,所以DM⊥AB,∠ADM=30°,所以AD=2AM,在Rt△AMD中,由勾股定理即可求出AM长,从而得出AB的长.解:∵PM+PB的最小值是9,∴连接DM交AC于P,连接BD,如图,∴DM=DP+PM=PB+PM=9,∵四边形ABCD是菱形,∴AB=AD,∵∠BAD=60°,∴△ABD是等边三角形,∵M是AB的中点,∴DM⊥AB,∠ADM=30°,∴AD=2AM,在Rt△AMD中,由勾股定理,得AD2=AM2+DM2,∴(2AM)2=AM2+92,∴AM=3√3,∴AB=2AM=6√3.故选B.8.答案:B解析:解:设两个阴影部分三角形的底为AD,CB,高分别为ℎ1,ℎ2,则ℎ1+ℎ2为平行四边形AD 边的高,∴S△EAD+S△ECB=12AD⋅ℎ1+12CB⋅ℎ2=12AD(ℎ1+ℎ2)=12S四边形ABCD=4.故选B.根据三角形面积公式可知,图中阴影部分面积等于平行四边形面积的一半.所以S阴影=12S四边形ABCD.本题主要考查了三角形的面积公式和平行四边形的性质(平行四边形的两组对边分别相等).要求能灵活的运用等量代换找到需要的关系.9.答案:D解析:根据题意表示出船的顺水速度为(x+2)km/ℎ,逆水速度为(x−2)km/ℎ,根据关键语句“轮船在顺水中航行30km时间与在逆水中航行20km所用时间相等”列出方程,再变形可得答案.解:由题意得:船的顺水速度为(x+2)km/ℎ,逆水速度为(x−2)km/ℎ,由题意得:30x+2=20x−2,此方程可变形为3020=x+2x−2,30(x−2)=20(x+2),3x+2=2x−2,故A、B、C都正确,D错误,故选D.10.答案:C解析:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.原式利用同分母分式的加法法则计算即可求出值.解:原式=x2+xx+1=x(x+1)x+1=x,故选C.11.答案:D解析:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了平行四边形对边平行的性质,本题中求证△AOE≌△COF是解题的关键.①根据平行四边形的对角线互相平分的性质即可求得AO=CO,即可求得①正确;②易证△AOM≌△CON,即可求得MO=NO;③用AAS证明△AOE∽△COF,得到AE=CF;④用SAS证明△AOB≌△COD;⑤用AAS证明△AOE≌△COF.解:①∵四边形ABCD是平行四边形,∴AO=CO,故①正确;②∵四边形ABCD是平行四边形,∴OA=OC,AD//BC,∴∠OAM=∠OCN,又∵∠AOM=∠CON,∴△AOM≌△CON,∴MO=NO,故②正确;∵四边形ABCD是平行四边形,∴OA=OC,AB//CD,∴∠AEO=∠CFO,又∵∠AOE=∠COF,∴△AOE≌△COF,∴AE=CF,故③、⑤正确;∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵∠AOB=∠COD,∴△AOB≌△COD,故④正确.故选D.12.答案:D解析:本题考查了分式方程的解和一元一次不等式组的解法,利用不等式的解集及方程的解得出a的值是解题关键,根据不等式的解集,可得a的范围,根据方程的解,可得a的值,根据有理数的加法,可得答案.解:{x−33<6−x①x+a≥5(1−2x)②,解不等式①得x<214,解不等式②得x≥5−a11,不等式组的解集是5−a11≤x<214,∵仅有四个整数解,∴1<5−a11⩽2∴−17≤a<−6,解分式方程ay+2−y−3y+2=2,解得y=a−13,∵y≠−2,∴a≠−5,又y=a−13有整数解,∴a=−17,−14,−11,−8.∴所有满足条件的整数a的和为−17−14−11−8=−50.故选D.13.答案:八解析:解:多边形的外角和是360°,根据题意得:180°⋅(n−2)=3×360°解得n=8.故答案为:八.本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.根据多边形的内角和公式及外角的特征计算.14.答案:1x−8y解析:解:原式=2xx2−64y2−x−8yx2−64y2=x+8yx2−64y2=1x−8y,故答案为:1x−8y根据分式的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.15.答案:2解析:解:去分母得:x2=x2−x+2x−2,解得:x=2,经检验,x=2是分式方程的解.故答案为:2分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要检验.解析:解:去分母得:m+2=x−3,由分式方程有增根,得到x−3=0,即x=3,把x=3代入整式方程得:m+2=0,解得:m=−2,故答案为−2分式方程去分母转化为整式方程,由分式方程有增根,求出x的值,代入整式方程计算即可求出m的值.此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.17.答案:3解析:本题考查了三角形中位线的定理,根据三角形的中位线平行于第三边并且等于第三边的一半可得DE//AB,根据两直线平行,内错角相等可得∠ABF=∠BFD,根据角平分线的定义可得∠ABF=∠CBF,从而得到∠CBF=∠BFD,根据等角对等边可得DF=BD,然后根据线段中点的定义解答即可.解:∵D、E分别是BC、AC的中点,∴DE是△ABC的中位线,∴DE//AB,∴∠ABF=∠BFD,∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠BFD,∴DF=BD,∵D是BC的中点,BC=6,∴BD=12BC=12×6=3,∴DF=3.故答案为3.解析:解:由折叠的性质可得:∠DA′E=∠A=50°,∠AED=∠DEF,∵四边形ABCD是平行四边形,∴AB//CD,∴∠AEA′=180°−∠DA′E=130°,∴∠DEF=12∠AEA′=65°.故答案为:65°.由折叠的性质,可求得∠DA′E的度数,然后由四边形ABCD是平行四边形,可得AB//CD,再由平行线的性质,求得∠AEF的度数,继而求得答案.此题考查了平行四边形的性质以及折叠的性质.注意掌握折叠前后图形的对应关系.19.答案:62解析:本题考查了平行四边形的性质和等腰三角形的性质以及全等三角形的判定、性质,注意掌握平行四边形的性质.根据平行四边形的性质和AM=CN,利用全等三角形的判定可得△AME≌△CNE,从而可得AE=CE,然后可得BE⊥AC,继而可求得∠EBC的度数.解:由题意可知,四边形ABCD为平行四边形,∴AD//BC,∴∠DAC=∠BCA,∠MAE=∠NCE,∠AME=∠CNE,又∵对角线AC平分∠BAD,∴∠DAC=∠BAC,∴∠BCA=∠BAC,∴BA=BC,在△AME和△CNE中,∵{∠MAE=∠NCEAM=CN∠AME=∠CNE,∴△AME≌△CNE(ASA),∴AE=CE,∵AB=BC,∴BE⊥AC,∴∠BEC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠EBC=90°−28°=62°.故答案为62.20.答案:30°解析:解:∵四边形ABCD是平行四边形,∴∠A=∠BCD=25°,CD//AB,∴∠CDB=∠ABD,∵△A′DB是由△ABD翻折,∴∠BA′D=∠A=25°,∴∠DA′B=∠BCD,∴A′、D、B、C四点共圆,∴∠CA′B=∠BDC=30°,(可以证明△DA′O∽△BCO,由比例关系推出△OA′C∽△ODB)∴∠ABD=∠BDC=30°,故答案为30°.首先证明A′、D、B、C四点共圆,得∠CA′B=∠BDC=30°,由此即可解决问题.本题考查平行四边形的性质、四点共圆等知识,解题的关键是利用四点共圆,得到∠CA′B=∠BDC= 30°,属于中考常考题型.21.答案:解:原式=16(a+8)(a−8)−a+8(a+8)(a−8)=8−a(a+8)(a−8)=−1a+8(2)原式=x−2x−1·(x+1)(x−1)(x−2)2=x+1x−2.解析:本题主要考查分式的混合运算,熟练掌握运算法则是解题的关键.(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)首先分解因式,进而利用分式乘法运算法则计算得出答案.22.答案:解:去分母得:2(x−1)+3(x+1)=5,解得:x=45,经检验x=45是原分式方程的解.解析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.答案:解:由不等式组解得:−1<x≤2,∴原式=x2−4x−1÷(x−2)2x−1=x+2x−2由分式有意义的条件可知:x≠1且x≠2∴当x=0时,原式=−1解析:根据分式的运算法则以及一元一次不等式组的解法即可求出答案.本题考查分式的运算法则,解题关键是熟练运用分式的运算法则以及不等式组的解法,本题属于基础题型.24.答案:解:∵▱ABCD,∴AB=CD,BF//DC,∴∠F=∠ECD,∠FAE=∠D,∵AF=BA,∴AF=DC,在△AFE与△DCE中{∠F =∠ECD AF =DC ∠FAE =∠D,∴△AFE≌△DCE(ASA),∴AE =DE .解析:此题考查平行四边形的性质,关键是根据平行四边形的性质和全等三角形的判定和性质解答. 根据平行四边形的性质和全等三角形的判定和性质解答即可.25.答案:解:(1)设第一批悠悠球每套的进价是x 元,则第二批悠悠球每套的进价是(x +5)元, 根据题意得:900x+5=500x ×1.5,解得:x =25,经检验,x =25是原分式方程的解.答:第一批悠悠球每套的进价是25元;(2)设每套悠悠球的售价为y 元,根据题意得:500÷25×(1+1.5)y −500−900≥(500+900)×25%,解得:y ≥35.答:每套悠悠球的售价至少是35元.解析:略26.答案:解:(1)由分母为−x 2+1,可设−x 4−6x 2+8=(−x 2+1)(x 2+a)+b ,则−x 4−6x 2+8=(−x 2+1)(x 2+a)+b =−x 4−ax 2+x 2+a +b =−x 4−(a −1)x 2+(a +b), ∵对应任意x ,上述等式均成立,∴{a −1=6a +b =8, ∴a =7,b =1,∴−x 4−6x 2+8−x 2+1=(−x 2+1)(x 2+7)+1−x 2+1=(−x 2+1)(x 2+7)−x 2+1+1−x 2+1=x 2+7+1−x 2+1, 这样,分式−x 4−6x 2+8−x 2+1被拆分成了一个整式x 2+7与一个分式1−x +1的和.(2)由−x 4−6x 2+8−x 2+1=x 2+7+1−x 2+1知,对于x 2+7+1−x 2+1,当x =0时,这两个式子的和有最小值,最小值为8,即−x4−6x2+8−x2+1的最小值为8.(3)2x−1x+1=2x+2−3x+1=2(x+1)−3x+1=2−3x+1;∵2x−1x+1的值为整数,且x为整数;∴x+1为3的约数,∴x+1的值为1或−1或3或−3;∴x的值为0或−2或2或−4.解析:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.(1)仿照阅读材料中的方法求出a与b的值,即可得到结果;(2)根据(1)中的结果,利用基本不等式求出最小值为8即可;(3)将分式拆分成一个整式与一个分式(分子为整数)的和的形式,再根据分式值为整数,即可得到x 的整数值.27.答案:解:(1)4a;(2)如图1,连接AH,在△BHA和△BCE中,{AB=BE∠CBE=∠ABH BC=BH∴△BHA≌△BCE(SAS),∴△BHA的面积=△BCE的面积=12正方形BCFH的面积;(3)△APQ的周长存在最小值。
2022-2023学年全国初中八年级下数学人教版月考试卷(含答案解析)003615
2022-2023学年全国初中八年级下数学人教版月考试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 下列图形中,不是轴对称图形的是( ) A. B. C. D.2. 点P(−5,7)到y 轴的距离为( )A.−5B.5C.7D.−73. 下列长度的三条线段不能组成三角形的是( )A.3、4、5B.4、4、4C.4、5、6P (−5,7)y −557−7345444456D.5、5、10 4. 如图所示,直线a 、b 被直线c 、d 所截,且a//b ,c 与d 相交于点O ,则α=( )A.11∘B.33∘C.43∘D.68∘5. 已知一次函数y =−3x +m 图象上的三点P(n,a),Q(n −1,b),R(n +2,c),则a ,b ,c 的大小关系是( )A.c >b >a B.b >a >c C.c >a >b D.a >b >c6. 能说明命题“若a >b ,则a 2>b 2”是假命题的反例是( )A.a =2,b =−1B.a =−1,b =−1C.a =−1,b =0D.a =−1,b =−25510a b c d a//bc dO α=11∘33∘43∘68∘y =−3x+m P(n,a),Q(n−1,b),R(n+2,ca b c ()c >b >ab >a >cc >a >ba >b >ca >b >a 2b 2a =2,b =−1a =−1,b =−1a =−1,b =0a =−1,b =−27. y 关于x 的一次函数y =2x +m 2+1的图象不可能经过( )A.第一象限B.第二象限C.第三象限D.第四象限8. 如图,若已知AB =AC ,AD =AE ,则图中的全等三角形有( )A.2对B.3对C.4对D.5对9. 如图,在△ABC 中,∠C =90∘,AD 平分∠BAC ,DE ⊥AB 于E ,下列结论:①CD =ED ;②AC +BE =AB ;③∠BDE =∠BAC ;④BE =DE ;⑤S BDE :S △ACD =BD:AC ,其中正确的个数为( )A.5个B.4个C.3个D.2个10. 如图可以近似地刻画下述哪个情景( )y x y =2x++1m 2AB =AC AD =AE2345△ABC ∠C =90∘AD ∠BAC DE ⊥AB E ①CD =ED ②AC +BE =AB ③∠BDE =∠BAC ④BE =DE ⑤:=BD :AC S BDE S △ACD ()5432A.小明匀速步行上学(离学校的距离与时间的关系)B.一个匀速上升的气球(高度与时间的关系)C.小亮妈妈到超市购买苹果(总费用与重量的关系)D.匀速行驶的汽车(速度与时间的关系)二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )11. 命题:如果a =b ,那么|a|=|b|,其逆命题是________.12. 一次函数y =kx +b (k ,b 为常数, k ≠0)的图像如图所示,当y <3时,x 的取值范围是________.13. 如图, Rt △ABC 中, AB =2,∠B =90∘,∠C =15∘,将△ABC 沿DE 折叠,使得点C 与点A 重合,则CD =________. 14. 平面直角坐标系中,O 为坐标原点,A ,B 两点坐标分别为(4,0)和(8,0),点C 在第一象限,且CA =CB.(1)若S △ABC =6,则点C 的坐标为________;(2)连接OC ,若∠CBO =2∠COB 时,则∠COB =________.三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )a b |a ||b |y =kx+b k b k ≠0y <3x Rt △ABC AB =2∠B =90∘∠C =15∘△ABC D E C A CD =O A B (4,0)(8,0)C CA =CB(1)=6S △ABC C (2)OC ∠CBO =2∠COB ∠COB =15. 已知y 与x −1成正比,当x =2时, y =−2,求y 与x 之间的函数表达式. 16. 如图,三角形COB 是三角形AOB 经过某种变化后得到的图形,观察点A(2,3)与点C(2,−3)的坐标之间的关系.三角形AOB 内任意一点M 的坐标为(x,y),点M 经过这种变化后得到点N .(1)点N 的坐标为________;(2)连接AC ,将三角形ABC 先向左平移2个单位长度,再向上平移1个单位长度,得到三角形A ′B ′C ′,在图中画出三角形A ′B ′C ′,并求出三角形A ′B ′C ′的面积;(3)延长BC 与y 轴相交于点D ,则点D 的坐标为________. 17. 如图,∠ACB =90∘,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别为D ,E .(1)如图1,猜想BE ,DE ,AD 之间的数量关系,并证明;(2)如图2,若AD =m ,DE=n,当点D 在△ABC 内部时,则BE 的长为________.(直接用含m ,n 的式子表示). 18. 阅读材料,并回答问题.定义:如果一个四边形的一条对角线把四边形分成两个等腰三角形,那么把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.(1)请你写出一个和谐四边形是_▲y x−1x =2y =−2y x COB AOB A(2,3)C(2,−3)AOB M (x,y)M N(1)N(2)AC ABC 21A ′B ′C A ′B ′C ′A ′B ′C ′(3)BCy D D∠ACB =90∘AC =BC AD ⊥CE BE ⊥CE D E(1)1BE DE AD(2)2AD =m DE =n D △ABC BE m n (1)∘∘(2)如图1,在四边形ABCD 中,AD//BC,∠A =100∘ ,∠C =70∘ ,BD 平分∠ABC ,求证:BD 是四边形ABCD 的和谐线;(3)如图2,△ABC 中, ∠A =90∘ ,AB =AC ,在平面内找一点D ,使得以点A 、B 、C 、D 组成的四边形为和谐四边形,且满足AD 为和谐线,AB =BD ,请画出草图,并直接写出∠ABD 的度数.图1 图2 (备用图) 19. 如图,在△ABC 中, ∠A =75∘,∠C =45∘.(1)尺规作图:在BC 边上求作一点P ,使∠PAC =45∘.(保留作图痕迹,不写作法)(2)在(1)的条件下,若AB =6,AP =3√3,求BC 的长. 20. 我们知道如何求一次函数y =kx +b 上下平移后的函数表达式,那么如何求y =kx +b 沿左右平移的函数表达式呢?我们可以利用平移知识来解决问题:(1)求一次函数y =2x −1沿x 轴向右平移2个单位后的表达式.我们可以任取直线y =2x −1上两点,如当x =0时,y =−1,当y =0时,x =12,即A(0,−1),B (12,0),两点均在直线y =2x −1上,它们向右平移2个单位后的对应点A ′的坐标为________,B ′的坐标为________,则平移后的直线一定经过A ′,B ′,再由待定系数法求出平移后的抛物线,填空并根据以上思路求出平移后的表达式;(2)探究:根据你求出的结果,猜想y =kx +b 向右平移m(m >0)个单位后的表达式为________(k, m ,b 均为常数,且k ≠0). 21. 如图,AB 为⊙O 的直径,弦CD 与AB 的延长线交于点P ,且DP =OB ,若∠P =27∘,求∠AOC 的度数.22. 友谊商店A 型号笔记本电脑的售价是x 元/台.最近,该商店对A 型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售,若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A 型号笔记本电脑x 台.(1)当x =8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)1ABCD AD//BC,∠A =100∘,∠C =70∘BD ∠ABC BD ABCD(3)2△ABC ∠A =90∘,AB =AC D A B C D AD AB =BD ∠ABD 12△ABC ∠A =,∠C =75∘45∘(1)BC P ∠PAC =45∘(2)(1)AB =6,AP =33–√BC y =kx+b y =kx+b (1)y =2x−1x 2y =2x−1x =0y =−1y =0x =12A(0,−1),B(,0)12y =2x−12A ′B ′A ′B ′(2)y =kx+b m(m>0)(k,m b k ≠0AB ⊙O CD AB P DP =OB ∠P =27∘∠AO A x /A 55A x x =8(2)若该公司采用方案二购买更合算,求x 的取值范围. 23. 如图,已知∠1=∠2,∠3=∠4,求证:BC =BD .x∠1=∠2∠3=∠4BC =BD参考答案与试题解析2022-2023学年全国初中八年级下数学人教版月考试卷一、选择题(本题共计 10 小题,每题 5 分,共计50分)1.【答案】A【考点】轴对称图形【解析】此题暂无解析【解答】此题暂无解答2.【答案】B【考点】点的坐标【解析】此题暂无解析【解答】解:点P(−5,7)到y轴的距离为|−5|=5.故选B.3.【答案】D三角形三边关系【解析】此题暂无解析【解答】此题暂无解答4.【答案】B【考点】平行线的性质三角形内角和定理【解析】由平行线的性质可得∠1=79∘,又由外角的性质可得∠1+α=112∘,可求得α.【解答】解:如图,∵a//b,∴∠1=79∘,又∵∠1+α=112∘,∴α=112∘−79∘=33∘.故选B.5.B【考点】一次函数的性质【解析】此题暂无解析【解答】解:由题意得,对于一次函数y =−3x +m ,k =−3<0,∴y 随x 的增大而减小.又n −1<n <n +2,∴b >a >c.故选B.6.【答案】D【考点】真命题,假命题【解析】根据反例就是条件成立时,但结论不成立的例子分析即可解答.【解答】解:A ,当a =2,b =−1时,a >b 成立,且a 2>b 2也成立,所以此例不能作为该命题是假命题的一个反例,故A 错误;B ,当a =−1,b =−1时,a >b 不成立,所以此例不能作为该命题是假命题的一个反例,故B 错误;C ,当a =−1,b =0时,a >b 不成立,所以此例不能作为该命题是假命题的一个反例,故C 错误;D ,当a =−1,b =−2时,a >b 成立,但a 2>b 2不成立,所以此例可以作为该命题是假命题的一个反例,故D 正确.故选D.7.【答案】D【考点】一次函数图象与系数的关系【解析】先判断出m 2+1的符号,再由一次函数的图象与系数的关系即可得出结论.【解答】解:∵m 2+1≥1,2>0,∴此函数的图象经过第一、二、三象限,一定不经过第四象限.故选D .8.【答案】C【考点】全等三角形的判定【解析】先根据SAS 证明△ACD ≅△ABE ,得出对应角相等,对应边相等,再根据AAS 证明△OCE ≅△OBD ,得出对应边相等,然后根据SSS 证明其他三角形全等.【解答】解:在△ACD 和△ABE 中,{AC =AB ,∠CAD =∠BAE ,AD =AE ,∴△ACD ≅△ABE(SAS),∴∠C =∠B ,∵AB =AC ,AD =AE ,∴CE =BD ,在△OCE 和△OBD 中,{∠C =∠B ,∠COE =∠BOD ,CE =BD ,∴△OCE ≅△OBD(AAS),∴OE =OD ,OC =OB ,在△AOC 和△AOB 中,{AC =AB ,OA =OA ,OC =OB ,∴△AOC≅△AOB(SSS),在△AOE和△AOD中,{AE=AD,OA=OA,OE=OD,∴△AOE≅△AOD(SSS),∴图中所有全等三角形共有4对.故选C.9.【答案】C【考点】全等三角形的性质与判定角平分线的性质【解析】根据角平分线的性质,可得CD=ED,易证得△ADC≅△ADE,可得AC+BE=AB;由等角的余角相等,可证得∠BDE=∠BAC;然后由∠B的度数不确定,可得BE不一定等于DE;又由CD=ED,△ABD和△ACD的高相等,所以S△BDE:S△ACD=BE:AC.【解答】解:①正确,∵在△ABC中,∠C=90∘,AD平分∠BAC,DE⊥AB于E,∴CD=ED;②正确,因为由HL可知△ADC≅△ADE,所以AC=AE,即AC+BE=AB;③正确,因为∠BDE和∠BAC都与∠B互余,根据同角的补角相等,所以∠BDE=∠BAC;④错误,因为∠B的度数不确定,故BE不一定等于DE;⑤错误,因为CD=ED,△ABD和△ACD的高相等,所以S△BDE:S△ACD=BE:AC.故选C.10.【答案】A【考点】函数的图象动点问题【解析】本题考查了函数的图象.【解答】解:该图象是函数值随着自变量的增大而减小.A.小明离学校的距离与时间的关系是:距离随着时间的增长而减小,符合题意,故本选项正确;B.匀速行驶的汽车的速度与时间的关系的函数图象是平行于坐标轴的一直线,不符合题意,故本选项错误;C.小亮妈到超市购买苹果的总费用与重量的关系是:总费用随着重量的增长而增多,不符合题意,故本选项错误;D.一个匀速上升的气球的高度与时间的关系:高度随着时间的增长而增大,不符合图象,故本选项错误;故选:A.二、填空题(本题共计 4 小题,每题 5 分,共计20分)11.【答案】如果|a|=|b|那么a=b【考点】原命题与逆命题、原定理与逆定理【解析】对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.【解答】命题:如果a=b,那么|a|=|b|,其逆命题是如果|a|=|b|那么a=b.12.【答案】x>0【考点】一次函数的图象一次函数与一元一次不等式【解析】根据一次函数的图象可直接进行解答.【解答】解:由函数图象可知,y随x的增大而减小,当y=3时,x=0,则当y<3时,x>0.故答案为: x>0.13.【答案】4【考点】翻折变换(折叠问题)含30度角的直角三角形【解析】利用对折,得到边角关系,再即可得出答案.【解答】解:∵∠DAE=∠DCE=15∘,∴∠ADB=∠DAE+∠DCE=30∘,又∵∠ABD=90∘,∴AD=2AB=4,∴CD=4.故答案为:4.14.【答案】(6,3)30∘【考点】三角形的面积等腰三角形的性质【解析】【解答】解:(1)过点C作CD⊥AB,则12⋅CD⋅AB=6,∵AB=4,∴CD=3.∵CA=CB,∴AD=BD,∴OD=6,故点C的坐标为(6,3).故答案为:(6,3).(2)∵CA=CB,∴∠CAB=∠CBA.∵∠CBO=2∠COB,∴∠CAB=2∠COA,∴∠COA=∠ACO,∴AC=OA=AB=4,∴△ABC为等边三角形,∴∠CAB=60∘,∴∠COB=30∘.故答案为:30∘.三、解答题(本题共计 9 小题,每题 5 分,共计45分)15.【答案】解:设y=k(x−1),代入(2,−2),得k=−2,所以y=−2(x−1)=−2x+2.【考点】待定系数法求一次函数解析式正比例函数的定义【解析】无【解答】解:设y=k(x−1),代入(2,−2),得k=−2,所以y=−2(x−1)=−2x+2.16.【答案】(x,−y)(2)如图,△A ′B ′C ′即为所求,△A ′B ′C ′的面积为: 12×6×2=6.(0,−6)【考点】点的坐标作图-平移变换三角形的面积【解析】(1)根据关于x 轴对称的点的坐标特征:横坐标不变,纵坐标互为相反数即可得点N 的坐标;(2)根据平移的性质即可将△ABC 先向左平移2个单位长度,再向上平移1个单位长度,得到△A ′B ′C ′;(3)画出直线BC 交y 轴于点D ,即可得点D 的坐标.【解答】解:(1)点N 的坐标为(x,−y).故答案为:(x,−y).(2)如图,△A ′B ′C ′即为所求,△A ′B ′C ′的面积为: 12×6×2=6.(3)直线BC 交y 轴于点D ,点D 的坐标为(0,−6).故答案为:(0,−6).17.【答案】解:(1)BE =DE +AD .证明:∵∠ACB =90∘,∴∠ACD +∠BCD =90∘.∵AD ⊥CE ,BE ⊥CE ,∴∠D =∠BEC =90∘,∴∠CBE +∠BCD =90∘,∴∠ACD =∠CBE .在△ACD 和△CBE 中,{∠ACD =∠CBE,∠D =∠BEC,AC =BC,∴△ACD ≅△CBE(AAS),∴CE =AD ,BE =CD ,∴CD =CE +DE =AD +DE ,即BE =DE +AD .m−n【考点】全等三角形的性质与判定【解析】无无【解答】解:(1)BE=DE+AD.证明:∵∠ACB=90∘,∴∠ACD+∠BCD=90∘.∵AD⊥CE,BE⊥CE,∴∠D=∠BEC=90∘,∴∠CBE+∠BCD=90∘,∴∠ACD=∠CBE.在△ACD和△CBE中,{∠ACD=∠CBE,∠D=∠BEC,AC=BC,∴△ACD≅△CBE(AAS),∴CE=AD,BE=CD,∴CD=CE+DE=AD+DE,即BE=DE+AD.(2)同理可证△ACD≅△CBE,∴CE=AD,BE=CD,∴CE=CD+DE=BE+DE,∴BE=AD−DE=m−n.故答案为:m−n.18.【答案】111【考点】等腰三角形的判定与性质勾股定理角平分线的性质全等三角形的性质与判定四边形综合题【解析】111【解答】11119.【答案】解:(1)作线段AC的垂直平分线,交BC于点P,点P即为所求.(2)由题意可知,∠APB=90∘,∠B=60∘,所以∠BAP=30∘,所以BP=12AB=3,又因为∠PAC=∠C,所以PA=PC=3√3,所以BC=3+3√3.【考点】作图—尺规作图的定义线段垂直平分线的性质含30度角的直角三角形【解析】无无【解答】解:(1)作线段AC的垂直平分线,交BC于点P,点P即为所求.(2)由题意可知,∠APB=90∘,∠B=60∘,所以∠BAP=30∘,所以BP=12AB=3,又因为∠PAC=∠C,所以PA=PC=3√3,所以BC=3+3√3.20.【答案】解:(1)根据沿x 轴向右平移两个单位,则纵坐标不变,横坐标加2,得A ′(2,−1),B ′(52,0).设平移后的直线表达式为y =kx +b.把点A ′,B ′的坐标代入y =kx +b ,得{2k +b =−1,52x +b =0.解得{k =2,b =−5,∴平移后的直线表达式为y =2x −5.y =k(x −m)+b【考点】待定系数法求一次函数解析式坐标与图形变化-平移【解析】(1)根据沿x 轴向右平移两个单位,则纵坐标不变,横坐标加2可得A ′(2,−1),B ′(52,0),然后用待定系数法即可求出平移后的函数表达式.(2)根据(1)中的规律解答即可.【解答】解:(1)根据沿x 轴向右平移两个单位,则纵坐标不变,横坐标加2,得A ′(2,−1),B ′(52,0).设平移后的直线表达式为y =kx +b.把点A ′,B ′的坐标代入y =kx +b ,得{2k +b =−1,52x +b =0.解得{k =2,b =−5,∴平移后的直线表达式为y =2x −5.(2)由(1)可得y ′=y ,x ′=x +m.∴y =y ′,x =x ′−m.把y =y ′,x =x ′−m 代入y =kx +b ,得y′=k(x′−m)+b.即平移后函数的表达式为y=k(x−m)+b.故答案为:y=k(x−m)+b.21.【答案】解:如图,连接OD,∵OD=OC=OB,∴∠OCD=∠ODC,∵DP=OB,∴DP=OD,∴∠DOP=∠P=27∘,∵∠ODC是△OPD的外角,∴∠OCD=∠ODC=2×∠P=54∘,又∵∠AOC是△OCP的外角,∴∠AOC=∠OCD+∠P=54∘+27∘=81∘.【考点】圆的综合题三角形的外角性质等腰三角形的判定与性质【解析】作直径DE,求出DO=DP,求出∠DOP=∠DOP=29∘=∠AOE,求出弧AE的度数是29∘,∠CDE=∠P+∠DOP=58∘,求出弧CAE的度数,即可得出答案.【解答】解:如图,连接OD,∵OD=OC=OB,∴∠OCD=∠ODC,∵DP=OB,∴DP=OD,∴∠DOP=∠P=27∘,∵∠ODC是△OPD的外角,∴∠OCD=∠ODC=2×∠P=54∘,又∵∠AOC是△OCP的外角,∴∠AOC=∠OCD+∠P=54∘+27∘=81∘.22.【答案】解:设购买A型号笔记本电脑α台时的费用为w元,(1)当x=8时,方案一:w=90%a×8=7.2a,方案二:w=5a+(8−5)a×80%=7.4a,∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元;(2)∵若该公司采用方案二购买更合算,∴x>5方案一:w=90%ax=0.9ax,方案二:当x>5时,w=5a+(x−5)a×80%=5a+0.8ax−4a=a+0.8ax,则0.9ax>a+0.8ax,解得x>10,x的取值范围是x>10.【考点】一次函数的应用【解析】此题暂无解析【解答】解:设购买A型号笔记本电脑α台时的费用为w元,(1)当x=8时,方案一:w=90%a×8=7.2a,方案二:w=5a+(8−5)a×80%=7.4a,∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元;(2)∵若该公司采用方案二购买更合算,∴x>5方案一:w=90%ax=0.9ax,方案二:当x>5时,w=5a+(x−5)a×80%=5a+0.8ax−4a=a+0.8ax,则0.9ax>a+0.8ax,解得x>10,x的取值范围是x>10.23.【答案】证明:∵∠ABD+∠3=180∘,∠ABC+∠4=180∘,且∠3=∠4,∴∠ABD=∠ABC.在△ADB和△ACB中,{∠1=∠2,AB=AB,∠ABD=∠ABC,∴△ADB≅△ACB(ASA),∴BD=BC.【考点】全等三角形的性质与判定【解析】此题暂无解析【解答】证明:∵∠ABD+∠3=180∘,∠ABC+∠4=180∘,且∠3=∠4,∴∠ABD=∠ABC.在△ADB和△ACB中,{∠1=∠2,AB=AB,∠ABD=∠ABC,∴△ADB≅△ACB(ASA),∴BD=BC.。
河南省2023-2024学年八年级下学期5月月考数学试卷(含答案)
八年级数学(人教版)·16~19章·注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.答卷前请将装订线内的项目填写清楚。
一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确答案的代号字母填在题后括号内.1.下列是正比例函数的是()A.B.C.D.2.下列各组数中,勾股数是()A.3,4,5B.,2,C.,,D.0.3,0.4,0.5 3.已知与满足关系式,当时,的值是()A.3B.5C.D.4.下列运算正确的是()A.B.C.D.5.下列图形中,对称轴条数最多的是()A.等边三角形B.平行四边形C.菱形D.正方形6.已知一次函数且随的增大而减小,那么它的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,菱形的对角线,交于点,若,则的度数为()A.B.C.D.8.一次函数的图象向下平移2个单位长度后,与轴的交点坐标为()A.B.C.D.9.如图,直线,垂足为,线段,,以点为圆心,的长为半径画弧,交直线于点.则的长为()A.8B.6C.4D.210.如图,在矩形中,点,分别是边,的中点,连接,,点,分别是,的中点,连接,若,,则的长度为()A.B.C.D.二、填空题(每小题3分,共15分)11.函数中自变量的取值范围是_________.12.计算:的结果为_________.13.已知一次函数的图象如图所示,则不等式的解集是_________.14.如图,,,,则_________.15.已知矩形的对角线、相交于点,,,点是对角线上一点,,连接,则的长为_________.三、解答题(本大题共8个小题,共75分)16.(10分)计算:(1);(2).17.(9分)如图,正方形网格的每个小方格边长均为1,的顶点在格点上.(1)判断的形状并说明理由;(2)求的面积.18.(9分)已知一次函数.(1)自变量的取值范围是_________;(2)将下面列表表示的部分数值补充完整;……012…………3 1.5……(3)在下图中画出该函数的图象;(4)该图象与轴的交点坐标是_________.19.(9分)洛阳龙门石窟是中国石刻艺术的宝库,不仅是世界文化遗产,也是中国四大石窟之一.五一期间张明从家出发开车去龙门石窟旅游,行驶的路程与时间的函数关系如下图所示.(1)本次车程全长_________,全程所需时间为_________;(2)在中途停留_________;(3)分别求开车在前和内的平均速度.20.(9分)我国古典数学著作中有一道计算秋千绳索长度的题目.翻译成现代文为:如图,秋千静止的时候,踏板离地高一尺(尺),将它往前推进两步(尺,于),此时踏板升高离地五尺(尺),求秋千绳索(或)的长度.21.(9分)如图,菱形中,过顶点作于点,延长至点,使,连接.(1)求证:四边形是矩形;(2)填空:四边形_________为正方形.(填“可能”或“不可能”)22.(10分)信阳毛尖又称豫毛峰,属绿茶类,是中国十大名茶之一,也是河南省著名特产之一.某毛尖茶叶经销商销售每千克级茶、级茶的利润分别为100元、150元.若该经销商决定购进、两种茶叶共200千克用于出口,设购进级茶千克,销售总利润为元.(1)求与之间的函数关系式;(2)若其中级茶叶的进货量不超过级茶叶的4倍,请你帮该经销商设计一种进货方案使销售总利润最大.23.(10分)安阳某初中数学兴趣小组学完“中位线定理”后进行了探究.试题:如图,在中,,分别是边,上的点.回顾:若、分别是、的中点,则与的位置关系是_________,数量关系是_________;变式:若是的中点,,点是否为的中点?请从下面两个思路中任选一个进行判断求解;思路一延长至点,使,连接.思路二过点作的平行线,与的延长线交于点.应用:如图,在中,是边的中点,请用无刻度的直尺和圆规在边上确定点,使得点为边的中点.(保留作图痕迹,不写作法)(提示:作一个角等于已知角)八年级数学(A)(人教版)参考答案1-5 BACAD6-10 AABDC11.12.13.14.15.或16.解:(1)原式;(2)原式.17.解:(1)是直角三角形;理由:根据勾股定理可知:,,,,是直角三角形;(2)由(1)知是直角三角形,且,.18.解:(1)全体实数;(2)2.5 2 1;(3)(4).19.(1)30;25;(2)7;(3)前9min内的平均速度是:;内的平均速度是20.解:设尺,尺,尺,(尺),尺,在中,尺,尺,尺,根据勾股定理得:,解得:,则秋千绳索的长度为14.5尺.21.解:(1)菱形,,,,,,四边形是平行四边形,,,平行四边形为矩形;(2)不可能22.解:(1)由题意可得,,即与的函数关系式为;(2)其中级茶叶的进货量不超过级茶叶的4倍,,解得,,,当时,取得最大值,此时,即当进货方案是级茶叶40千克,级茶叶160千克时,销售总利润最大.23.解:回顾:;;变式:选择思路一:是边的中点,.又,,,,,,,四边形是平行四边形,,,是的中点.(选择思路二,解答合理,亦可得分)应用:。
人教版八年级(下)学期 第一次月考数学试题含答案
一、选择题1.图中不能证明勾股定理的是( )A .B .C .D .2.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC 上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm3.如图,所有的四边形都是正方形,所有的三角形都是直角三角形。
若正方形A 、B 、C 、D 的边长是3、5、2、3,则最大正方形E 的面积是A .13B .25C .47D 134.如图,在长方形纸片ABCD 中,8AB cm =,6AD cm =. 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为( )A .254cmB .152cmC .7cmD .132cm 5.在Rt △ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,交AC 于点D ,若CD=1,则AB 的长是( )A .2B . 23C . 43D .46.在平面直角坐标系中,已知平行四边形ABCD 的点A (0,﹣2)、点B (3m ,4m +1)(m ≠﹣1),点C (6,2),则对角线BD 的最小值是( )A .32B .213C .5D .6 7.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( )A .8B .9.6C .10D .12 8.已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形9.将一根 24cm 的筷子,置于底面直径为 15cm ,高 8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为 hcm ,则 h 的取值范围是( )A .h≤15cmB .h≥8cmC .8cm≤h≤17cmD .7cm≤h≤16cm10.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A =90°,BD =4,CF =6,设正方形ADOF 的边长为x ,则210x x +=( )A .12B .16C .20D .24二、填空题11.如图,点E 在DBC △边DB 上,点A 在DBC △内部,∠DAE =∠BAC =90°,AD =AE ,AB =AC ,给出下列结论,其中正确的是_____(填序号)①BD =CE ;②∠DCB =∠ABD =45°;③BD ⊥CE ;④BE 2=2(AD 2+AB 2).12.如图,在Rt △ABC 中,∠ACB =90°,AB =7.5cm ,AC =4.5cm ,动点P 从点B 出发沿射线BC 以2cm/s 的速度移动,设运动的时间为t 秒,当△ABP 为等腰三角形时,t 的取值为_____.13.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________.14.在△ABC 中,AB =6,AC =5,BC 边上的高AD =4,则△ABC 的周长为__________.15.如图是由边长为1的小正方形组成的网格图,线段AB ,BC ,BD ,DE 的端点均在格点上,线段AB 和DE 交于点F ,则DF 的长度为_____.16.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123,,S S S ,已知12310S S S ++=,则2S 的值是____.17.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交 BC 于 F ,交 AC 于 E ,交 BA 的延长线于 G ,若 EG =3,则 BF 的长是______.18.如图,在等边△ABC 中,AB =6,AN =2,∠BAC 的平分线交BC 于点D ,M 是AD 上的动点,则BM +MN 的最小值是_____.19.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是___________.20.如图,由两个直角三角形和三个正方形组成的图形,已知25AB = ,24AC = 其中阴影部分面积是_____________平方单位.三、解答题21.如图,在△ABC 中,AB =30 cm ,BC =35 cm ,∠B =60°,有一动点M 自A 向B 以1 cm/s 的速度运动,动点N 自B 向C 以2 cm/s 的速度运动,若M ,N 同时分别从A ,B 出发.(1)经过多少秒,△BMN 为等边三角形;(2)经过多少秒,△BMN 为直角三角形.22.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.23.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.24.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .(1)判断AE 与BD 的数量关系和位置关系;并说明理由.(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长.(3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由.25.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.(1)如图1,点D 在边BC 上,1CD =,5AD =,求ABD ∆的面积.(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.26.如图1, △ABC 和△CDE 均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a ,且点A 、D 、E 在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM ⊥AE 于E.若CM=7, BE=10, 试求AB 的长.(3)如图3,若a=120°, CM ⊥AE 于E, BN ⊥AE 于N, BN=a, CM=b,直接写出AE 的值(用a, b 的代数式表示).27.如图,在边长为2正方形ABCD 中,点O 是对角线AC 的中点,E 是线段OA 上一动点(不包括两个端点),连接BE .(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G .①求证:BE EF =;②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形.28.已知n 组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.29.(1)如图1,在Rt △ABC 和Rt △ADE 中,AB =AC ,AD =AE ,且点D 在BC 边上滑动(点D 不与点B ,C 重合),连接EC ,①则线段BC ,DC ,EC 之间满足的等量关系式为 ;②求证:BD 2+CD 2=2AD 2;(2)如图2,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD 的长.30.如图1,在正方形ABCD 中,点E ,F 分别是AC ,BC 上的点,且满足DE ⊥EF ,垂足为点E ,连接DF .(1)求∠EDF= (填度数);(2)延长DE 交AB 于点G ,连接FG ,如图2,猜想AG ,GF ,FC 三者的数量关系,并给出证明;(3)①若AB=6,G 是AB 的中点,求△BFG 的面积;②设AG=a ,CF=b ,△BFG 的面积记为S ,试确定S 与a ,b 的关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据各个图象,利用面积的不同表示方法,列式证明结论222+=a b c ,找出不能证明的那个选项.【详解】解:A 选项不能证明勾股定理;B 选项,通过大正方形面积的不同表示方法,可以列式()22142a b ab c +=⨯+,可得222+=a b c ;C 选项,通过梯形的面积的不同表示方法,可以列式()22112222a b ab c +=⨯+,可得222+=a b c ; D 选项,通过这个不规则图象的面积的不同表示方法,可以列式222112222c ab a b ab +⨯=++⨯,可得222+=a b c . 故选:A .【点睛】本题考查勾股定理的证明,解题的关键是掌握勾股定理的证明方法.2.C解析:C【分析】当C ′落在AB 上,点B 与E 重合时,AC'长度的值最小,根据勾股定理得到AB=5cm ,由折叠的性质知,BC ′=BC=3cm ,于是得到结论.【详解】解:当C ′落在AB 上,点B 与E 重合时,AC'长度的值最小,∵∠C=90°,AC=4cm ,BC=3cm ,∴AB=5cm ,由折叠的性质知,BC ′=BC=3cm ,∴AC ′=AB-BC ′=2cm .故选:C .【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.3.C解析:C【分析】根据勾股定理即可得到正方形A 的面积加上B 的面积加上C 的面积和D 的面积是E 的面积.即可求解.【详解】四个正方形的面积的和是正方形E 的面积:即222233=92549=47+5+2++++;故答案为C .【点睛】理解正方形A ,B ,C ,D 的面积的和是E 的面积是解决本题的关键.4.A解析:A【分析】由已知条件可证△CFE≌△AFD,得到DF=EF,利用折叠知AE=AB=8cm ,设AF=xcm ,则DF=(8-x)cm ,在Rt△AFD 中,利用勾股定理即可求得x 的值.【详解】∵四边形ABCD 是长方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m ,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=DF设AF=xcm ,则DF=(8-x )cm在Rt△AFD 中,AF 2=DF 2+AD 2,AD=6cm , 222(8)6x x =-+254x cm = 故选择A.【点睛】此题是翻折问题,利用勾股定理求线段的长度.5.B解析:B【分析】根据30°直角三角形的性质,求出∠ABC的度数,然后根据角平分线的性质求出∠CBD=30°,再根据30°角所对的直角三角形性质,30°角所对的直角边等于斜边的一半,求解即可.【详解】如图∵∠C=90°,∠A=30°,∴∠ABC=90°-30°=60°,∵BD平分∠ABC,∴∠ABD=12∠ABC=12×60°=30°,∵CD=1,∠CDB=30°∴BD=2根据勾股定理可得BC=2222=21=3BD CD--∵∠A=30°∴AB=23故选B.【点睛】此题主要考查了30°角直角三角形的性质的应用,关键是根据题意画出图形,再利用30°角所对直角边等于斜边的一半求解.6.D解析:D【分析】先根据B(3m,4m+1),可知B在直线y=43x+1上,所以当BD⊥直线y=43x+1时,BD最小,找一等量关系列关于m的方程,作辅助线:过B作BH⊥x轴于H,则BH=4m+1,利用三角形相似得BH2=EH•FH,列等式求m的值,得BD的长即可.【详解】解:如图,∵点B(3m,4m+1),∴令341m xm y=⎧⎨+=⎩,∴y=43x+1,∴B在直线y=43x+1上,∴当BD⊥直线y=43x+1时,BD最小,过B作BH⊥x轴于H,则BH=4m+1,∵BE在直线y=43x+1上,且点E在x轴上,∴E(−34,0),G(0,1)∵F是AC的中点∵A(0,−2),点C(6,2),∴F(3,0)在Rt△BEF中,∵BH2=EH⋅FH,∴(4m+1)2=(3m+34)(3−3m)解得:m1=−14(舍),m2=15,∴B(35,95),∴2239(3)55⎛⎫-+ ⎪⎝⎭=6,则对角线BD的最小值是6;故选:D.【点睛】本题考查了平行四边形的性质,利用待定系数法求一次函数的解析式,三角形相似的判定,圆形与坐标特点,勾股定理等知识点.本题利用点B 的坐标确定其所在的直线的解析式是关键.7.B解析:B【分析】如图,作CE AB ⊥与E,利用勾股定理的逆定理证明AD BC ⊥,再利用面积法求出EC 即可.【详解】如图,作CE AB ⊥与E.AD 是ABC ∆的中线,BC =12,∴BD=6,10,8,6,AB AD BD ===∴ 222AB AD BD =+,90,ADB ∴∠=,AD BC ∴⊥ 11,22ABC S BC AD AB CE ∆== 1289.6.10CE ⨯∴== 故选B.【点睛】 本题主要考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会面积法求三角形的高.8.B解析:B【分析】依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形.【详解】如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°,故选B .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.9.C解析:C【分析】筷子浸没在水中的最短距离为水杯高度,最长距离如下图,是筷子斜卧于杯中时,利用勾股定理可求得.【详解】当筷子笔直竖立在杯中时,筷子浸没水中距离最短,为杯高=8cmAD是筷子,AB长是杯子直径,BC是杯子高,当筷子如下图斜卧于杯中时,浸没在水中的距离最长由题意得:AB=15cm,BC=8cm,△ABC是直角三角形∴在Rt△ABC中,根据勾股定理,AC=17cm∴8cm≤h≤17cm故选:C【点睛】本题考查勾股定理在实际生活中的应用,解题关键是将题干中生活实例抽象成数学模型,然后再利用相关知识求解.10.D解析:D【分析】设正方形ADOF的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,整理方程即可.【详解】解:设正方形ADOF 的边长为x ,由题意得:BE =BD =4,CE =CF =6,∴BC =BE +CE =BD +CF =10,在Rt △ABC 中,AC 2+AB 2=BC 2,即(6+x )2+(x +4)2=102,整理得,x 2+10x ﹣24=0,∴x 2+10x =24,故选:D .【点睛】本题考查了正方形的性质、全等三角形的性质、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出方程是解题的关键.二、填空题11.①③【分析】①由已知条件证明DAB ≌EAC 即可;②由①可得∠ABD=∠ACE<45°,∠DCB>45°;③由∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°可判断③; ④由BE 2=BC 2-EC 2=2AB 2-(CD 2﹣DE 2)=2AB 2-CD 2+2AD 2=2(AD 2+AB 2)-CD 2可判断④.【详解】解:∵∠DAE =∠BAC =90°,∴∠DAB =∠EAC ,∵AD =AE ,AB =AC ,∴∠AED=∠ADE=∠ABC=∠ACB=45°, ∵在DAB 和EAC 中,AD AE DAB EAC AB AC ⎧⎪⎨⎪⎩===, ∴DAB ≌EAC ,∴BD =CE ,∠ABD =∠ECA ,故①正确;由①可得∠ABD=∠ACE<45°,∠DCB>45°故②错误;∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°,∴∠CEB =90°,即CE ⊥BD ,故③正确;∴BE 2=BC 2-EC 2=2AB 2-(CD 2﹣DE 2)=2AB 2-CD 2+2AD 2=2(AD 2+AB 2)-CD 2. ∴BE 2=2(AD 2+AB 2)-CD 2,故④错误.故答案为:①③.【点睛】本题主要考查全等三角形判定与性质以及勾股定理的应用,熟记全等三角形的判定与性质定理以及勾股定理公式是解题关键.12.75或6或94 【分析】当△ABP 为等腰三角形时,分三种情况:①当AB =BP 时;②当AB =AP 时;③当BP =AP 时,分别求出BP 的长度,继而可求得t 值.【详解】在Rt △ABC 中,BC 2=AB 2﹣AC 2=7.52﹣4.52=36,∴BC =6(cm );①当AB =BP =7.5cm 时,如图1,t =7.52=3.75(秒); ②当AB =AP =7.5cm 时,如图2,BP =2BC =12cm ,t =6(秒);③当BP =AP 时,如图3,AP =BP =2tcm ,CP =(4.5﹣2t )cm ,AC =4.5cm , 在Rt △ACP 中,AP 2=AC 2+CP 2,所以4t 2=4.52+(4.5﹣2t )2,解得:t =94, 综上所述:当△ABP 为等腰三角形时,t =3.75或t =6或t =94. 故答案为:3.75或6或94.【点睛】此题是等腰三角形与动点问题,考查等腰三角形的性质,勾股定理,解题中应根据每两条边相等分情况来解答,不要漏解.13.232【分析】先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.【详解】在Rt ABC 中,90,30,2C A BC ∠=∠==,∴AB=2BC=4,∴22224223AC AB BC =-=-=当AC 为腰时,则该三角形的腰长为3当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则AE=3, 设DE=x ,则AD=2x ,∵222AE DE AD +=, ∴222(3)(2)x x +=∴x=1(负值舍去),∴腰长AD=2x=2,故答案为:23或2【点睛】此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC 为一边的等腰三角形”没有明确AC 是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.14.1425+或825+【分析】分两种情况考虑:如图1所示,此时△ABC 为锐角三角形,在直角三角形ABD 与直角三角形ACD 中,利用勾股定理求出BD 与DC 的长,由BD+DC 求出BC 的长,即可求出周长;如图2所示,此时△ABC 为钝角三角形,同理由BD -CD 求出BC 的长,即可求出周长.【详解】解:分两种情况考虑:如图1所示,此时△ABC 为锐角三角形,在Rt △ABD 中,根据勾股定理得:22226425AB AD -=-= 在Rt △ACD 中,根据勾股定理得:2222543AC AD --=,∴BC=253+, ∴△ABC 的周长为:652531425++=+;如图2所示,此时△ABC 为钝角三角形,在Rt △ABD 中,根据勾股定理得:BD=22226425AB AD -=-=, 在Rt △ACD 中,根据勾股定理得:CD=2222543AC AD -=-=,∴BC=253-, ∴△ABC 的周长为:65253825++-=+;综合上述,△ABC 的周长为:1425+或825+;故答案为:1425+或825+.【点睛】此题考查了勾股定理,利用了分类讨论的思想,熟练掌握勾股定理是解本题的关键. 15.2【分析】连接AD 、CD ,由勾股定理得:22435AB DE ==+=,224225BD =+=,22125CD AD ==+=,得出AB =DE =BC ,222BD AD AB +=,由此可得△ABD 为直角三角形,同理可得△BCD 为直角三角用形,继而得出A 、D 、C 三点共线.再证明△ABC ≌△DEB ,得出∠BAC =∠EDB ,得出DF ⊥AB ,BD 平分∠ABC ,再由角平分线的性得出DF =DG =2即可的解.【详解】连接AD 、CD ,如图所示:由勾股定理可得,22435AB DE ==+=,224225BD =+=22125CD AD ==+, ∵BE=BC=5,∴AB=DE =AB =BC ,222BD AD AB +=,∴△ABD 是直角三角形,∠ADB =90°,同理可得:△BCD 是直角三角形,∠BDC =90°,∴∠ADC =180°,∴点A 、D 、C 三点共线,∴2AC AD BD ===,在△ABC 和△DEB 中,AB DE BC EB AC BD =⎧⎪⎨⎪=⎩=,∴△ABC ≌△DEB(SSS),∴∠BAC =∠EDB ,∵∠EDB+∠ADF =90°,∴∠BAD+∠ADF =90°,∴∠BFD =90°,∴DF ⊥AB ,∵AB=BC ,BD ⊥AC ,∴BD 平分∠ABC ,∵DG ⊥BC ,∴DF =DG =2.【点睛】本题考查全等三角形的性质与判定以及勾股定理的相关知识,解题的关键是熟练掌握勾股定理和过股定理的逆定理.16.103. 【分析】 根据八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,得出CG=NG ,CF=DG=NF ,再根据()21S CG DG =+,22S GF =,()23S NG NF =-,12310S S S ++=,即可得出答案.【详解】∵八个直三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形∴CG=NG ,CF=DG=NF∴()2222122S CG DG CG DG CG DG GF CG DG =+=++=+ 22S GF =()22232S NG NF NG NF NG NF =-=+-∴2222212322310S S S GF CG DG GF NG NF NG NF GF ++=+⋅+++-⋅== ∴2103GF =故2103S = 故答案为103. 【点睛】 本题主要考查了勾股定理的应用,用到的知识点由勾股定理和正方形、全等三角形的性质. 17.4【分析】根据线段垂直平分线得出AE=EC ,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根据勾股定理和含30°角的直角三角形性质求出AE和EF,即可求出FG,再求出BF=FG即可【详解】∵AC的垂直平分线FG,∴AE=EC,∠AEG=∠AEF=90°,∵∠BAC=120°,∴∠G=∠BAC-∠AEG=120°-90°=30°,∵∠BAC=120°,AB=AC,∴∠B=∠C=12(180°-∠BAC)=30°,∴∠B=∠G,∴BF=FG,∵在Rt△AEG中,∠G=30°,EG=3,∴AG=2AE,即(2AE)2=AE2+32,∴AE=3(负值舍去)即CE=3,同理在Rt△CEF中,∠C=30°,CF=2EF,(2EF)2=EF2+(3)2,∴EF=1(负值舍去),∴BF=GF=EF+CE=1+3=4,故答案为4.【点睛】本题考查了勾股定理,含30°角的直角三角形性质,等腰三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.18.7【解析】【分析】通过作辅助线转化BM,MN的值,从而找出其最小值求解.【详解】解:连接CN,与AD交于点M.则CN就是BM+MN的最小值.取BN中点E,连接DE,如图所示:∵等边△ABC的边长为6,AN=2,∴BN=AC﹣AN=6﹣2=4,∴BE=EN=AN=2,又∵AD是BC边上的中线,∴DE是△BCN的中位线,∴CN=2DE,CN∥DE,又∵N为AE的中点,∴M为AD的中点,∴MN是△ADE的中位线,∴DE=2MN,∴CN=2DE=4MN,∴CM=34 CN.在直角△CDM中,CD=12BC=3,DM=12AD=33,∴CM=2237 2CD MD+=,∴CN=43727 32⨯=.∵BM+MN=CN,∴BM+MN的最小值为27.故答案是:27.【点睛】考查等边三角形的性质和轴对称及勾股定理等知识的综合应用.19.2【分析】连接CE.根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE,【详解】解:(1)如图,连接CD、CF.∵Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,∴BD=CD=1.2 ,∵由翻折可知BD=DF ,∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,∴∠DCF=∠DFC ,∴∠DCF-∠DCA=∠DFC-∠DFE ,即∠GCF=∠GFC ,∴GC=GF ,∴EG+CG=EG+GF=EF=BE ,∴△ECG 的周长,.【点睛】本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线段上是解题的关键..20.49【分析】先计算出BC 的长,再由勾股定理求出阴影部分的面积即可.【详解】∵∠ACB=90︒,25AB = ,24AC =,∴22222252449BC AB AC =-=-=,∴阴影部分的面积=249BC =,故答案为:49.【点睛】此题考查勾股定理,能利用根据直角三角形计算得到所需的边长,题中根据勾股定理的图形得到阴影部分面积等于BC 的平方是解题的关键.三、解答题21.(1) 出发10s 后,△BMN 为等边三角形;(2)出发6s 或15s 后,△BMN 为直角三角形.【分析】(1)设时间为x ,表示出AM=x 、BN=2x 、BM=30-x ,根据等边三角形的判定列出方程,解之可得;(2)分两种情况:①∠BNM=90°时,即可知∠BMN=30°,依据BN=12BM 列方程求解可得;②∠BMN=90°时,知∠BNM=30°,依据BM=12BN 列方程求解可得. 【详解】解 (1)设经过x 秒,△BMN 为等边三角形,则AM =x ,BN =2x ,∴BM =AB -AM =30-x ,根据题意得30-x =2x ,解得x =10,答:经过10秒,△BMN 为等边三角形;(2)经过x秒,△BMN是直角三角形,①当∠BNM=90°时,∵∠B=60°,∴∠BMN=30°,∴BN=12BM,即2x=12(30-x),解得x=6;②当∠BMN=90°时,∵∠B=60°,∴∠BNM=30°,∴BM=12BN,即30-x=12×2x,解得x=15,答:经过6秒或15秒,△BMN是直角三角形.【点睛】本题考查勾股定理的逆定理,等边三角形的判定.22.BF的长为32【分析】先连接BF,由E为中点及AC=BC,利用三线合一可得CE⊥AB,进而可证△AFE≌△BFE,再利用AD为角平分线以及三角形外角定理,即可得到∠BFD为45°,△BFD为等腰直角三角形,利用勾股定理即可解得BF.【详解】解:连接BF.∵CA=CB,E为AB中点∴AE=BE,CE⊥AB,∠FEB=∠FEA=90°在Rt△FEB与Rt△FEA中,BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3∴BF ===【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.23.(1)90°;(2)证明见解析;(3)变化,24l +≤<.【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.24.(1)AE=BD 且AE ⊥BD ;(2)6;(3)PQ 为定值6,图形见解析【分析】(1)由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC=45°,可得AE ⊥BD ; (2)由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长; (3)分两种情况讨论,由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC ,可得AE ⊥BD ,由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长.【详解】解:(1)AE=BD ,AE ⊥BD ,理由如下:∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠EAC=∠DBC=45°,∴∠EAC+∠CAB=90°,∴AE ⊥BD ;(2)∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6;(3)如图3,若点D 在AB 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=135°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ , ∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6;如图4,若点D 在BA 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴22=2516=3EQ AE --,∴PQ=2AQ=6.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE ⊥BD 是本题的关键.25.(1)3;(2)见解析.【分析】(1)根据勾股定理可得AC ,进而可得BC 与BD ,然后根据三角形的面积公式计算即可; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则根据余角的性质可得∠CBG =∠EBH ,由已知易得BE ∥AC ,于是∠E =∠EFC ,由于CG EF ⊥,90ACB ∠=︒,则根据余角的性质得∠EFC =∠BCG ,于是可得∠E =∠BCG ,然后根据ASA 可证△BCG ≌△BEH ,可得BG =BH ,CG =EH ,从而△BGH 是等腰直角三角形,进一步即可证得结论.【详解】解:(1)在△ACD 中,∵90ACB ∠=︒,1CD =,5AD =∴222AC AD CD =-=,∵2BC AC =,∴BC=4,BD =3,∴1132322ABD S BD AC ∆=⋅=⨯⨯=; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则∠CBG +∠CBH =90°, ∵BE BC ⊥,∴∠EBH +∠CBH =90°,∴∠CBG =∠EBH ,∵BE BC ⊥,90ACB ∠=︒,∴BE ∥AC ,∴∠E =∠EFC ,∵CG EF ⊥,90ACB ∠=︒,∴∠EFC +∠FCG =90°,∠BCG +∠FCG =90°,∴∠EFC =∠BCG ,∴∠E =∠BCG ,在△BCG 和△BEH 中,∵∠CBG =∠EBH ,BC=BE ,∠BCG =∠E ,∴△BCG ≌△BEH (ASA ), ∴BG =BH ,CG =EH , ∴222GH BG BH BG =+=, ∴2EG GH EH BG CG =+=+.【点睛】本题考查了直角三角形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、余角的性质和勾股定理等知识,属于常考题型,正确作出辅助线构造全等三角形是解题的关键.26.(1)见解析;(2)26;(323+3 【分析】(1)由∠ACB=∠DCE 可得出∠ACD=∠BCE ,再利用SAS 判定△ACD ≌△BCE ,即可得到AD=BE ;(2)由等腰直角三角形的性质可得CM=12DE ,同(1)可证△ACD ≌△BCE ,得到AD=BE ,然后可求AE 的长,再判断∠AEB=90°,即可用勾股定理求出AB 的长;(3)由等腰三角形的性质易得∠CAB=∠CBA=∠CDE=∠CED=30°,根据30度所对的直角边是斜边的一半可求出3,然后利用三角形外角性质推出∠BEN=60°,在Rt △BEN 中即可求出BE ,由于BE=AD ,所以利用AE=AD+DE 即可得出答案.【详解】证明:(1)∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE(2)∵∠DCE=90°,CD=CE ,∴△DCE 为等腰直角三角形,∵CM ⊥DE ,∴CM 平分DE ,即M 为DE 的中点∴CM=12DE , ∴DE=2CM=14,∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE=10,∠CAD=∠CBE∴AE=AD+DE=24如图,设AE ,BC 交于点H ,在△ACH 和△BEH 中,∠CAH+∠ACH=∠EBH+∠BEH ,而∠CAH=∠EBH ,∴∠BEH=∠ACH=90°,∴△ABE 为直角三角形 由勾股定理得2222AB=AE BE =2410=26++(3)由(1)(2)可得△ACD ≌△BCE ,∴∠DAC=∠EBC ,∵△ACB ,△DCE 都是等腰三角形,∠ACB=∠DCE=120°∴∠CAB=∠CBA=∠CDE=∠CED=30°,∵CM ⊥DE ,∴∠CMD=90°,DM=EM ,∴CD=CE=2CM ,3CM∴33∵∠BEN=∠BAE+∠ABE=∠BAE+∠EBC+∠CBA=∠BAE+∠DAC+∠CBA=30°+30°=60°, ∴∠NBE=30°,∴BE=2EN ,3EN∵BN=a∴23=AD ∴2323+b 【点睛】本题考查全等三角形的旋转模型,掌握此模型的特点得到全等三角形是关键,其中还需要用到等腰三角形三线合一与30度所对的直角边的性质,熟练掌握这些基本知识点是关键.27.(1)①见解析;②()22012x y x x-=<<-;(2)见解析 【解析】【分析】(1)①连接DE ,如图1,先用SAS 证明△CBE ≌△CDE ,得EB=ED ,∠CBE =∠1,再用四边形的内角和可证明∠EBC =∠2,从而可得∠1=∠2,进一步即可证得结论;②将△BAE 绕点B 顺时针旋转90°,点E 落在点P 处,如图2,用SAS 可证△PBG ≌△EBG ,所以PG=EG =2-x -y ,在直角三角形PCG 中,根据勾股定理整理即得y 与x 的函数关系式,再根据题意写出x 的取值范围即可.(2)由(1)题已得EB=ED ,根据正方形的对称性只需再确定点E 关于点O 的对称点即可,考虑到只有直尺,可延长BE 交AD 于点M ,再连接MO 并延长交BC 于点N ,再连接DN 交AC 于点Q ,问题即得解决.【详解】(1)①证明:如图1,连接DE ,∵四边形ABCD 是正方形,∴CB=CD ,∠BCE =∠DCE =45°,又∵CE=CE ,∴△CBE ≌△CDE (SAS ),∴EB=ED ,∠CBE =∠1,∵∠BEC =90°,∠BCF =90°,∴∠EBC +∠EFC =180°,∵∠EFC +∠2=180°,∴∠EBC =∠2,∴∠1=∠2.∴ED=EF ,∴BE=EF .②解:∵正方形ABCD 2,∴对角线AC =2.将△BAE 绕点B 顺时针旋转90°,点A 与点C 重合,点E 落在点P 处,如图2, 则△BAE ≌△BCP ,∴BE =BP ,AE=CP=x ,∠BAE =∠BCP =45°,∠EBP =90°,由①可得,∠EBF =45°,∴∠PBG =45°=∠EBG ,在△PBG 与△EBG 中,PB EB PBG EBG BG BG =⎧⎪∠=∠⎨⎪=⎩,∴△PBG ≌△EBG (SAS ).∴PG=EG =2-x -y ,∵∠PCG =∠GCB +∠BCP =45°+45°=90°,∴在Rt △PCG 中,由222PC CG PG +=,得()2222x y x y +=--, 化简,得()22012x y x x-=<<-. (2)如图3,作法如下:①延长BE 交AD 于点M ,②连接MO 并延长交BC 于点N ,③连接DN 交AC 于点Q ,④连接DE 、BQ ,则四边形BEDQ 为菱形.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、四边形的内角和、勾股定理和菱形的作图等知识,其中通过三角形的旋转构造全等三角形是解决②小题的关键,利用正方形的对称性确定点Q 的位置是解决(2)题的关键.28.(1)不存在,见解析;(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数,见解析.【分析】(1)根据题意可知,这n 组正整数符合规律m 2-1,2m ,m 2+1(m≥2,且m 为整数).分三种情况:m 2-1=71;2m=71;m 2+1=71;进行讨论即可求解;(2)由于(m 2-1) 2+(2m ) 2=m 4+2m 2+1=(m 2+1) 2,根据勾股定理的逆定理即可求解.【详解】(1)不存在一组数,既符合上述规律,且其中一个数为71.理由如下:根据题意可知,这n 组正整数符合规律21m -,2m ,21m +(2m ≥,且m 为整数). 若2171m -=,则272m =,此时m 不符合题意;若271m =,则35.5,m =,此时m 不符合题意;若2171m +=,则270m =,此时m 不符合题意,所以不存在一组数,既符合上述规律,且其中一个数为71.(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.理由如下:对于一组数:21m -,2m ,21m +(2m ≥,且m 为整数).因为2224222(1)(2)21(1)m m m m m -+=++=+所以若一个三角形三边长分别为21m -,2m ,21m +(2m ≥,且m 为整数),则该三角形为直角三角形.因为当2m ≥,且m 为整数时,2m 表示任意一个大于2的偶数,21m -,21m +均为正整数,所以以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.【点睛】考查了勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.注意分类思想的应用29.(1)①BC =DC +EC ,理由见解析;②证明见解析;(2)6.【解析】【分析】(1)证明△BAD ≌△CAE ,根据全等三角形的性质解答;(2)根据全等三角形的性质得到BD =CE ,∠ACE =∠B ,得到∠DCE =90°,根据勾股定理计算即可;(3)作AE ⊥AD ,使AE =AD ,连接CE ,DE ,证明△BAD ≌△CAE ,得到BD =CE =9,根据勾股定理计算即可.【详解】(1)①解:BC =DC +EC ,理由如下:∵∠BAC =∠DAE =90°,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,。
辽宁省本溪市第十二中学2022-2023学年八年级下学期第一次月考数学试题(含答案解析)
辽宁省本溪市第十二中学2022-2023学年八年级下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列真命题中,逆命题也是真命题的是()A .全等三角形的对应角都相等B .如果两个实数相等,那么这两个实数的平方相等C .对顶角相等D .等边三角形每一个都等于60︒2.下列各式从左到右,是因式分解的是()A .()()2111y y y -+=-B .()2211x y xy xy x y +-=+-C .()()()()2332x x x x --=--D .()22442x x x -+=-3.等腰ABC 中,2AC BC =,周长为60,则BC 的长为()A .15B .12C .15或12D .以上都不正确4.等腰三角形ABC 中,120BAC ∠=︒,BC 中点为D ,过D 作DE ⊥AB 于E ,AE =4cm ,则AD 等于()A .8cmB .7cmC .6cmD .4cm5.如图,BM 是∠ABC 的平分线,点D 是BM 上一点,点P 为直线BC 上的一个动点.若△ABD 的面积为9,AB =6,则线段DP 的长不可能是()A .2B .3C .4D .5.56.若3354m m x +->是关于x 的一元一次不等式,则m 的值是()A .3-B .2-C .0D .17.若2294x kxy y -+是一个完全平方式,则k 的值为()A .6B .±6C .12D .±128.用不等式表示如图所示的解集,其中正确的是()A .2x >-B .<2x -C .2x ≥-D .2x ≤-9.如图,已知∠AOB =30°,P 是∠AOB 平分线上一点,CP ∥OB ,交OA 于点C ,PD ⊥OB ,垂足为点D ,且PC =4,则PD 等于()A .1B .2C .4D .810.在平面直角坐标系内,点P (3m -,5m -)在第四象限,则m 的取值范围是()A .53m -<<B .35m -<<C .35m <<D .53m -<<-二、填空题11.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设_________.12.2246130x x y y ++-+=,则x =_________,y =_________.13.若关于x ,y 的方程组232235x y m x y m+=-⎧⎨-=⎩的解是一对负数,则2162m m --++=_____.14.如图,在Rt ABC △中,9068ACB AC BC ∠=︒==,,,AD 是BAC ∠的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是_____.15.已知:△ABC 中,AB =AC ,CD ⊥AB 于D ,且CD =12AB ,则∠B =_____°16.在△ABC 中,∠ABC =30°,边AB =10,边AC 可以从4,5,7,9,11取一值.满足这些条件的互不全等三角形的个数是_____个.17.已知2ab =,3a b -=,则32232a b a b ab -+=______.18.如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法中正确的是______.①线段AD 是△ABC 的角平分线;②∠ADC =60°;③点D 在AB 的中垂线上;④12DAC ABD S S = ::.三、解答题19.(1)解不等式:3163x x-->(2)解不等式组:()13321134x x x x ⎧+≥-⎪⎨+-->⎪⎩(3)分解因式:256m n mn n -+(4)分解因式:42816x x x +--(5)先化简,再求值:()()()()222111a b a b a b a --+-++++,其中12a =,2b =-.20.已知一次函数y =kx +b (k 、b 为常数,且k ≠0)的图像(如图1).(1)方程kx +b =0的解为,不等式kx +b <4的解集为;(2)正比例函数y =mx (m 为常数,且m ≠0)与一次函数y =kx +b 相交于点P (如图2),则不等式组00mx kx b >⎧⎨+>⎩的解集为;(3)比较mx 与kx +b 的大小(直接写出结果).21.某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?22.已知:如图,在△ABC中,120°<∠BAC<180°,AD为边BC的垂直平分线,以AC为边作等边三角形ACE,△ACE与△ABC在直线AC的异侧,直线BE交DA的延长线于点F,连接FC交AE于点M.(1)求证:∠FEA=∠FBA.(2)求∠EFC的度数.(3)猜想线段FE,FA,FD之间的数量关系,并证明你的结论.23.某汽车租赁公司要购买轿车和面包车共10辆,已知轿车每辆7万元,面包车每辆4万元,其中轿车至少要购买3辆,且公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由.(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么该租赁公司应选择以上哪种购买方案?参考答案:1.D【分析】先分别写出四个命题的逆命题,然后根据全等三角形的判定方法、平方根的定义、对顶角的定义和等边三角形的判定方法判断四个逆命题的真假.【详解】解:A .“全等三角形的对应角都相等”的逆命题为对应角相等的两三角形全等,此逆命题为假命题,所以A 选项错误;B .“如果两个实数相等,那么这两个实数的平方相等”的逆命题为如果两个实数的平方相等,那么这两个数相等,此逆命题为假命题,所以B 选项错误;C .“对顶角相等”的逆命题为如果两个角相等,那么这两个角为对顶角,此逆命题为假命题,所以C 选项错误;D .“等边三角形每一个都等于60︒”的逆命题为等每一个都等于60︒的三角形为等边三角形,此逆命题为真命题,所以D 选项正确.故选:D .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.2.D【分析】根据因式分解就是把一个多项式变形成几个整式的积的形式的定义,利用排除法求解.【详解】解:A .是多项式乘法,不是因式分解,故本选项错误,不符合题意;B .结果不是积的形式,故本选项错误,不符合题意;C .不是对多项式变形,故本选项错误,不符合题意;D .运用完全平方公式分解2244(2)x x x -+=-,正确,符合题意.故选:D .【点睛】本题考查了因式分解的定义,解题的关键是掌握因式分解就是把一个多项式变形成几个整式的积的形式.3.B【分析】题目没有明确AC 是腰还是底边,要分两种情况解答:当AC AB =或当BC AB =.【详解】解:当AC AB =时,2260BC BC BC ++=,则12BC =;当BC AB =时,15BC =,但BC AB AC +=,故构不成三角形.故选:B .【点睛】此题主要考查等腰三角形的性质,注意考虑两种情况,但也要考虑三角形三边之间的关系来确定三边大小.4.A【分析】先根据等腰三角形的定义可得BAC ∠是顶角,再画出图形,根据等腰三角形的三线合一可得60BAD ∠=︒,从而可得30ADE ∠=︒,然后利用含30度角的直角三角形的性质即可得.【详解】解: 等腰三角形ABC 中,120BAC ∠=︒,BAC ∴∠是等腰三角形ABC 的顶角AB AC∴=由题意画出图形如下:D 为BC 的中点1602BAD BAC ∴∠=∠=︒DE AB∵⊥30ADE ∴∠=︒又4cmAE = 28cmAD AE ∴==故选:A .【点睛】本题考查了等腰三角形的三线合一、含30度角的直角三角形的性质,熟练掌握等腰三角形的三线合一是解题关键.5.A【分析】根据三角形的面积得出DE 的长,进而利用角平分线的性质解答即可.【详解】过点D 作DE ⊥AB 于E ,DF ⊥BC 于F ,∵△ABD 的面积为9,AB=6,∴DE=296⨯=3,∵BM 是∠ABC 的平分线,∴DE=3,∴DP≥3,故选A .【点睛】本题主要考查了角平分线的性质与三角形的面积计算公式.作出辅助线是正确解答本题的关键.6.B【分析】根据一元一次不等式的定义得出31m +=,求出m 的值即可.【详解】解:3354m m x +-> 是关于x 的一元一次不等式,31m ∴+=,2m =-,故选:B .【点睛】此题考查了一元一次不等式的定义和解法,关键是根据一元一次不等式的定义求出m 的值.7.D【分析】这里首末两项是3x 和2y 这两个数的平方,那么中间一项为加上或减去3x 和2y 积的2倍.【详解】解:中间一项为加上或减去3x 和2y 积的2倍.故k=±12.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.C【分析】根据不等式的解集表示方法即可求解.【详解】解:由数轴可知,表示解集射线方向右,从数字2-出发,且为实心点,故2x ≥-.故选:C .【点睛】此题主要考查不等式解集的表示方法,解题的关键是熟知不等式解集的表示方法.9.B【分析】过点P 作PE ⊥OA 于点E ,根据角平分线的性质得到PE =PD ,然后利用平行线的性质及含30°角的直角三角形的性质求解.【详解】解:过点P 作PE ⊥OA 于点E ,∵OP 是∠AOB 的平分线,∴PE =PD .∵PC ∥OB ,∴∠POD =∠OPC ,∴∠PCE =∠POC +∠OPC =∠POC +∠POD =∠AOB =30°,∴PE =12PC =2,∴PD =2.故选B .【点睛】角平分线的性质;含30度角的直角三角形.10.C【详解】解:点P (3m -,5m -)在第四象限,根据第四象限点的坐标特征,则3050m m ->⎧⎨-<⎩解得:35m <<故选C .11.三角形的三个外角中至少有两个锐角【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,故答案为:三角形的三个外角中至少有两个锐角.【点睛】此题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.12.2-3【分析】先利用完全平方公式将已知等式变形为()()22230x y ++-=,再根据偶次方的非负性即可得.【详解】解:2246130x x y y ++-+= ,2244690x x y y \+++-+=,即()()22230x y ++-=,20,30x y ∴+=-=,解得2,3x y =-=,故答案为:2-,3.【点睛】本题主要考查了利用完全平方公式进行运算,熟记完全平方公式()2222a b a ab b ±=±+是解题关键.13.18m -+##1-8m【分析】先将方程组中的两个方程相加可得221x m =+,相减可得662y m =-+,再根据解是一对负数可得210m +<,620m -+<,然后化简绝对值,计算整式的加减即可得.【详解】解:232235x y m x y m +=-⎧⎨-=⎩①②,由①+②得:442x m =+,即221x m =+,由①-②得:662y m =-+,关于,x y 的方程组232235x y mx y m +=-⎧⎨-=⎩的解是一对负数,0,0x y ∴<<,210m ∴+<,620m -+<,2162m m --∴++()2162m m =----2162m m =---+81m =-+,故答案为:18m -+.【点睛】本题考查了二元一次方程组的解、整式的加减、化简绝对值,熟练掌握二次一次方程组的解法是解题关键.14.245【分析】如图所示,在AB 上取一点E 使得AQ AE =,连接PE ,证明APQ APE △≌△,得到PQ PE =,推出当C P E 、、三点共线且CE AB ⊥时,CP PE +最小,即PC PQ +最小,过点C 作CF AB ⊥于F ,由勾股定理得10AB =,利用面积法求出245CF =,则PC PQ +的最小值为245.【详解】解:如图所示,在AB 上取一点E 使得AQ AE =,连接PE ,∵AD 是BAC ∠的平分线,∴PAQ PAE ∠=∠,又∵PA PA AQ AE ==,,∴()SAS APQ APE △≌△,∴PQ PE =,∴PC PQ PE PC +=+,∴当C P E 、、三点共线且CE AB ⊥时,CP PE +最小,即PC PQ +最小,过点C 作CF AB ⊥于F ,在Rt ABC △中,9068ACB AC BC ∠=︒==,,,∴由勾股定理得10AB ==,∵1122ABC S AC BC AB CF =×=×V ,∴245AC BC CF AB ⋅==,∴PC PQ +的最小值为245,故答案为:245.【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,角平分线的定义,正确作出辅助线构造全等三角形从而确定当C P E 、、三点共线且CE AB ⊥时,CP PE +最小,即PC PQ +最小是解题的关键.15.75【分析】根据“在直角三角形中,30°角所对的直角边等于斜边的一半”可得∠A =30°,根据等腰三角形的性质即可求出∠B 的度数.【详解】解:如下图:∵AB =AC ,CD =12AB ,∴CD =12AC ,∵CD ⊥AB ,∴∠CAD =30°,∴∠B =1(18030)752︒-︒=︒,故答案为:75.【点睛】本题主要考查了等腰三角形的性质,掌握“在直角三角形中,30°角所对的直角边等于斜边的一半”是解题的关键.16.6【分析】作出图形,过点A 作AD ⊥BC 于D ,根据直角三角形30°30°角所对的直角边等于斜边的一半可得12AD AB =,然后讨论求解即可.【详解】解:如图,过点A作AD⊥BC于D,∵∠ABC=30°,AB=10,∴AD=5,当AC=4时,不能作出三角形,当AC=5时,可作1个三角形,当AC=7时,可作2个三角形,当AC=9时,可作2个三角形,当AC=11时,可作1个三角形,所以,满足条件的互不全等的三角形共有1+2+2+1=6(个),故答案为:6.【点睛】本题考查了直角三角形30°角所对的直角边等于斜边的一半,难点在于AC的长度大于AD小于AB时可以作2个三角形.17.18【分析】本题要求代数式a3b-2a2b2+ab3的值,而代数式a3b-2a2b2+ab3恰好可以分解为两个已知条件ab,(a-b)的乘积,因此可以运用整体的数学思想来解答.【详解】解:a3b-2a2b2+ab3=ab(a2-2ab+b2)=ab(a-b)2当a-b=3,ab=2时,原式=2×32=18,故答案为:18【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.18.①②③④【分析】先根据三角形内角和计算出∠BAC=60°,再利用基本作图对①进行判断;利用∠BAD=∠CAD=30°得到∠ADC=60°,则可对②进行判断;利用∠B=∠BAD得到DA=DB,根据线段垂直平分线的性质定理的逆定理可对③进行判断;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式即可得出两个三角形的面积之比.【详解】解:由作法得,AD平分∠BAC,故①正确;∵∠C =90°,∠B =30°,∴∠BAC =60°,∴160302BAD CAD ∠=∠=⨯︒=︒,∴9060ADC CAD ∠=︒-∠=︒,故②正确;∵B BAD ∠=∠,∴DA DB =,∴点D 在AB 的垂直平分线上,故③正确;∵在直角△ACD 中,∠CAD =30°,∴12CD AD =,∴1322BC CD BD AD AD =+=+=,1124DAC S AC CD AC AD =⋅=⋅△,∴11332224ABC AC BC AC A D S D AC A ⋅=⋅==⋅ ,∴13:1:344DAC ABC S S AC AD AC AD =⋅⋅= :,∴12DAC ABD S S = ::.故④正确.综上所述,正确的有①②③④.故答案为:①②③④.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时需要熟悉等腰三角形的判定与性质.19.(1)3x <;(2)15x <≤;(3)()()23n m m --;(4)()()2244x x x x --++;(5)22442a ab b -+,13【分析】(1)根据一元一次不等式的解法求出不等式的解集即可;(2)先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集;(3)综合利用提取公因式法和十字相乘法分解因式即可得;(4)先分组为()42816x x x --+,再利用乘法公式分解因式即可得;(5)先利用乘法公式计算整式的乘法,再去括号,计算整式的加减,然后将12a =,2b =-代入计算即可得.【详解】解:(1)3163x x -->,两边同乘以6去分母,得()632x x -->,去括号,得632x x -+>,移项、合并同类项,得39x ->-,两边同除以3-,得3x <,即不等式的解集为3x <;(2)()13321134x x x x ⎧+≥-⎪⎨+-->⎪⎩①②,解不等式①得:5x ≤,解不等式②得:1x >,则不等式组的解集为15x <≤;(3)原式()256n m m =-+()()23n m m =--;(4)原式()42816x x x --=+()()2224x x -=-()()2244x x x x =-+-+;(5)原式()()222224411a ab b a b a ⎡⎤=-+-+-++⎣⎦()()222224411a ab b a b a =-+-++++22442a ab b =-+,将12a =,2b =-代入得:原式()()2211442221322骣琪=�创-+�=琪桫.【点睛】本题考查了解一元一次不等式(组)、因式分解、利用乘法公式进行化简求值,熟练掌握不等式(组)的解法和乘法公式是解题关键.20.(1)2x =,0x >(2)02x <<(3)当1x <时,mx kx b <+;当1x =时,mx kx b =+;当1x >时,mx kx b>+【分析】(1)根据点A 的坐标即可得方程0kx b +=的解,再根据点B 的坐标即可得不等式4kx b +<的解集;(2)根据函数图像分别求出不等式0mx >和0kx b +>的解集,再找出它们的公共部分即可得不等式组的解集;(3)根据点P 的横坐标,分1x <,1x =和1x >三种情况,结合函数图像即可得.【详解】(1)解:由函数图像可知,方程0kx b +=的解为2x =,不等式4kx b +<的解集为0x >,故答案为:2x =,0x >.(2)解:00mx kx b >⎧⎨+>⎩,由函数图像可知,不等式0mx >的解集为0x >,不等式0kx b +>的解集为2x <,则这个不等式组的解集为02x <<,故答案为:02x <<.(3)解:由函数图像可知,当1x <时,mx kx b <+,当1x =时,mx kx b =+,当1x >时,mx kx b >+.【点睛】本题考查了一次函数与方程、不等式,熟练掌握函数图像法是解题关键.21.(1)每本甲种词典的价格为70元,每本乙种词典的价格为50元;(2)学校最多可购买甲种词典5本【分析】(1)设每本甲种词典的价格为x 元,每本乙种词典的价格为y 元,根据“购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设学校购买甲种词典m 本,则购买乙种词典(30-m )本,根据总价=单价×数量结合总费用不超过1600元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设每本甲种词典的价格为x 元,每本乙种词典的价格为y 元,根据题意,得217023290x y x y +=⎧⎨+=⎩解得7050x y =⎧⎨=⎩答:每本甲种词典的价格为70元,每本乙种词典的价格为50元.-本,根据题意,得(2)设学校计划购买甲种词典m本,则购买乙种词典(30)m+-≤m m7050(30)1600m≤解得5答:学校最多可购买甲种词典5本.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.22.(1)证明见解析(2)60°(3)FE+FA=2FD,证明见解析【分析】(1)由等边三角形的性质及线段的垂直平分线的性质证明;(2)利用角之间的相等关系进行等量代换,再根据等边三角形的性质可得出答案;(3)在CF上取N使得FN=FE,利用(2)的结论,证明△EFN是等边三角形,得到∠FEN=∠FNE=60°,EN=EF,再证明△EFA≌△ENC(SAS),得到FA=NC,FE+FA=FN+NC=FC,再利用直角三角形中30°角所对直角边等于斜边的一半得到FC=2FD,结论得证.【详解】(1)解:∵AD为边BC的垂直平分线,∴AB=AC,∵△ACE为等边三角形,∴AC=AE,∴AB=AE,∴∠FEA=∠FBA;(2)解:∵AD为边BC的垂直平分线∴AB=AC,FB=FC,∴∠ABC=∠ACB,∠FBC=∠FCB,∴∠FBC-∠ABC=∠FCB-∠ACB,即∠ABE=∠ACF,∵∠ABE=∠AEF,∴∠AEF=∠ACF,∵∠FME=∠CMA,∴∠EFC=∠CAE,∵等边三角形ACE中,∠CAE=60°,∴∠EFC=60°.(3)解:FE+FA=2FD,证明:在CF上取N使得FN=FE,由(2)得∠EFM=∠CAM=60°,∵FN=FE,∴△EFN是等边三角形,∴∠FEN=∠FNE=60°,EN=EF,∵△ACE为等边三角形,∴∠AEC=60°,EA=EC,∴∠FEN=∠AEC,∴∠FEN-∠MEN=∠AEC-∠MEN,即∠AEF=∠CEN,在△EFA和∠ENC中,EF=EN,∠AEF=∠CEN,EA=EC,∴△EFA≌△ENC(SAS),∴FA=NC,∴FE+FA=FN+NC=FC,∵∠EFC=∠FBC+∠FCB=60°,∠FBC=∠FCB,∴∠FCB=12×60°=30°,∵AD⊥BC,∴∠FDC=90°,∴FC=2FD,∴FE+FA=2FD.【点睛】本题考查了等腰三角形的性质,等边三角形的性质和判定,含30°角的直角三角形的性质,全等三角形的性质和判定的应用及线段的垂直平分线的性质,熟练掌握相关判定和性质是解题的关键.23.(1)购车方案有三种:①轿车3辆,面包车7辆;②轿车4辆,面包车6辆;③轿车5辆,面包车5辆(2)应选择方案三轿车5辆,面包车5辆.【分析】(1)设购买轿车x 辆,购买面包车()10x -辆,利用轿车至少要购买3辆,且投入的购车款不超过55万元列一元一次不等式组,解此不等式组的整数解即可;(2)利用总租金=每辆车的租金⨯数量,即可解答.【详解】(1)解:设购买轿车x 辆,购买面包车()10x -辆,则()741055z x +-≤,解得5x ≤.又∵3x ≥,∴3,4,5x =.∴购车方案有三种:①轿车3辆,面包车7辆;②轿车4辆,面包车6辆;③轿车5辆,面包车5辆.(2)方案一的日租金:3×200+7×110-1370(元),方案二的日租金:4×200+6×110=1460(元),方案三的日租金:5×200+5×110=1550(元),∴为保证日租金不低于1500元,该租赁公司应选择方案三轿车5辆,面包车5辆.【点睛】本题考查一元一次不等式组的应用、求一元一次不等式组的整数解,是基础考点,掌握相关知识是解题关键.。
八年级下册第1次月考试题--数学(含答案) (18)
八年级数学(下册)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或173.下列能判定△ABC为等腰三角形的是()A.∠A=40°、∠B=50°B.∠A=40°、∠B=70°C.AB=AC=3,BC=6 D.AB=3、BC=8,周长为164.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF5.到三角形三条边的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点6.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC 的长为()A.7cm B.10cm C.12cm D.22cm7.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.138.如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC 为等腰三角形,则点C的个数有()A.4个B.6个C.8个D.10个9.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形10.将一张菱形纸片,按下图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是.12.如果等腰三角形的一个角等于80°,则它的顶角等于度.13.如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为.14.如图,在△ABC中,∠C=90°,BD平分∠ABC,若CD=3cm,则点D到AB的距离为cm.15.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=度.16.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为3cm,△OBC的面积cm2.17.如图,∠AOB是一角度为15°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为.18.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.三、解答题(共9大题,满分74分)19.如图,阴影部分是由5个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.20.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,则六边形AA′B′C′CB的面积为.21.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).22.如图,点B、F、C、E在一条直线上,FB=CE,AC=DF,请从下列三个条件:①AB=DE;②∠A=∠D;③∠ACB=∠DFE中选择一个合适的条件,使AB∥ED成立,并给出证明.(1)选择的条件是(填序号);(2)证明:23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.24.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是;(2)若∠BAC=128°,则∠DAE的度数是.25.如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α,D是△ABC外一点,且△BOC≌△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)当α为多少度时,△AOD是直角三角形?(3)当α为多少度时,△AOD是等腰三角形?26.如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=;(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=.(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=.(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.27.如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,在某一时刻也能够使△BPD 与△CPQ全等.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?八年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【考点】等腰三角形的性质;三角形三边关系.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.3.下列能判定△ABC为等腰三角形的是()A.∠A=40°、∠B=50°B.∠A=40°、∠B=70°C.AB=AC=3,BC=6 D.AB=3、BC=8,周长为16【考点】等腰三角形的判定.【分析】根据等腰三角形判定,利用三角形内角定理对4个选项逐一进行分析即可得到答案.【解答】解:解;当顶角为∠A=40°时,∠C=70°≠50°,当顶角为∠B=50°时,∠C=65°≠40°所以A选项错误.当顶角为∠B=70°时,∠A=∠C=40°,当顶角为∠A=40°时,∠B=∠C=70°,所以B选项正确.当AB=AC=3,BC=63+3=6,不能构成三角形,所以C选项错误.当AB=3、BC=8,周长为16,AC=5,所以D选项错误.故选B.4.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF【考点】全等三角形的判定.【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.5.到三角形三条边的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点【考点】角平分线的性质.【分析】根据角的平分线上的点到角的两边的距离相等解答即可.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形三条边的距离相等的点是三角形三条角平分线的交点,故选:A.6.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC 的长为()A.7cm B.10cm C.12cm D.22cm【考点】翻折变换(折叠问题).【分析】首先根据折叠可得AD=BD,再由△ADC的周长为17cm可以得到AD+DC的长,利用等量代换可得BC 的长.【解答】解:根据折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm),∵AD=BD,∴BD+CD=12cm.故选:C.7.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.13【考点】直角三角形斜边上的中线;等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选:C.8.如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC 为等腰三角形,则点C的个数有()A.4个B.6个C.8个D.10个【考点】等腰三角形的判定.【分析】根据AB的长度确定C点的不同位置,由已知条件,利用勾股定理可知AB=,然后即可确定C点的位置.【解答】解:如图,AB==,∴当△ABC为等腰三角形,则点C的个数有8个,故选C.9.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形【考点】全等三角形的判定与性质;等边三角形的性质.【分析】首先根据等边三角形的性质,得出AC=BC,CD=CE,∠ACB=∠ECD=60°,则∠BCE=∠ACD,从而根据SAS证明△BCE≌△ACD,得∠CBE=∠CAD,BE=AD;再由点P与点M分别是线段BE和AD的中点,得BP=AM,根据SAS证明△BCP≌△ACM,得PC=MC,∠BCP=∠ACM,则∠PCM=∠ACB=60°,从而证明该三角形是等边三角形.【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°.∴∠BCE=∠ACD.∴△BCE≌△ACD.∴∠CBE=∠CAD,BE=AD.又点P与点M分别是线段BE和AD的中点,∴BP=AM.∴△BCP≌△ACM.∴PC=MC,∠BCP=∠ACM.∴∠PCM=∠ACB=60°.∴△CPM是等边三角形.故选:C.10.将一张菱形纸片,按下图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.【考点】剪纸问题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个和菱形位置基本一致的正方形,得到结论.故选A.二、填空题(共8小题,每小题3分,满分24分)11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是10:51.【考点】镜面对称.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际时间.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是10:51.故答案为:10:51.12.如果等腰三角形的一个角等于80°,则它的顶角等于80或20.度.【考点】等腰三角形的性质;三角形内角和定理.【分析】当等腰三角形的一个角等于80°时,分2种情况;①当等腰三角形的一个角等于80°时,等腰三角形的顶角与其相等,②当等腰三角形的顶角等于80°,时,利用三角形内角和定理即可求出答案.【解答】解;当等腰三角形的一个角等于80°时,则有2种情况;①当等腰三角形的一个角等于80°时,等腰三角形的顶角等于80°时,②当等腰三角形的顶角等于80°时则它的底角为:=20°故答案为:80或20.13.如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为105°.【考点】轴对称的性质.【分析】根据轴对称的性质先求出∠C等于∠C′,再利用三角形内角和定理即可求出∠B.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠C=∠C′=40°,∴∠B=180°﹣∠A﹣∠C=180°﹣40°﹣35°=105°.故答案为:105°14.如图,在△ABC中,∠C=90°,BD平分∠ABC,若CD=3cm,则点D到AB的距离为3cm.【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DE=CD,从而得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,BD平分∠ABC,∴DE=CD,∵CD=3cm,∴DE=3cm,即点D到AB的距离为3cm.故答案为:3.15.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=30度.【考点】线段垂直平分线的性质.【分析】由AB=AC,∠A=40°,即可推出∠C=∠ABC=70°,由垂直平分线的性质可推出AD=BD,即可推出∠A=∠ABD=40°,根据图形即可求出结果.【解答】解:∵AB=AC,∠A=40°,∴∠C=∠ABC=70°,∵AB的垂直平分线MN交AC于D,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=30°.故答案为30°.16.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为3cm,△OBC的面积18cm2.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据角平分线定义和平行线性质求出∠EOB=∠EBO,∠FCO=∠FOC,根据等腰三角形的判定得出OE=BE,OF=FC,求出BC长,根据三角形的面积公式求出即可.【解答】解:∵∠B与∠C的平分线交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FCO=∠FOC,∴OE=BE,OF=FC,∴EF=BE+CF,∴AE+EF+AF=AB+AC,∵△ABC的周长比△AEF的周长大12cm,∴(AC+BC+AC)﹣(AE+EF+AF)=12,∴BC=12cm,∵O到AB的距离为3cm,∴△OBC的面积是cm×3cm=18cm2.,故答案为:18.17.如图,∠AOB是一角度为15°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为5.【考点】等腰三角形的性质.【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=15°,∴∠GEF=∠FGE=30°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是15°,第二个是30°,第三个是45°,四个是60°,五个是75°,六个是90°就不存在了.所以一共有5个.故答案为518.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.【考点】轴对称-最短路线问题;等腰三角形的性质.【分析】作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据三线合一定理求出BD的长和AD⊥BC,根据勾股定理求出AD,根据三角形面积公式求出CN,根据对称性质求出CF+EF=CM,根据垂线段最短得出CF+EF≥,即可得出答案.【解答】解:作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,∵AB=AC=13,BC=10,AD是BC边上的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,由勾股定理得:AD==12,=×BC×AD=×AB×CN,∴S△ABC∴CN===,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF≥,即CF+EF的最小值是,故答案为:.三、解答题(共9大题,满分74分)19.如图,阴影部分是由5个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.【考点】利用轴对称设计图案.【分析】直接利用轴对称图形的性质结合网格得出符合题意的图形即可.【解答】解:如图所示:.20.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,则六边形AA′B′C′CB的面积为14.【考点】作图-轴对称变换.【分析】(1)先作出各点关于直线MN的对称点,再顺次连接即可;(2)利用矩形的面积减去三角形的面积即可.【解答】解:(1)如图所示;(2)S六边形AA′B′C′CB=3×6﹣×2×1﹣×2×1﹣×2×1﹣×2×1=18﹣1﹣1﹣1﹣1=14.故答案为:14.21.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).【考点】作图—应用与设计作图.【分析】到AB、BC距离相等的点在∠ABC的平分线上,到点A、D的距离相等的点在线段AD的垂直平分线上,AD的中垂线与∠B的平分线的交点即为点P的位置.【解答】解:如图所示:点P即为所求.22.如图,点B、F、C、E在一条直线上,FB=CE,AC=DF,请从下列三个条件:①AB=DE;②∠A=∠D;③∠ACB=∠DFE中选择一个合适的条件,使AB∥ED成立,并给出证明.(1)选择的条件是①(填序号);(2)证明:【考点】全等三角形的判定与性质.【分析】(1)利用全等三角形的判定定理选出合适的条件即可;(2)利用SSS进而判断出全等三角形,得出AB∥ED即可.【解答】解:(1)选择①AB=ED或③∠ACB=∠DFE即可.故答案为:①(答案不唯一);(2)证明:∵FB=CE,∴BC=EF,在△ABC和△EFD中,∴△ABC≌△EFD(SSS),∴∠B=∠E,∴AB∥ED.23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)求出∠E=∠DFC=90°,根据全等三角形的判定定理得出Rt△BED≌Rt△CFD,推出DE=DF,根据角平分线性质得出即可;(2)根据全等三角形的性质得出AE=AF,BE=CF,即可求出答案.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BED≌Rt△CFD,∴AE=AF,CF=BE=4,∵AC=20,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12.24.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是10;(2)若∠BAC=128°,则∠DAE的度数是76°.【考点】线段垂直平分线的性质.【分析】(1)由在△ABC中,边AB、AC的垂直平分线分别交BC于E、F,易得AE=BE,AF=CF,即可得BC=△AEF周长;(2)由∠BAC=128°,可求得∠B+∠C的值,即可得∠BAE+∠CAF的值,继而求得答案.【解答】解:(1)∵在△ABC中,边AB、AC的垂直平分线分别交BC于E、F,∴AE=BE,AF=CF,∵△ADE周长是10,∴BC=BE+EF+CF=AE+EF+AF=10;故答案为:10;(2)∵AE=BE,AF=CF,∴∠B=∠BAE,∠C=∠CAF,∵∠BAC=128°,∴∠B+∠C=180°﹣∠BAC=52°,∴∠BAE+∠CAF=∠B+∠C=52°,∴∠FAE=∠BAC﹣(∠BAE+∠CAF)=76°,故答案为:76°.25.如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α,D是△ABC外一点,且△BOC≌△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)当α为多少度时,△AOD是直角三角形?(3)当α为多少度时,△AOD是等腰三角形?【考点】等边三角形的性质;全等三角形的性质;等腰三角形的判定.【分析】(1)根据全等三角形的性质得到CO=CD,∠BCO=∠ACD,由等边三角形的性质得到∠ACB=60°,求得∠OCD=∠ACB=60°;即可得到结论;(2)根据等边三角形的性质和周角的定义解答即可;(3)分三种情况::①要使AO=AD,需∠AOD=∠ADO,根据周角的定义得到∠ADO=α﹣60°,得到方程190°﹣α=α﹣60°求得α=125°;②要使OA=OD,需∠OAD=∠ADO.由于∠AOD=190°﹣α,∠ADO=α﹣60°,于是得到α﹣60°=50°求得α=110°;③要使OD=AD,需∠OAD=∠AOD.由于190°﹣α=50°于是得到α=140°.【解答】解:(1)△COD是等边三角形,理由如下:∵△BOC≌△ADC,∴CO=CD,∠BCO=∠ACD,∵△ABC是等边三角形,∴∠ACB=60°,∴∠OCD=∠ACB=60°;∴△COD是等边三角形;(2)∵△COD是等边三角形,∴∠COD=60°,∵△AOD是直角三角形,∴∠AOD=90°,∴∠α=360°﹣110°﹣90°﹣60°=100°;(3)①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=360°﹣∠AOB﹣∠COD﹣α=360°﹣100°﹣60°﹣α=200°﹣α,∠ADO=α﹣60°,∴200°﹣α=α﹣60°∴α=130°;②要使OA=OD,需∠OAD=∠ADO.∵∠AOD=200°﹣α,∠ADO=α﹣60°,∴∠OAD=180°﹣(∠AOD+∠ADO)=40°,∴α﹣60°=40°∴α=100°;③要使OD=AD,需∠OAD=∠AOD.∵200°﹣α=40°∴α=160°,当α=150°时,△AOD也是直角三角形.综上所述:当α的度数为130°,或100°,150°或160°时,△AOD是等腰三角形26.如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=;(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=15cm.(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA= 3:1.(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.【考点】含30度角的直角三角形;等腰三角形的性质;等边三角形的性质.【分析】(1)根据三角形内角和定理推知∠A=30,∠C=90°.(2)根据线段垂直平分线的性质知CD=BD,则△ACD的周长等于AC+AB;(3)如图3,连接AD.利用等腰三角形的性质、垂直的定义推知∠B=∠ADE=30°,然后由”30度角所对的直角边是斜边的一半“分别求得BE、AE的值;(4)如图4,根据全等三角形的判定定理SAS可判断两个三角形全等;根据全等三角形的对应角相等,以及三角形外角的性质,可以得到∠PBQ=30°,根据直角三角形的性质即可得到.【解答】解:(1)∵∠A:∠B:∠C=1:2:3,且∠A+∠B+∠C=180°,∴∠A=30,∠C=90°,∴BC=AB=.故填:;(2)如图2,∵DE是线段BC的垂直平分线,∠ACB=90°,∴CD=BD,AD=BD.又∵在△ABC中,∠ACB=90°,∠B=30°,∴AC=AB,∴△ACD的周长=AC+AB=3BD=15cm.故填:15cm;(3)如图3,连接AD.∵在△ABC中,AB=AC,∠A=120°,D是BC的中点,∴∠BAD=60°.又∵DE⊥AB,∴∠B=∠ADE=30°,∴BE=BD,AE=AD,∴BE:EA=BD:AD,又∵BD=AD,∴BE:AE=3:1.故填:3:1.(4)BP=2PQ.理由如下:∵△ABC为等边三角形.∴AB=AC,∠BAC=∠ACB=60°,在△BAE和△ACD中,,∴△BAE≌△ACD(SAS),∴∠ABE=∠CAD.∵∠BPQ为△ABP外角,∴∠BPQ=∠ABE+∠BAD.∴∠BPQ=∠CAD+∠BAD=∠BAC=60°∵BQ⊥AD,∴∠PBQ=30°,∴BP=2PQ.27.如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 1.5cm/s时,在某一时刻也能够使△BPD与△CPQ全等.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?【考点】全等三角形的判定;等腰三角形的性质.【分析】(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P 多走等腰三角形的两个边长.【解答】解:(1)①全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1厘米,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CPQ;②假设△BPD≌△CPQ,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t==2秒,∴vQ===1.5cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得1.5x=x+2×6,解得x=24,∴点P共运动了24×1cm/s=24cm.∵24=16+4+4,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.。
人教版八年级下学期数学第一次月考试卷(含答案)
八年级下学期数学第一次月考试卷满分:150分考试用时:120分钟范围:第十六章《二次根式》~第十七章《勾股定理》班级姓名得分一、选择题(本大题共12小题,每小题4分,共48.0分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目答案标号涂黑、涂满)1.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A. 0.7米B. 1.5米C. 2.2米D. 2.4米2.实数a,b在数轴上对应点的位置如图所示,且|a|>|b|,则化简√a2+|a+b|的结果为()A. 2a+bB. −2a−bC. bD. 2a−b3.若式子√x−1在实数范围内有意义,则x的取值范围是()x−2A. x≥1且x≠2B. x≤1C. x>1且x≠2D. x<14.关于√8的叙述正确的是()A. 在数轴上不存在表示√8的点B. √8=√2+√6C. √8=±2√2D. 与√8最接近的整数是35.已知△ABC中,∠C=90°,若a+b=14cm,c=10cm,则△ABC的面积是().A. 24cm2B. 36cm2C. 48cm2D. 60cm26.如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好能与点C重合.若BC=5,AC=6,则BD的长为()A. 1B. 2C. 3D. 47.若a=√7+√6,b=√7−√6,则a2021⋅b2022的值等于()A. √7−√6B. √6−√7C. 1D. −18.若√45n是整数,则正整数n的最小值是().A. 4B. 5C. 6D. 79.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)()A. 12mB. 13mC. 16mD. 17m10.如图,字母B所代表的正方形的面积是()A. 12cm2B. 15cm2C. 144cm2D. 306cm211.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三、股四、则弦五”的记载。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.下列计算正确的是()A.×=B.+=C.=4D.﹣=2.如果是任意实数,下列各式中一定有意义的是()A.B. C.D.3.下列各组线段中,不能构成直角三角形的是()A.2、1、B.5、5、5C.6、8、9 D.3k、4k、5k(k>0)4.下列的式子一定是二次根式的是()A.B.C.D.5.若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.26.下列二次根式中属于最简二次根式的是()A. B. C.D.7.下列命题:①如果a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是()A.①②B.①③C.①④D.②④8.小明的作业本上有以下四题:①②③;④.做错的题是()A.①B.②C.③D.④9.把根号外的因式移入根号内得()A.B.C.D.10.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移()A.0.6米B.0.7米C.0.8米D.0.9米二.填空题(每题3分)11.若式子有意义,则x的取值范围是.12.若一直角三角形的两边长为4、5,则第三边的长为.13.已知是整数,则满足条件的最小正整数n为.14.若不是二次根式,则x的取值范围是.15.一个直角三角形的三边长的平方和为200,则斜边长为.16.如图所示,四边形OABC为正方形,边长为6,点A、C分别在x轴,y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上的一个动点,试求PD+PA和的最小值是.17.该试题已被管理员删除18.若|a﹣b+1|与互为相反数,则(a﹣b)2005=.三、计算(共66分)19.(1)(+)2(2)(3)(4).20.已知:a+=1+,求的值.21.若x,y是实数,且,求的值.22.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,求AE的长为多少?23.如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.24.如图,已知长方体的长为AC=2cm,宽BC=1cm,高AA′=4.一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近?最短路程是多少?河南省漯河市八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列计算正确的是()A.×=B.+=C.=4D.﹣=【考点】二次根式的混合运算.【分析】分别利用二次根式的乘法运算法则以及二次根式的加减运算法则化简分析得出即可.【解答】解:A、×=,正确;B、+无法计算,故此选项错误;C、=2,故此选项错误;D、﹣=2﹣,故此选项错误;故选:A.2.如果是任意实数,下列各式中一定有意义的是()A.B. C.D.【考点】二次根式有意义的条件.【分析】根据被开方数非负数和平方数非负数的性质对各选项分析判断利用排除法求解.【解答】解:A、a<0时,无意义,故本选项错误;B、a=0时,分母等于0,无意义,故本选项错误;C、a2+1≥1,所以,对全体实数都有意义,故本选项正确;D、只有a=0时有意义,故本选项错误.故选C.3.下列各组线段中,不能构成直角三角形的是()A.2、1、B.5、5、5C.6、8、9 D.3k、4k、5k(k>0)【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+()2=22,故是直角三角形,故正确;B、52+52=(5)2,故是直角三角形,故正确;C、62+82≠92,故不是直角三角形,故错误;D、(3k)2+(4k)2=(5k)2,故是直角三角形,故正确.故选C.4.下列的式子一定是二次根式的是()A.B.C.D.【考点】二次根式的定义.【分析】根据二次根式的被开方数是非负数对每个选项做判断即可.【解答】解:A、当x=0时,﹣x﹣2<0,无意义,故本选项错误;B、当x=﹣1时,无意义;故本选项错误;C、∵x2+2≥2,∴符合二次根式的定义;故本选项正确;D、当x=±1时,x2﹣2=﹣1<0,无意义;故本选项错误;故选:C.5.若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.2【考点】二次根式的性质与化简.【分析】根据二次根式的意义化简.【解答】解:若x<0,则=﹣x,∴===2,故选D.6.下列二次根式中属于最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.7.下列命题:①如果a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是()A.①②B.①③C.①④D.②④【考点】勾股定理的逆定理;勾股数.【分析】本题主要依据勾股定理的逆定理,判定三角形是否为直角三角形.【解答】解:①正确,∵a2+b2=c2,∴(4a)2+(4b)2=(4c)2,②错误,应为“如果直角三角形的两直角边是3,4,那么斜边必是5”③错误,∵122+212≠252,∴不是直角三角形;④正确,∵b=c,c2+b2=2b2=a2,∴a2:b2:c2=2:1:1,故选C.8.小明的作业本上有以下四题:①②③;④.做错的题是()A.①B.②C.③D.④【考点】算术平方根.【分析】①②③④分别利用二次根式的性质及其运算法则计算即可判定.【解答】解:①和②是正确的;在③中,由式子可判断a>0,从而③正确;在④中,左边两个不是同类二次根式,不能合并,故错误.故选D.9.把根号外的因式移入根号内得()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的性质及二次根式成立的条件解答.【解答】解:∵成立,∴﹣>0,即m<0,原式=﹣=﹣.故选:D.10.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移()A.0.6米B.0.7米C.0.8米D.0.9米【考点】勾股定理的应用.【分析】在本题中,运用两次勾股定理,即分别求出AC和B′C,求二者之差即可解答.【解答】解:在直角三角形ABC中,首先根据勾股定理求得AC=2.4,则A′C=2.4﹣0.4=2,在直角三角形A′B′C中,根据勾股定理求得B′C=1.5,所以B′B=1.5﹣0.7=0.8,故选C.二.填空题(每题3分)11.若式子有意义,则x的取值范围是x≥﹣1且x≠0.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式及分式有意义的条件解答即可.【解答】解:根据二次根式的性质可知:x+1≥0,即x≥﹣1,又因为分式的分母不能为0,所以x的取值范围是x≥﹣1且x≠0.12.若一直角三角形的两边长为4、5,则第三边的长为和3.【考点】勾股定理.【分析】考虑两种情况:4和5都是直角边或5是斜边.根据勾股定理进行求解.【解答】解:当4和5都是直角边时,则第三边是=;当5是斜边时,则第三边是3.故答案为:和3.13.已知是整数,则满足条件的最小正整数n为5.【考点】二次根式的定义.【分析】因为是整数,且==2,则5n是完全平方数,满足条件的最小正整数n为5.【解答】解:∵==2,且是整数;∴2是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为:5.14.若不是二次根式,则x的取值范围是x<5.【考点】二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数小于0,即可求解.【解答】解:根据题意得:x﹣5<0,解得:x<5.故答案是:x<5.15.一个直角三角形的三边长的平方和为200,则斜边长为10.【考点】勾股定理.【分析】直接利用直角三角形的性质得出斜边长的平方为100,进而得出答案.【解答】解:∵一个直角三角形的三边长的平方和为200,∴斜边长的平方为100,则斜边长为:10.故答案为:10.16.如图所示,四边形OABC为正方形,边长为6,点A、C分别在x轴,y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上的一个动点,试求PD+PA和的最小值是2.【考点】轴对称-最短路线问题;坐标与图形性质;正方形的性质.【分析】作出D关于OB的对称点D′,则D′的坐标是(0,2).则PD+PA的最小值就是AD′的长,利用勾股定理即可求解.【解答】解:作出D关于OB的对称点D′,则D′的坐标是(0,2).则PD+PA的最小值就是AD′的长.则OD′=2,因而AD′===2.则PD+PA和的最小值是2.故答案是:2.17.该试题已被管理员删除18.若|a﹣b+1|与互为相反数,则(a﹣b)2005=﹣1.【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据互为相反数两数之和为0列出等式,利用非负数的性质求出a与b的值,即可确定出所求式子的值.【解答】解:根据题意得:|a﹣b+1|+=0,∴,解得:,则(a﹣b)2005=(﹣1)2005=﹣1.故答案为:﹣1三、计算(共66分)19.(1)(+)2(2)(3)(4).【考点】二次根式的混合运算;负整数指数幂.【分析】(1)根据完全平方公式将原式展开,然后再合并同类项即可解答本题;(2)先将原式化简再合并同类项即可解答本题;(3)先将原式化简再合并同类项即可解答本题;(4)先将原式化简在相乘约分即可.【解答】解:(1)(+)2==3++6=9+;(2)==;(3)===;(4)==﹣=﹣45.20.已知:a+=1+,求的值.【考点】二次根式的化简求值.【分析】把a+=1+的两边分别平方,进一步整理得出的值即可.【解答】解:∵a+=1+,∴(a+)2=(1+)2,∴+2=11+2,∴=9+2.21.若x,y是实数,且,求的值.【考点】二次根式有意义的条件;代数式求值.【分析】首先根据二次根式的定义即可确定x的值,进而求出y的取值范围,再根据绝对值的性质即可得出的值.【解答】解:根据题意,x﹣1与1﹣x互为相反数,则x=1,故y<,所以==﹣1.故的值为﹣1.22.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,求AE的长为多少?【考点】翻折变换(折叠问题).【分析】首先利用勾股定理计算出BD的长,再根据折叠可得AD=A′D=5,进而得到A′B 的长,再设AE=x,则A′E=x,BE=12﹣x,再在Rt△A′EB中利用勾股定理可得方程:(12﹣x)2=x2+82,解出x的值,可得答案.【解答】解:∵AB=12,BC=5,∴AD=5,∴BD==13,根据折叠可得:AD=A′D=5,∴A′B=13﹣5=8,设AE=x,则A′E=x,BE=12﹣x,在Rt△A′EB中:(12﹣x)2=x2+82,解得:x=.故AE的长为.23.如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.【考点】等腰三角形的性质;勾股定理.【分析】由于等腰三角形中底边上的高平分底边,故周长的一半为AB与BD的和,可设出未知数,利用勾股定理建立方程求解.【解答】解:设BD=x,则AB=8﹣x由勾股定理,可以得到AB2=BD2+AD2,也就是(8﹣x)2=x2+42,∴x=3,∴AB=AC=5,BC=6.24.如图,已知长方体的长为AC=2cm,宽BC=1cm,高AA′=4.一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近?最短路程是多少?【考点】平面展开-最短路径问题.【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将正方体展开,然后利用两点之间线段最短解答.【解答】解:如图:根据题意,如上图所示,最短路径有以下三种情况:(1)沿AA′,A′C′,C′B′,B′B剪开,得图(1)AB′2=AB2+BB′2=(2+1)2+42=25;(2)沿AC,CC′,C′B′,B′D′,D′A′,A′A剪开,得图(2)AB′2=AC2+B′C2=22+(4+1)2=4+25=29;(3)沿AD,DD′,B′D′,C′B′,C′A′,AA′剪开,得图(3)AB′2=AD2+B′D2=12+(4+2)2=1+36=37;综上所述,最短路径应为(1)所示,所以AB′2=25,即AB′=5cm.2016年4月19日。