一元线性回归基本操作

合集下载

用eviews进行一元线性回归分析

用eviews进行一元线性回归分析

用eviews进行一元线性回归分析LT目录一、引言 (1)(一)研究背景 (1)(二)研究意义 (1)二、研究综述 (2)(一)模型设定 (2)1.定义变量 (2)2.数据来源 (2)(二)作散点图 (3)三、估计参数 (4)(一)操作步骤 (4)(二)回归结果 (4)四、模型检验 (5)(一)经济意义检验 (5)(二)拟合优度和统计检验 (5)(三)回归预测 (5)五、结论 (5)参考文献: (6)一元回归分析居民收入与支出的关系一、引言(一)研究背景随着近年来我国成为世界第二大经济体,居民的高生活水平也日益显著。

我国人口正在高速城镇化,2011年中国大陆城镇人口为69079万人,城镇人口占总人口比重达到51.27%。

因此城镇居民作为消费主体,研究城镇居民人均可支配收入以及人均可支配消费性支出之间的关系,可以有效的了解到我国各地区的人民生活水平以及经济状况,因此能更好的的带动我国GDP的飙升,改善居民的生活水平。

(二)研究意义居民消费在社会经济的持续发展中有着重要的作用。

居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这要是人民生活水平的具体体现。

改革开饭以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。

但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。

例如,2007年的城市居民家庭平均每人每年消费支出,最高的是上海市达人均20667.91元,最低的则是新疆,人均只有8871.27元,上海是新疆的2.33倍。

为了研究全国居民消费水平及其变动的原因,需要做具体的分析。

影响各地区居民消费指出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售业物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。

为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。

论述一元线性回归的基本步骤

论述一元线性回归的基本步骤

论述一元线性回归的基本步骤
一元线性回归是一种统计学方法,用来描述两个变量之间的线性关系,并建立相应的回归模型。

基本的步骤包括:
(1)确定数据源和变量:从数据源中收集相关的数据,并确定要进行研究的变量:x代表自变量,y代表因变量。

(2)进行各种统计分析:绘制散点图或残差图,用于可视化数据并判断是否存在线性关系;同时,计算出x与y之间的相关系数,试图发现x与y 之间的关联,以确定是否存在线性回归关系。

(3)拟合线性模型:使用常见的最小二乘法方法根据已有数据估计线性模型,即拟合误差平方和最小化的拟合直线,从而得到线性回归模型。

(4)检验线性模型:检验线性模型的有效性是至关重要的一步,可以检验残差图的正态分布假设、小概率假设和模型假设,可以构建R2、F值、AIC和BIC等指标,以进一步确定模型的有效性。

(5)预测新数据:如果经过上述模型检验发现线性模型是有效的,则可以用该模型预测新数据的结果。

总的来说,一元线性回归的基本步骤主要是确定数据源和变量,进行各种统计分析,拟合线性模型,检验模型的有效性,最后利用模型预测新的数据。

第3章 一元线性回归分析

第3章 一元线性回归分析

3.7 假设条件的放松
3.7.1 假设条件的放松(一)—非正态 分布误差项
• 放松了假设4后,与之相关的结论10和12 不再成立,t-检验、F-检验不再成立。 • 大样本情况下,t-统计量近似服从标准正态 分布,因此可以用标准正态分布临界值进 行判断。 • 去掉假设4不影响OLS估计的一致性、无偏 性和渐近正态性。
1
s ˆ
1
t-检验的涵义:估计参数的绝对值足够大或者 标准误很小(标准误小则随机性小,估计越精 确) 样本量较大时 (n>35),t分布接近正态分布, 5%置信水平下临界值接近2,因此常用统计量 是否大于2作为判断系数显著与否的标准。
3.5 拟合优度 R 和模型检验(F检验)
检验 X 和 Y 之间是否 具有线性关系:看 Y 的变化能被 X 的变化解释多少。 总平方和(total sum squared):
一元线性回归分析
3.6 用EViews7.2进行一元线性回归 3.7 假设条件的放松
3.7.1 假设条件的放松(一)—非正态分布误差 项 3.7.2 假设条件的放松(二)—异方差 3.7.3 假设条件的放松(三)—非随机抽样和序 列相关 3.7.4 假设条件的放松(四)—内生性 3.7.5 总结
重要概念
第3章
一元线性回归分析
一元线性回归分析
3.1 一元线性回归模型 3.2 一元线性回归模型参数估计
3.2.1 回归系数估计 3.2.2 误差的估计—残差 ˆ 和 ˆ 的分布 3.2.3 0 1
3.3 更多假设下OLS估计量性质 3.4 回归系数检验(t-检验) 2 R 3.5 拟合优度 和模型检验(F检验)
2
3.5 拟合优度 R 和模型检验(F检验)
不带常数项的模型其相应的TSS和ESS为:

一元线性回归

一元线性回归

《土地利用规划学》一元线性回归分析学院:资源与环境学院班级:2013009姓名:x学号:201300926指导老师:x目录一、根据数据绘制散点图: (1)二、用最小二乘法确定回归直线方程的参数: (1)1)最小二乘法原理 (1)2)求回归直线方程的步骤 (3)三、回归模型的检验: (4)1)拟合优度检验(R2): (4)2)相关系数显著性检验: (5)3)回归方程的显著性检验(F 检验) (6)四、用excel进行回归分析 (7)五、总结 (15)一、根据数据绘制散点图:◎由上述数据,以销售额为y 轴(因变量),广告支出为X 轴(自变量)在EXCEL 可以绘制散点图如下图:◎从散点图的形态来看,广告支出与销售额之间似乎存在正的线性相关关系。

大致分布在某条直线附近。

所以假设回归方程为:x y βα+=二、用最小二乘法确定回归直线方程的参数: 1)最小二乘法原理年份 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 广告支出(万元)x 4.00 7.00 9.00 12.00 14.00 17.00 20.00 22.00 25.00 27.00销售额y7.00 12.00 17.00 20.00 23.00 26.00 29.00 32.00 35.00 40.00最小二乘法原理可以从一组测定的数据中寻求变量之间的依赖关系,这种函数关系称为经验公式。

考虑函数y=ax+b ,其中a,b 为待定常数。

如果Pi(xi,yi)(i=1,2,...,n )在一条直线上,则可以认为变量之间的关系为y=ax+b 。

但一般说来, 这些点不可能在同一直线上. 记Ei=yi-(axi+b),它反映了用直线y=ax+b 来描述x=xi ,y=yi 时,计算值y 与实际值yi 的偏差。

当然,要求偏差越小越好,但由于Ei 可正可负,所以不能认为当∑Ei=0时,函数y=ax+b 就好好地反应了变量之间的关系,因为可能每个偏差的绝对值都很大。

一元线性回归法 excle操作

一元线性回归法   excle操作

实验结果:实验一:一元线性回归在Excel中的实现一、实验过程描述1.录入数据打开EXCLE,录入实验数据,B列存放居民货币收入,C列存放居民消费品购买力,如下图所示:2.绘制散点图点击插入——图表——散点图——下一步,选择数据区域如下图:定义表名为消费能力表、X轴为收入、Y轴为购买力,形成生散点图:根据散点图可知,题中两个条件之间存在着线性关系,根据散点图可建立一次回归模型。

3.所需数据的计算一元线性回归系数的计算中,需要用到∑x、∑y、∑2x、∑2y及∑xy 的值,因此按下列步骤求出这些值。

在D2单元格中输入“=B2*B2”,下拉求出所有的值。

同上,在E2单元格中输入”=C2*C2”,在F2单元格中输入“=B2*C2”,依次下拉,得到所有值。

结果如下表所示:在B11单元格中输入“=SUM(B2:B10)”,依次右拉,求出各列的和∑x 、∑y 、∑2x 、∑2y 及∑xy ,依次存在B11,C11,D11,E11,F11.如下图所示:4. 一元线性回归系数的计算:根据系数公式x b y a x x n y x xy n b 22-=--=∑∑∑∑∑)(,在EXCLE 表格中进行计算如下: 在I2单元格中输入一元线性回归系数b 的公式“=(9*F11-B11*C11)/(9*D11-B11*B11)”,在I3单元格中输入系数a 的公式 “ =C11/9-I2*(B11/9)”结果如下图所示:由此得出回归方程:Y=-0.99464X+0.847206二、实验结果分析在进行线性回归分析之前,首先必须依据一定的经济理论、专业知识,对变量间是否存在一定的相关性进行分析。

本题中,应根据实际经验,确定居民货币收入为自变量,居民消费品购买力为因变量。

再次要绘制散点图,观察数据信息是否符合线性要求,在完成上述准备工作后,才能进行线性回归方程的计算。

一元线性回归

一元线性回归

i
x )Yi
l xx
,
3
一元回归方程检验
⑴ F检验法:
当H0为真时,
SSE
SSE

2
2
~ 2 ( n 2),
2

~ (1);
且SSR与SSE相互独立;因此,当H0为真时,
SSR F ~ F (1, n 2), SSE ( n 2)
当F≥F1-α(1,n-2)时应该放弃原假设H0。
Y0的观测值y0的点预测是无偏的。
⑵ 当x=x0时,用适合不等式P{Y0∈(G,H)}≥ 1-α的统计量G和H所确定的随机区间(G,H) 预测Y0的取值范围称为区间预测,而(G,H)称 为Y0的1-α预测区间。 若Y与样本中的各Y相互独立,则根据 Z=Y0-(a+bx0)服从正态分布,E(Z)=0, 2 1 ( x0 x ) 2 D( Z ) (1 ), n l xx SSE 及 2 ~ 2 ( n 2), Z与SSE相互独立,
Q 2 ˆ 是 的无偏估计。 n2
2
2. 总体中未知参数的估计 根据最小二乘法的要求由
Q Q 0, 0, 得 a b
n
2 [ y i (a bx i )] 0, i 1 n 2 [ y i (a bx i )] x i 0, i 1
(2)t检验法:
b ~ N ( ,

2
l xx
),
SSE

2
~ 2 (n 2),
当H0为真时,
l xx t b ~ T (n 2), SSE (n 2)
当|t|≥t1-0.5α(n-2)时应该放弃原假设H0。
根据x与Y的观测值的相关系数 (3)r检验法:

stata软件基本操作和简单的一元线性回归

stata软件基本操作和简单的一元线性回归

16
回归结果的提供和分析
Page 17
回归结果提供的两种格式
ˆ 3.805 0.4845 X Y (1.79) (14.96) ˆ 3.805 0.4845 X Y
se: (2.12) (0.03)
R 2 0.9655 注:括号内数字为t检验值 R 2 0.9655 注:括号内数字为标准误(se)
(2)拟合优度检验、t检验和F检验
P值为0.000,在任何显著性水平下,斜率项和截距项显然不为 零,拒绝两系数为零的假设。另外,拟合优度R方表明,食品 支出的97.5%的变化也以由收入X的变化来解释,因此拟合情 况较好。 如果需要查看残差值e,输入scatter e即可,list e可以列出所 有ei值,scatter e X可以看ei残差图
Stata基本操作及 简单的线性回归 邬龙
一、 Stata软件介绍
Stata是世界著名的统计分析软件之一。 Stata 是一套提供其使用者数据分析、数据管理以 及绘制专业图表的完整及整合性统计软件。它提供 许许多多功能,包含线性混合模型、均衡重复反复 及多项式普罗比模式。用Stata绘制的统计图形相当 精美。 Stata的统计功能很强,除了传统的统计分析方法外, 还收集了近20 年发展起来的新方法,如 Cox 比例风 险回归,指数与Weibull回归,多类结果与有序结果 的logistic回归,Poisson回归,负二项回归及广义负 二项回归,随机效应模型等。
分析命令在这里输入
4
查看历史命令
数据读入和保存(从Excel)
1. 点击data editor(edit)图标进入数据编辑器 2. 复制数据(连同第一行表头),在数据编辑器里 粘贴 3. 弹出提示,询问第一行是否要当成变量名称(表 头),选左边为是,选第二个为否 4. 点击保存,存为xxx.dta文件,便于以后使用

线性回归分析

线性回归分析

一元线性回归分析1.理论回归分析是通过试验和观测来寻找变量之间关系的一种统计分析方法。

主要目的在于了解自变量与因变量之间的数量关系。

采用普通最小二乘法进行回归系数的探索,对于一元线性回归模型,设(X1,Y1),(X2,Y2),…,(X n,Y n)是取至总体(X,Y)的一组样本。

对于平面中的这n个点,可以使用无数条曲线来拟合。

要求样本回归函数尽可能好地拟合这组值。

综合起来看,这条直线处于样本数据的中心位置最合理。

由此得回归方程:y=β0+β1x+ε其中Y为因变量,X为解释变量(即自变量),ε为随机扰动项,β0,β1为标准化的偏斜率系数,也叫做回归系数。

ε需要满足以下4个条件:1.数据满足近似正态性:服从正态分布的随机变量。

2.无偏态性:∑(εi)=03.同方差齐性:所有的εi 的方差相同,同时也说明εi与自变量、因变量之间都是相互独立的。

4.独立性:εi 之间相互独立,且满足COV(εi,εj)=0(i≠j)。

最小二乘法的原则是以“残差平方和最小”确定直线位置。

用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。

最常用的是普通最小二乘法(OLS):所选择的回归模型应该使所有观察值的残差平方和达到最小。

线性回归分析根据已有样本的观测值,寻求β0,β1的合理估计值^β0,^β1,对样本中的每个x i,由一元线性回归方程可以确定一个关于y i的估计值^y i=^β0+^β1x i,称为Y关于x的线性回归方程或者经验回归公式。

^β0=y-x^β1,^β1=L xy/L xx,其中L xx=J12−x2,L xy=J1−xy,x=1J1 ,y=1J1 。

再通过回归方程的检验:首先计算SST=SSR+SSE=J1^y−y 2+J1−^y2。

其中SST为总体平方和,代表原始数据所反映的总偏差大小;SSR为回归平方和(可解释误差),由自变量引起的偏差,放映X的重要程度;SSE为剩余平方和(不可解释误差),由试验误差以及其他未加控制因子引起的偏差,放映了试验误差及其他随机因素对试验结果的影响。

实验课课件eviews基本操作与一元线性回归

实验课课件eviews基本操作与一元线性回归
实验课课件eviews基 本操作与一元线性回归
目录
• EViews软件介绍 • EViews基本操作 • 一元线性回归模型 • EViews中进行一元线性回归分析 • 实验结果分析 • 实验总结与展望
EViews软件介绍
01
软件特点
强大的数据处理能力
EViews提供了丰富的数据处理 功能,包括数据导入、清洗、
数据转换
根据需要,可以对数据进 行转换,如对数转换、标 准化等,以适应回归分析 的要求。
建立一元线性回归模型
设定模型
选择一元线性回归模型,并确定 自变量和因变量。
模型诊断
在建立模型之前,需要进行必要的 诊断,如残差图、散点图等,以确 定是否满足线性回归的前提假设。
模型参数估计
使用最小二乘法或其他估计方法, 对模型参数进行估计。
02
输入数据时,需要确保数据的格 式和单位与实际相符,并注意数 据的完整性和准确性。
生成序列
在EViews中,可以通过多种方式生 成序列,如通过数学公式、通过已有 的序列运算、通过其他软件的数据转 换等。
生成序列时,需要确保生成的序列与 实际需求相符,并注意序列的命名和 格式。
数据的图形化表示
在EViews中,可以通过多种方式将数据图形化表示,如绘制散点图、折线图、柱 状图等。
转换和统计分析等。
多种回归分析方法
EViews支持多种回归分析方法 ,如最小二乘法、广义最小二 乘法、最大似然估计法等。
图形化界面
EViews采用图形化界面,操作 简单直观,方便用户进行数据 分析。
灵活的自定义功能
EViews支持用户自定义函数和 程序,扩展性良好。
软件界面
01
02

第十三章 一元线性回归

第十三章 一元线性回归


变量之间存在关系的两种类型: 确定性关系(函数关系) 不确定性关系(相关关系)
函数关系
1.
2.
3.
是一一对应的确定关系:一 个(或多个)确定的自变量 的值对应一个确定的因变量 的值。 y 设有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完 全依赖于 x ,当变量 x 取某 个数值时, y 依确定的关系 取相应的值,则称 y 是 x 的 函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量 x 各观测点落在一条线上
l xy = ( x x)( y y ) = xy N x y

则:a = y b x
b = l xy / l xx
步骤:1、由变量x求 x来自l xx (自方差) 2、由变量y求 y,l yy 3、由x、y求l xy (协方差) 4、求a、b ˆ 5、写出方程:y = a + bx

【例】有15个学生,数学和物理成绩列于表内, 现想求一个物理成绩对数学成绩的一元回归方 程。
23 8 40 19 60 69 21 66 15 46 26 32 30 58 28 22 23 33 41 57 7 57 37 68 27 41 20 30
数学(x) 31 物理(y) 32

解:
1.
2.
3.
相关分析中,变量 x 变量 y 处于平等的地位;回 归分析中,变量 y 称为因变量,处在被解释的地 位,x 称为自变量,用于预测因变量的变化 相关分析中所涉及的变量 x 和 y 都是随机变量; 回归分析中,因变量 y 是随机变量,自变量 x 可 以是随机变量,也可以是非随机的确定变量 相关分析主要是描述两个变量之间线性关系的密 切程度;回归分析不仅可以揭示变量 x 对变量 y 的影响大小,还可以由回归方程进行预测和控制

一元线性回归分析的作用方法步骤

一元线性回归分析的作用方法步骤

一元线性回归分析的作用方法步骤一元线性回归分析是一种用来探究两个变量之间关系的统计方法。

它基于一个假设,即两个变量之间存在线性关系。

以下是一元线性回归分析的一般步骤:1. 数据收集:首先,需要收集所需的数据。

需要考虑收集的数据是否与研究目的相关,并确保数据的准确性和完整性。

2. 变量定义:定义自变量和因变量。

自变量是用来预测因变量的变量,而因变量是我们想要预测或解释的变量。

3. 数据探索:进行数据探索,包括数据的描述性统计和绘图。

这一步可以帮助我们了解数据的分布、异常值和离群点。

4. 模型选择:选择适当的线性模型。

这可以通过查看散点图、相关性分析和领域知识来完成。

通常,一个线性模型可以用以下方程表示:Y = β0 + β1X + ε,其中Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。

5. 模型估计:使用最小二乘法来估计回归系数。

最小二乘法的目标是找到最佳拟合直线,使得预测值与实际值之间的残差平方和最小化。

6. 模型评估:评估模型的拟合优度。

常用的指标包括R平方值和调整R平方值。

R平方值介于0和1之间,表示因变量变异性的百分比可以由自变量解释。

调整R平方值是对R平方值的修正,考虑了自变量的数量和样本量。

7. 模型解释:根据回归系数的估计值,解释自变量对因变量的影响。

根据回归系数的正负和大小,可以确定变量之间的关系是正向还是负向,并量化这种关系的强度。

8. 结果验证:验证模型的有效性和稳健性。

这可以通过对新数据集的预测进行测试,或使用交叉验证的方法来完成。

9. 结果解释:对模型结果进行解释,提供有关回归系数的结论,并解释模型对现实世界问题的意义。

总结来说,一元线性回归分析的方法步骤包括数据收集、变量定义、数据探索、模型选择、模型估计、模型评估、模型解释、结果验证和结果解释。

它们相互关联,构成了一元线性回归分析的完整过程。

第二章 一元线性回归

第二章 一元线性回归

总体分布的正态性检验一般采取Jarque-Bera检验。正
态分布的偏度(三阶矩)S=0,峰度(四阶矩)K=3,若样
本来自正态总体,则他们分别在0,3附近。基于此构造一
个包含x2(卡方)统计量:
n为样本容量,k为自由度.
Jarque和Bera证明了在正态性假定下,如果J-B统计量
的相伴概率值小于设定的概率水平,则拒绝原假设,不认
很好地解释了Y;否则,X不能很好地解释Y。
(c)自由度的分解
总自由度: dfT=n-1 回归自由度:dfE=k=1( k为自变量的个数) 残差自由度:dfR=n-k-1=n-2 自由度分解:dfT=dfR+dfE

1 n
xi
x
uˆi

xi x uˆi xi uˆi x uˆi
xi uˆi x uˆi xi uˆi x 0 由(2)式 xi uˆi 0
covx,uˆ 0
估计残差与拟合值不相关
covyˆ,uˆ
1

yˆ uˆ
n
yˆ yˆ uˆ yˆuˆ yˆuˆ
p value P(| T || t |) P(| T |1.85) 2P(T 1.85) 0.0718
面积=0.9282
面积=0.0359
面积=0.0359
-1.85
1.85
以上p值意味着,如果虚拟假设正确,那么我们约有 7.2%次观察到t统计量的绝对值至少和1.85一样大。可以 看出, p值越小,对应的统计量值t应该越大,越可能拒 绝H0。
同样地,容易得出
E(ˆ0 ) E(0 wi i ) E(0 ) wi E(i ) 0
(3)有效性(最小方差性,即在所有线性无偏估 计量中,最小二乘估计量 aˆ, bˆ具有最小方差

用excel进行一元线性回归分析

用excel进行一元线性回归分析

用excel进行一元线性回归分析在Excel中进行一元线性回归分析可以遵循以下步骤:1.打开Excel并输入你的数据。

在A列和B列分别输入x和y的值。

例如,如果你在研究体重(x)和血压(y)的关系,你的数据可能会像这样:A列是体重,B列是血压。

2.在Excel中打开“数据”菜单,然后选择“数据分析”工具。

如果你没有看到这个选项,那么可能需要先在“文件”>“选项”>“加载项”中启用它。

3.在“数据分析”工具中,选择“回归”选项。

这会打开一个新的对话框,其中包含几个选项。

4.在“回归”对话框中,你将看到几个选项。

在“Y值输入区域”中,选择你的y值(在上面的例子中是B列)。

在“X值输入区域”中,选择你的x值(在上面的例子中是A列)。

确保勾选“标志”选项,这样你的模型就会包括截距项。

5.点击“确定”按钮。

Excel会在C列和D列中输出回归结果。

C列包含回归系数,D列包含标准误差和R平方等统计信息。

6.解读结果。

如果回归系数(C列)的P值小于你选择的显著性水平(如0.05),那么你就可以认为这个因素是显著的。

R平方值越接近1,说明模型的解释力度越高。

以上就是在Excel中进行一元线性回归分析的基本步骤。

需要注意的是,虽然Excel提供了一个方便的工具来做这个分析,但是它并不能提供高级的统计测试或者复杂的模型。

如果你需要更复杂的分析,可能需要使用专门的统计软件,如SPSS、SAS或R等。

在进行回归分析时,还要注意几个关键点。

首先,你需要确保你的数据满足线性回归的假设,包括误差的正态性和独立性、线性关系以及合理的异方差性等。

其次,如果你的样本量很小,那么你可能需要更谨慎地解释结果,因为小样本可能会导致较大的误差和偏差。

最后,记住回归分析只能告诉你变量之间的关系,并不能告诉你因果关系。

例如,体重可能和血压有关系,但并不意味着体重是导致血压升高的原因。

在进行回归分析时,还可以使用一些额外的工具和技巧来改进你的分析。

第一元线性回归PPT实用课件

第一元线性回归PPT实用课件
间没有任何关系 人们发现它的应用很广,而不仅限于从一代到下一代豌豆大小问题
函数,记为 y = f (x),其中 x 在【Prediction interval】下选中【Mean】和【Individual】(输出置信区间和预测区间) 称为自变量,y 称为因变量
3. 各观测点落在一条线上
x
相关关系
第 9 章 一元线性回归
9.1 变量间的关系
变量间是什么样的关系? 用散点图描述相关关系 用相关系数度量关系强度
怎样分析变量间的关系?
建立回归模型时,首先需要弄清楚变量之 间的关系。分析变量之间的关系需要解决 下面的问题
变量之间是否存在关系? 如果存在,它们之间是什么样的关系? 变量之间的关系强度如何? 样本所反映的变量之间的关系能否代表总体
变量之间的关系?
9.1 变量间的关系
变量间是什么样的关系?
函数关系
1. 是一一对应的确定关系
在【残差】分析选项中选择所需的选项
设有两个变量 一元线性回归模型
(基本假2定. )
x

y
,变量
y 随变量 x 一起变化,并完 散点图
(销售收入和广告费用的散点图) Galton被誉为现代回归和相关技术的创始人。
❖ 若P< ,拒绝H0
相关系数的显著性检验
(例题分析)
❖ 【例93】检验销售收入与广告费用之间的相关系数 是否显著 ( 0.05)
❖ 提出假设H0
;H1
0
❖ 计算检验的统计量
t 0.930620210.789 10.93026
❖ 3. 用Excel中的【TDIST】函数得双尾 P=2.743E09< 0.05,拒绝H0,销售收入与广告 费用之间的相关系数显著

一元线性回归

一元线性回归

一、一元线性回归(一)基本公式如果预测对象与主要影响因素之间存在线性关系,将预测对象作为因变量y,将主要影响因素作为自变量x,即引起因变量y变化的变量,则它们之间的关系可以用一元回归模型表示为如下形式:y=a+bx+e其中:a和b是揭示x和y之间关系的系数,a为回归常数,b为回归系数e是误差项或称回归余项。

对于每组可以观察到的变量x,y的数值xi,yi,满足下面的关系:yi =a+bxi+ei其中ei是误差项,是用a+bxi去估计因变量yi的值而产生的误差。

在实际预测中,ei是无法预测的,回归预测是借助a+bxi得到预测对象的估计值yi。

为了确定a和b,从而揭示变量y与x之间的关系,公式可以表示为:y=a+bx公式y=a+bx是式y=a+bx+e的拟合曲线。

可以利用普通最小二乘法原理(ols)求出回归系数。

最小二乘法基本原则是对于确定的方程,使观察值对估算值偏差的平方和最小。

由此求得的回归系数为:b=[∑xiyi—x∑yi]/∑xi2—x∑xia=-b式中:xi、yi分别是自变量x和因变量y的观察值,、分别为x和y的平均值.=∑xi/ n ; = ∑yi/ n对于每一个自变量的数值,都有拟合值:yi’=a+bxiyi’与实际观察值的差,便是残差项ei=yi一yi’(二)一元回归流程三)回归检验在利用回归模型进行预测时,需要对回归系数、回归方程进行检验,以判定预测模型的合理性和适用性。

检验方法有方差分析、相关检验、t检验、f检验。

对于一元回归,相关检验与t检验、f检验的效果是等同的,因此,在一般情况下,通过其中一项检验就可以了。

对于多元回归分析,t检验与f检验的作用却有很大的差异。

1.方差分析通过推导,可以得出:∑(yi—y-)2= ∑(yi—yi’)2+∑(yi—y-)2其中:∑(yi—y-)2=tss,称为偏差平方和,反映了n个y值的分散程度,又称总变差。

∑(yi—yi’)2=rss,称为回归平方和,反映了x对y线性影响的大小,又称可解释变差。

一元线性回归的基本步骤

一元线性回归的基本步骤

一元线性回归的基本步骤一元线性回归分析的基本步骤如下:•1、散点图判断变量关系(简单线性);2、求相关系数及线性验证;3、求回归系数,建立回归方程;4、回归方程检验;5、参数的区间估计;6、预测;•••请点击输入图片描述•一、什么是回归分析法“回归分析”是解析“注目变量”和“因于变量”并明确两者关系的统计方法。

此时,我们把因子变量称为“说明变量”,把注目变量称为“目标变量址(被说明变量)”。

清楚了回归分析的目的后,下面我们以回归分析预测法的步骤来说明什么是回归分析法:回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。

只有当变量与因变量确实存在某种关系时,建立的回归方程才有意义。

因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。

进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。

二、回归分析的目的回归分析的目的大致可分为两种:第一,“预测”。

预测目标变量,求解目标变量y和说明变量(x1,x2,…)的方程。

y=a0+b1x1+b2x2+…+bkxk+误差(方程A)把方程A叫做(多元)回归方程或者(多元)回归模型。

a0是y截距,b1,b2,…,bk是回归系数。

当k=l时,只有1个说明变量,叫做一元回归方程。

根据最小平方法求解最小误差平方和,非求出y截距和回归系数。

若求解回归方程.分别代入x1,x2,…xk的数值,预测y的值。

第二,“因子分析”。

因子分析是根据回归分析结果,得出各个自变量对目标变量产生的影响,因此,需要求出各个自变量的影响程度。

希望初学者在阅读接下来的文章之前,首先学习一元回归分析、相关分析、多元回归分析、数量化理论I等知识。

根据最小平方法,使用Excel求解y=a+bx中的a和b。

stata软件基本操作和简单的一元线性回归

stata软件基本操作和简单的一元线性回归
第一步导入数据点击dataeditoredit图标进入数据编辑器复制时间序列工作表的消费和收入数据连同第一行表头不要第一列在数据编辑器里粘贴弹出提示询问第一行是否要当成变量名称表头选左边为是点击variablesmanager按钮更改变量名为英文消费为y收入为xpage12认知主义认为学习是个体对环境的作用而并不仅是环境刺激引起的行为改变
2
STATA软件的安装
Page 3
1. 点SetupStata14安装,激活码在txt中,一直下 一步
2. IC版本即可,越高版本运行越慢 3. 开始菜单里找到图标运行程序,第一次输入序列
号,不要online注册
3
Stata界面
4
Page 4
简单的分析功能在 Statistics里面
所有的图表绘制都 在graphs里面
这两种方式都要自己查表找ta/2(n-2)临界值对比 当然,除了这些基本信息以外,一般还会列出样本区间、 DW值等重要信息。这会在后面的课程中说明。
17
Page 18
思考:目前,无论时间序列还是截面数据,我们导入的方式 完全一样,做法也完全一样,是否有区别?
18
(2)拟合优度检验、t检验和F检验
P值为0.000,在任何显著性水平下,斜率项和截距项显然不为 零,拒绝两系数为零的假设。另外,拟合优度R方表明,食品 支出的97.5%的变化也以由收入X的变化来解释,因此拟合情况 较好。
如果需要查看残差值e,输入scatter e即可,list e可以列出所 有ei值,scatter e X可以看ei残差图
2. 模型估计
3. 模型检验:R方、t、F检验
10
第一步 导入数据
1. 点击data editor(edit)图标进入数据编辑器

简单线性相关(一元线性回归分析)

简单线性相关(一元线性回归分析)

第十三讲简单线性相关(一元线性回归分析)对于两个或更多变量之间的关系,相关分析考虑的只是变量之间是否相关、相关的程度,而回归分析关心的问题是:变量之间的因果关系如何。

回归分析是处理一个或多个自变量与因变量间线性因果关系的统计方法。

如婚姻状况与子女生育数量,相关分析可以求出两者的相关强度以及是否具有统计学意义,但不对谁决定谁作出预设,即可以相互解释,回归分析则必须预先假定谁是因谁是果,谁明确谁为因与谁为果的前提下展开进一步的分析。

一、一元线性回归模型及其对变量的要求(一)一元线性回归模型1、一元线性回归模型示例两个变量之间的真实关系一般可以用以下方程来表示:Y=A+BX+方程中的 A 、B 是待定的常数,称为模型系数,是残差,是以X预测Y 产生的误差。

两个变量之间拟合的直线是:y a bxy 是y的拟合值或预测值,它是在X 条件下 Y 条件均值的估计a 、b 是回归直线的系数,是总体真实直线距,当自变量的值为0 时,因变量的值。

A、B 的估计值, a 即 constant 是截b 称为回归系数,指在其他所有的因素不变时,每一单位自变量的变化引起的因变量的变化。

可以对回归方程进行标准化,得到标准回归方程:y x为标准回归系数,表示其他变量不变时,自变量变化一个标准差单位( Z XjXj),因变量 Y 的标准差的平均变化。

S j由于标准化消除了原来自变量不同的测量单位,标准回归系数之间是可以比较的,绝对值的大小代表了对因变量作用的大小,反映自变量对Y 的重要性。

(二)对变量的要求:回归分析的假定条件回归分析对变量的要求是:自变量可以是随机变量,也可以是非随机变量。

自变量 X 值的测量可以认为是没有误差的,或者说误差可以忽略不计。

回归分析对于因变量有较多的要求,这些要求与其它的因素一起,构成了回归分析的基本条件:独立、线性、正态、等方差。

(三)数据要求模型中要求一个因变量,一个或多个自变量(一元时为 1 个自变量)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

打开eviews7 软件
1.导入数据
File----open--Eviews workfile
查找出数据存放的地方,点击下一步,完成,即可。

(注意:数据的格式须正确,否则无法正常操作,若出现?则说明数据格式存在问题,须返回重新修改。


2.对数据做描述性统计
选中变量,如X,Y 如下图,右键----open—as group
出现如下界面
选择view---descriptive stats(描述性统计)---common sample
从上到下分别是均值,中值,最大值,最小值,标准差
偏度:(样本图形分布)等于0,图形对称分布,大于0,图形长的右拖,小于0,长的左拖峰度:(衡量正态分布)等于3,图形凸起状态符合正态分布,
J-B衡量是否服从正态分布的统计量
Pro为J-B的相伴概率,于拒绝原假设,不服从正态分布,10%以内,不能拒绝原假设,即服从正态分布
加总,偏差平方和,观测值数
3.对数据作图进行观测
Scatter(散点图),Line & Symbol(线性图)
一般来说图形纵轴表示应变量,横轴表示自变量,若出现相反情况说明选择时顺序不对,返回更改X,Y的选择顺序即可。

4.简单一元线性回归
Quick---Equation Estimation , 再进行如下操作,键入y c x(按照方程式的顺序,否则无法得到想要的结果),方法选择LS(最小二乘法)
得到如下结果
若要显示回归结果的图形,在“Equation”框中,点击“Resids”,即出现剩余项(Residual)、实际值(Actual)、拟合值(Fitted)的图形,如图2.13所示。

相关文档
最新文档