高中数学必修四第2章《平面向量》ppt课件

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ 其中正确命题的序号为________.
▪ [解析] ①a⊥b时,a·b=0,故①不正 确;
▪ ②由向量加减法的平行四边形法则知, a⊥b时,平行四边形为矩形,故对角线相 等,②正确.也可由a·b=0证得|a+b|= |a-b|;
▪ ③数量积不满足结合律,③不正确;
▪ ④(a+b)·(a-b)=a2-b2=|a|2-|b|2=0, 故④正确.故填②④.
▪ 已知a=(cosα,sinα).b=(cosβ,sinβ), 0<α<β<π.
▪ (1)求|a|的值; ▪ (2)求证:a+b与a-b互直垂直.
Baidu Nhomakorabea
[解析] (1)|a|= cos2α+sin2α=1; ∴|a|=1. (2)∵|a|=1,|b|=1, ∴(a+b)·(a-b)=a2-b2=1-1=0, ∴a+b 与 a-b 互相垂直.
▪ (5)运算律是运算的灵魂.要注意将向量的 运算律与数量的运算律类比.当a、b、c 两 两 不 平 行 时 , (a·b)c≠a(b·c) . 当 a·b = b·c时,不一定有a=c.但当a=c时,一定 有a·b=b·c.
▪ (6)学习本章应注意类比,如向量的运算法 则及运算律可与实数相应的运算法则及运 算律进行横向类比.而一维情形下向量的 共线条件与二维的平面向量基本定理又可 进行纵向类比.
▪ (2)对于向量的线性运算,要掌握向量加法 和向量数乘的几何意义,利用向量的加法 证明几何中的线段平行、相等等问题,利 用向量数乘可以解决线段平行、相等等问 题.
▪ (3)平面向量基本定理是向量坐标表示的理 论基础.直角坐标系中与x、y轴方向相同 的单位向量是它的一组正交基底,平面上 任何一个向量都可以由一对有序实数对(x、 y)表示.向量的坐标表示使向量的运算代 数化,也为我们提供了解决问题的方法——
▪ 坐标运算:设a=(x1,y1),b=(x2,y2), 则
▪ a·b=x1x2+y1y2.
▪ 2.重要的定理、公式
▪ (1)平面向量基本定理
▪ 如果e1和e2是同一平面内的两个不共线向 量,那么对该平面内的任一向量a,有且 只有一对实数λ1,λ2,使a=λ1e1+λ2e2.
▪ (2)两向量平行的条件:a∥b⇔存在实数λ, 使a=λb(b≠0).
+b)·(5a+7b)=0.
▪ ∴-15a2-16a·b+7b2=0,①
▪ 同理由16a+11b与2a-7b垂直,得32a2- 90a·b-77b2=0,②
▪ 由11×①+②,得-133a2-266a·b=0,
▪ ∴a·b=-a2,③ ▪ 将③代入①,得a2=b2,∴|a|=|b|.
▪ 又∵<a,b>∈[0°,180°],∴<a,b>=120°.
▪ [分析] 主要考查向量的坐标运算、共线 条件以及运算能力.
[解析] (1)∵a=mb+nc, ∴(3,2)=(-m+4n,2m+n),
∴-2mm++n4=n=2 3 ,∴mn==8959
.
(2)∵(a+kc)∥(2b-a),
又 a+kc=(3+4k,2+k),2b-a=(-5,2),
∴2(3+4k)+5(2+k)=0,即 k=-1163;
▪ [例1] 下列几个命题: ▪ ①若a·b=0,则a=0或b=0;
▪ ②a,b为非零向量,且a⊥b,则|a+b|=|a -b|;
▪ ③ 对 非 零 向 量 a , b , c , 必 有 a·(b·c) = (a·b)·c;
▪ ④ 向 量 a 与 b 不共 线 , 且 |a|= |b|, 则 (a + b)·(a-b)=0
[解析] 解法一:2a-3b=2(5,4)-3(3,2)=(1,2). 设与 2a-3b 平行的单位向量为(x,y), 则xy2-+2yx2==01 ,
解得 x1=
5 5
,或 x2=-
5 5
.
y1=2 5 5
y2=-2 5 5
∴所求的单位向量为 55,2 55或- 55,-25 5.
解法二:与 2a-3b 平行的单位向量是
a·b=a·c,但 b≠c;C 错,因为A→B=O→B-O→A,故选 D.
▪ [例2] 平面内给定三个向量a=(3,2),b= (-1,2),c=(4,1).
▪ (1)求满足a=mb+nc的实数m,n;
▪ (2)若(a+kc)∥(2b-a),求实数k;
▪ (3)设d=(x,y)满足(d-c)∥(a+b),且|d- c|=1,求向量d.
向量坐标法.同时,也体现了向量与解析 几何的联系,用向量方法可以解决解析几 何问题.通过向量的学习,体会向量在解 析几何中的应用.
▪ (4)向量的数量积不同于向量的线性运算, 因为它的运算结果是数量,而不是向 量.向量的数量积与距离、夹角有密切联 系,用它可以解决一些涉及距离、夹角的 几何度量问题,特别是有关垂直的问 题.向量的数量积与两向量的夹角有关, 体现了它与三角函数的联系.
又|a|=|b|=1,所以 a·b=13,
故|3a+b|= 3a+b2= 9a2+6a·b+b2
= 9+6×13+1=2 3.
解法二:设 a=(x1,y1),b=(x2,y2). 因为|a|=|b|=1,所以 x12+y21=x22+y22=1. 因为 3a-2b=(3x1-2x2,3y1-2y2),故有 |3a-2b|= 3x1-2x22+3y1-2y22=3, 所以 x1x2+y1y2=13. 所以|3a+b|= 3x1+x22+3y1+y22 = 9x21+9y21+x22+y22+6x1x2+y1y2 = 9+1+6×13=2 3.
(3)∵d-c=(x-4,y-1),a+b=(2,4), 又(d-c)∥(a+b),|d-c|=1, ∴4x-x-442+-2y-y-112==10 ,
x=4+ 解得
5 5
y=1+25 5
x=4- ,或
5 5
y=1-25 5
.
所以 d=4+ 55,1+25 5或 d=4- 55,1-25 5.
▪ 已知a=(5,4),b=(3,2),则与向量2a-3b平 行[的答案单] 位( 向55,量25为5)或__(-__5_5_,_-_.255)
±|22aa--33bb|=±1,52=±
55,2
5
5
∴所求的单位向量为 55,2 55或- 55,-25 5.
▪ [例3] 设|a|=|b|=1,|3a-2b|=3,求|3a +b|的值.
▪ [分[解析析]] 解本法题一:考因查为|向3a-量2b的|=模3,的求法及有关 数所量以积9a的2-运12a算·b+.4b2=9.
▪ 运算律:λ(μa)=(λμ)a,(λ+μ)a=λa+μa, λ(a+b)=λa+λb,
▪ 坐标运算:设a=(x,y)则λa=λ(x,y)=(λx, λy).
▪ (4)平面向量的数量积 ▪ 定 义 : a·b = |a||b|cosθ(a≠0 ,
b≠0,0°≤θ≤180°),0·a =0. ▪ 运算律:a ·b=b·a, ▪ (λa)·b=a·(λb)=λ(a·b), ▪ (a+b)·c=a·c+b·c.
[例 4] 已知 a=(sinθ,1),b=(1,cosθ),-2π<θ<2π.
(1)若 a⊥b,求 θ;
(2)求|a+b|的最大值. [分析] 利用向量的模、向量垂直条件以及三角函数的性 质求解.(1)由 a⊥b 的坐标表示形式求出 tanθ=-1,进而求 得 θ.(2)先求 a+b 的坐标,再写出其模关于角 θ 的函数关系式, 利用三角函数的有界性可求|a+b|的最大值.本题用到公式: sinθ+cosθ= 2sin(θ+π4).
[解析] (1)若 a⊥b,则 sinθ+cosθ=0,得 tanθ=-1(-2π
<θ<π2), ∴θ=-4π.
(2)由 a=(sinθ,1),b=(1,cosθ), 得|a+b|= sinθ+12+1+cosθ2 = 3+2sinθ+cosθ= 3+2 2sinθ+4π. 当 sin(θ+4π)=1 时,|a+b|取最大值,且|a+b|的最大值为 2+1.
章末归纳总结
▪ 1.向量运算 ▪ (1)加法运算 ▪ 加法法则:
▪ 运算性质:a+b=b+a,(a+b)+c=a+(b +c),a+0=0+a=a.
▪ 坐标运算:设a =(x1,y1),b=(x2,y2),则 a+b=(x1+x2,y1+y2).
▪ (2)减法运算: ▪ 减法法则:
▪ 坐标运算:
▪ 设a=(x1,y1),b=(x2,y2),则 ▪ a∥b⇔x1y2-x2y1=0.
▪ (3)两个非零向量垂直的条件:a⊥b⇔a·b= 0.
▪ 设a=(x1,y1),b=(x2,y2),则 ▪ a⊥b⇔x1x2+y1y2=0.
▪ (1)数学中研究的向量只有大小和方向,与 物理中研究的向量不完全一样.如力向量 除与大小和方向有关外,还与作用点有 关.向量可以分别用有向线段、字母、坐 标表示.
▪ 设a =(x1,y1),b=(x2,y2),则
▪ ▪
a设-Ab、A→=B=B(两x(x12--点xx1的,2,y坐2-y标1y-1)分.y2别).为(x1,y1),(x2,y2),
▪ (3)实数与向量的积
▪ 定义:λa,其中λ>0时,λa与a同向,当λ <0时,λa与a反方向,当λ=0时,0a=0.
▪ [点评] 解法一运用了将模平方的方法,并 且注意到了整体代换;解法二运用向量的 坐标法处理,显得较繁,但体现了设未知 而不求的大局观念.
▪ 已知a,b都是非零向量,若-3a+b与5a+ 7b垂直,16a+11b与2a-7b垂直,试求a与 b的夹角..
▪ [解析] ∵-3a+b与5a+7b垂直,∴(-3a
▪ [答案] ②④
下列说法正确的是
A.两个单位向量的数量积为 1 B.若 a·b=a·c,且 a≠0,则 b=c C.A→B=O→A-O→B
D.若 b⊥c,则(a+c)·b=a·b
()
▪ [答[解案析]] AD错,因为两个单位向量的夹角未给出,故不能
求其数量积;B 错,举反例.当 b=0,c≠0,且 a⊥c,满足
相关文档
最新文档