人教版数学九年级上册第25章概率初步达标测试卷1
2022年人教版九年级数学上册第二十五章概率初步章节测评试卷(含答案详解)
人教版九年级数学上册第二十五章概率初步章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为( )A.14B.13C.12D.352、某随机事件A发生的概率()P A的值不可能是()A.0.0001B.0.5C.0.99D.13、班长邀请A,B,C,D四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是()A.14B.13C.12D.234、投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于125、如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以图成一个矩形,从这些矩形中任选一个,则所选矩形含点A的概率是()A.14B.13C.38D.496、妙妙上学经过两个路口,如果每个路口可直接通过和需等待的可能性相等,那么妙妙上学时在这两个路口都直接通过的概率是()A.14B.13C.12D.347、下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是1 3C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖8、甲、乙是两个不透明的纸箱,甲中有三张标有数字14,12,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a,从乙中任取一张卡片,将其数字记为b.若a,b能使关于x的一元二次方程210ax bx++=有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为()A.23B.59C.49D.139、在一个不透明的口袋中,装有若干个红球和3个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中红球的个数大约是()A.20个B.16个C.15个D.12个10、在一个不透明纸箱中放有除了数字不同外,其它完全相同2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为()A.14B.13C.12D.34第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个不透明的盒子里有红色、黄色、白色小球共80个.它们除颜色外均相同,小文将这些小球摇匀后从中随机摸出一个记下颜色,再把它放回盒中,不断重复,多次试验后他发现摸到红色、黄色小球的频率依次为30%和40%,由此可估计盒中大约有白球_____个.2、现有两个不透明的箱子,一个装有2个红球和1个白球,另一个装有1个红球和2个白球,这些球除颜色外完全相同.从两个箱子中各随机摸出1个球,摸出1红1白的概率是______.3、如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为_____.4、在1-,3,5,7中随机选取一个数记为a,再从余下的数中随机取一个数记为b,则一次函数=+经过一、三、四象限的概率为______.y ax b5、某产品生产企业开展有奖促销活动,将每6件产品装成一箱,且使得每箱中都有2件能中奖.若从其中一箱中随机抽取1件产品,则能中奖的概率是_________.(用最简分数表示)三、解答题(5小题,每小题10分,共计50分)1、为了迎接建党100周年,学校举办了“感党恩•跟党走”主题社团活动,小颖喜欢的社团有写作社团、书画社团、演讲社团、舞蹈社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片正面,然后将这四张卡片背面朝上洗匀后放在桌面上.(1)小颖从中随机抽取一张卡片是舞蹈社团D的概率是;(2)小颖先从中随机抽取一张卡片,记录下卡片上的字母不放回,再从剩下的卡片中随机抽取一张卡片,记录下卡片上的字母,请用列表法或画树状图法求出小颖抽取的两张卡片中有一张是演讲社团C的概率.2、2021年,为了能源资源配置更加合理,我国多地发布限电令.某校为了解学生对限电原因的了解程度,在九年级学生中作了一次抽样调查,并将结果分成四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查结果绘制成了如下不完整的统计图:请根据图中信息回答下列问题:(1)本次被调查的学生有_________人;请补全条形统计图;(2)若该校九年级共有1200名学生,请你估计该校九年级学生中“比较了解”限电原因的学生有多少人?(3)九年(1)班被查的学生中A等级的有5人,其中2名男生,3名女生,现打算从这5名学生中随意抽取2人进行电话采访,请用列表或画树状图的方法求恰好抽到一男一女的概率.3、第24届北京冬奥会的开幕式中,“二十四节气的开幕式倒计时”向全世界人民展示了中华文化源远流长的特点,尽显中国式浪漫.杨老师为了让学生深入的了解二十四节气,将每个节气的名称写在形状大小都一样的小卡片上,并将卡片倒扣在桌面上,邀请同学上讲台随机抽取一张卡片,并向大家介绍卡片上对应节气的含义.(1)请问随机抽取一张卡片,上面写有“立春”的概率为;(2)若老师将属于春季的“立春、雨水,惊蛰、春分、清明、谷雨”六张卡片单独拿出,邀请小明和小华同时抽取.请利用画树状图或列表的方法,求两人抽到的卡片上写有相同的字的概率.4、为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题:(1)参与此次抽样调查的学生人数是____人,补全统计图①(要求在条形图上方注明人数);(2)图②中扇形C的圆心角度数为_____度;(3)若参加成果展示活动的学生共有1200人,估计其中最喜爱“测量”项目的学生人数是多少;(4)计划在A,B,C,D,E五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中B,E这两项活动的概率.5、为増强学生的实践劳动能力,某校本周为全校1000名学生提供了A、B、C、D四种类型特色活动,为了解学生对这四种特色活动的喜好情况,学校随机抽取部分学生进行了“你最喜欢哪一种特色活动(必选且只选一种)”的问卷调查:并根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)被抽取的学生共有人,在抽取的学生中最喜欢C类活动的人数为;扇形统计图中“D”类对应扇形的圆心角的大小为,估计全体1000名学生中最喜欢B活动的有人;(2)根据題意补全条形统计图;(3)现从甲、乙、丙、丁四名学生会成员中任选两人担任此次特色活动的“监督员”,请用树状图或列表法表示出所有可能的結果,求乙被选为“监督员”的概率.-参考答案-一、单选题1、A【解析】【分析】【详解】解:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据旋转的性质易证阴影区域的面积=正方形面积4份中的一份, 故针头扎在阴影区域的概率为14,故选:A .【考点】此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.2、D【解析】【分析】概率取值范围:01p ,随机事件的取值范围是01p <<.【详解】解:概率取值范围:01p .而必然发生的事件的概率P (A )1=,不可能发生事件的概率P (A )0=,随机事件的取值范围是01p <<.观察选项,只有选项D 符合题意. 故选:D .【考点】本题主要考查了概率的意义和概率公式,解题的关键是:事件发生的可能性越大,概率越接近于1,事件发生的可能性越小,概率越接近于0.3、C【解析】【分析】采用树状图发,确定所有可能情况数和满足题意的情况数,最后运用概率公式解答即可.【详解】解:根据题意列树状图如下:由上表可知共有12中可能,满足题意的情况数为6种则A,B两位同学座位相邻的概率是61 122.故选C.【考点】本题主要考查了画树状图求概率,正确画出树状图成为解答本题的关键.4、D【解析】【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【详解】A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.【考点】此题主要考查了随机事件的判断,关键是掌握随机事件,确定性事件的定义.5、D【解析】【分析】根据题意两条横线和两条竖线都可以组成矩形个数,再得出含点A矩形个数,进而利用概率公式求出即可.【详解】解:两条横线和两条竖线都可以组成一个矩形,则如图的三条横线和三条竖线组成可以9个矩形,其中含点A矩形4个,∴所选矩形含点A的概率是4 9故选:D【考点】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.6、A【解析】【分析】根据题意画出树形图,求出在这两个路口都直接通过的概率为14即可求解.【详解】解:由题意画树形图得,由树形图得共有4种等可能性,其中在这两个路口都直接通过的概率是P=14.故选:A【考点】本题考查了列表或画树形图求概率,理解题意,正确列表或画树形图得到所有等可能的结果是解题关键.7、A【解析】【详解】分析:利用概率的意义和必然事件的概念的概念进行分析.详解:A、367人中至少有2人生日相同,正确;B、任意掷一枚均匀的骰子,掷出的点数是偶数的概率是12,错误;C、天气预报说明天的降水概率为90%,则明天不一定会下雨,错误;D、某种彩票中奖的概率是1%,则买100张彩票不一定有1张中奖,错误;故选A.点睛:此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念.8、C【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得乙获胜的概率.【详解】(1)∵关于x的一元二次方程210ax bx++=有两个不相等的实数根,∴△=b2-4a>0, 画树状图如下:由图可知,共有9种等可能的结果,分别是a=12,b=1,则△=-1<0;a=12,b=3,则△=7>0;a=12,b=2,则△=2>0;a=14,b=1,则△=0;a=14,b=3,则△=8>0;a=14,b=2,则△=3>0;a=1,b=1,则△=-3<0;a=1,b=3,则△=5>0;a=1,b=2,则△=0;其中能使乙获胜的有4种结果数,∴乙获胜的概率为49,故选C.【考点】本题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.9、D【解析】【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【详解】设红球有x个,根据题意得,3:(3+x)=1:5,解得x=12,经检验:x=12是原分式方程的解,所以估计盒子中红球的个数大约有12个,故选D.【考点】此题主要考查了利用频率估计概率,正确运用概率公式是解题关键.10、C【解析】【分析】利用列表法或树状图法找出所有出现的可能结果,再找出两次摸出的数字之和为奇数出现的可能结果即可求解.【详解】从表中可知,共有4种等可能的结果,其中两次摸出的数字之和为奇数的有2种,所以两次摸出的数字之和为奇数的的概率是21 42 ,故选:C【考点】本题考查了利用列表法或树状图法求概率,正确地列出表格或树状图是解题的关键.注意:从中任意摸出一张,放回搅匀后再任意摸出一张.二、填空题1、24【解析】【分析】根据题意,先求出摸到白色小球的频率,再乘以总球数即可求解.【详解】解:∵多次试验的频率会稳定在概率附近,∴从盒子中摸出一个球恰好是白球的概率约为1-30 %-40 %=30 %,∴白球的个数约为80×30 %=24个.故答案为24.【考点】本题考查了利用频率估计概率,解答此题的关键是要计算出盒中白球所占的比例,再计算其个数.2、5 9【解析】【分析】列表得出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得.【详解】解:列表如下:由表知,共有9种等可能结果,其中摸出1红1白有5种结果,所以摸出的两个球颜色相同的概率为59,故答案为:59.【考点】本题考查了列表法与树状图的知识,解题的关键是能够用列表或列树状图将所有等可能的结果列举出来,难度不大.3、0.600【解析】【详解】观察图象可知,该射手击中靶心的频率维持在0.600左右,所以该射手击中靶心的概率的估计值为0.600.4、1 4【解析】【分析】先画树状图,确定a,b,再根据图像分布,确定a,b的符号,根据概率公式计算即可.【详解】根据题意,画树状图如下:共有12种等可能性,∵一次函数y ax b =+经过一、三、四象限, ∴a >0,b <0,符合条件的有3种等可能性,∴一次函数y ax b =+经过一、三、四象限的概率为31124=; 故答案为:14.【考点】本题考查了不放回式的概率计算,一次函数的图像分布,熟练掌握概率计算,准确画树状图是解题的关键. 5、13【解析】 【分析】根据题意计算中奖概率即可; 【详解】解:∵每一箱都有6件产品,且每箱中都有2件能中奖,∴P(从其中一箱中随机抽取1件产品中奖)=21 63 ,故答案为:13.【考点】本题主要考查简单概率的计算,正确理解题意是解本题的关键.三、解答题1、(1)14;(2)见解析,12【解析】【分析】(1)共有4种可能出现的结果,其中是舞蹈社团D的有一种,即可求出概率;(2)用列表法列举出所有可能出现的结果,从中找出一张是演讲社团C的结果数,进而求出概率.【详解】解:(1)∵共有4种可能出现的结果,其中是舞蹈社团D的有1种,∴小颖从中随机抽取一张卡片是舞蹈社团D的概率是14,故答案为:14;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,每种结果出现的可能性相同,其中有一张是演讲社团C的有6种,∴小颖抽取的两张卡片中有一张是演讲社团C的概率是612=12.【考点】本题考查了用列表法或树状图法求概率,正确画出树状图或表格是解决本题的关键.2、 (1)200,图见详解(2)该校九年级学生中“比较了解”限电原因的学生有360人.(3)35 P【解析】【分析】(1)根据统计图可知B等级的学生有60人,占抽取人数的30%,进而问题可求解;(2)由统计图及题意可直接进行求解;(3)通过列表法进行求解概率即可.(1)解:由统计图可知B等级的学生有60人,占抽取人数的30%,∴本次被调查的学生有60÷30%=200(人),∴C等级的学生有:200-40-60-20=80(人),补全统计图如下:(2)解:由题意得:1200×30%=360(人),答:该校九年级学生中“比较了解”限电原因的学生有360人;(3)解:由题意可得列表如下:由上表可知5人中随机抽取2人的可能性有20种,恰好为一男一女的有12种,∴恰好抽到一男一女的概率为35P .【考点】本题主要考查概率及扇形统计图、条形统计图、样本估计总体,解题的关键是根据题意得到相应的数据进行分析即可.3、 (1)124;(2)16.【解析】【分析】(1)根据概率公式,用写有“立春”的卡片数除以总卡片数即可得出答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与小明和小华同时抽取到的卡片上写有相同字的情况,再利用概率公式求解即可求得答案;(1)解:解:共有24张卡片,其中写有“立春”的卡片数为1,抽取到写有“立春”的概率为124;(2) 解:共有30种等可能性的结果,其中写有相同字的有4种可能性,分别是:(谷雨,雨水)、(雨水,谷雨) 、(春分,立春)、(立春,春分);∴两人抽到的卡片上写有相同的字的概率为:P(抽到相同字)=41 246=.【考点】本题考查了列表法与树状图法,利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m是解题的关键,然后利用概率公式计算事件A或事件B的概率.4、 (1)120,见解析(2)90(3)300人(4)见解析,10%【解析】【分析】(1)由B的人数除以所占百分比求出抽查的学生人数,即可解决问题;(2)用C的人数除以调查总数再乘以360°即可得到答案;(3)用样本估计总体进行计算即可;(4)列出表格或画出树状图,得到所有可能的结果数,找出符合条件的结果数,再由概率公式求解即可.(1)因为参与B活动的人数为36人,占总人数30%,所以总人数36120 30%==人,则参与E活动的人数为:120303630618----=人;补全统计图如下:故答案为:120;(2)扇形C的圆心角为:3036090 120⨯︒=︒,故答案为:90;(3)最喜爱“测量”项目的学生人数是:301200300120⨯=人;答:估计其中最喜爱“测量”项目的学生人数是300人;(4)列表如下:或者树状图如下:所以,选中B 、E 这两项活动的概率为:()2100%10%20BE P =⨯=选中. 【考点】 本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.5、 (1)100,30,36°,350(2)见解析(3)见解析,12【解析】【分析】(1)用最喜欢A类活动的人数除以最喜欢A类活动的人数所占百分比即可得被抽取的学生的总人数;用总人数减去最喜欢A类、B类、D类活动的人数即可到最喜欢C类活动的人数;用最喜欢D类人数除以被抽取学生总数,求出最喜欢D类人数占被抽取学生总数的百分比,再乘以360°,即可求出“D”类对应扇形的圆心角;用喜欢B类活动人数除以被抽取学生总人数,得到最喜欢B类人数占被抽取学生总数的百分比,再乘以1000,即可求出最喜欢B活动的人数;(2)按照(1)求出的最喜欢C类活动的人数,补全即可;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.(1)解:被抽取学生总人数为:25÷25%=100(人),在抽取的学生中最喜欢C类活动的人数为:100―25―35―10=30(人),扇形统计图中D类占被抽取学生的百分比为:10100%=10% 100⨯,扇形统计图中D类对应扇形的圆心角为:360°×10%=36°,扇形统计图中B类占被抽取学生的百分比为:35100%=35% 100⨯,估计全体1000名学生中最喜欢B活动的有:1000×35%=350(人);故答案为:100,30,36°,350(2)解:补全条形统计图如图所示,(3)解:画树状图为:共有12种等可能的结果数,其中乙被选到的结果数为6,.∴乙被选到的概率为:61=122答:乙被选为“监督员”的概率为1.2【考点】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果数目n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.。
初中数学人教版九年级上册第二十五章 概率初步单元复习-章节测试习题(1)
章节测试题1.【题文】如图,假设可以随机在图中取点,(1)这个点取在阴影部分的概率是_______;(2)在保留原阴影部分情况下,请你重新设计图案(直接在图上涂阴影),使得这个点取在阴影部分的概率为.【答案】(1) ;(2)见解答,答案不唯一【分析】(1)用阴影部分的面积除以图形总面积即可;(1)使所设计图案阴影部分的面积占整个图案面积的即可.【解答】(1)1÷7=(2)如图所示(红色部分),答案不唯一2.【题文】游戏者同时转动如图的两个转盘进行“配紫色游戏”,若要使游戏者获胜的概率为,转盘B不动,转盘A应该如何设计?并写出解答过程说明理由.【答案】将转盘A平均分成10分,一份是蓝色,一份是红色,其他是绿色.说明理由见解答【分析】B转盘有2种情况,A转盘有3种情况,要想获胜的概率为,则应让转盘A 分成10份,使配成紫色的情况数有2种即可.【解答】将转盘A平均分成10分,一份是蓝色,一份是红色,其他是绿色.则共有20种,能配成紫色的情况有两种,∴P(配成紫色)=3.【题文】在不透明的袋子中装有5个红球和8个黄球,每个球除颜色外都相同.(1)从中任意摸出一个球,摸到球的可能性大.(2)如果再放入若干个黄球并摇匀,随机摸出一个球是红球的概率是,请问放入了多少个黄球?【答案】(1)黄;(2)2.【分析】(1)分别求出摸出各种颜色球的概率,即可比较出摸出何种颜色球的可能性大;(2)由红球所占的份数可求出总数目,进而可求出放入黄球的个数.【解答】(1)摸到红球的概率为=,摸到黄球的概率为:,所以摸到黄球的可能性大.故答案为:黄;(2)∵随机摸出一个球是红球的概率是,∴总的小球数=5÷=15(个),∴放入黄球的个数=15-13=2.4.【题文】学生甲与乙学习概率初步知识后设计了如下游戏:甲手中有6、8、10 三张扑克牌,乙手中有 5、8、9 三张扑克牌,每局比赛时,两人从各自手中随机取一张牌进行比较,数字大的则本局获胜.(1)若每人随机取出手中的一张牌进行比较,请列举出所有情况;(2)求学生乙一局比赛获胜的概率.【答案】(1)详见解答;(2).【分析】(1)根据题意可以写出所有的可能性;(2)根据(1)中的结果可以得到乙本局获胜的可能性,从而可以解答本题.【解答】解:(1)由题意可得,每人随机取出手中的一张牌进行比较的所有情况是:,,,,,,,,.(2)由()知共有9种等可能的情况,学生乙获胜的情况有:,,,所以学生乙一局比赛获胜的概率是:.故答案为:(1)见解答;(2).5.【题文】小王和小张利用如图所示的转盘做游戏,转盘的盘面被分为面积相等的4个扇形区域,且分别标有数字1,2,3,4.游戏规则如下:两人各转动转盘一次,分别记录指针停止时所对应的数字,如两次的数字都是奇数,则小王胜;如两次的数字都是偶数,则小张胜;如两次的数字是奇偶,则为平局.解答下列问题:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.【答案】(1);(2)该游戏公平.【分析】(1)根据概率公式直接计算即可;(2)画树状图得出所有等可能的情况数,找出两指针所指数字都是偶数或都是奇数的概率即可得知该游戏是否公平.【解答】解:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率= ;(2)该游戏公平.理由如下:画树状图为:共有16种等可能的结果数,其中两次的数字都是奇数的结果数为4,所以小王胜的概率= ;两次的数字都是偶数的结果数为4,所以小张胜的概率= ,因为小王胜的概率与小张胜的概率相等,所以该游戏公平.6.【题文】某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据动转盘的次数n100 150 200 500 800 1000落在“铅笔”的次数m68 111 136 345 546 701落在“铅笔”的频率0.68 0.74 0.68 0.69 0.68 0.70(结果保留小数点后两位)(1)转动该转盘一次,获得铅笔的概率约为______;(结果保留小数点后一位)(2)铅笔每支0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天大致需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.【答案】(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36【分析】(1)利用频率估计概率求解;(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n度,则4000×3×+4000×0.5(1-)=3000,然后解方程即可.【解答】(1)转动该转盘一次,获得铅笔的概率约为0.7;故答案为: 0.7(2)4000×0.5×0.7+4000×3×0.3=5000,所以该商场每天大致需要支出的奖品费用为5000元;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n度,则4000×3×+4000×0.5(1-)=3000,解得n=36,所以转盘上“一瓶饮料”区域的圆心角应调整为36度.故答案为36.7.【答题】下列事件是必然事件的是()A. 乘坐公共汽车恰好有空座B. 同位角相等C. 打开手机就有未接电话D. 三角形内角和等于180°【答案】D【分析】本题考查了必然事件。
人教版九年级数学上册《第二十五章概率初步》单元检测卷及答案
人教版九年级数学上册《第二十五章概率初步》单元检测卷及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列事件为随机事件的是()A.通常加热到100℃时水沸腾B.三角形的内角和是360°C.掷骰子一次向上点数不小于1D.经过有信号灯的路口时遇到红灯2.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相向,小红通过多次换球试验后发现,摸到黄球的频率稳定在0.7左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个3.下列说法中错误的是()A.概率很小的事件不可能发生B.不可能事件发生的概率为0C.随机事件发生的概率大于或等于0且小于或等于1D.必然事件发生的概率为14.成语是中国语言文化的缩影,有着深厚丰富的文化底蕴,学习成语,运用成语,了解成语当中所包含的语言文化现象,是我们学习语言、学习中国传统文化必不可少的一个环节和目的.下列成语所描述的事件中,属于随机事件的是()A.画饼充饥B.不期而遇C.水涨船高D.水中捞月5.如图1,一个均匀的转盘被平均分成10等份,分别标有1,2,3,4,5,6,7,8,9,10.小凯转动转盘做频率估计概率的实验,当转盘停止转动后,指针指向的数字即为实验转出的数字.图2,是小凯记录下的实验结果情况,那么小凯记录的实验是()A.转动转盘后,出现偶数B.转动转盘后,出现能被3整除的数C.转动转盘后,出现比6大的数D.转动转盘后,出现能被5整除的数6.随着城市化进程的加速和人们对环保出行的需求增加,共享电瓶的发展趋势日益明显.如图,某共享电瓶柜中装有4块“48V12A”、6块“48V20A”以及6块“60V12A”三种型号的电瓶,匆忙的小王从中随机取出一块,恰好为“60V12A”的电瓶的概率为()A.13B.34C.38D.1167.随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为()A.13B.38C.12D.238.现有4张卡片,其中3张卡片正面上的图案是“ ”,1张卡片正面上的图案是“ ”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.916B.34C.38D.129.在一个不透明的罐子里装有若干个白色的围棋,现要估计白棋的个数,从装黑棋的罐子里取出10个黑棋放入白棋的罐子里.这些棋子除㖣色外其他完全相同.将罐子里的棋子搅匀,从中随机摸出一个棋子,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有25次摸到黑棋子,估计这个罐子里的白棋有()A.80个B.75个C.70个D.60个10.如图,正方形ABCD内接于℃O,℃O2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是()A .2π B .2π C .12πD 2π二、填空题11.袋中有同样大小的5个球,其中3个红球,2个白球,从袋中任意地摸出一个球,这个球是红色的概率是 .12.在完全相同的四张卡片上分别写有如下四个命题:①半圆所对的弦是直径;②圆既是轴对称图形,也是中心对称图形;③弦的垂线一定经过这条弦所在圆的圆心;④圆内接四边形的对角互补.把这四张卡片放入一个不透明的口袋内搅匀,从口袋内任取一张卡片,则取出卡片上的命题是真命题的概率是 .13.如果k 是投掷一枚质地均匀的骰子所得的点数,则关于x 的一元二次方程()21410k x x -++=有两个实数根的概率是 .14.初一(5)班有学生37人,其中4个或4个以上学生在同一个月出生的可能性用百分数表示为 %. 15.如图,某城市的道路都是横平竖直的,小明同学家住在A 点处,学校在B 点处.小明每天上学会随机选择一条最近的道路从A 点步行至B 点.某一天C 点施工无法经过,小明同学并不知情,那么小明能够不绕路的概率是 .三、解答题16.阳春三月,万物复苏,全国各地迎来了开学潮.某校全体师生齐聚操场,举行2024年春季开学典礼暨安全教育第一课活动,德育校长就用电、食品、交通、防火、防诈骗、防校园欺凌、一盔一戴等安全方面给全校师生进行了知识讲解,让全校师生了解校园安全知识,增强了师生们“珍爱生命,安全第一”的常识.随后,七、八年级举行了一次校园安全知识竞赛,经过评比后,七年级的两名学生(用A ,B 表示)和八年级的两名学生(用C ,D 表示)获得优秀奖.(1)从获得优秀奖的这四名学生中随机抽取一名进行经验分享,恰好抽到七年级学生的概率是.(2)从获得优秀奖的这四名学生中随机抽取两名进行经验分享,请用列表法或画树状图法,求抽取的两名学生恰好一名来自七年级、一名来自八年级的概率.17.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字2、3、4、x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如表:摸球总次数20306090120180240330450“和为7”出现的频数10132430375882110150“和为7”出现的频率0.500.430.400.330.310.320.340.330.33解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率是;(2)当x=5时,请用列表法或树状图法计算“和为7”的概率.18.某校为了解学生身体健康状况,从全校600名学生的体质健康测试结果登记表中,随机选取了部分学生的测试数据进行初步整理(如图1).并绘制出不完整的条形统计图(如图2).成绩频数百分比不及格3a及格b20%良好45c优秀3232%图1学生体质健康统计表图2学生体质健康条形图(1)图1中a=,b=,c=;(2)请补全图2的条形统计图,并估计该校学生体质健康测试结果为“良好”和“优秀”的总人数;(3)为听取测试建议,学校选出了3名“良好”1名“优秀”学生,再从这4名学生中随机抽取2人参加学校体质健康测试交流会.请用列表或画树状图的方法,计算所抽取的两人均为“良好”的概率.19.在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.(1)写出点M坐标的所有可能的结果;(2)求点M在直线y=x上的概率;(3)求点M的横坐标与纵坐标之和是偶数的概率.20.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视” “重视” “比较重视” “不重视” 四类,并将结果绘制成下图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)在扇形统计图中,“比较重视”所占的圆心角的度数为,并补全条形统计图.(2)该校共有学生2400 人,请你估计该校对视力保护“非常重视”的学生人数.(3)对视力“非常重视” 的4 人有一名男生、三名女生,若从中随机抽取两人向全校作视力保护经验交流,请利用树状图或列表法,求出恰好抽到的都是女生的概率.参考答案1.【答案】D【解析】【解答】解:A .在标准大气压下,水的沸点为100℃,因此100℃时水沸腾为必然事件,A不符合题意;B.三角形内角和180°,因此三角形的内角和是360°为不可能事件,B不符合题意;C.骰子的向上的点数有1、2、3、4、5、6,不可能小于1,因此掷骰子一次向上点数不小于1为不可能事件,C不符合题意;D.是否遇到红灯会随时间变化,因此为随机事件,D符合题意.故答案为:D.【分析】必然事件的几率为100%,不可能事件的几率为0%,随机事件的概率介于两者之间.2.【答案】A【解析】【解答】解:摸到黄球的频率稳定在0.7左右∴黄球的个数为50×0.7=35(个)∴布袋中白球可能有50-35=15(个).故答案为:A.【分析】利用频率估计概率得到摸到黄球的概率为0.7,根据概率公式求出黄球的个数,即可求解. 3.【答案】A【解析】【解答】解:A. 概率很小的事件发生的可能性小,故错误,A符合题意;B. 不可能事件发生的概率为,故正确,0 B不符合题意;C.随机事件发生的概率为0≤P≤1,故正确,C不符合题意;D.必然事件发生的概率为1,故正确,D不符合题意;故答案为:A.【分析】必然事件:一定发生的事件,其概率为1;随机事件:可能发生可能不发生的事件,其概率为0≤P≤1;不可能事件:一定不会发生的事件,其概率为0;依此分析即可得出答案.4.【答案】B5.【答案】B6.【答案】C7.【答案】B【解析】【解答】解:对每个小正方形随机涂成黑色或白色的情况,如图所示共有8种情况,其中恰好是两个黑色小正方形和一个白色小正方形情况有3种∴恰好是两个黑色小正方形和一个白色小正方形的概率为3 8故答案为:B【分析】利用概率公式求解即可。
初中-数学-人教版-人教版九上 第25章 概率初步 单元测试题(一)
人教版九上第25章概率初步单元测试题(一)一、选择题1、桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则()A. 能够事先确定抽取的扑克牌的花色B. 抽到黑桃的可能性更大C. 抽到黑桃和抽到红桃的可能性一样大D. 抽到红桃的可能性更大2、下列事件中是必然事件的是()A. 今年2月1日,房山区的天气是晴天B. 从一定高度落下的图钉,落地后钉尖朝上C. 长度分别是2cm,3cm,4cm的三根木条首尾相接,组成一个三角形D. 小雨同学过马路,遇到红灯3、如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、9.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为()A. 12B.14C.16D.184、有一则笑话:妈妈正在给一对双胞胎洗澡,先洗哥哥,再洗弟弟,刚把两人洗完,就听到两个小家伙在床上笑,“你们笑什么?”妈妈问“妈妈!”老大回答,“您给弟弟洗了两回,可是还没给我洗呢!”此事件发生的概率为()A. 14B.13C.12D. 15、从是,0,π,227,6这五个数中随机抽取一个数,抽到有理数的概率是()A. 15B.25C.35D.456、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是()A. 13B.23C.14D.157、在班级体锻课上,有三名同学站在△ABC的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个凳子,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置在△ABC的()A. 三边中线的交点B. 三条角平分线的交点C. 三边上高的交点D. 三边垂直平分线的交点8、在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A. 8B. 12C. 16D. 209、一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.则此口袋中估计白球的个数是()个.A. 20B. 30C. 40D. 5010、一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,并且选择每条路径的可能性相等,则它获得食物的概率是()A. 13B.14C.27D.23二、填空题11、如图,是可以自由转动的一个转盘,转动这个转盘,当它停下时,指针落在标有号码______上的可能性最大.12、“经过某交通信号灯的路口,遇到红灯“是______事件(填“必然”、“不可能“、“随机”)13、“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.有一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正形区域(含边)的概率是.14、抛掷一枚均匀的硬币,前5次都正面朝上,则抛掷第50次正面朝上的概率是.15、一个暗箱里装有10个黑球,8个白球,6个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是.16、在某校运动会4×400m接力赛中,甲乙两名同学都是第一棒,他们随机从三个赛道中抽取两个不同赛道,则甲乙两名同学恰好抽中相邻赛道的概率为.17、盒子里放着一个黑球和一个红球,它们除了颜色外,其余都相同.甲、乙两人规定每人摸出一球,摸出后再放回,摸到红球甲赢,摸到黑球乙赢,如果甲先摸,乙后摸,那么这个游戏______(填“公平”或“不公平”).18、在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为______.三、解答题19、口袋A中有2个相同的小球,分别写有数字3,6,口袋B中有4个相同的小球,分别写有数字3,4,5,6,在口袋B中随机地抽出一个小球放入口袋A中.求以口袋A中的3个小球上的数字为边能构成等腰三角形的可能性大小.20、下列成语,哪些刻画的是必然事件?哪些刻画的是不可能事件?哪些刻画的是随机事件?(1)万无一失;(2)胜败乃兵家常事;(3)水中捞月;(4)十拿九稳;(5)海枯石烂;(6)守株待兔;(7)百战百胜;(8)九死一生.你还能举出类似的成语吗?21、如图,假设可以随机在图中取点,(1)这个点取在阴影部分的概率是_______;(2)在保留原阴影部分情况下,请你重新设计图案(直接在图上涂阴影),使得这个点取在阴影部分的概率为3 7 .22、游戏者同时转动如图的两个转盘进行“配紫色游戏”,若要使游戏者获胜的概率为1 10,转盘B不动,转盘A应该如何设计?并写出解答过程说明理由.23、在不透明的袋子中装有5个红球和8个黄球,每个球除颜色外都相同.(1)从中任意摸出一个球,摸到球的可能性大.(2)如果再放入若干个黄球并摇匀,随机摸出一个球是红球的概率是13,请问放入了多少个黄球?24、学生甲与乙学习概率初步知识后设计了如下游戏:甲手中有6、8、10 三张扑克牌,乙手中有5、8、9 三张扑克牌,每局比赛时,两人从各自手中随机取一张牌进行比较,数字大的则本局获胜.(1)若每人随机取出手中的一张牌进行比较,请列举出所有情况;(2)求学生乙一局比赛获胜的概率.25、小王和小张利用如图所示的转盘做游戏,转盘的盘面被分为面积相等的4个扇形区域,且分别标有数字1,2,3,4.游戏规则如下:两人各转动转盘一次,分别记录指针停止时所对应的数字,如两次的数字都是奇数,则小王胜;如两次的数字都是偶数,则小张胜;如两次的数字是奇偶,则为平局.解答下列问题:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.26、某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345546701落在“铅笔”的频率0.680.740.680.690.680.70(结果保留小数点后两位)(1)转动该转盘一次,获得铅笔的概率约为______;(结果保留小数点后一位)(2)铅笔每支0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天大致需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.参考答案1、【答案】B【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:A、因为袋中扑克牌的花色不同,所以无法确定抽取的扑克牌的花色,故本选项错误;B、因为黑桃的数量最多,所以抽到黑桃的可能性更大,故本选项正确;C、因为黑桃和红桃的数量不同,所以抽到黑桃和抽到红桃的可能性不一样大,故本选项错误;D、因为红桃的数量小于黑桃,所以抽到红桃的可能性小,故本选项错误.选B.2、【答案】C【分析】此题涉及的知识点是必然事件,根据必然事件的定义用排除法就可以得到答案【解答】A. 今年2月1日,房山区的天气是晴天,某一天,天气没有办法准确预测,属于偶然事件。
人教版九年级数学上册《第二十五章概率初步》单元检测卷带答案
人教版九年级数学上册《第二十五章概率初步》单元检测卷带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列事件中,必然事件是()A.随机抛掷一颗骰子,朝上的点数是6B.今天考试小明能得满分C.明天气温会升高D.早晨的太阳从东方升起2.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,那么两辆汽车经过这个十字路口时,第一辆车向左转,第二辆车向右转的概率是().A.13B.19C.29D.4273.在抛硬币的游戏中,若抛了10000 次,则出现正面的频率恰好是50%,这是() A.很可能的B.必然的C.不可能的D.不太可能的4.甲、乙、丙、丁四位同学去看电影,还剩下如图所示座位,乙正好坐在甲旁边的概率是()A.25B.35C.12D.345.在一个不透明的袋中,装有2个黄球和3个红球,它们除颜色外都相同.从袋中任意摸出两个球,则这两个球颜色不同的概率是()A.35B.25C.45D.156.甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是A.1B.12C.13D.147.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()A.12B.34C.14D.18.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第2颗骰子上蓝色的面数是()A.6B.5C.4D.39.如图,湖边建有A,B,C,D共4座凉亭,从入口处进,先经过凉亭A(已经参观过的凉亭,再次经过时不作停留),则最后一次参观的凉亭为凉亭D的概率为()A.14B.13C.12D.2310.某同学想向班主任发短信拜年,可一时记不清班主任手机号码后三位数的顺序,只记得是1,6,9三个数字,则该同学一次发短信成功的概率是()A.16B.13C.19D.12二、填空题11.下列成语描述的事件:①水中捞月①水涨船高①守株待兔①瓮中捉鳖①拔苗助长,属于必然事件的是(填序号).12.如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的概率是.13.小明的爸爸妈妈各有两把钥匙,可以分别打开单元门和家门,小明随机从爸爸和妈妈的包里各拿出一把钥匙,恰好能打开单元门和家门的概率 .14.我市某校举行“喜迎二十大、永远跟党走、奋进新征程”主题教育活动,校团委为了让同学们进一步了解中国科技的发展,请同学们从选出的以下五个内容中任选两个内容进行手抄报的制作:“北斗卫星”“5G时代”“智轨快运系统”“东风快递”“神舟十三号”.其中恰好选择“北斗卫星”“5G时代”的概率是.15.现有如图所示“2022·北京冬梦之约”的四枚邮票,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小萱从中随机抽取一枚不放回,再从中随机抽取一枚,则小萱抽到的两枚邮票恰好是冰墩墩和雪容融的概率是.16.下列事件:①打开电视机,它正在播放广告;①从一只装有红球的口袋中,任意摸出一个球,恰是白球;①两次抛掷正方体骰子,掷得的数字之和小于13;①抛掷硬币1000次,第1000次正面向上,其中为随机事件的是.17.在一个不透明的袋子中装有红球和黑球一共12个,每个球除颜色不同外其余都一样,任意摸出一个球,那么袋中的红球有个.是黑球的概率为14三、解答题18.为进一步挖掘全国春茶优质产品,2023年第七届中国昆明(国际)春茶周于4月28日如约开启.云南省111个著名山头和125个村寨春茶都在本次活动中展示,其中就包括著名的班章、冰岛、昔归、易武等著名山头品牌,小芸和小楠参加了本次活动,并打算分别从A:班章,B:冰岛,C:昔归,D:易武四个著名山头品牌茶叶中选择一个了解相关山头品牌茶文化知识.(1)小芸选择“冰岛”著名山头品牌茶叶的概率是______;(2)用列表法或画树状图法中的一种方法,求小芸和小楠恰好选择到同一著名山头品牌茶叶了解相关茶文化知识的概率.19.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:摸球总次数1020306090120180240330450“和为8”出现的频数210132430375882110150“和为8”出现的频率0.200.500.430.400.330.310.320.340.330.33(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是1,那么x的值可以取4吗?请用列表法或画树状图法说3明理由;如果x的值不可以取4,请写出一个符合要求的x的值.20.有两个信封,每个信封内各装有四张完全相同的卡片,其中一个信封内的四张卡片上分别写有1,2,3,4四个数,另一个信封内的四张卡片上分别写有5,6,7,8四个数.甲,乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于16,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率;(2)你认为这个游戏公平吗?为什么?21.有五张形状、大小和质地相同的卡片A、B、C、D、E,正面分别写有一个正多边形(所有正多边形的边长相等),把五张卡片洗匀后正面朝下放在桌面上(1)若从中随机抽取一张(不放回),接着再随机抽取一张.请你用画树形图或列表的方法列举出可能出现的所有结果;(2)从这5张卡片中随机抽取2张,利用列表或画树状图计算:与卡片上图形形状相对应的这两种地板砖能进行平面镶嵌的概率是多少?22.手机微信推出了抢红包游戏,它有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以生成不等金额的红包.现有一用户发了三个“拼手气红包”,总金额为3元,随机被甲、乙、丙三人抢到.(1)判断下列事件中,哪些是确定事件,哪些是不确定事件?①丙抢到金额为1元的红包;①乙抢到金额为4元的红包①甲、乙两人抢到的红包金额之和一定比丙抢到的红包金额多;(2)记金额最多、居中、最少的红包分别为A,B,C.①求出甲抢到红包A的概率;①若甲没抢到红包A,则乙能抢到红包A的概率又是多少?参考答案1.D2.B3.D 4.A 5.A 6.D 7.A 8.D 9.C 10.A 11.②④ 12.57 13.1214.110 15.16 16.①④ 17.918.(1)14 (2)1419.(1)0.33 (2)不可以取4,x =6 20.(1)P (甲)=716,(2)不公平 21.31022.(1)事件①,①是不确定事件,事件①是确定事件;(2)①13;①12.。
人教版九年级数学(上)第二十五章《概率初步》检测卷含答案
人教版九年级数学(上)第二十五章《概率初步》检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列事件是随机事件的是A.火车开到月球上B.抛出的石子会下落C.明天上海会下雨D.早晨的太阳从东方升起2.下列事件中,随机事件是A.任意画一个圆的内接四边形,其对角互补B.现阶段人们乘高铁出行在购买车票时,采用网络购票方式C.从分别写有数字-1,3,4的三个纸团中随机抽取一个,抽到的数字是0D.通常情况下,海南在大寒这一天的最低气温会在0 ℃以下3.某个密码锁的密码由三个数字组成,每个数字都是0~9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了密码的最后一位数字,那么一次就能打开该密码锁的概率是A.110B.19C.13D.124.有五张背面完全相同的卡片,正面分别写有√9,(√2)0,√8,227,2-2,把卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是无理数的概率是A.15B.25C.35D.455.年假期间小明约同学玩“三国杀”游戏,有9位同学参与游戏,开始每人先摸四张牌,通过抽牌决定谁先出牌,事先做好9张卡牌(除所写文字不同,其余均相同),其中有过河拆桥牌2张,杀手牌3张,闪牌4张.小明参与游戏,如果只随机抽取一张,那么小明抽到闪牌的概率是A.19B.49C.13D.236.狗年春节到了,小英制作了5张大小相同的卡片,在每张卡片上分别写上“金”“狗”“迎”“春”“到”五个字,并随机放入一个不透明的信封中,然后让小芳从信封中摸出一张卡片,小芳摸出的卡片是“狗”字的概率是A.12B.13C.14D.157.如图,正方形ABCD内接于☉O,☉O的直径为√2cm,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是A.2πB.π2C.12πD.√2π8.如图,两个标有数字的轮子可以分别绕中心旋转,旋转停止时,每个轮子上的箭头各指向轮子上的一个数字,若左图上方箭头指着的数字为a,右图中指着的数字为b.数对(a,b)所有可能的个数为n,其中a+b恰为偶数的不同数对个数为m,则mn等于A.12B.16C.512D.349.小明、小颖和小凡都想去看安徽第二届文博会,但现在只有一张门票,三人决定一起做游戏,谁获胜谁就去,游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜,若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜,关于这个游戏,下列判断正确的是A.三人获胜的概率相同B.小明获胜的概率大C.小颖获胜的概率大D.小凡获胜的概率大10.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为A.60个B.50个C.40个D.30个二、填空题(本大题共4小题,每小题5分,满分20分)11.下列事件中,①打开电视,它正在播关于扬州特产的广告;②太阳绕着地球转;③掷一枚正方体骰子,点数“4”朝上;④13人中至少有2人的生日是同一个月.属于随机事件的个数是2.12.现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为15.13.如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分.别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为1414.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2 m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是1平方米.三、(本大题共2小题,每小题8分,满分16分)15.班里有18名男生,15名女生,从中任意抽取a人打扫卫生.(1)若女生被抽到是必然事件,求a的取值范围;(2)若女生小丽被抽到是随机事件,求a的取值范围.解:(1)∵班里有18名男生和15名女生,从中任意抽取a人打扫卫生,女生被抽到的是必然事件,∴18<a≤33.(2)∵班里有18名男生和15名女生,从中任意抽取a人打扫卫生,女生小丽被抽到是随机事件,∴a≥1,∴1≤a<33.16.如图,一个转盘被平均分成12份,每份上写上不同的数字,游戏方法:先猜数后转动转盘,若指针指向的数字与所猜的数一致,则猜数者获胜.现提供三种猜数方法:①猜是“奇数”,或是“偶数”;②猜是“大于10的数”,或是“不大于10的数”;③猜是“3的倍数”,或是“不是3的倍数”.如果你是猜数者,你愿意选择哪一种猜数方法?怎样猜?并说明理由.解:选择第③种方法,猜是“3的倍数”.理由如下:∵转盘中,奇数与偶数的个数相同,大于10与不大于10的数的个数也相同,∴①与②游戏是公平的.∵转盘中的数是3的倍数的有7个,不是3的倍数的有5个,∴猜3的倍数,获胜的机会大.四、(本大题共2小题,每小题8分,满分16分)17.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球试验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)请估计:当试验次数为5000次时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,摸到白球的概率P=;(3)试验估算这个不透明的盒子里黑球有多少只?解:(1)0.6.(2)0.6.(3)盒子里黑球有40×(1-0.6)=16(只).18.小明和小新分别转动标有“0~9”十个数字的转盘四次,每次将转出的数填入表示四位数的四个方格中的任意一个,比较两人得到的四位数,谁大谁获胜.已知他们四次转出的数字如下表:(1)小明和小新转出的四位数最大分别是多少?(2)小明可能得到的四位数中“千位数字是9”的有哪几个?小新呢?(3)小明一定能获胜吗?请说明理由.解:(1)小明转出的四位数最大是9730;小新转出的四位数最大是9520.(2)小明可能得到的“千位数字是9”的四位数有6个,分别为9730,9703,9370,9307,9073,9037;小新可能得到的“千位数字是9”的四位数有6个,分别为9520,9502,9250,9205,9052,9025.(3)不一定,因为如果小明得到的是9370,小新得到的是9520,则小新获胜.五、(本大题共2小题,每小题10分,满分20分)19.小敏的爸爸买了一张嘉峪关的门票,她和哥哥都想去,可门票只有一张,读九年级的哥哥想了一个办法,拿了8张扑克牌,将数字为2,3,5,9的四张牌给小敏,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小敏和哥哥从各自的四张牌中随机抽取一张,然后将抽出的两张牌数字相加,如果和为偶数,则小敏去,如果和为奇数,则哥哥去.(1)请你用列表或树状图的方法求小敏去的概率.(2)哥哥设计的游戏规则公平吗?请说明理由.解:(1)根据题意,画出如图所示的树状图,从树状图中可以看出,所有可能出现的结果共有16个,这些结果出现的可能性相等.而和为偶数的结果共有6个,所以小敏去的概率P(和为偶数)=616=38.(2)不公平.理由:哥哥去的概率P(和为奇数)=1-38=58,因为38<58,所以哥哥设计的游戏规则不公平.20.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.解:(1)“3点朝上”出现的频率是660=110,“5点朝上”出现的频率是2060=13.(2)小颖的说法是错误的.这是因为:“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近;小红的判断是错误的,因为事件发生具有随机性,故“6点朝上”的次数不一定是100次. (3)列表如下:P(点数之和为3的倍数)=1236=13.六、(本题满分12分)21.有四张正面分别标有数字2,1,-3,-4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.解:(1)画树状图得:则(m,n)共有12种等可能的结果:(2,1),(2,-3),(2,-4),(1,2),(1,-3),(1,-4),(-3,2),(-3,1),(-3,-4),(-4,2),(-4,1),(-4,-3).(2)∵所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的有:(-3,-4),(-4,-3),∴所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率为212=16.七、(本题满分12分)22.为了了解全校3000名同学对学校设置的体操、篮球、足球、跑步、舞蹈等课外活动项目的喜爱情况,在全校范围内随机抽取了若干名同学,对他们喜爱的项目(每人选一项)进行了问卷调查,将数据进行了统计,并绘制成了如图所示的条形统计图和扇形统计图(均不完整),请回答下列问题:(1)在这次问卷调查中,一共抽查了名同学;(2)补全条形统计图;(3)估计该校3000名同学中喜爱足球活动的人数;(4)学校准备从随机调查喜欢跑步和喜欢舞蹈的同学中分别任选一位参加课外活动总结会.若被随机调查的同学中,喜欢跑步的男生有3名,喜欢舞蹈的女生有2名,请用列表或画树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.解:(1)50.(2)喜欢足球人数:50-5-20-5-3=17.补全统计图:(3)该校3000名同学中喜爱足球活动的有3000×17=1020(名).50(4)画树状图得:∵共有15种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有8种情况,∴所选两位同学恰好是一位男同学和一位女同学的概率为8.15八、(本题满分14分)),E(0,-6),从这五个点中23.在平面直角坐标系中给定以下五个点A(-2,0),B(1,0),C(4,0),D(-2,29选取三点,使经过三点的抛物线满足以y轴的平行线为对称轴.我们约定经过A,B,E三点的抛物线表示为抛物线ABE.(1)符合条件的抛物线共有多少条?不求解析式,请用约定的方法一一表示出来.11 (2)在五个形状、颜色、质量完全相同的乒乓球上标上A ,B ,C ,D ,E 代表以上五个点,玩摸球游戏,每次摸三个球.请问:摸一次,三球代表的点恰好能确定一条符合条件的抛物线的概率是多少?(3)小强、小亮用上面的五球玩游戏,若符合要求的抛物线开口向上,小强可以得1分;若抛物线开口向下,小亮得5分,你认为这个游戏谁获胜的可能性大一些?说说你的理由.解:(1)从A ,B ,C ,D ,E 五个点中任意选取三点,共有以下10种组合,分别如下:ABC ABD ABE ACD ACE.ADE BCD BCE BDE CDE.∵A ,D 所在直线平行于y 轴,A ,B ,C 都在x 轴上,∴A ,D 不能在符合要求的同一条抛物线上,A ,B ,C 也不能在符合要求的同一条抛物线上, 于是符合条件的抛物线有如下六条:ABE ACE BCD BCE BDE CDE(2)摸一次,三球代表的点恰好能确定一条符合条件的抛物线的概率为610=35.(3)这个游戏两人获胜的可能性一样.理由是:在可以确定的六条抛物线中,通过观察五点位置可知:抛物线BCE 开口向下,其余五条开口向上,每摸一次,小强获得分数的平均值为510×1=12;小亮获得分数的平均值为110×5=12,∴这个游戏两人获胜的可能性一样.。
人教版九年级数学上册第25章概率初步单元测试(含解析)
人教版九年级数学上册第25章概率初步单元测试(含解析)(时间120分钟,总分值120分)一、选择题(每题3分,共30分)1.以下事情属于肯定事情的是()A.蒙上眼睛射击正脱靶心B.买一张彩票一定中奖C.翻开电视机,电视正在播放旧事联播D.月球绕着地球转2.在一个不透明的布袋中装有白色、白色玻璃球共40个,除颜色外其他完全相反.小明经过屡次摸球实验后发现,其中摸到白色球的频率动摇在15%左右,那么口袋中白色球能够有()A.4个B.6个C.34个D.36个3.掷一个平均的小正方体,这个小正方体的每个面上区分标有数字1,2,3,4,5,6.恣意掷出小正方体后,能够性最大的是()A.朝上的数字是5B.朝上的数字是偶数C.朝上的数字是奇数D.朝上的数字小于54.以下说法正确的选项是()A.一颗质地平均的骰子已延续抛投了2 015次,其中抛掷出5点的次数最少,那么第2 016次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预告说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等5.小明在一个装有白色和白色球各一个的口袋中摸出一只球,然后放回搅匀再摸出一只球,重复屡次实验后,发现某种〝状况〞出现的时机约为50%,那么这种状况能够是()A.两次摸到白色球B.两次摸到白色球C.两次摸到不同颜色的球D.先摸到白色球,后摸到白色球6.在如下图的正方形和圆形组成的盘面上投掷飞镖,飞镖落在阴影区域的概率是( )A.12B.13C.14D.15 7.经过某十字路口的汽车,能够直行,也能够左转或许右转,假设这三种能够性大小相反,那么经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是( )A.47B.49C.29D.19 8.在区分标有号码2,3,4,…,10的9个球中,随机取出两个球,记下它们的标号,那么较大标号被较小标号整除的概率是( )A.14B.29C.518D.736 9.如图,A ,B 是边长为1的小正方形组成的网格上的两个格点,在格点中恣意放置点C ,恰恰能使△ABC 的面积为1的概率是( )A.625B.15C.425D.725 10.假定〝抢30〞游戏规那么是:第一团体先说〝1〞或〝1,2〞,第二团体要接着往下说一个或两个数,然后又轮到第一团体,再接着往下说一个或两个数,这样两人重复轮番,每次每人说一个或两个数都可以,但是不可以连说三个数,谁先抢到30,谁就失利,假定改成〝抢32〞,那么采取适当战略,其结果是( )A.先报数者胜B.后报数者胜C.两者都能够胜D.很难预料二、填空题(每题4分,共24分)11.如图是可以自在转动的一个转盘,转动这个转盘,当它停下时,指针落在标有号码 上的能够性最大.12.某校先生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通讯号灯,他在路口遇到红灯的概率为13,遇到黄灯的概率为19,那么他遇到绿灯的概率为 .13.掷一枚质地平均的正方体骰子(六个面上区分刻有1到6的点数),向上一面出现的点数大于2且小于5的概率为 .14.在一个不透明的布袋中,装有红、黑、白三种只要颜色不同的小球,其中白色小球4个,黑、白色小球的数目相反.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此少量摸球实验后,小明发现其中摸出的红球的频率动摇于20%,由此可以估量布袋中的黑色小球有个.15.一个不透明盒子内装有大小、外形相反的四个球,其中红球1个,绿球1个,白球2个,小明摸出一个球不放回,再摸出一个球,那么两次都摸到白球的概率是.16.小明和小丽做掷硬币(质量平均)游戏.规那么是:连掷四次硬币,当其中有三次结果相反时,小明获胜;当恰有两次结果相反时,小丽获胜,其他状况不计胜负.那么这个规那么对有利.三、解答题(共66分)17.(6分)按以下要求各举一例:(1)一个发作能够性为0的不能够事情;(2)一个发作能够性为100%的肯定事情;(3)一个发作能够性大于50%的随机事情.18.(6分)一个口袋中有9个红球和假定干个白球,在不允许将球倒出来数的前提下,小明采用如下的方法预算其中白球的个数:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色…,小明重复上述进程共摸了100次,其中40次摸到白球,请回答:(1)口袋中的白球约有多少个?(2)有一个游乐场,要依照上述红球、白球的比例配置彩球池,假定彩球池里共有1 200个球,那么需预备多少个红球?19.(8分)一个口袋里有假定干个白球,没有其他颜色的球,而且不许将球倒出来数,那么你该如何来估量出其中的白球数呢?试设计出两种不同的方案.20.(8分)一个口袋中有红球24个和假定干个绿球,从口袋中随机摸出一个球记下其颜色,再把它放回口袋中摇匀,重复上述进程,实验200次,其中有125次摸到绿球,由此估量口袋中共有多少个球?21.(8分)小颖和小红两位同窗在学习〝概率〞时,做掷骰子(质地平均的正方体)实验.(1)他们在一次实验中共做了60次实验,实验的结果如下:①此次实验中〝3点朝上〞的频率是多少?②小红说:〝依据实验,出现3点朝上的概率最小.〞她的说法正确吗?为什么?(2)小颖和小红在实验中假设各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大约率.22. (8分)一个不透明口袋中装有红球6个,黄球9个,绿球3个,这些球除颜色外没有任何其他区别.现从中恣意摸出一个球.(1)计算摸到的是绿球的概率.(2)假设要使摸到绿球的概率为1,需求在这个口袋中再放入多少个绿球?423.(10分)一只纸箱中装有除颜色外完全相反的白色、黄色、蓝色乒乓球共100个.从纸箱中恣意摸出一球,摸到白色球、黄色球的概率区分是0.2,0.3.(1)试求出纸箱中蓝色球的个数;(2)小明向纸箱中再放进白色球假定干个,小丽为了估量放入的红球的个数,她将箱子外面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,屡次重复上述进程后,她发现摸到红球的频率在0.5左近动摇,请据此估量小明放入的红球的个数.24.(12分)某商场设计了两种促销方案:第一种是顾客在商场消费每满200元就可以从一个装有100个完全相反的球(球上区分标有数字1,2,…,100)的箱子中随机摸出一个球(摸后放回).假定球上的数字是88,那么返500元购物券;假定是66或99,那么返300元购物券;假定球上的数字被5整除,那么返5元购物券;假定是其他数字不返还购物券.第二种是顾客在商场消费每满200元直接返还15元购物券.估量活动时期将有5 000人参与活动.请你经过计算说明商家选择哪种方案促销合算些?参考答案1.D 解析:A,蒙上眼睛射击正脱靶心是随机事情,应选项错误;B,买一张彩票不一定中奖,应选项错误;C,翻开电视机,电视正在播放旧事联播是随机事情,应选项错误;D,月球绕着地球转是肯定事情,正确.2.B 解析:∵摸到白色球的频率动摇在15%左右,∴摸到白色球的频率为15%,故红球的个数为40×15%=6个.3.D 解析:A,由于一个平均的正方体骰子有6个面,点数是5是一个面,所以5朝上的概率是16;B,偶数有3个,偶数朝上的概率是12;C,奇数有3个,奇数朝上的概率是12;D,小于5的数有1,2,3,4共4个,朝上的数字小于5的概率是23.概率最大的为D.4.D 解析:A,一颗质地平均的骰子已延续抛投了2 015次,其中抛掷出5点的次数最少,那么第2 016次能够抛掷出5点,故A 错误;B,某种彩票中奖的概率是1%,因此买100张该种彩票能够会中奖,故B 错误;C,天气预告说明天下雨的概率是50%,明天能够下雨,故C 错误;D 对,故D 正确.5.C6.C 解析:应用图形的旋转易观察发现阴影局部占一切面积的14,所以飞镖落在阴影区域的概率是14.7.C 解析:画〝树状图〞罗列这两辆汽车行驶方向一切能够的结果如下图: ∴这两辆汽车行驶方向共有9种能够的结果;由〝树状图〞知,两辆汽车一辆左转,一辆右转的结果有2种,且一切结果的能够性相等,∴P (两辆汽车一辆左转,一辆右转)=29.8.B 解析:在区分标有号码2,3,4,…,10的9个球中,随机取出两个球,共有8+7+6+5+4+3+2+1=36种等能够的结果数,其中较大标号被较小标号整除有(2,4),(2,6),(2,8),(2,10),(3,6),(3,9),(4,8),(5,10),所以较大标号被较小标号整除的概率=836=29.9.A 解析:如下图,在4×4的网格中共有25个格点,而使得三角形面积为1的格点有6个,故使得三角形面积为1的概率为625.10.A 解析:先报数者首先报两个数1,2,然后第二团体接着无论说一个或两个数,先报数者都与第二团体说的数凑成3个数,如此循环,最后剩下的三个数是30,31,32.第二团体无论再说一个或两个数,先报数者一定能抢到32失利.应选A.11.5 解析:∵号码是5的扇形所占的面积最大, ∴指针落在标有号码5上的能够性最大.12.59 解析:∵经过一个十字路口,共有红、黄、绿三色交通讯号灯,∴在路口遇到红灯、黄灯、绿灯的概率之和是1,∵在路口遇到红灯的概率为13,遇到黄灯的概率为19,∴遇到绿灯的概率为1-13−19=59.13.13 解析:掷一枚平均的骰子时,有6种状况,出现点数大于2且小于5的状况有2种,故其概率是26=13.14.8 解析:设黑色的数目为x ,那么黑、白色小球一共有2x 个, ∵屡次实验发现摸到红球的频率是20%,那么得出摸到红球的概率为20%, ∴44+2x =20%,解得x=8, ∴黑色小球的数目是8个.15.16 解析:画树状图得: ∵共有12种等能够的结果,两次都摸到白球的有2种状况,∴两次都摸到白球的概率是212=16. 16.小明 解析:画树状图得:∴连掷四次硬币共16种状况,其中有三次结果相反的有8种状况,恰有两次结果相反有6种状况,∴P (小明获胜)=816=12,P (小丽获胜)=616=38,∴P (小明获胜)>P (小丽获胜),∴这个规那么对小明有利.17.剖析:依据要求判别事情的类型,再依据肯定事情、不能够事情、随机事情的概念可举出例子.解:(1)一个发作能够性为0的不能够事情:在一个装着白球和黑球的袋中摸球,摸出红球;(2)一个发作能够性为100%的肯定事情:抛掷一石头,石头终将落地;(3)一个发作能够性大于50%的随机事情.在一个装着10个白球和1个黑球的袋中摸球,摸出白球.18.剖析:(1)等量关系为:白球的个数除以球的总数=40÷100,把相关数值代入计算即可;(2)红球的个数=球的总数×红球的概率,计算即可.解:(1)设白球的个数为x个,依据题意得xx+9=40100,解得x=6,可估量口袋中的白球的个数是6个.(2)1 200×100-40100=720.所以需预备720个红球.19.剖析:此题有两个方案:(1)可以向口袋里另放几个黑球,从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不时重复上述进程;记载一共摸球的次数,并记载摸到黑球的次数,来估量白球的个数;(2)应用抽样调查方法,从口袋中抽出几个球做上标志,然后放回袋中,从口袋中一次摸出多个球,求出其中做标志的球与摸到球总数的比值,再把球放回口袋中,不时重复上述进程;据此来估量白球的数目.解:方案(1):可以向口袋里另放几个黑球;方案(2):也可以从口袋中抽出几个球做上标志,然后放回袋中.20.剖析:在异样条件下,少量重复实验时,随机事情发作的频率逐渐动摇在概率左近.求出绿球的概率,依据概率公式停止计算即可.解:设有绿球x个,那么xx+24=125200,解得x=40,故袋中球总数为40+24=64(个).所以口袋中约有64个球.21.剖析:(1)①由于实验中〝3点朝上〞的次数有6次,总数为60,由此即可失掉此次实验中〝3点朝上〞的频率;②小红的说法不正确,由于应用频率估量概率实验次数必需比拟多,重复实验,频率才渐渐接近概率.(2)首先可以求出点数之和的一切能够状况,然后应用概率的定义即可失掉概率最大的点数之和.解:(1)①∵实验中〝3点朝上〞的次数有6次,总数为60,∴此次实验中〝3点朝上〞的频率为6÷60=0.1;②小红的说法不正确,∵应用频率估量概率实验次数必需比拟多,重复实验,频率才渐渐接近概率, ∴而她的实验次数太少,没有代表性,∴小红的说法不正确;(2)两枚骰子朝上的点数之和能够状况:∴和为2的有1种,和为3的有2种,和为4的有3种,和为5的有4种,和为6的有5种,和为7的有6种,和为8的有5种,和为9的有4种,和为10的有3种,和为11的有2种,和为12的有1种,两枚骰子朝上的点数之和为7时的概率最大,最大约率为6÷36=16.22.剖析:(1)依据随机事情概率大小的求法,用契合条件的状况数目除以全部状况的总数即为发作的概率;(2)依据绿球的概率公式失掉相应的方程,求解即可.解:(1)依据题意剖析可得口袋中装有红球6个,黄球9个,绿球3个,共18个球,故P(摸到绿球)=318=16;(2)设需求在这个口袋中再放入x个绿球,得3+x18+x =14,解得x=2.所以需求在这个口袋中再放入2个绿球.23.剖析:(1)蓝色球的个数等于总个数乘以摸到蓝色球的概率即可;(2)由于摸到红球的频率在0.5左近动摇,所以摸出红球的概率为0.5,再设出红球的个数,依据概率公式列方程解答即可.解:(1)由得纸箱中蓝色球的个数为100×(1-0.2-0.3)=50(个).(2)设小明放入红球x 个,依据题意得20+x 100+x =0.5,解得x=60(个).经检验:x=60是所列方程的根.答:小明放入的红球的个数为60.24.剖析:依据题意区分计算出取得500元,300元购物券的概率,求得平均数,进而求得总付费,比拟即可.解:取得500元,300元购物券的概率区分是1100=0.01,2100=0.02,取得5元购物券的概率是20100=0.2.摸球一次取得购物券的平均金额为(0.01×500+0.02×300+0.2×5)=12(元).假设有5 000人参与摸球,那么相应频率大致为0.01,0.02,0.2,商场付出的购物券的金额是5 000×12=60 000元.假定返还15元购物券,需付出5 000×15=75 000元,商场选择摸球的促销方式合算.。
第二十五章++概率初步++单元练习+++2024-2025学年人教版九年级数学上册
第二十五章概率初步单元练习2024-2025学年人教版数学九年级上册一、单选题1.中国古代的“四书”是指《论语》、《孟子》、《大学》、《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分,现有《论语》、《大学》各2本,《孟子》、《中庸》各1本,若从这6本书中随机抽取1本书,则恰好抽取到《大学》的概率是()A.12B.14C.13D.162.某超市开展“迎藏历新年”大酬宾活动,凡购物满200元者,可参与一次转盘抽奖(如图1).德吉购买了220元的物品,她最有可能抽中()A.一等奖B.二等奖C.三等奖D.谢谢惠顾3.一个不透明的口袋里装有分别标有汉字“大”、“美”、“山”、“西”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.从中任取一球,不放回,再从中任取一球,取出的两个球上的汉字能组成“美西”的概率是()A.12B.14C.16D.184.某同学现有一装有若干个黄球的袋子.为了估计袋子中黄球的数量,该同学向这袋黄球中放入了30个绿球(所有球除颜色外其余均相同),摇匀后随机抓取60个,其中绿球共计10个,则袋子中黄球的数量约为()A.200个B.180个C.240个D.150个5.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和不小于5的概率为()A.15B.25C.35D.456.随机掷一枚质地均匀的硬币两次,落地后至多有一次反面朝上的概率为()A.34B.14C.12D.237.兴趣学习小组对某品种的麦粒在相同条件下进行发芽试验,结果如下表所示:通过试验,估计在这批麦粒中任取一粒能发芽的概率(精确到0.01)是()A.0.92B.0.93C.0.95D.0.988.有下列命题:①过直线外一点有且只有一条直线与这条直线平行;①有两个角互余的三角形是直角三角形;①垂直于同一条直线的两条直线互相平行;①在△ABC中,若∠A=2∠B= 3∠C,则△ABC为直角三角形.随机抽取一个,是真命题的概率为()A.14B.12C.34D.19.下面的四个命题中,真命题是()A.两条直线被第三条直线所截,同位角相等B.抽签中奖的概率为110,则每抽10次签,一定会有1次中奖C.一组数据的方差越大,数据越稳定D.400人中至少有两人的生日在同一天是必然事件10.袋中有形状、大小都相同的8个球,上面依次写着2、3、4、5、6、7、8、9八个数字,小刚和小明两人玩摸球游戏,下面规则中对双方都公平的是()A.任意摸一球,摸到质数小刚胜,摸到合数小明胜B.任意摸一球,摸到2的倍数小刚胜,摸到3的倍数小明胜C.任意摸一球,小于5小刚胜,大于5小明胜D.任意摸一球,小于6小刚胜,大于6小明胜,11.一个盒子里有黑球6个,白球若干,这些球除颜色外都相同.将盒子里的球搅拌均匀,从中随机摸出一个球,记下颜色后放回盒子里,不断重复这一过程,共摸了100次球,发现有70次摸到白球.则盒子中白球大约有()A.7个B.10个C.14个D.16个12.抛掷一枚质地均匀的图钉,图钉落地后,可能针尖朝上,也可能针尖朝下.数学小组的同学进行抛掷图钉实验,得到如表实验数据,下列说法错误的()实验次数100200300400500600700800…针尖朝上次数m109166221278329385440…针尖朝上频率0.570.5450.5530.55250.5560.5480.550.545…A.投掷100次针尖朝上的次数是57B.投掷400次的针尖朝上的频率是0.5525C.任意投掷一枚图钉,针尖朝上的概率是0.5D.投掷2000次图钉,针尖朝上的次数大约有1100次二、填空题13.一影院正在放映《热辣滚烫》,某人在售票窗口购票一张,该票座位号码是奇数属于事件.14.在一个不透明的口袋中,装有若干个红球和白球,它们除颜色外其余都相同,从中任意,若白球有10个,则红球有个.摸出一个球,摸到红球的概率为2715.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张记为a,将数字牌放回洗匀后,再随机抽取一张记为b,则a≤b的概率是.16.以文促旅,以旅彰文.“非遗+旅游”已成为文旅融合发展的重要一环,让非遗产品通过旅游市场走进寻常百姓家,小文制作了“非遗”专题卡片,下图是其中的四张,这些卡片除图案外其余完全相同,将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,则抽到的两张卡片恰好是徐沟背铁棍和翼城花鼓的概率是.17.为了解该微信二维码中间带微信图标小正方形区域的面积,某小组同学做了抛掷点的实验,实验数据如下:在正方形内投掷的点数n1002003004006008009001000试估计“点落入圆形区域内”的概率(精确到0.01) .18.“六①一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法:①当n很大时,估计指针落在“铅笔”区域的频率大约是0.70;①假如你去转动转盘一次,获得铅笔的概率大约是0.70;①如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次;①转动转盘10次,一定有3次获得文具盒.中正确的是.三、解答题19.汽车租赁公司共有出租车120辆,每辆汽车的日租金为160元,出租业务供不应求,为适合市场需求,经有关部门批准,公司准备适当提高日租金.经市场调查发现,一辆汽车的日租金每增加10元,每天出租的汽车相应地减少6辆,若不考虑其他因素,一辆汽车的日租金提高几个10元时,才能使公司的日租金收入最高?公司的日租金总收入比提高租金前增加了多少?(公司日租金总收入=每辆汽车的日租金×公司每天出租的汽车数)20.某商场的打折活动规定:凡在本商场购物,可转动如图所示的转盘一次,并根据所转结果付账.(1)分别求出打九折,打八折的概率;(2)小红和小明分别购买了价值200元的商品,活动后一共付钱360元,请你分析他俩获得优惠的情况.21.某校开展了以“学习百年党史,汇聚团结伟力”为主题的知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分成A,B,C,D,E五个等级,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:等级成绩xA50≤x<60B60≤x<70C70≤x<80D80≤x<90E90≤x<100(1)本次调查一共随机抽取了______名学生的成绩,补全学生成绩频数分布直方图;(2)若成绩在80分及以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少人?(3)本次成绩前四名有2名女生和2名男生,若从这四人中随机抽取2名同学代表学校参加比赛,请用画树状图或列表法求出全是女学生的概率.22.某校九年级计划组织学生外出开展研学活动,在选择研学活动地点时,随机抽取了部分学生进行调查,要求被调查的学生从A、B、C、D四个研学活动地点中选择自己最喜欢的一个.根据调查结果,编制了如下两幅不完整的统计图,根据图中信息,解答下列问题:(1)此次被调查的学生共有__________人,研学活动地点A所在扇形的圆心角的度数为__________;(2)若该年级共有800名学生,请估计最喜欢去C地研学的学生人数;(3)九(1)班研学归来,班主任组织学生进行研学收获及感悟交流分享会,A小组有两名男同学和两名女同学,从A小组中随机选取2人谈收获及感悟,请用列表法或画树状图法,求恰好抽中两名同学为一男一女的概率.23.在学习《用频率估计概率》时,小明和他的伙伴们设计了一个摸球试验:在一个不透明帆布袋中装有白球和红球共4个,这4个球除颜色外无其他差别.每次摸球前先将袋中的球搅匀,然后从袋中随机摸出1个球,观察该球的颜色并记录,再把它放回.在老师的帮助下,小明和他的伙伴们用计算机模拟这个摸球试验.如图显示的是这个试验中摸出一个球是红球的结果.(1)根据频率与概率关系的知识,请估计从这个不透明的帆布袋中随机摸出一个球是红球的概率约是______(精确到0.01),其中红球的个数是______;(2)如果从这个不透明的帆布袋中同时摸出两个球,用列表或画树状图法求摸出的两个球刚好一个是红球和一个是白球的概率.24.如图,地面上有一个不规则的封闭图形ABCD,为求得它的面积,小明设计了如下方法:①在此封闭图形内画出一个半径为2米的圆.②在此封闭图形旁边闭上眼睛向封闭图形内掷小石子(可把小石子近似的看成点),记录如下:掷小石子落在不规则图形内的总次数50150300500⋯小石子落在圆内(含圆上)的次数m2061123206⋯小石子落在圆外的阴影部分(含外缘)的次数n3089177294⋯m:n0.6670.6850.6950.701⋯(1)通过以上信息,可以发现当投掷的次数很大时,m:n的值越来越接近______(结果精确到0.1);(2)若以小石子所落的有效区域为总数(即m+n),则随着投掷次数的增大,小石子落在圆内(含圆上)的频率值稳定在______附近(结果精确到0.1);(3)请你利用(2)中所得频率的值,估计整个封闭图形ABCD的面积是多少平方米?(结果保留π)。
人教版九年级数学上第25章概率初步单元测试题含答案
人教版九年级数学上册第25章概率初步单元测试题(含答案)一.选择题(共10小题)1.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零2.在一个不透明的盒子里装有3个黑球和1个白球,每个球除颜色外都相同,从中任意摸出2个球,下列事件中,不可能事件是()A.摸出的2个球都是白球B.摸出的2个球有一个是白球C.摸出的2个球都是黑球D.摸出的2个球有一个黑球3.必然事件的概率是()A.﹣1 B.0C.0.5 D.14.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.(4题图)(10题图)5.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是()A.B.C.D.6.小玲与小丽两人各掷一个正方体骰子,规定两人掷的点数和为偶数,则小玲胜;点数和为奇数,则小丽胜,下列说法正确的是()A.此规则有利于小玲B.此规则有利于小丽C.此规则对两人是公平的D.无法判断7.在一个不透明的袋子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中红球的个数约为()A.4 B.6C.8D.128.一只不透明的袋子中装有1个白球,2个黄球和3个红球,每个球除颜色外都相同,将球搅匀,从中任意摸出一个球.如果想使摸到这三种颜色的球的概率相等,下列做法正确的是()A.向袋子里分别投放1个白球,1个黄球,1个红球B.向袋子里分别投放3个白球,2个黄球,1个红球C.向袋子里分别投放2个白球,1个黄球D.向袋子里投放2个白球9.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A.B.C.D.10.如图是两个完全相同的转盘,每个转盘被分成了面积相等的四个区域,每个区域内分别填上数字“1”“2”“3”“4”.甲、乙两学生玩转盘游戏,规则如下:固定指针,同时转动两个转盘,任其自由转动,当转盘停止时,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜.那么在该游戏中乙获胜的概率是()A.B.C.D.二.填空题(共10小题)11.小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为事件(填“必然”或“不可能”或“随机”).12.“打开电视机,它正在播广告”这个事件是事件(填“确定”或“随机”).13.一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为.14.从2,3,4这三个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是.15.甲乙两人用2两张红心和1两张黑桃做游戏,规则是:甲乙各抽取一张,如果两张同一花色,甲胜;若两张花色不同,乙胜;请问:这个游戏是否公平?答:.16.一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是的.(填“公平”或“不公平”)17.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有颗.18.一个口袋有3个黑球和若干个白球,在不允许将球倒出来的前提下,小明为估计其中的白秋数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回口袋中,…,不断重复上述过程,小明共摸了100次,其中20次摸到黑球.根据上述数据,小明正估计口袋中的白球的个数是.19.设计一个摸球游戏,在一个袋子里装有一些颜色的球,使得摸到红球的机会为0.4,摸到黄球的机会为0.2,摸到白球的机会为0.4,则至少要有个黄球.20.同时掷二枚普通的骰子,数字和为1的概率为,数字和为7的概率为,数字和为2的概率为.三.解答题(共5小题)21.在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数.22.某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.23.一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.24.甲乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲乙两人抽得的两个数字之积,如果积为奇数则甲胜,若积为偶数则乙胜.(1)用列表或画树状图等方法,列出甲乙两人抽得的数字之积所有可能出现的情况;(2)请判断该游戏对甲乙双方是否公平?并说明理由.25.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n 100 150 200 500 800 1000摸到黑球的次数m 23 31 60 130 203 2510.23 0.21 0.30 0.26 0.253摸到黑球的频率(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是;(2)估算袋中白球的个数;(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树形图或列表的方法计算他两次都摸出白球的概率.人教版九年级数学上册第25章概率初步单元测试题参考答案一.选择题(共10小题)1.D 2.A 3.D 4.C 5.C 6.C 7.C 8.B 9.B 10.A二.填空题(共10小题)11.随机 12.随机13.14.15.不公平16.公平17.1418.12 19.1 20.0三.解答题(共5小题)21.解:(1)∵共10个球,有2个黄球,∴P(黄球)==;(2)设有x个红球,根据题意得:=,解得:x=5.故后来放入袋中的红球有5个.22.解:(1)∵整个圆被分成了12个扇形,其中有6个扇形能享受折扣,∴P(得到优惠)==;(2)转盘1能获得的优惠为:=25元,转盘2能获得的优惠为:40×=20元,所以选择转动转盘1更优惠.23.解:(1)4个小球中有2个红球,则任意摸出1个球,恰好摸到红球的概率是;故答案为:;(2)列表如下:红红白黑红﹣﹣﹣(红,红)(白,红)(黑,红)红(红,红)﹣﹣﹣(白,红)(黑,红)白(红,白)(红,白)﹣﹣﹣(黑,白)黑(红,黑)(红,黑)(白,黑)﹣﹣﹣所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)==.24.解:(1)列表如下:1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3)(2,3)(3,3)所有等可能的情况有9种,分别为(1,1);(1,2);(1,3);(2,1);(2,2);(2,3);(3,1);(3,2);(3,3),则甲乙两人抽得的数字之积所有可能出现的情况有1,2,3,2,4,6,3,6,9,共9种;(2)该游戏对甲乙双方不公平,理由为:其中积为奇数的情况有4种,偶数有5种,∴P(甲)<P(乙),则该游戏对甲乙双方不公平.25.解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x个,=0.25,x=3.答:估计袋中有3个白球.(3)用B代表一个黑球,W1、W2、W3 代表白球,将摸球情况列表如下:总共有16种等可能的结果,其中两个球都是白球的结果有9种,所以摸到两个球都是白球的概率为.。
初中数学 人教版九年级上册 第25章《概率初步》单元测试卷(附答案) (1)
人教版数学九年级上册第25章概率初步单元测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.从1−9这九个自然数中任取一个,是2的倍数的概率是()A.23B.59C.49D.292.在一次抽奖中,若抽中的概率是0.34,则抽不中的概率是()A.0.34B.0.17C.0.66D.0.763.一副扑克牌,去掉大小王,从中任抽一张,抽到的牌是6的概率是()A.12B.14C.110D.1134.袋中有同样大小的3个球,其中2个红色,1个白色.从袋中任意地同时摸出两个球,这两个球的颜色相同的概率是()A.16B.14C.13D.125.掷一次骰子(每面分别刻有1−6点),向上一面的点数是质数的概率等于()A.16B.12C.13D.236.如图所示,小明、小刚利用两个转盘进行游戏;规则为小明将两个转盘各转一次,如配成紫色(红与蓝)得5分,否则小刚得3分,此规则对小明和小刚()A.公平B.对小明有利C.对小刚有利D.不可预测7.一个不透明的袋中装有除颜色外均相同的2个红球、1个白球,从中随机摸出2个球,则下列说法正确的是()A.至少有一个是白球B.至少有一个是红球C.一定是一个白球、一个红球D.一定是两个红球8.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲、乙两人进行模球游戏:甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.如果规定:乙摸到与甲相同颜色的球为乙胜,否则为输,则乙在游戏中能获胜的概率为()A.13B.14C.19D.239.在一个不透明的布袋中,红色、黑色的球共有10个,它们除颜色外其他完全相同.张宏通过多次摸球试验后发现其中摸到红球的频率稳定在20%附近,则口袋中红球的个数很可能是()A.2个B.5个C.8个D.10个10.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为()A.60个B.50个C.40个D.30个二、填空题(共 8 小题,每小题 3 分,共 24 分)11.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放12.“双十二”期间,小冉的妈妈在网上商城给小冉买了一个书包,除了书包打八折外还随机赠送购买者1支笔(除颜色外其它都相同且数量有限).小冉的妈妈购买成功时,还有5支黑色,3支绿色,2支红色的笔.那么随机赠送的笔为绿色的概率为________.13.小明和小颖按如下规则做游戏:桌面上放有8粒豆子,每次取1粒或2粒,由小明先取,最后取完豆子的人获胜.要使小明获胜的概率为1,那么小明第一次应该取走________粒.14.“刘翔在110米跨栏比赛中一定不会输给其他任何一个选手”是________事件(填“必然”,“不可能”或“不确定”).15.从一个装有2个白球,3个红球,5个黄球的口袋中,随机摸一个不是白球的概率为________.16.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字都是奇数的概率为________.17.一只不透明的袋子中装有2个红球、3个白球,这些球除颜色外都相同,摇匀后从中任意摸出一个球,摸到红球的概率是________.18.小明和爸爸今年五一节准备到峨眉山去游玩,他们选择了报国寺、伏虎寺、清音阁三个景点去游玩.如果他们各自在这三个景点中任选一个景点作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择报国寺为第一站的概率是________.三、解答题(共 8 小题,共 66 分)19.(6分) 在一个不透明的袋中装有3个完全相同的小球,上面分别标号为1、2、3,从中随机摸出两个小球,并用球上的数字组成一个两位数.(1)求组成的两位数是奇数的概率;(2)小明和小华做游戏,规则是:若组成的两位数是4的倍数,小明得3分,否则小华得3分,你认为该游戏公平吗?说明理由;若不公平,请修改游戏规则,使游戏公平.20.(6分) 为决定谁获得仅有的一张电影票,甲和乙设计了如下游戏:在三张完全相同的卡片上,分别写上字母A,B,B,背面朝上,每次活动洗均匀.甲说:我随机抽取一张,若抽到字母B,电影票归我;乙说:我随机抽取一张后放回,再随机抽取一张,若两次抽取的字母相同的电影票归我.(1)求甲获得电影票的概率;(2)求乙获得电影票的概率;(3)此游戏对谁有利?21.(9分) 小明和小亮想趁暑假去看世博会,可是只有一张门票,谁都想去,最后商定通过转盘游戏来决定.他们准备了如图12所示两个可以自由转动的转盘A、B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,小明去:数字之和为1时,小亮去.(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止)(1)用树状图或列表法求小明去的概率;(2)这个游戏规则对小明、小亮双方公平吗?请判断并说明理由.22.(9分) 判断下列事件为必然事件,随机事件,还是不可能事件?一个昏庸的国王,总是用抽卡片的方式决定他的臣民的生与死.如果抽到卡片上写着生,国王就让臣民活下去,如果抽到卡片上写着死,国王就杀死臣民,每次国王都准备两张卡片.(1)若两张卡片均为死,该臣民最终活着;(2)若两张卡片均为死,该臣民被杀死;(3)若两张卡片上分别写着一“生”一“死”,该臣民最终活着.23.(9分) 在一个不透明的盒子中装有3个形状大小完全一样的小球,上面分别有标号1,2,−1,用树状图或列表的方法解决下列问题:(1)将球搅匀,从盒中一次取出两个球,求其两标号互为相反数的概率.(2)将球搅匀,摸出一个球将其标号记为k,放回后搅匀后再摸出一个球,将其标号记为b.求直线y=kx+b不经过第三象限的概率.24.(9分) 小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为________;(2)求他们三人在同一个半天去游玩的概率.25.(9分)在一个口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地摸取一个小球然后放回,再随机地摸出一个小球.记事件A为“两次取的小球的标号的和是2的整数倍”,记事件B为“两次取的小球的标号的和是2或+P(A)是否成立,并说明理由.3的整数倍”,请你判断等式P(B)=1326.(9分) 解答下列问题:(1)在一个不透明的口袋中有10个红球和若干个白球,这些球除颜色不同外其他都相同,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下颜色,再把它放回袋中,不断重复上述过程,实验总共摸了200次,其中有50次摸到了红球,那么估计口袋中有白球多少个?(2)请思考并作答:在一个不透明的口袋里装有若干个形状、大小完全相同的白球,在不允许将球倒出来的情况下,如何估计白球的个数(可以借助其它工具及用品)?写出解决问题的主要步骤及估算方法,并求出结果(其中所需数量用a、b、c等字母表示).答案 1.C 2.C 3.D 4.C 5.B 6.A 7.B 8.A 9.A 10.C 11.0.6 12.310 13.214.不确定 15.45 16.14 17.25 18.1919.解:(1)画树状图如下:一共有6种等可能的结果,组成的两位数是奇数的有13,23,21,31共4种情况,两位数是奇数的概率为23;(2)∵组成的两位数是4的倍数的有2种情况, ∴P (小明得3分)=13,P (小华得3分)=23,∴该游戏不公平.可改游戏规则为:组成的两位数是4的倍数,小明得2分,否则小华得1分. 20.解:(1)根据题意得:P (甲获得电影票)=23;(2)列表如下:则P (乙获得电影票)=59;(3)∵23>59, ∴此游戏对甲更有利. 21.解:(1)画树状图得:∵共有12种等可能的结果,小明去的有3种情况; ∴小明去的概率为:312=14;(2)公平. 理由:∵数字之和为1的有3种情况, ∴P (小亮去)=312=14,∴P (小明去)=P (小亮去),∴这个游戏规则对小明、小亮双方公平.22.解:(1)不可能事件(2)必然事件(3)随机事件 23.解:(1)列表得:所以两标号互为相反数的概率=26=13;(2)列表如下:∴P (不经过第三象限)=29. 24.(1)14.25.解:等式P(B)=13+P(A)不成立, 理由:列表得:其中为2的倍数的有5种,为2或3的倍数的有7种, 故P(A)=59,P(B)=79, 故P(B)=13+P(A)不成立.26.解:(1)∵实验总共摸了200次,其中有50次摸到了红球, ∵口袋中有10个红球,假设有x 个白球, ∴1010+x =50200,解得:x =30,∴口袋中有白球30个;(2)可以拿出a 个标上记号,然后搅匀后再拿出b 个,带记号的有c 个,即可估计白球的个数. 设球的总个数为x ,b x=ca ,∴x =ab c.∴白球的个数为abc .。
九年级数学上册《第二十五章 概率初步》单元检测卷及答案(人教版)
九年级数学上册《第二十五章概率初步》单元检测卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列事件中属于必然事件的是()A.早上的太阳从西边升起B.掷一枚质地均匀的骰子,掷出的点数不超过6C.经过有交通信号灯的路口,遇到红灯D.打开电视任选一频道,正在播放普宁新闻2.在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是()A.15B.13C.38D.583.一个不透明的盒子里装有2个白球,2个红球,若干个黄球,这些球除了颜色外,没有任何其他区别.若从这个盒子中随机摸出一个是黄球的概率是35,则盒子中黄球的个数是()A.2 B.4 C.6 D.84.学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分届线,则都重转一次.在该游戏中乙获胜的概率是()A.14B.12C.34D.565.连接正六边形不相邻的两个顶点,并将中间的六边形涂成黑色,制成如图所示的镖盘.将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为()A.14B.13C.12D.√336.把同一副扑克牌中的红桃6、红桃7、红桃9三张牌背面朝上放在桌子上,从中随机抽取两张,牌面的数字之和为奇数的概率为()A.13B.23C.12D.167.点P的坐标是(m,n),从﹣5,﹣3,0,4,7这五个数中任取一个数作为m的值,再从余下的四个数中任取一个数作为n的值,则点P(m,n)在平面直角坐标系中第二象限内的概率是()A.25B.15C.14D.128.初三(1)班周沫同学拿了A,B,C,D四把钥匙去开教师前、后门的锁,其中A钥匙只能开前门,B钥匙只能开后门,任意取出一把钥匙能够一次打开教室门的概率是()A.12B.34C.1 D.14二、填空题9.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.10.如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于.11.一枚质地均匀的正方体骰子,六个面分别刻有1到6的点数,投一次向上一面的点数大于等于3的概率是.12.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是.13.一个暗箱里放有a个白球和3个红球,它们除颜色外完全相同.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a的值大约是.三、解答题14.为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1) 八(1)班抽中歌曲《我和我的祖国》的概率是;(2) 试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.15.如图,桌面上放置了红、黄、蓝三个不同颜色的杯子,杯子口朝上,我们做蒙眼睛翻杯子(杯口朝上的翻为杯口朝下,杯口朝下的翻为杯口朝上)的游戏.(1) 随机翻一个杯子,求翻到黄色杯子的概率;(2) 随机翻一个杯子,接着从这三个杯子中再随机翻一个,请利用树状图求出此时恰好有一个杯口朝上的概率.16.有两个不透明的布袋,其中一个布袋中有一个红球和两个白球,另一个布袋中有一个红球和三个白球,它们除了颜色外其他都相同.在两个布袋中分别摸出一个球(1) 用树形图或列表法展现可能出现的所有结果;(2) 求摸到一个红球和一个白球的概率.17.某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题.(1) 本次调查的学生共有人,在扇形统计图中,m的值是;(2) 将条形统计图补充完整;(3) 在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.18.有5张正面分别标有数字−2,−1,0,1,2的不透明卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a.(1) 求a=0的概率;(2) 求既使关于x的一次函数y=(a+1)x+a−4的图象不经过第二象限,又使关于x的方程3−ax x−3+3=x3−x有整数解的概率;(3) 若再从剩下的四张中任取一张,将卡片上的数字记为b,求使一元二次方程x2+2ax+b2=0的两根均为正数的概率.参考答案1.B2.D3.C4.C5.B6.B7.B8.D9. 31010. 3511. 2312. 11013. 1214.(1) 13(2) 树状图略共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率=69=23.15.(1) P(翻到黄色杯子)=13.(2) 将杯口朝上用“上”表示,杯口朝下用“下”表示,画树状图略所有等可能出现的结果共有9种,其中恰好有一个杯口朝上的有6种∴P(恰好有一个杯口朝上)=23.16.(1) 树状图略(2) 根据树状图得:共有12种情况,其中恰好1红1白的情况有5种故概率P=512.17.(1) 50;30%(2) 50×20%=10(人),50×10%=5(人)(3) 35.18.(1) a=0的概率=15.(2) ∵关于x的分式方程3−axx−3+3=x3−x有整数解∴3−ax+3(x−3)=−x,解得:x=64−a ∵x≠3∴a≠2∴当a=−2,1时,分式方程3−axx−3+3=x3−x有整数解;∵关于x的一次函数y=(a+1)x+a−4的图象不经过第二象限∴a+1>0a−4≤0∴−1<a≤4∴当a=0,1,2时,关于x的一次函数y=(a+1)x+a−4的图象不经过第二象限.综上,当a=1时,使得关于x的分式方程3−axx−3+3=x3−x有整数解,且关于x的一次函数y=(a+1)x+a−4的图象不经过第二象限;∴使得关于x的分式方程3−axx−3+3=x3−x有整数解,且关于x的一次函数y=(a+1)x+a−4的图象不经过第二象限的概率是:15.(3) ∵一元二次方程x2+2ax+b2=0的两根均为正数∴x1+x2=−2a>0x1x2=b2>0Δ=4a2−4b2=4(a+b)(a−b)≥0∴a<0,b≠0,且∣a∣≥∣b∣列树状图略∵共有20种等可能结果,其中使一元二次方程x2+2ax+b2=0的两根均为正数的有4种情况.∴P=15.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十五章达标测试卷一、选择题(每题3分,共30分)1.下列事件中,是必然事件的是( )A.将油滴入水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.如果a2=b2,那么a=bD.掷一枚质地均匀的硬币,正面向上2.小明将6本书分别放在6个完全相同的不透明礼盒中,准备将它们送给6个好朋友.这些书中有3本小说,2本科普读物和1本英语小词典.小明的1个好朋友从6个礼盒中随机取1个,恰好取到小说的概率是( )A.16B.12C.13D.233.小明在做一道正确答案是2的计算题时,由于运算符号(“+”“-”“×”或“÷”)被墨迹污染,看见的算式是“4■2”,那么小明还能做对的概率是( )A.14B.13C.16D.124.如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动转盘,指针落在有阴影的区域内的概率为a(若指针落在分界线上,则重转);如果投掷一枚质地均匀的硬币,正面向上的概率为b.关于a,b大小的判断正确的是( )A.a>bB.a=bC.a<bD.不能判断5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此试验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是( )A.①B.②C.①②D.①③6.从长度分别为1 cm,3 cm,5 cm,7 cm的四条线段中任取三条作为边,能构成三角形的概率为( )A.12B.13C.14D.157.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名这两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是( )A.35B.710C.310D.16258.如图,一个小球从A点沿轨道下落,在每个交叉口向左或向右的机会均等,则小球最终落到H点的概率是( )A.12B.14C.16D.139.如图,在一个长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( )A.落在菱形内B.落在圆内C.落在正六边形内D.一样大10.同时抛掷A,B两个均匀的小正方体(每个面上分别标有数字1,2,3,4,5,6),设两个正方体朝上一面的数字分别为x,y,并以此确定点P(x,y),那么点P满足在抛物线y=-x2+3x上的概率为( )A.118B.112C.19D.16二、填空题(每题3分,共30分)11.用“必然事件”“不可能事件”“随机事件”填空:(1)明天要下雨.__________;(2)小明身高3.5m.____________;(3)两直线平行,同位角相等.____________.12.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是________.13.现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取1张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.14.在四边形ABCD中,①AB∥CD,②AD∥BC,③AB=CD,④AD=BC.在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是________.15.已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形.现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则P1P2=________.16.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数 1 2 3 4 5 6 7 8 9 10 黑棋子数量/枚 1 3 0 2 3 4 2 1 1 3根据以上数据,估算袋子中的白棋子数量为________枚.17.如图,在3×3的方格中,A,B,C,D,E,F分别位于格点上,从C,D,E ,F四点中任取一点,与点A,B为顶点作三角形,则所作三角形为等腰三角形的概率是________.18.点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中的第二象限内的概率是________.19.张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK之后,则选中的车牌号为8ZK86的概率是________.20.从-1,0,1,2这四个数中随机选取一个数,记为a,那么使一次函数y=2x+a的图象与x轴,y轴围成的三角形面积为14,且使关于x的不等式组⎩⎪⎨⎪⎧x+2≤a,1-x≤2a有解的概率为________.三、解答题(21题8分,22~25题每题10分,26题12分,共60分)21.在一个不透明的袋子中装有仅颜色不同的10个球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值________ ________(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.22.在一次大规模的统计中发现英文文献中字母E使用的频率在0.105附近,而字母J使用的频率大约为0.001,如果这次统计是可信的,那么下列说法正确吗?试说明理由 .(1)在英文文献中字母E出现的概率在10.5%左右,字母J出现的概率在0.1%左右;(2)如果再去统计一篇约含200个字母的英文文献,那么字母E出现的概率一定会非常接近10.5%.23.一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球、8个黑球、7个红球.(1)求从袋中摸出1个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出1个球是黑球的概率是13,求从袋中取出黑球的个数.24.“端午节”是我国的传统节日,全国各地举行了丰富多彩的纪念活动.为了继承传统,减缓学生考前的心理压力,某班学生组织了一次拔河比赛,裁判员让两队队长用“石头、剪刀、布”的方式选择场地位置,规则是:石头胜剪刀,剪刀胜布,布胜石头,手势相同则再决胜负.(1)用列表法或画树状图法,列出甲、乙两队手势可能出现的情况;(2)裁判员的这种做法对甲、乙双方公平吗?请说明理由.25.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行一分钟仰卧起坐的测试,并对成绩进行统计分析,绘制了如下的统计表和统计图(均不完整).分组频数频率第一组(0≤x<15) 3 0.15第二组(15≤x<30) 6 a第三组(30≤x<45) 7 0.35第四组(45≤x≤60) b 0.20请你根据图表中的信息完成下列问题:(1)统计表中a=________,b=________,并将统计图补充完整;(2)如果该校七年级共有女学生180人,请估计仰卧起坐能够一分钟完成30次或30次以上的女学生有多少人;(3)已知第一组中只有一名甲班学生,第四组中只有一名乙班学生,老师随机从这两组中各选一名学生谈心得体会,所选两人正好都是甲班学生的概率是多少?26.从一副52张(没有大王、小王)的扑克牌中,每次抽出1张,然后放回洗匀再抽,在试验中得到下表中部分数据:试验次数40 80 120 160 200 240 280 320 360 400出现方块的11 18 40 49 63 68 80 91 100次数出现方块的0.275 0.225 0.250 0.250 0.245 0.263 0.243 0.253 0.250频率(1)将上表补充完整;(2)从上表中可以估计出现方块的概率是________(精确到0.01).(3)从这副扑克牌中取出两组牌,分别是方块1,2,3和红桃1,2,3,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,若摸出的两张牌的牌面数字之和等于3,则甲方赢;若摸出的两张牌的牌面数字之和等于4,则乙方赢.你认为这个游戏对双方是公平的吗?若不是,有利于谁?请你用概率知识(列表法或画树状图法)加以分析说明.答案一、1.A 2.B 3.D 4.B 5.B 6.C7.B 8.B 9.B10.A 点拨:列表如下:共有36种等可能的情况,点P(x,y)在抛物线y=-x2+3x上的情况有(1,2),(2,2),共2种.∴点P在抛物线y=-x2+3x上的概率为236=118.故选A.二、11.(1)随机事件(2)不可能事件(3)必然事件12.1 413.1514.2 315.2π点拨:设⊙O的半径为1,则AD=2,故S⊙O=π,阴影部分的面积为π×⎝⎛⎭⎪⎫222×2+2×2-π=2,则P1=2π+2,P2=ππ+2,故P1P2=2π.16.40 点拨:估计摸出黑棋子的概率为1+3+0+2+3+4+2+1+1+310×10=15,棋子总数为10÷15=50(枚).所以白棋子的数量=50-10=40(枚).17.3418.1519.1320.14点拨:∵一次函数y =2x +a 的图象与x 轴,y 轴分别交于点⎝ ⎛⎭⎪⎫-a 2,0,(0,a ),∴一次函数y =2x +a 的图象与x 轴,y 轴围成的三角形的面积为 12⎪⎪⎪⎪⎪⎪-a 2×|a |=a24,∴a24=14,解得a =±1.当a =1时,不等式组 的解集为-1≤x ≤-1,即x =-1,∴该不等式组有解.当a =-1时,不等式组无解,∴当a =1时,符合要求,故所求概率为14. 三、21.解:(1)4;2,3(2)根据题意得6+m 10=45,解得m =2,所以m 的值为2.22.解:(1)正确,理由:当试验次数很大时可以用频率估计概率.(2)不正确,理由:当试验次数不够大时,频率不一定接近概率. 23.解:(1)从袋中摸出1个球是黄球的概率为520=14.(2)设取出x 个黑球,由题意得8-x 20-x=13,解得x =2.经检验x =2是方程的解且符合题意,即从袋中取出黑球的个数为2.24.解:(1)用列表法得出所有可能的结果如下:乙 甲 石头 剪刀 布 石头 (石头,石头) (石头,剪刀) (石头,布) 剪刀 (剪刀,石头) (剪刀,剪刀) (剪刀,布) 布(布,石头)(布,剪刀)(布,布)或用画树状图法得出所有可能的结果如图:(2)裁判员的这种做法对甲、乙双方公平,理由如下:由(1)知P(甲获胜)=39=13,P(乙获胜)=39=13.∴P(甲获胜)=P(乙获胜).∴裁判员的这种做法对甲、乙双方公平.25.解:(1)0.30;4补充完整统计图如图所示.(2)180×(0.35+0.20)=99(人).∴估计仰卧起坐能够一分钟完成30次或30次以上的女学生有99人.(3)由题意可画树状图如图:由树状图可知,共有12种等可能的情况,其中所选两人正好都是甲班学生的情况有3种,故P(所选两人正好都是甲班学生)=312=14.26.解:(1)30;0.250 (2)0.25(3)列表如下:所有等可能的结果有9种,其中甲方赢的结果有2种,乙方赢的结果有3种,∴P(甲方赢)=29,P(乙方赢)=39=13,∴P(乙方赢)>P(甲方赢).∴这个游戏对双方是不公平的,有利于乙方.。