几何元素的平行、相交、垂直问题答案_263808408

合集下载

空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。

理解和掌握这些关系,对于解决相关的几何问题具有关键作用。

下面我们通过一些例题来深入探讨,并对相关知识点进行总结。

一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。

2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。

例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。

证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。

又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。

(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。

2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。

证明:连接 AC 交 BD 于 O,连接 MO。

因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。

又因为 M 是 PC 的中点,所以MO∥PA。

因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。

(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。

2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。

证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。

二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。

专题20立体几何中的平行与垂直问题(解析版)

专题20立体几何中的平行与垂直问题(解析版)

专题20 立体几何中的平行与垂直问题一、题型选讲题型一、线面平行与垂直知识点拨:证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。

直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。

直线与平面垂直关键是找两条相交直线例1、(2019南通、泰州、扬州一调)如图,在四棱锥PABCD中,M, N分别为棱PA, PD的中点.已知侧面PAD丄底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN〃平面PBC;MD丄平面PAB.【证明】(1)在四棱锥P-ABCD中,M, N分别为棱PA, PD的中点,所以MN〃AD.(2分)又底面ABCD是矩形,所以BC〃AD.所以MN〃BC.(4分)又BC U平面PBC,MN Q平面PBC,所以MN〃平面PBC. (6分)(2)因为底面ABCD是矩形,所以AB丄AD.又侧面PAD丄底面ABCD,侧面PAD n底面ABCD=AD, AB U底面ABCD,所以AB丄侧面PAD.(8分)又MD U侧面PAD,所以AB丄MD.(10分)因为DA=DP,又M为AP的中点,从而MD丄PA. (12分)又PA,AB在平面PAB内,PA n AB=A,所以MD丄平面PAB.(14分)例2、(2019扬州期末)如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B丄平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1)求证:EF〃平面ABC;(2)求证:BB]丄AC.规范解答(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E, F分别是侧面AA1B1B, BB1C1C对角线的交点,所以E, F分别是AB1,CB1的中点,所以EF〃AC.(4分)因为EF Q平面ABC, AC U平面ABC,所以EF〃平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1丄AB.因为平面AA1B1B丄平面ABC,且平面AA1B1B n平面ABC=AB, BB1U平面AA1B1B, 所以BB1丄平面ABC.(12分)因为AC U平面ABC,所以BB1丄AC.(14分)例3、(2019南京、盐城二模)如图,在三棱柱ABCA1B1C1中,AB=AC, A1C丄BC], AB]丄BC1,D, E 分别是AB1和BC的中点.求证:(1)DE〃平面ACC1A1;(2)AE丄平面BCC1B1.A _________ c,规范解答⑴连结A1B,在三棱柱ABCA1B1C1中,AA1#BB1且AA1=BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点.(2分)在厶BA1C中,D和E分别是BA1和BC的中点,所以DE〃A]C.又因为DE G平面ACC1A1,A1C U平面ACC1A1,所以DE〃平面ACC1A1.(6分)(2)由(1)知DE〃A]C,因为A1C丄BC” 所以BC]丄DE.(8 分)又因为BC]丄AB1,AB1H DE=D,AB1,DE U平面ADE,所以BC1丄平面ADE.又因为AE U平在ADE,所以AE丄BC1.(10分)在厶ABC中,AB=AC,E是BC的中点,所以AE丄BC.(12分)因为AE丄BC1,AE丄BC,BC1H BC=B,BC1,BC U平面BCC1B1,所以AE丄平面BCC1B1. (14 分)例4、(2019苏锡常镇调研)如图,三棱锥DABC中,已知AC丄BC,AC丄DC,BC=DC,E,F 分别为BD,CD 的中点.求证:(1)EF〃平面ABC;(2)BD丄平面ACE.所以EF 〃平面ABC.(6分)(2)因为AC丄BC,AC丄DC,BC H DC = C,BC,DC U平面BCD所以AC丄平面BCD,(8分)因为BD U平面BCD,所以AC丄BD,(10分)因为DC=BC,E为BD的中点,所以CE丄BD,(12分)因为AC n CE = C, AC,CE U平面ACE,所以BD丄平面ACE.(14分)例5、(2019苏州三市、苏北四市二调)如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1 丄B1C1•设A1C与AC1交于点D, B1C与BC1交于点E.求证:(1) DE〃平面ABB1A1;(2) BC]丄平面A1B1C.规范解答(1)因为三棱柱ABCA1B1C1为直三棱柱,所以侧面ACC1A1为平行四边形.又A1C 与AC1 交于点D,所以D为AC]的中点,同理,E为BC]的中点•所以DE〃AB.(3分)又AB U平面ABB]A], DE G平面ABB]A], 所以DE〃平面ABB]A].(6分)(2)因为三棱柱ABCA]B]C]为直三棱柱,所以BB]丄平面A]B]C]. 又因为A]B]U平面A]B]C],所以BB]丄A]B i.(8分)又A]B]丄B]C], BB], B]C] U 平面BCC]B], BB]n B]C1=B1,所以A]B]丄平面BCC]B].(10 分)又因为BC]U平面BCC]B1,所以A]B丄BC].(12分)又因为侧面BCC]B1为正方形,所以BC]丄BQ.又A1B1n B1C=B1,A1B1,B1C U平面A1B1C, 所以BC1丄平面A1B1C.(14分)例6、(2017苏北四市一模)如图,在正三棱柱ABCA1B1C1中,已知D, E分别为BC, B1C1的中点,点F 在棱CC1上,且EF丄CD.求证:(1)直线A1E〃平面ADC1;⑴证法1连结ED,因为D, E分别为BC, B1C1的中点,所以B&/BD且B1E=BD, 所以四边形BBDE是平行四边形,(2分)所以BB/DE且BB1=DE. 又BB]〃AA]且BB]=AA], 所以AA/DE且AA1=DE, 所以四边形AA]ED是平行四边形,所以A]E〃AD.(4分)又因为AE G平面ADC, AD U平面ADC,所以直线AE〃平面ADC.(7分)1 1 1畀 ------ 1B证法2连结ED,连结A1C, EC分别交AC” DC1于点M, N,连结MM,则因为D, E分别为BC,B1C1的中点,所以C1E^CD且C、E=CD,所以四边形C1EDC是平行四边形,所以N是CE的中点.(2分)因为A1ACC1为平行四边形,所以M是A1C的中点,(4分)所以MN//A\E.又因为A]E G平面ADC,MN U平面ADC,,所以直线Af〃平面ADC、.(7分)(2)在正三棱柱ABCA1B1C1中,BB]丄平面ABC.又AD U平面ABC,所以AD丄BB、.又A ABC是正三角形,且D为BC的中点,所以AD丄BC.(9分)又BB,,BC U 平面BBCC,,BB1A BC=B,所以AD丄平面B,BCC,,又EF U平面BBCC,所以AD丄EF.(11分)又EF丄CD,CD,AD U平面ADC,,C,D A AD=D,所以直线EF丄平面ADC,.(14分)题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。

几何元素间的相对位置-平行、相交、垂直

几何元素间的相对位置-平行、相交、垂直

m
f c
n
f
n
判断平面的可见性----利用重影点原理判别
(1 ′) 2′
1
2
例:求两平面的交线并求MN并判别可见性。
⑴ a b e ● m(n) f c
d a d


n
e c
空间及投影分析 平面ABC与DEF都为正 垂面,其正面投影都积聚 成直线。交线为正垂线, 只要求得交线上的一个点 便可作出交线的投影。 作 图 ① 求交线 ② 判别可见性
线与该平面平行。
应用: (1)判别已知线面是否平行; (2) 作与已知平面平行的直线; (3) 包含已知直线作平面与另一已知直线平行。
例:过M点作直线MN平行于平面ABC。
b
c

n
Abc为平面内 a 的任一直线
a
b
m


n

c
m
试想:可作多少条这样的直线MN?
无数条!
例:过M点作直线MN平行于V面和平面ABC。
示意图
n
两平面相交,判别可见性
3 4 2 3 4( ) 1 1
(2 ) 利 用 重 影 点 判 别 可 见 性
[例题6]
试过K点作一直线平行于已知平面ΔABC,并与直线
EF相交

分析
过已知点K作平面P平行于 ABC;直线EF与平面P交于H; 连接KH,KH即为所求。
K F H E
作图 PV m 1 2 n
第三章 几何元素间的相对位置关系
§3-1 平行问题---直线与平面平行 • 两平面平行
§3-2 相交问题---直线与平面的交点 • 两平面的交线
§3-3 垂直问题-----直线与平面垂直 • 两平面垂直

几何元素的平行、相交、垂直问题答案_263808408

几何元素的平行、相交、垂直问题答案_263808408

求作直线AB与相交两平面CDF DEF的交点 并判断可见性。 AB与相交两平面CDF及 的交点, 2-2-2-5 求作直线AB与相交两平面CDF及DEF的交点,并判断可见性。
求作三角形ABC与三角形DEF的交线,并判别可见性。 ABC与三角形DEF的交线 2-2-2-6 求作三角形ABC与三角形DEF的交线,并判别可见性。
已知直线MN和三角形ABC平行,求作此三角形的水平投影。 MN和三角形ABC平行 2-2-1-2 已知直线MN和三角形ABC平行,求作此三角形的水平投影。
过点K做一条长12的直线KL 12的直线KL平行于三角形 2-2-1-3 过点K做一条长12的直线KL平行于三角形 ABC 和V面。
Hale Waihona Puke 12Ⅰ已知两条平行直线AB CD确定的平面 AB、 确定的平面P EFG,试完成平面P的投影。 2-2-1-4 已知两条平行直线AB、CD确定的平面P平行于三角形 EFG,试完成平面P的投影。
过点A 相交。 2-2-2-7 过点A作直线与两已知直线 BC 及 EF 相交。
的交线。 2-2-2-8 求作两已知平面 ABC 与 DEFG 的交线。
Rv∥Pv : 4n∥a1 , gn∥32 ; MN为 所求
几何元素间的垂直问题
求作三角形ABC的垂心K ABC的垂心 2-2-3-1 求作三角形ABC的垂心K。
与由两相交直线AB AC确定的平面的交点 并判断可见性。 AB、 确定的平面的交点, 2-2-2-3 求直线 EF 与由两相交直线AB、AC确定的平面的交点,并判断可见性。
方法四
利用侧面投影求解
为所求。 点 K 为所求。
求三角形ABC 与矩形DEFG的相交的交线,并判断可见性。 DEFG的相交的交线 2-2-2-4 求三角形ABC 与矩形DEFG的相交的交线,并判断可见性。

高中数学如何求解垂直线和平行线问题

高中数学如何求解垂直线和平行线问题

高中数学如何求解垂直线和平行线问题在高中数学中,垂直线和平行线是常见的几何概念。

解决与垂直线和平行线相关的问题,需要掌握一些基本的几何知识和技巧。

本文将从垂直线和平行线的定义入手,通过具体的题目举例,分析解题思路和考点,并给出一些解题技巧,以帮助高中学生或他们的父母更好地理解和应用这些概念。

一、垂直线的定义和求解垂直线是指两条直线相交时,交角为90度的线。

求解垂直线问题,通常需要利用垂直线的性质和相关定理。

例题一:已知直线l1的斜率为k,求与l1垂直的直线l2的斜率。

解析:首先,我们知道垂直线的斜率乘积为-1。

设直线l2的斜率为m,则有k * m = -1。

解得m = -1/k,即l2的斜率为-1/k。

例题二:已知直线l1过点A(2, 3),且与直线l2垂直,直线l2过点B(4, 5),求直线l2的方程。

解析:由于l1与l2垂直,根据斜率的性质,我们可以得到l2的斜率为-1/k,其中k为l1的斜率。

根据点斜式,l2的方程为y - y1 = m(x - x1),代入点B的坐标和斜率-1/k,得到l2的方程为y - 5 = (-1/k)(x - 4)。

二、平行线的定义和求解平行线是指在同一个平面内,永远不会相交的直线。

求解平行线问题,需要利用平行线的性质和相关定理。

例题三:已知直线l1过点A(2, 3),且与直线l2平行,直线l2过点B(4, 5),求直线l2的方程。

解析:由于l1与l2平行,它们的斜率相等。

首先,我们可以通过点A和点B计算出l1的斜率k1和l2的斜率k2。

然后,根据点斜式,l2的方程为y - y1 = k2(x - x1),代入点B的坐标和斜率k2,即可得到l2的方程。

例题四:已知直线l1的方程为2x + 3y = 6,求与l1平行且过点(4, 5)的直线l2的方程。

解析:由于l1的斜率为-2/3,与l1平行的直线l2的斜率也为-2/3。

根据点斜式,l2的方程为y - y1 = k(x - x1),代入点(4, 5)的坐标和斜率-2/3,即可得到l2的方程。

几何证明中的平行与垂直关系的求解

几何证明中的平行与垂直关系的求解
定理:同位角相等定理指出,如果两直线被第三条直线所截,且同位角相等,则这两条直线平行。
证明步骤:首先,画出两条直线被第三条直线所截,然后通过测量或证明同位角相等来证明两直线平行。
应用:利用同位角相等证明在几何证明中非常常见,是解决平行关系问题的重要方法之一。
单击此处添加项标题
单击此处添加项标题
单击此处添加项标题
平行线的判定方法有多种,如同位角相等、内错角相等、同旁内角互补等。
垂直线:与给定直线在某点相交,且与该直线垂直的直线
垂直线的性质:与给定直线垂直,且与该直线上的所有点距离相等
垂直线的判定:与给定直线相交,且与该直线上的所有点距离相等,则该直线为垂直线
垂直线的作法:通过给定点与给定直线垂直的直线即为垂直线
汇报人:XX
XX,a click to unlimited possibilities
01
02
03
04
平行线是同一平面内,不相交的两条直线。
平行线具有传递性,即若直线a平行于直线b,直线b平行于直线c,则直线a平行于直线c。
平行线在平面几何中有着广泛的应用,如三角形、四边形等图形的性质都与平行线有关。
直角三角形中,斜边上的中线等于斜边的一半。
直角三角形中,如果一个角是30度,那么它所对的直角边等于斜边的一半。
直角三角形中,如果一个角是60度,那么它所对的直角边等于斜边的一半。
Hale Waihona Puke 适用范围:适用于直角三角形中证明垂直关系
注意事项:在证明过程中,需要注意已知条件的准确性和严密性,避免出现逻辑错误或计算错误
单击此处添加项标题
定义:同旁内角互补是指两个同旁内角的角度和为180度
证明方法:通过证明两条直线平行,可以推导出同旁内角互补

平行垂直练习题及答案

平行垂直练习题及答案

平行垂直练习题及答案在数学学科中,平行和垂直是基本的几何概念。

理解和掌握平行和垂直的性质对于解决几何问题至关重要,因此平行和垂直的练习题是学习过程中必不可少的。

本文将提供一些平行和垂直的练习题,并附上详细的解答。

练习题一:判断平行关系1. 已知线段AB和线段CD的中点分别为E和F,若AE=CF且BE=DF,试判断AB和CD的关系。

2. ∠ABC = ∠PQR,∠BCD = ∠QRS,若线段AB和线段PQ平行,试判断线段CD和线段RS的关系。

3. 已知线段AB平行于线段CD,∠EAC = 70°,若∠ACD = x°,试判断∠ECA和∠ADC的大小关系。

答案一:1. 根据条件可知AE=CF,BE=DF,又根据中点划分线段的性质,且E和F分别是线段AB和线段CD的中点,所以EF=EF。

根据SAS准则可得△AEB≌△CFD,根据三角形的等边性质可知线段AB和线段CD平行。

2. 根据条件可知∠ABC = ∠PQR,∠BCD = ∠QRS,又根据等角定理可得△ABC ≌△PQR。

根据三角形的等边性质可知线段AB和线段PQ平行,所以线段CD和线段RS平行。

3. 已知线段AB平行于线段CD,所以利用平行线性质可得∠ECA = ∠ACD。

又根据答案一的证明可知线段AB和线段CD平行,所以△EAC ≌△ACD。

根据三角形的等边性质可知∠ECA = ∠ADC。

练习题二:判断垂直关系1. 线段AB与线段CD相交于点O,若∠AOB = 70°,∠COB = 110°,试判断线段AB和线段CD的关系。

2. 直线l与平面P相交于点A,若直线l垂直于线段AB,试判断直线l与平面P的关系。

3. 已知直线l垂直于平面P,线段AB在平面P内且与直线l相交于点C,试判断线段AB与平面P的关系。

答案二:1. ∠AOB = 70°,∠COB = 110°,根据角和定理可知∠AOB +∠COB = 180°。

平行线和垂直线的解题技巧和方法

平行线和垂直线的解题技巧和方法

地理学
在地图制作中,利用平行 线间距离的计算可以确定 不同地理位置之间的相对 距离和方向。
03
CATALOGUE
垂直线间角度关系分析
垂直线与水平线间角度关系
垂直线与水平线形成的角度
当一条直线与水平线垂直时,它与水平线形成的角度为90度 。
角度的性质
在垂直线与水平线的交点上,两个锐角的角度和为90度。
平行线和垂直线的 解题技巧和方法
目录
• 平行线与垂直线基本概念 • 平行线间距离计算 • 垂直线间角度关系分析 • 平行线与垂直线在几何图形中应用 • 解题技巧总结与提高
01
CATALOGUE
平行线与垂直线基本概念
定Hale Waihona Puke 及性质平行线定义在同一平面内,不相交 的两条直线叫做平行线

垂直线定义
两条直线相交成直角时 ,这两条直线互相垂直
是两条平行线。
使用方法
首先确定两条平行线的方程,然后 提取出a、b、c1和c2的值,代入 公式进行计算即可得到平行线间的 距离。
注意事项
在使用公式时,要确保两条直线是 平行的,即它们的斜率相等。
特殊情况下距离计算
水平线和竖直线间的距离
当两条平行线中有一条是水平线或竖 直线时,可以直接使用点到直线的距 离公式进行计算。
图形表示
平行线的图形表示
用两条平行的直线表示,通常标注为 “//”。
垂直线的图形表示
用两条相交的直线表示,标注为 “⊥”,表示两直线垂直相交。
02
CATALOGUE
平行线间距离计算
公式法求距离
公式介绍
平行线间距离的公式为d = |c1 c2| / √(a^2 + b^2),其中ax + by + c1 = 0和ax + by + c2 = 0

微专题12 立体几何中的平行与垂直问题答案

微专题12 立体几何中的平行与垂直问题答案

微专题12例题1证法1如图1,在四棱锥PABCD 中,取线段PD 的中点M ,连接FM ,AM.因为F 为PC 的中点,所以FM ∥CD ,且FM =12CD.因为四边形ABCD 为矩形,E 为AB 的中点,所以EA ∥CD ,且EA =12CD.所以FM ∥EA ,且FM =EA.所以四边形AEFM 为平行四边形.所以EF ∥AM. 又AM 平面PAD ,EF 平面PAD ,所以EF ∥平面PAD.证法2如图2,在四棱锥PABCD 中,连接CE 并延长交DA 的延长线于点N ,连接PN.因为四边形ABCD 为矩形,所以AD ∥BC.所以∠BCE =∠ANE ,∠CBE =∠NAE.又AE =EB ,所以△CEB ≌△NEA.所以CE =NE. 又F 为PC 的中点,所以EF ∥NP.又NP 平面PAD ,EF 平面PAD ,所以EF ∥平面PAD. 证法3如图3,在四棱锥PABCD 中,取CD 的中点Q ,连接FQ ,EQ.在矩形ABCD 中,E 为AB 的中点,所以AE =DQ ,且AE ∥DQ.所以四边形AEQD 为平行四边形,所以EQ ∥AD. 又AD 平面PAD ,EQ 平面PAD,所以EQ ∥平面PAD.因为Q ,F 分别为CD ,CP 的中点, 所以FQ ∥PD.又PD 平面PAD ,FQ 平面PAD ,所以FQ ∥平面PAD. 又FQ ,EQ 平面EQF ,FQ ∩EQ =Q ,所以平面EQF ∥平面PAD.因为EF 平面EQF ,所以EF ∥平面PAD.(2)在四棱锥PABCD 中,设AC ,DE 相交于点G(如图4).在矩形ABCD 中,因为AB =2BC ,E 为AB 的中点. 所以DA AE =CDDA=2,又∠DAE =∠CDA ,所以△DAE ∽△CDA , 所以∠ADE =∠DCA.又∠ADE +∠CDE =∠ADC =90°,所以∠DCA +∠CDE =90°.由△DGC 的内角和为180°,得∠DGC =90°. 即DE ⊥AC.因为点P 在平面ABCD 内的正投影O 在直线AC 上, 所以PO ⊥平面ABCD.因为DE 平面ABCD ,所以PO ⊥DE. 因为PO ∩AC =O ,PO ,AC 平面PAC , 所以DE ⊥平面PAC ,又DE 平面PDE ,所以平面PAC ⊥平面PDE.变式联想变式1证明:(1)因为E ,F 分别是A 1D 1,B 1C 1的中点,所以EF ∥A 1B 1, 在正方体ABCDA 1B 1C 1D 1中,A 1B 1∥AB , 所以EF ∥AB.又EF 平面ABHG ,AB平面ABHG ,所以EF ∥平面ABHG.(2)在正方体ABCDA 1B 1C 1D 1中,CD ⊥平面BB 1C 1C , 又BH 平面BB 1C 1C ,所以BH ⊥CD.① 设BH ∩CF =P ,△BCH ≌△CC 1F ,所以∠HBC =∠FCC 1,因为∠HBC +∠PHC =90°,所以∠FCC 1+∠PHC =90°.所以∠HPC =90°,即BH ⊥CF.②由①②,又DC ∩CF =C ,DC ,CF 平面CFED ,所以BH ⊥平面CFED. 又BH 平面ABHG ,所以平面ABHG ⊥平面CFED.变式2证明:(1)如图,连接MN ,正三棱柱ABCA 1B 1C 1中,AA 1∥CC 1且AA 1=CC 1,则四边形AA 1C 1C 是平行四边形,因为点M ,N 分别是棱A 1C 1,AC 的中点,所以MN ∥AA 1且MN =AA 1,又正三棱柱ABCA 1B 1C 1中AA 1∥BB 1且AA 1=BB 1,所以MN ∥BB 1且MN =BB 1,所以四边形MNBB 1是平行四边形, 所以B 1M ∥BN ,又B 1M 平面A 1BN ,BN 平面A 1BN , 所以B 1M ∥平面A 1BN.(2)正三棱柱ABCA 1B 1C 1中,AA 1⊥平面ABC , BN 平面ABC ,所以BN ⊥AA 1,在正△ABC 中,N 是AB 的中点,所以BN ⊥AC ,又AA 1,AC 平面AA 1C 1C ,AA 1∩AC =A ,所以BN ⊥平面AA 1C 1C ,又AD 平面AA 1C 1C ,所以AD ⊥BN ,由题意得,AA 1=6,AC =2,AN =1,CD =63,所以AA 1AC =ANCD=32,又∠A 1AN =∠ACD =π2,所以△A 1AN 与△ACD 相似,则∠AA 1N =∠CAD ,所以∠ANA 1+∠CAD =∠ANA 1+∠AA 1N =π2,则AD ⊥A 1N ,又BN ∩A 1N =N ,BN ,A 1N平面A 1BN ,所以AD ⊥平面A 1BN. 说明:变式1和2都通过“计算”来证明垂直,复习时应注意长度,角度等量的“计算”的运用来实现位置关系的求证.串讲激活串讲1解析:(1)因为BC ⊥平面PAB ,AD 平面PAB ,所以BC ⊥AD.因为PA =AB ,D 为PB 的中点,所以AD ⊥PB.因为PB ∩BC =B ,所以AD ⊥平面PBC.(2)连接DC ,交PE 于点G ,连接FG.因为AD ∥平面PEF ,AD 平面ADC ,平面ADC ∩平面PEF =FG ,所以AD ∥FG.因为D 为PB 的中点,E 为BC 的中点,连接DE ,则DE 为△BPC 的中位线,△DEG ∽△CPG.所以DG GC =DE PC =12.所以AF FC =DG GC =12.串讲2解析:(1)在三棱台ABCDEF 中,AC ∥DF ,又AC 平面ACE ,DF 平面ACE ,所以DF ∥平面ACE ,又DF 平面DEF ,平面ACE ∩平面DEF =a ,所以DF ∥a.(2)线段BE 上存在点G ,且BG =13BE ,使得平面DFG ⊥平面CDE.证明如下:如图所示,取CE 的中点O ,连接FO 并延长交BE 于点G ,连接GD ,因为CF =EF ,所以GF ⊥CE.在三棱台ABCDEF 中,因为AB ⊥BC ,所以DE ⊥EF ,因为CF ⊥平面DEF ,DE 平面DEF ,所以CF ⊥DE ,又CF ∩EF =F ,所以DE ⊥平面CBEF ,GF 平面CBEF ,所以DE ⊥GF.因为GF ⊥CE ,DE ⊥GF ,CE ∩DE =E ,CE 平面CDE ,DE 平面CDE ,所以GF ⊥平面CDE ,又GF 平面DFG ,所以平面DFG ⊥平面CDE ,此时,侧面BCFE 的平面图如图所示,延长FG ,交CB 的延长线于点H ,因为O 是CE 的中点,EF =CF =2BC ,由平面几何知识可证得△HOC ≌△FOE ,所以HB =BC =12EF ,由△HGB ∽△FGE ,可知BG GE =12,即BG =13BE.新题在线(1)证法1取CE 中点F ,连接FB ,MF.因为M 为DE 的中点,F 为CE 的中点, 所以MF ∥CD 且MF =12CD.又因为在矩形ABCD 中,N 为AB 的中点, 所以BN ∥CD 且BN =12CD ,所以MF ∥BN 且MF =BN ,所以四边形BNMF 为平行四边形,所以MN ∥BF. 又MN 平面BEC ,BF 平面BEC ,所以MN ∥平面BEC.证法2取AE 中点G ,连接MG ,GN.因为G 为AE 的中点,M 为DE 的中点,所以MG ∥AD. 又因为在矩形ABCD 中,BC ∥AD ,所以MG ∥BC. 又因为MG 平面BEC ,BC 平面BEC , 所以MG ∥平面BEC.因为G为AE的中点,N为AB的中点,所以GN∥BE.又因为GN平面BEC,BE平面BEC,所以GN∥平面BEC.又因为MG∩GN=G,MG,GN平面GMN,所以平面GMN∥平面BEC.又因为MN平面GMN,所以MN∥平面BEC.(2)因为四边形ABCD为矩形,所以BC⊥AB.因为平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB,BC平面ABCD,且BC⊥AB,所以BC⊥平面ABE.因为AH平面ABE,所以BC⊥AH.因为AB=AE,H为BE的中点,所以BE⊥AH.因为BC∩BE=B,BC平面BEC,BE平面BEC,所以AH⊥平面BEC.又因为CE平面BEC,所以AH⊥CE.。

平行线与垂直线的应用题解答

平行线与垂直线的应用题解答

平行线与垂直线的应用题解答在几何学中,平行线和垂直线是两个基本的概念,它们在解决几何问题时经常被应用。

本文将围绕平行线和垂直线的应用进行详细解答,并给出相应的例题分析。

一、平行线的应用平行线是指在同一平面内永不相交的直线。

在应用中,平行线常常用于求解两个直线之间的关系,下面将解释几个常见的平行线应用。

1. 平行线的判定判定两条直线是否平行是几何学中的基本问题之一。

我们可以通过下面两个方法来判定直线的平行性:方法一:两条直线的斜率相等,则它们平行。

例如,对于直线L1:y = 2x + 3和直线L2:y = 2x - 1,它们的斜率都为2,因此L1与L2是平行线。

方法二:两条直线之间的对应角是等于的退化角,即两条直线是同位角相等。

例如,对于直线L3:y = 3x - 2和直线L4:y = 3x + 1,它们的同位角都是45°,因此L3与L4是平行线。

2. 平行线的切割与平行线之间的关系当一组平行线与另一组平行线相交时,产生的交线与两组平行线之间的关系很有意思。

我们可以得出以下结论:结论一:如果两组平行线的交线分割两组平行线的比例相等,那么这条交线被称为切割线。

例如,L5 || L6 || L7,切割线AB同时与L6和L7相交,且AB分割L6与L7的比例为3:5,则我们可以推断出切割线AB同时分割了L5,且分割比例也为3:5。

结论二:如果两组平行线的交线与其中一组平行线垂直相交,那么这条交线被称为垂线。

例如,对于L6 || L8 || L9,切割线CD与L8垂直相交,则我们可以推断出切割线CD同时垂直于L6和L9。

二、垂直线的应用垂直线是指与平行线相交且相互垂直的直线。

垂直线在几何学中也有着广泛的应用,下面将解释几个常见的垂直线应用。

1. 垂直线的判断方法判断两条直线是否垂直可以使用以下两种方法:方法一:两条直线的斜率乘积为-1,则它们垂直。

例如,对于直线L10:y = 2x + 3和直线L11:y = -1/2x + 5,它们的斜率之积为(2)*(-1/2) = -1,因此L10与L11是垂直的。

5 几何元素间的相对位置关系

5 几何元素间的相对位置关系

5' (1') X a' 1 d k 5 a
e' b e
3 l 2 (4) 6 c
O
交点在无穷远处,应重选辅助面 重点:
• 利用辅助面法求交线 • 利用重影点判断可见性
f
QH
19
例:求△ABC与DE∥FG的交线。
e' 1'
4' 2' b' g' k' 3' 6' a' c' 7'
PV QV
5'
f'
13
例:判断两直线是否相交。
c' b' c' k' a'
k'
a'
b' d'
d'
X
c
O
k1
k2 d b
X
c a k d
O
b
a
不相交
相交
14
2.两直线交叉
交叉条件:两条直线没有公有点,也不平行。 其投影的交点为两直线的重影点。
c' l ' 2
a'
l1 ' k1
b'
(k1 ')k k ' 2'
d'
X
b
a'
e'
步骤:
1)过A为作正平线AD⊥BC,水平线 AE⊥BC,则(AD ╳AE) ⊥BC 2)求直线与平面 (AD ╳AE) 的交点K, 则K即为垂足。 3)连接点A和点K,则直线AK即所求。
31
3.平面与平面垂直
定理:若一个平面通过另一个平面的垂线,则这两个平面垂直。 推论1:平面Q经过垂直于平面P的一条垂线,则平面Q垂直于平面P。 推论2:平面Q垂直于平面P上的一条直线,则平面Q垂直于平面P。

立体几何中有关平行、垂直常用的判定方法

立体几何中有关平行、垂直常用的判定方法

有关平行、垂直问题常见判定方法一、 线线平行的判定1、 公理4:平行于同一直线的另两直线互相平行.a ∥b ,b ∥c ==> a ∥c2、 三角形中位线平行于底边;平行四边形对边平行;棱柱侧棱互相平行.3、 线面平行的性质:一条直线与一个平面平行,过该直线的平面与已知平面相交,该直线与交线平行.a ∥α,a ⊂β,αβ=b ==> a ∥bβαba4、 面面平行的性质:两个平面平行,同时与第三个平面相交,所得的两条交线互相平行.α∥β,γα=a ,γβ=b ==> a ∥bγβαb a5、 平行于同一平面的两直线互相平行.a ⊥α,b ⊥α ==> a ∥bαbacb a二、 线面平行的判定1、 线面平行的判定定理:若平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行.a ⊄α,b ⊂α,a ∥b ==> a ∥ααba2、 若两平面平行,则一个平面内的任一直线与另一平面平行.α∥β,a ⊂α ==> a ∥βαβa3、 α⊥β,a ⊥β,a ⊄α ==> a ∥αβαa4、 a ⊥b ,b ⊥α,a ⊄α ==> a ∥ααab三、 面面平行的判定1、 面面平行的判定定理:若一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.a ⊂α,b ⊂α,a b =O ,a ∥β,b ∥β ==> α∥βOαβa bαβa2、垂直于同一直线的两个平面互相平行.a⊥α,a⊥β ==> α∥β (见上图)3、平行于同一平面的两个平面互相平行.α∥γ,β∥γ ==> α∥βαγβ4、柱体的上下底面互相平行四、线线垂直1、线线垂直的定义:a与b所成的角为直角.2、线面垂直的定义:若一条直线与一个平面垂直,则该直线与平面内的任一直线都垂直.a⊥α,b⊂α ==> a⊥bαab3、a⊥α,b∥α ==> a⊥bαab4、三垂直定理及其逆定理l ⊥α( H 为垂足),a ⊂α,HM 是斜线PM 在平面α内的射影三垂线定理(垂影则垂斜):a ⊥HM ==> a ⊥PM三垂线定理的逆定理(垂斜则垂影):a ⊥PM ==> a ⊥HMlM H Pαa5、a ⊥α,b ⊥β,α⊥β ==> a ⊥bβαab五、线面垂直的判定1、线面垂直的判定定理:若一直线和平面内的两相交直线都垂直,则该直线与此平面垂直.a ⊂α,b ⊂α,ab =O , l ⊥a ,l ⊥b ==> l ⊥αlOαab2、a∥b,a⊥α ==> b⊥ααba3、直棱柱的侧棱与底面垂直4、一条直线垂直于两平行平面中的一个平面,也垂直于另一个平面α∥β,a⊥α ==> a⊥βαβa5、面面垂直性质:两平面垂直,一个平面内垂直于它们交线的直线垂直于另一个平面.α⊥β,αβ=l,a⊂α,a⊥l ==> a⊥βl βαa5、 两相交平面同时垂直于第三个平面,则它们的交线也与第三个平面垂直.αβ=l ,α⊥γ,β⊥γ ==> l ⊥γl γβα六、面面垂直的判定1、定义:两平面相交所成二面角为直二面角.2、判定定理:若一个平面经过另一个平面的一条垂线,则这两个平面互相垂直. a ⊥β,a ⊂α ==> α⊥βl βαa2、a ∥α,a ⊥β ==> α⊥βαaβ。

高一 平行与垂直的综合应用知识点+例题+练习 含答案

高一 平行与垂直的综合应用知识点+例题+练习 含答案

1.证明方法(1)证明平行关系的方法:①证明线线平行的常用方法a.利用平行公理,即证明两直线同时和第三条直线平行;b.利用平行四边形进行转换;c.利用三角形中位线定理证明;d.利用线面平行、面面平行的性质定理证明.②证明线面平行的常用方法a.利用线面平行的判定定理,把证明线面平行转化为证线线平行;b.利用面面平行的性质定理,把证明线面平行转化为证面面平行.③证明面面平行的方法证明面面平行,依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证面面平行转化为证线面平行,再转化为证线线平行.(2)证明空间中垂直关系的方法:①证明线线垂直的常用方法a.利用特殊平面图形的性质,如利用直角三角形、矩形、菱形、等腰三角形等得到线线垂直;b.利用勾股定理逆定理;c.利用线面垂直的性质,即要证线线垂直,只需证明一线垂直于另一线所在平面即可.②证明线面垂直的常用方法a.利用线面垂直的判定定理,把线面垂直的判定转化为证明线线垂直;b.利用面面垂直的性质定理,把证明线面垂直转化为证面面垂直;c.利用常见结论,如两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.③证明面面垂直的方法证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中点、高线或添加辅助线解决. 2.应特别注意的几个易错点定理图形语言易错点等角定理⎭⎪⎬⎪⎫∠AOB 和∠A ′O ′B ′中OA ∥O ′A ′,OB ∥O ′B ′且方向相同⇒∠AOB=∠A ′O ′B ′易忽略“方向相同” 线面平行的判定定理 ⎭⎪⎬⎪⎫a ⊄α,b ⊂αa ∥b ⇒a ∥α易丢掉“a ⊄α”或“b⊂α” 线面平行的性质定理⎭⎪⎬⎪⎫a ∥α,a ⊂βα∩β=b ⇒a ∥b易忽略“α∩β=b ”直线和平面垂直的判定定理 ⎭⎪⎬⎪⎫l ⊥a ,l ⊥b a ⊂α,b ⊂αa ∩b =O⇒l ⊥α易忽略“a ∩b =O ”两个平面垂直的性质定理 ⎭⎪⎬⎪⎫α⊥βα∩β=c a ⊂α,a ⊥c ⇒a ⊥β易忽略“a ⊂α”面面平行的判定定理⎭⎪⎬⎪⎫a ∥α,b ∥αa ⊂β,b ⊂βa ∩b =O ⇒α∥β易忽略“a ∩b =O ”面面平行的判定定理的推论 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⊂α,b ⊂αa ∩b =Oc ⊂β,d ⊂βc ∩d =O ′a ∥c ,b ∥d ⇒α∥β易忽略“a ∩b =O ”或“c ∩d =O ′”【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若平面外一条直线上有两个点到平面的距离相等,则直线与平面平行.( × )(2)若直线a∥α,P∈α,则过点P且平行于a的直线有无数条.(×)(3)若a⊥b,b⊥c,则a∥c.(×)(4)α,β,γ为三个不同平面,α∥β,β∥γ⇒α∥γ.(√)(5)若α⊥γ,β⊥γ,且α∩β=l,则l⊥γ.(√)(6)α⊥β,a⊥β,b⊥α⇒a∥b.(×)1.(教材改编)如图,已知平面α,β,且α∩β=AB,PC⊥α,垂足为C,PD⊥β,垂足为D,则直线AB与CD的位置关系是________.答案AB⊥CD解析∵PC⊥α,∴PC⊥AB,又∵PD⊥β,∴PD⊥AB,∴AB⊥平面PCD,∴AB⊥CD.2.已知正方体ABCD—A1B1C1D1中,E,F,G分别为B1C1,A1D1,A1B1的中点,则平面EBD 与平面FGA的位置关系为________.答案平行3.如图所示,边长为a的正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED 绕DE旋转过程中的一个图形,下列命题中错误的是________.①动点A′在平面ABC上的射影在线段AF上;②恒有平面A′GF⊥平面BCED;③三棱锥A′—FED的体积有最大值;④异面直线A′E与BD不可能互相垂直.答案④解析由题意知,DE⊥平面A′FG,又DE⊂平面ABC,所以平面A′FG⊥平面ABC,且它们的交线是AF ,过A ′作A ′H ⊥AF ,则A ′H ⊥平面ABC ,所以A ′在平面ABC 上的射影一定在线段AF 上,且平面A ′GF ⊥平面BCED ,故①②均正确;三棱锥A ′—EFD 的体积可以表示为V =13S △EFD ·A ′H ,当平面A ′DE ⊥平面ABC 时,A ′H 最大,故三棱锥A ′—EFD 的体积有最大值,故③正确;连结CD ,EH ,当CD ∥EH 时,BD ⊥EH ,又知EH 是A ′E 在平面ABC 内的射影,所以BD ⊥A ′E ,因此异面直线A ′E 与BD 可能垂直,故④错误.4.已知点P 是等腰三角形ABC 所在平面外一点,且P A ⊥平面ABC ,P A =8,在△ABC 中,底边BC =6,AB =5,则P 到BC 的距离为________. 答案 4 5解析 取BC 的中点D ,连结AD ,PD .∵AD ⊥BC ,P A ⊥BC ,且AD ∩P A =A ,∴BC ⊥平面P AD ,∴BC ⊥PD , ∴在Rt △P AD 中,PD =82+42=4 5.5.(教材改编)如图,在三棱锥V —ABC 中,∠VAB =∠VAC =∠ABC =90°,则平面VBA 与平面VBC 的位置关系为_____________________________________________________.答案 垂直解析 ∵∠VAB =∠VAC =∠ABC =90°, ∴BC ⊥AB ,VA ⊥AC ,VA ⊥AB , 由⎭⎪⎬⎪⎫VA ⊥AB VA ⊥AC ⇒VA ⊥平面ABC , ∴VA ⊥BC ,由⎭⎪⎬⎪⎫VA ⊥BC AB ⊥BC ⇒BC ⊥平面VAB ∴BC ⊥AB ,又BC ⊂平面VBC , ∴平面VBC ⊥平面VBA.题型一 线、面平行垂直关系的判定例1 (1)如图所示,在直棱柱ABC —A 1B 1C 1中,若D 是AB 的中点,则AC 1与平面CDB 1的关系为________.①AC 1∥平面CDB 1; ②AC 1在平面CDB 1中; ③AC 1与平面CDB 1相交; ④无法判断关系.(2)已知m ,n 为直线,α,β为平面,给出下列命题:①⎩⎪⎨⎪⎧ m ⊥α,m ⊥n ⇒n ∥α;②⎩⎪⎨⎪⎧m ⊥β,n ⊥β⇒m ∥n ; ③⎩⎪⎨⎪⎧m ⊥α,m ⊥β⇒α∥β;④⎩⎪⎨⎪⎧m ⊂α,n ⊂β,α∥β⇒m ∥n .其中正确的命题是________. 答案 (1)① (2)②③解析 (1)连结BC 1,BC 1与CB 1交于E 点,(如图)连结DE ,则DE ∥AC 1,又DE ⊂平面CDB 1,AC 1⊄平面CDB 1, ∴AC 1∥平面CDB 1.(2)对于①,n 可能在α内;对于④,m 与n 可能异面.易知②,③是真命题. 思维升华 对线面平行、垂直关系的判定:(1)易忽视判定定理与性质定理的条件,如易忽视线面平行的判定定理中直线在平面外这一条件;(2)结合题意构造或绘制图形,结合图形作出判断;(3)可举反例否定结论或用反证法判断结论是否正确.(1)在正方形SG1G2G3中,E,F分别为G1G2,G2G3的中点.现在沿SE,SF及EF 把这个正方形折成一个四面体,使点G1,G2,G3重合,记为点G,则SG与平面EFG的位置关系为________.答案垂直解析翻折后SG⊥EG,SG⊥FG,从而SG⊥平面EFG.(2)已知三个平面α,β,γ.若α∥β,α∩γ=a,β∩γ=b,且直线c⊂β,c∥b.①判断c与α的位置关系,并说明理由;②判断c与a的位置关系,并说明理由.解①c∥α,∵α∥β,∴α与β没有公共点.又∵c⊂β,∴c与α无公共点,故c∥α.②c∥a.∵α∥β,∴α与β没有公共点.又α∩γ=a,β∩γ=b,∴a⊂α,b⊂β,且a,b⊂γ,∴a∥b.又c∥b,∴a∥c.题型二平行与垂直关系的证明命题点1线面平行的证明例2在正方体ABCD—A1B1C1D1中,E,F分别为棱BC,C1D1的中点.求证:EF∥平面BB1D1D. 证明如图所示,连结AC交BD于点O,连结OE,则OE∥DC,OE=12DC.∵DC∥D1C1,DC=D1C1,F为D1C1的中点,∴OE∥D1F,OE=D1F,∴四边形D1FEO为平行四边形,∴EF∥D1O.又∵EF ⊄平面BB1D1D,D1O⊂平面BB1D1D,∴EF∥平面BB1D1D.命题点2面面平行的证明例3如图所示,已知正方体ABCD—A1B1C1D1.(1)求证:平面A1BD∥平面B1D1C.(2)若E,F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD.证明(1)∵B1B∥DD1,B1B=D1D,∴四边形BB1D1D是平行四边形,∴B1D1∥BD,又BD⊂平面A1BD,B1D1⊂平面B1D1C,∴BD∥平面B1D1C.同理A1D∥平面B1D1C,又∵A1D∩BD=D,A1D,BD⊂平面A1BD,∴平面A1BD∥平面B1D1C.(2)由BD∥B1D1,得BD∥平面EB1D1.如图所示,取BB1的中点G,连结AG,GF,易得AE∥B1G,又∵AE=B1G,∴四边形AEB1G是平行四边形,∴B1E∥AG.同理GF ∥AD .又∵GF =AD , ∴四边形ADFG 是平行四边形,∴AG ∥DF ,∴B 1E ∥DF ,∴DF ∥平面EB 1D 1. 又∵BD ∩DF =D , ∴平面EB 1D 1∥平面FBD . 命题点3 直线与平面垂直的证明例4 如图,在多面体ABCDEF 中,四边形ABCD 是菱形,AC 、BD 相交于点O ,EF ∥AB ,AB =2EF ,平面BCF ⊥平面ABCD ,BF =CF ,点G 为BC 的中点.(1)求证:OG ∥平面EFCD ; (2)求证:AC ⊥平面ODE .证明 (1)∵四边形ABCD 是菱形,AC ∩BD =O , ∴点O 是BD 的中点,∵点G 为BC 的中点,∴OG ∥CD , 又∵OG ⊄平面EFCD ,CD ⊂平面EFCD , ∴OG ∥平面EFCD .(2)∵BF =CF ,点G 为BC 的中点,∴FG ⊥BC . ∵平面BCF ⊥平面ABCD , 平面BCF ∩平面ABCD =BC , FG ⊂平面BCF ,FG ⊥BC , ∴FG ⊥平面ABCD .∵AC ⊂平面ABCD ,∴FG ⊥AC ,∵OG ∥AB ,OG =12AB ,EF ∥AB ,EF =12AB ,∴OG ∥EF ,OG =EF ,∴四边形EFGO为平行四边形,∴FG∥EO.∵FG⊥AC,FG∥EO,∴AC⊥EO.∵四边形ABCD是菱形,∴AC⊥DO,∵EO∩DO=O,EO、DO在平面ODE内,∴AC⊥平面ODE.命题点4面面垂直的证明例5如图所示,在正三棱柱ABC—A1B1C1中,E为BB1的中点,求证:截面A1CE⊥侧面ACC1A1.证明如图所示,取A1C的中点F,AC的中点G,连结FG,EF,BG,则FG∥AA1,且GF=12AA1.因为BE=EB1,A1B1=CB,∠A1B1E=∠CBE=90°,所以△A1B1E≌△CBE,所以A1E=CE.因为F为A1C的中点,所以EF⊥A1C.又FG∥AA1∥BE,GF=12AA1=BE,且BE⊥BG,所以四边形BEFG是矩形,所以EF⊥FG.因为A1C∩FG=F,所以EF ⊥侧面ACC 1A 1. 又因为EF ⊂平面A 1CE , 所以截面A 1CE ⊥侧面ACC 1A 1. 命题点5 平行、垂直的综合证明例6 如图,四边形ABCD 是正方形,DE ⊥平面ABCD .(1)求证:AC ⊥平面BDE ;(2)若AF ∥DE ,DE =3AF ,点M 在线段BD 上,且BM =13BD ,求证:AM ∥平面BEF .证明 (1)因为DE ⊥平面ABCD ,所以DE ⊥AC .因为四边形ABCD 是正方形,所以AC ⊥BD .又BD ∩DE =D ,从而AC ⊥平面BDE .(2)如图,延长EF ,DA 交于点G .因为AF ∥DE ,DE =3AF ,所以GA GD =AF DE =13.因为BM =13BD ,所以BM BD =13,所以BM BD =GA GD =13,所以AM ∥GB .又AM ⊄平面BEF ,GB ⊂平面BEF , 所以AM ∥平面BEF .思维升华 (1)空间线面的位置关系的判定方法①证明直线与平面平行,设法在平面内找到一条直线与已知直线平行,解答时合理利用中位线性质、线面平行的性质,或构造平行四边形,寻求比例关系确定两直线平行.②证明直线与平面垂直,主要途径是找到一条直线与平面内的两条相交直线垂直.解题时注意分析观察几何图形,寻求隐含条件.(2)空间面面的位置关系的判定方法①证明面面平行,需要证明线面平行,要证明线面平行需证明线线平行,将“面面平行”问题转化为“线线平行”问题.②证明面面垂直,将“面面垂直”问题转化为“线面垂直”问题,再将“线面垂直”问题转化为“线线垂直”问题.如图,四边形AA1C1C为矩形,四边形CC1B1B为菱形,且平面CC1B1B⊥平面AA1C1C,D,E分别为边A1B1,C1C的中点.求证:(1)BC1⊥平面AB1C;(2)DE∥平面AB1C.证明(1)∵四边形AA1C1C为矩形,∴AC⊥C1C.又平面CC1B1B⊥平面AA1C1C,平面CC1B1B∩平面AA1C1C=CC1,∴AC⊥平面CC1B1B.∵BC1⊂平面CC1B1B,∴AC⊥BC1.又四边形CC1B1B为菱形,∴B1C⊥BC1.∵B1C∩AC=C,∴BC1⊥平面AB1C.(2)取AA1的中点F,连结DF,EF.∵四边形AA1C1C为矩形,E,F分别为C1C,AA1的中点,∴EF∥AC.∵EF⊄平面AB1C,AC⊂平面AB1C,∴EF ∥平面AB 1C .∵D ,F 分别为边A 1B 1,AA 1的中点,∴DF ∥AB 1. ∵DF ⊄平面AB 1C ,AB 1⊂平面AB 1C , ∴DF ∥平面AB 1C .∵EF ∩DF =F ,EF ⊂平面DEF ,DF ⊂平面DEF , ∴平面DEF ∥平面AB 1C .∵DE ⊂平面DEF ,∴DE ∥平面AB 1C .题型三 平行与垂直的应用例7 (2015·安徽)如图,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥P -ABC 的体积;(2)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PMMC的值.(1)解 由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=32.由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高,又P A =1. 所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =36.(2)证明 在平面ABC 内,过点B 作BN ⊥AC ,垂足为N ,在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连结BM .由P A ⊥平面ABC 知P A ⊥AC ,所以MN ⊥AC .由于BN ∩MN =N ,故AC ⊥平面MBN ,又BM ⊂平面MBN ,所以AC ⊥BM .在Rt △BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32,由MN ∥P A ,得PM MC =ANNC=13.思维升华(1)利用平行关系可以转移点到面的距离,从而求几何体体积或解决关于距离的最值问题.(2)对于存在性问题的证明与探索有三种途径:途径一:先猜后证,即先观察与尝试给出条件再证明;途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.途径三:将几何问题转化为代数问题,探索出命题成立的条件.如图,在四棱锥P—ABCD中,底面ABCD是矩形,P A⊥平面ABCD,P A=AD =1,AB=3,点F是PD的中点,点E是边DC上的任意一点.(1)当点E为DC边的中点时,判断EF与平面P AC的位置关系,并加以证明;(2)证明:无论点E在边DC的何处,都有AF⊥EF;(3)求三棱锥B—AFE的体积.(1)解当点E为DC边的中点时,EF与平面P AC平行.证明如下:在△PDC中,E,F分别为DC,PD的中点,∴EF∥PC,又EF⊄平面P AC,而PC⊂平面P AC,∴EF∥平面P AC.(2)证明∵P A⊥平面ABCD,CD⊂平面ABCD,∴P A⊥CD.∵四边形ABCD是矩形,∴CD⊥AD.∵AD∩AP=A,∴CD⊥平面P AD.又AF⊂平面P AD,∴AF⊥CD.∵P A=AD,点F是PD的中点,∴AF⊥PD.又CD∩PD=D,∴AF⊥平面PCD.∵EF⊂平面PCD,∴AF⊥EF.即无论点E 在边DC 的何处,都有AF ⊥EF .(3)解 作FG ∥P A 交AD 于G ,则FG ⊥平面ABCD ,且FG =12,又S △ABE =32,∴V B —AEF =V F —AEB =13S △ABE ·FG =312.∴三棱锥B —AFE 的体积为312.6.立体几何平行、垂直的证明问题典例 (14分)(2014·北京)如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.(1)求证:平面ABE ⊥平面B 1BCC 1; (2)求证:C 1F ∥平面ABE ; (3)求三棱锥E -ABC 的体积. 规范解答(1)证明 在三棱柱ABC -A 1B 1C 1中,BB 1⊥底面ABC , 所以BB 1⊥AB .[1分] 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1,[2分] 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1.[3分](2)证明 取AB 的中点G ,连结EG ,FG .[4分]因为E ,F 分别是A 1C 1,BC 的中点, 所以FG ∥AC ,且FG =12AC .[6分]因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形. 所以C 1F ∥EG .[8分]又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .[10分](3)解 因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3.[12分]所以三棱锥E -ABC 的体积 V =13S △ABC ·AA 1=13×12×3×1×2=33.[14分]证明线面平行问题(一)第一步:作(找)出所证线面平行中的平面内的一条直线. 第二步:证明线线平行.第三步:根据线面平行的判定定理证明线面平行. 第四步:反思回顾.检测关键点及答题规范. 证明线面平行问题(二)第一步:在多面体中作出要证线面平行中的线所在的平面.第二步:利用线面平行的判定定理证明所作平面内的两条相交直线分别与所证平面平行; 第三步:证明所作平面与所证平面平行. 第四步:转化为线面平行. 第五步:反思回顾,检查答题规范. 证明面面垂直问题第一步:根据已知条件确定一个平面内的一条直线垂直于另一个平面内的一条直线. 第二步:结合已知条件证明确定的这条直线垂直于另一平面内的两条相交直线.第三步:得出确定的这条直线垂直于另一平面.第四步:转化为面面垂直.第五步:反思回顾,检查答题规范.温馨提醒(1)证线面平行的方法:①利用判定定理,关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.②若要借助于面面平行来证明线面平行,则先要确定一个平面经过该直线且与已知平面平行,此目标平面的寻找方法是经过线段的端点作该平面的平行线.(2)证明两个平面垂直,通常是通过证明线线垂直→线面垂直→面面垂直来实现,因此,在关于垂直问题的论证中要注意线线垂直、线面垂直、面面垂直的相互转化.[方法与技巧]1.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,其转化关系为在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.2.空间中直线与直线垂直、直线与平面垂直、平面与平面垂直三者之间可以相互转化,每一种垂直的判定都是从某种垂直开始转向另一种垂直最终达到目的,其转化关系为在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.[失误与防范]1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.3.在用线面垂直的判定定理证明线面垂直时,考生易忽视说明平面内的两条直线相交,而导致被扣分,这一点在证明中要注意.口诀:线不在多,重在相交.4.面面垂直的性质定理在立体几何中是一个极为关键的定理,这个定理的主要作用是作一个平面的垂线,在一些垂直关系的证明中,很多情况都要借助这个定理作出平面的垂线.注意定理使用的条件,在推理论证时要把定理所需要的条件列举完整,同时要注意推理论证的层次性,确定先证明什么、后证明什么.A组专项基础训练(时间:45分钟)1.设α,β为两个不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:①若α∥β,l⊂α,则l∥β;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③若l∥α,l⊥β,则α⊥β;④若m,n是异面直线,m∥α,n∥α,且l⊥m,l⊥n,则l⊥α.其中真命题的序号是________.答案①③④解析①由α∥β,l⊂α知,l与β无公共点,故l∥β.②当m⊂α,n⊂α,m与n相交,m∥β,n∥β时,α∥β.③由l∥α知,α内存在l′,使得l′∥l.因为l⊥β,所以l′⊥β,故α⊥β.④易知α内存在m′,n′,使得m′∥m,n′∥n,且m′,n′相交,由l⊥m,l⊥n知,l⊥m′且l⊥n′,故l⊥α.2.已知平面α,β,直线m,n,给出下列命题:①若m∥α,n∥β,m∥n,则α∥β;②若α∥β,m∥α,n∥β,则m∥n;③若m⊥α,n⊥β,m⊥n,则α⊥β;④若α⊥β,m⊥α,n⊥β,则m⊥n.其中是真命题的是________.(填写所有真命题的序号)答案③④解析对于①,平面α与β可能相交,故①错;对于②,若α∥β,m∥α,n∥β,则直线m 与n可能平行,可能相交,也可能异面,故②错;对于③,由面面垂直的判定可知③正确;对于④,由面面垂直的性质可知m⊥n,故④正确.因此真命题的序号为③④.3.在四棱锥P—ABCD中,P A⊥底面ABCD,底面各边都相等,M是PC上一动点,当M满足是________时,平面MBD⊥平面ABCD.答案PC的中点解析 当M 是PC 中点时,连结AC ,BD 交于O ,由题意知,O 是AC 的中点,连结MO ,则MO ∥P A .∵P A ⊥平面ABCD ,∴MO ⊥平面ABCD ,MO ⊂平面MBD ,∴平面MBD ⊥平面ABCD . 4.如图,ABCD 是空间四边形,E ,F ,G ,H 分别是四边上的点,且它们共面,并且AC ∥平面EFGH ,BD ∥平面EFGH ,AC =m ,BD =n ,当EFGH 是菱形时,AE ∶EB =________.答案m n解析 设AE =a ,EB =b ,由题意知,EF ∥AC , 得EF =bm a +b ,同理EH =ana +b.因为EF =EH ,所以bm a +b =an a +b,所以a b =mn .5.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面是以∠ABC 为直角的等腰直角三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF .答案 a 或2a解析 由题意易知,B 1D ⊥平面ACC 1A 1, 所以B 1D ⊥CF .要使CF ⊥平面B 1DF ,只需CF ⊥DF 即可. 令CF ⊥DF ,设AF =x ,则A 1F =3a -x . 易知Rt △CAF ∽Rt △F A 1D ,得AC AF =A 1F A 1D ,即2a x =3a -x a , 整理得x 2-3ax +2a 2=0, 解得x =a 或x =2a .6.如图,四棱锥P —ABCD 的底面ABCD 是平行四边形,平面PBD ⊥平面ABCD ,PB =PD ,P A ⊥PC ,CD ⊥PC ,O ,M 分别是BD ,PC 的中点,连结OM .求证:(1)OM ∥平面P AD ; (2)OM ⊥平面PCD .证明 (1)连结AC .因为四边形ABCD 是平行四边形,所以O 为AC 的中点.在△P AC 中,因为O ,M 分别是AC ,PC 的中点,所以OM ∥P A . 因为OM ⊄平面P AD ,P A ⊂平面P AD , 所以OM ∥平面P AD .(2)连结PO .因为O 是BD 的中点,PB =PD , 所以PO ⊥BD .因为平面PBD ⊥平面ABCD ,平面PBD ∩平面ABCD =BD ,PO ⊂平面PBD ,所以PO ⊥平面ABCD ,从而PO ⊥CD . 因为CD ⊥PC ,PC ∩PO =P , PC ⊂平面P AC ,PO ⊂平面P AC , 所以CD ⊥平面P AC .因为OM ⊂平面P AC ,所以CD ⊥OM .因为P A⊥PC,OM∥P A,所以OM⊥PC.因为CD⊂平面PCD,PC⊂平面PCD,CD∩PC=C,所以OM⊥平面PCD.7.如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.(1)证明:平面ADC1B1⊥平面A1BE;(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.(1)证明如图,因为ABCD-A1B1C1D1为正方体,所以B1C1⊥面ABB1A1.因为A1B⊂面ABB1A1,所以B1C1⊥A1B.又因为A1B⊥AB1,B1C1∩AB1=B1,所以A1B⊥面ADC1B1.因为A1B⊂面A1BE,所以平面ADC1B1⊥平面A1BE.(2)解当点F为C1D1中点时,可使B1F∥平面A1BE.证明如下:易知:EF∥C1D,且EF=12C1D.设AB1∩A1B=O,则B1O∥C1D且B1O=12C1D,所以EF∥B1O且EF=B1O,所以四边形B1OEF为平行四边形.所以B1F∥OE.又因为B1F⊄面A1BE,OE⊂面A1BE.8.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是棱DD1,C1D1的中点.(1)证明:平面ADC1B1⊥平面A1BE;(2)证明:B1F∥平面A1BE;(3)若正方体棱长为1,求四面体A1—B1BE的体积.(1)证明如图,连结AB1.因为ABCD—A1B1C1D1为正方体,所以B1C1⊥平面ABB1A1.因为A1B ⊂平面ABB1A1,所以B1C1⊥A1B.因为A1B⊥AB1,B1C1∩AB1=B1,所以A1B⊥平面ADC1B1.因为A1B⊂平面A1BE,所以平面ADC1B1⊥平面A1BE.(2)证明如图,连结EF,DC1,OE,B1F.由已知条件得EF∥C1D,且EF=12C1D.设AB1∩A1B=O,则B1O∥C1D且B1O=12C1D,所以EF∥B1O且EF=B1O,所以四边形B1OEF为平行四边形,所以B1F∥OE.因为B1F⊄平面A1BE,OE⊂平面A1BE,(3)解 VA 1—B 1BE =VE —A 1B 1B =13S △A 1B 1B ·B 1C 1=16. B 组 专项能力提升(时间:25分钟)9.在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,给出下面三个结论: ①BC ∥平面PDF ;②DF ⊥平面P AE ;③平面PDF ⊥平面ABC .其中不成立...的结论是________.(填写所有不成立的结论的序号) 答案 ③解析如图,由题知BC ∥DF ,∴BC ∥平面PDF .∵四面体P —ABC 为正四面体,∴BC ⊥P A ,AE ⊥BC ,BC ⊥平面P AE ,∴DF ⊥平面P AE ,∴平面P AE ⊥平面ABC ,∴①和②成立.设此正四面体的棱长为1,则P A =1,AM =34,PM 2=PD 2-DM 2=⎝⎛⎭⎫322-⎝⎛⎭⎫142=1116,∴P A 2≠AM 2+PM 2,故③不成立.10.如图,过四棱柱ABCD —A 1B 1C 1D 1的木块上底面内的一点P 和下底面的对角线BD 将木块锯开,得到截面BDEF .(1)请在木块的上表面作出过点P 的锯线EF ,并说明理由;(2)若该四棱柱的底面为菱形,四边形BB1D1D是矩形,试证明:平面BDEF⊥平面ACC1A1.(1)解在上底面内过点P作B1D1的平行线分别交A1D1,A1B1于E,F两点,则EF为所作的锯线.在四棱柱ABCD—A1B1C1D1中,侧棱B1B∥D1D,B1B=D1D,所以四边形BB1D1D是平行四边形,B1D1∥BD.又EF∥B1D1,所以EF∥BD,故EF为截面BDEF与平面A1B1C1D1的交线,故EF为所作锯线.如图所示.(2)证明由于四边形BB1D1D是矩形,所以BD⊥B1B.又A1A∥B1B,所以BD⊥A1A.又四棱柱的底面为菱形,所以BD⊥AC.因为AC∩A1A=A,所以BD⊥平面A1C1CA.因为BD⊂平面BDEF,所以平面BDEF⊥平面A1C1CA.11.如图,P A垂直于矩形ABCD所在的平面,AD=P A=2,CD=22,E,F分别是AB,PD 的中点.(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求四面体PECF的体积.(1)证明设G为PC的中点,连结FG,EG.∵F 为PD 的中点,E 为AB 的中点,∴FG 綊12CD ,AE 綊12CD ,∴FG 綊AE , ∴四边形AEGF 为平行四边形,∴AF ∥GE . ∵GE ⊂平面PEC ,AF ⊄平面PEC , ∴AF ∥平面PCE .(2)证明 ∵P A =AD =2,∴AF ⊥PD .又∵P A ⊥平面ABCD ,CD ⊂平面ABCD , ∴P A ⊥CD .∵AD ⊥CD ,P A ∩AD =A ,∴CD ⊥平面P AD .∵AF ⊂平面P AD ,∴AF ⊥CD .∵PD ∩CD =D ,∴AF ⊥平面PCD ,∴GE ⊥平面PCD .∵GE ⊂平面PEC ,∴平面PCE ⊥平面PCD .(3)解 由(2)知GE ⊥平面PCD , 所以EG 为四面体PEFC 的高,又EG =AF =2,CD =22,S △PCF =12PF ·CD =2, 所以四面体PEFC 的体积V =13S △PCF ·EG =223.。

高三文科数学立体几何平行垂直问题专题复习(含答案)

高三文科数学立体几何平行垂直问题专题复习(含答案)

高三文科数学专题复习:立体几何平行、垂直问题【根底学问点】一、平行问题1.直线及平面平行的断定及性质定义断定定理性质性质定理图形条件a∥α结论a∥αb∥αa∩α=a∥b2. 面面平行的断定及性质断定性质定义定理图形条件α∥β,a⊂β结论α∥βα∥βa∥b a∥α平行问题的转化关系:二、垂直问题一、直线及平面垂直1.直线与平面垂直的定义:直线l及平面α内的都垂直,就说直线l及平面α相互垂直.2.直线及平面垂直的断定定理及推论文字语言图形语言符号语言断定定理一条直线及一个平面内的两条相交直线都垂直,那么该直线及此平面垂直推论假如在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面3.直线及平面垂直的性质定理文字语言图形语言符号语言性质定理垂直于同一个平面的两条直线平行4.直线与平面垂直的常用性质①直线垂直于平面,那么垂直于平面内随意直线.②垂直于同一个平面的两条直线平行. ③垂直于同一条直线的两平面平行. 二、平面及平面垂直1.平面及平面垂直的断定定理【典例探究】 类型一、平行及垂直例1、如图,三棱锥A BPC -中,,,AP PC AC BC ⊥⊥M 为AB 中点,D为PB 中点,且△PMB 为正三角形。

〔Ⅰ〕求证:DM ∥平面APC ;〔Ⅱ〕求证:平面ABC ⊥平面APC ;〔Ⅲ〕假设BC 4=,20AB =,求三棱锥D BCM -的体积。

F D C1B1A1C例2. 如图,三棱柱111ABC A B C -中,1AA ⊥底面ABC ,2AC BC ==,14AA =,22AB =M ,N 分别是棱1CC ,AB 中点.〔Ⅰ〕求证:CN ⊥平面11ABB A ; 〔Ⅱ〕求证://CN 平面1AMB ;〔Ⅲ〕求三棱锥1B AMN -的体积.【变式1】. 如图,三棱柱111C B A ABC -中,侧棱1AA ⊥平面ABC ,ABC ∆为等腰直角三角形, 90=∠BAC ,且1AA AB =,F E D ,,分别是BC CC A B ,,11的中点。

高中数学知识点总结及公式大全立体几何中的平行与垂直问题

高中数学知识点总结及公式大全立体几何中的平行与垂直问题

高中数学知识点总结及公式大全立体几何中的平行与垂直问题高中数学知识点总结及公式大全:立体几何中的平行与垂直问题在高中数学中,几何是一个重要的分支,而立体几何更是其中的重要内容之一。

在立体几何中,平行和垂直是我们经常遇到的问题。

本文将对高中数学中的立体几何知识点进行总结,并提供一些常用的公式。

一、平行与垂直的概念在几何中,平行和垂直是两个基本的关系。

平行指的是两条直线永远不会相交的情况,可以想象成两条铁轨永远平行。

垂直则指的是两条直线相互成直角,可以想象成两根彼此垂直的木棍。

二、平行与垂直的判定方法1. 平行关系的判定方法:(1) 同位角相等定理:如果两条直线被一组相交线段所切割,且这些相交线段的对应角相等,则这两条直线是平行的。

(2) 平行线的性质定理:如果一条直线上的两个点分别与另一条直线上的两个点相连,且相连的线段互相平行,则这两条直线是平行的。

(3) 平行线的判定定理:如果两条直线的斜率相等且不相交,则这两条直线是平行的。

2. 垂直关系的判定方法:(1) 两条直线相交且相交角为90度,则这两条直线是垂直的。

(2) 垂直线的性质定理:如果一条直线与另一条直线相互垂直,且这两条直线各自还与第三条直线相交,则第三条直线与这两条直线也是垂直的。

(3) 垂直线的判定定理:如果两条直线的斜率互为负倒数,则这两条直线是垂直的。

三、常用公式在立体几何中,我们经常使用一些公式来求解问题。

下面是一些常用的公式:1. 立方体的表面积公式:立方体的表面积等于6倍的边长平方。

2. 立方体的体积公式:立方体的体积等于边长的立方。

3. 正方体的表面积公式:正方体的表面积等于6倍的边长平方。

4. 正方体的体积公式:正方体的体积等于边长的立方。

5. 圆柱体的表面积公式:圆柱体的表面积等于2πr² + 2πrh,其中r为底面半径,h为高。

6. 圆柱体的体积公式:圆柱体的体积等于πr²h,其中r为底面半径,h为高。

专题08 立体几何中的平行与垂直问题(解析版)

专题08 立体几何中的平行与垂直问题(解析版)

专题08立体几何中的平行与垂直问题【考点预测】1.证明空间中直线、平面的平行关系(1)证明直线与平面平行的常用方法:①利用定义,证明直线a 与平面α没有公共点,一般结合反证法证明;②利用线面平行的判定定理,即线线平行⇒线面平行.辅助线的作法为:平面外直线的端点进平面,同向进面,得平行四边形的对边,不同向进面,延长交于一点得平行于第三边的线段;③利用面面平行的性质定理,把面面平行转化成线面平行;(2)证明面面平行的常用方法:①利用面面平行的定义,此法一般与反证法结合;②利用面面平行的判定定理;③利用两个平面垂直于同一条直线;④证明两个平面同时平行于第三个平面.(3)证明线线平行的常用方法:①利用直线和平面平行的判定定理;②利用平行公理;2.证明空间中直线、平面的垂直关系(1)证明线线垂直的方法①等腰三角形底边上的中线是高;②勾股定理逆定理;③菱形对角线互相垂直;④直径所对的圆周角是直角;⑤向量的数量积为零;⑥线面垂直的性质();⑦平行线垂直直线的传递性(∥).(2)证明线面垂直的方法①线面垂直的定义;②线面垂直的判定(); ③面面垂直的性质();平行线垂直平面的传递性(∥);⑤面面垂直的性质(). (3)证明面面垂直的方法①面面垂直的定义;②面面垂直的判定定理().,a b a b αα⊥⊂⇒⊥,a c a ⊥b b c ⇒⊥,,,,a b a c c b bc P a ααα⊥⊥⊂⊂=⇒⊥,,,b a b a a αβαβαβ⊥=⊥⊂⇒⊥,a b α⊥a b α⇒⊥,,l l αγβγαβγ⊥⊥=⇒⊥,a a βααβ⊥⊂⇒⊥【典型例题】例1.(2022·全国·高一课时练习)下列命题:①垂直于同一条直线的两个平面互相平行;②垂直于同一个平面的两条直线互相平行;③一条直线在平面内,另一条直线与这个平面垂直,则这两条直线互相垂直.其中正确的个数是( )A .0B .1C .2D .3【答案】D【解析】【分析】①应用反证法:AB α⊥于A ,AB β⊥于B ,假设,αβ不平行,利用线面垂直的性质及三角形的内角和得到矛盾,即可判断;②③根据线面垂直的性质判断即可.【详解】①如下图,若AB α⊥于A ,AB β⊥于B ,假设,αβ不平行,则,αβ相交,,令l αβ=,在l 任找一点C ,连接,AC BC ,则,,A B C 为三角形,由,AC BC αβ⊂⊂,则AB AC ⊥,AB BC ⊥,即90BAC ABC ∠=∠=︒,显然,,A B C 不能构成三角形,与假设矛盾,所以,αβ平行,正确.②由线面垂直的性质定理知:垂直于同一个平面的两条直线互相平行,正确;③由线面垂直的性质知:一条直线与平面垂直,则垂直于平面内所有直线,正确; 故选:D例2.(2022·河南开封·高一期中)已知直线a ,b ,平面,αβ,则下列命题中正确的是( )A .,a αβα⊥⊂,则a β⊥B .//,//a αβα,则a β∥C .//,a b ββ⊂,则//a bD .a 与b 互为异面直线,//,//,//,//a a b b αβαβ,则//αβ【答案】D【解析】【分析】根据空间中直线与直线、直线与平面、平面与平面的位置关系判断即可.【详解】A 选项中,只有直线a 与两平面的交线垂直的时候结论才成立;B 选项中,还有可能a β⊂;C 选项中,两直线a ,b 平行或异面;D 选项中,过直线a 上一点做//b b ',则相交直线a ,b '确定一个平面,设为γ,易得//γα且//γβ,所以//αβ;故选:D .(多选题)例3.(2022·河南开封·高一期中)如图,在棱长均相等的正四棱锥P ABCD -中,M 、N 分别为侧棱PA 、PB 的中点,O 是底面四边形ABCD 对角线的交点,下列结论正确的有( )A .//PC 平面OMNB .平面//PCD 平面OMNC .OM PA ⊥D .PD ⊥平面OMN【答案】ABC【解析】【分析】 A 选项,由中位线证明线线平行,推导出线面平行;B 选项,在A 选项的基础上证明面面平行;从而推导出D 错误;由勾股定理的逆定理得到PA PC ⊥,从而得到OM PA ⊥.【详解】因为O 为底面四边形ABCD 对角线的交点,所以O 为AC 的中点,由M 是PA 的中点,可得∥PC MO ,因为PC ⊄在平面OMN ,OM ⊂平面OMN ,所以//PC 平面OMN ,A 正确;同理可推得//PD 平面OMN ,⋂=,而PC PD PPCD平面OMN,B正确;所以平面//因为PD⊂平面PCD,故PD不可能垂直平面OMN,D错误;设该正四棱锥的棱长为a,则,2PA PC a AC a,===⊥,所以PA PCPC MO,因为∥⊥,C正确.所以OM PA故选ABC.例4.(2022·全国·高一课时练习)如图,三棱台DEF­ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由已知,连接DG,CD与FG交与点M,先证明四边形CFDG是平行四边形,从而得到DM=MC.结合BH=HC,可证明MH∥BD,再使用线面平行的判定定理即可证明;(2)先证明四边形EFCH是平行四边形,从而得到CF∥HE.因为CF⊥BC,所以HE⊥BC,再证明GH∥AB,因为AB⊥BC,所以GH⊥BC,从而利用线面垂直的判定定理证明BC⊥平面EGH,再使用面面垂直的判定定理即可完成证明.(1)如图所示,连接DG ,设CD ∩GF =M ,连接MH .在三棱台DEF ­ABC 中,AB =2DE ,所以AC =2DF .因为G 是AC 的中点,所以DF ∥GC ,且DF =GC ,所以四边形CFDG 是平行四边形,所以DM =MC .因为BH =HC ,所以MH ∥BD . 又BD ⊄平面FGH ,MH ⊂平面FGH ,所以BD ∥平面FGH .(2)因为G ,H 分别为AC ,BC 的中点,所以GH ∥AB .因为AB ⊥BC ,所以GH ⊥BC .又H 为BC 的中点,所以EF ∥HC ,EF =HC ,所以四边形EFCH 是平行四边形,所以CF ∥HE .因为CF ⊥BC ,所以HE ⊥BC .又HE ,GH ⊂平面EGH ,HE ∩GH =H ,所以BC ⊥平面EGH .又BC ⊂平面BCD ,所以平面BCD ⊥平面EGH .例5.(2022·全国·高一期中)在正方体1111ABCD A B C D -中,M 、N 分别是AB 、AD 的中点,E 、F 、P 分别是11B C 、1BB 、1DD 的中点.(1)证明:MN ∥平面11BDD B ;(2)证明:1CA MN ⊥;(3)请判断直线EF 与平面MNP 位置关系(不需说明理由).【答案】(1)证明见详解;(2)证明见详解;(3)EF ⊂平面MNP .【解析】【分析】(1)因为MN BD ∥,根据线面平行判定即可证明;(2)先证MN ⊥平面1A AC ,根据线面垂直性质即可证明线线垂直;(3)连接11C D 中点G 如图所示即可判断结果.(1)∵MN BD ∥,MN ⊂面11BDD B ,BD ⊂平面11BDD B ,∴MN ∥平面11BDD B ;(2)1AA ⊥平面ABCD ,MN ⊂平面ABCD ,∴1AA MN ⊥∵AC BD ⊥,MN BD ∥∴AC MN ⊥.又∵1AA AC A =,∴MN ⊥平面1A AC ,∴1CA MN ⊥.(3) EF ⊂平面MNP例6.(2022·河南开封·高一期中)在条件①AC BC ⊥;②1AB AC =;③平面1AB C ⊥平面11BB C C 中任选一个,补充到下面的问题中,并给出问题解答.问题:如图,在直三棱柱111ABC A B C -中,1BC CC =,且________,求证:11BC AB ⊥.【答案】证明见解析【解析】【分析】选条件①:将证明11BC AB ⊥转化为证明1BC ⊥平面1AB C ,再根据线面垂直的判定定理分析所需条件,将所需条件不断转化为线线垂直、线面垂直,结合已知可证;选择②:设11BC B C M ⋂=,连接AM ,利用等腰三角形的性质可证1BC ⊥平面1AB C ,然后可证;选择③:根据面面垂直的性质定理可证1BC ⊥平面1AB C ,然后可证.【详解】(情况一)补充条件①AC BC ⊥.证明:在直棱柱111ABC A B C -中,1BB ⊥平面ABC ,因为AC ⊂平面ABC ,所以1BB AC ⊥.因为1,⊥=AC BC BC BB B ,BC ⊂平面11BB C C ,1BB ⊂平面11BB C C所以AC ⊥平面11BB C C .因为1BC ⊂平面11BB C C ,所以1AC BC ⊥,因为1BC CC =,所以四边形11BB C C 为菱形,所以11B C BC ⊥.因为1AC B C C ⋂=,AC ⊂平面1AB C ,1B C ⊂平面1AB C所以1BC ⊥平面1AB C .因为1AB ⊂平面1AB C ,所以11BC AB ⊥.(情况二)补充条件②1AB AC =.证明:设11BC B C M ⋂=,连接AM .因为1AB AC =,M 为1BC 的中点,所以1AM BC ⊥.因为1BC CC =,所以四边形11BB C C 为菱形,所以11B C BC ⊥.因为AM ⊂平面11,AB C B C ⊂平面11,=AB C AMB C M , 所以1BC ⊥平面1AB C .因为1AB ⊂平面1AB C ,所以11BC AB ⊥,(情况三)补充条件③平面1AB C ⊥平面11BB C C .证明:在棱柱111ABC A B C -中,因为1BC CC =,所以四边形11BB C C 为菱形,所以11B C BC ⊥.因为平面1AB C ⊥平面11BB C C ,平面1AB C平面1111,=⊂BB C C B C BC 平面11BB C C ,所以1BC ⊥平面1AB C .因为1AB ⊂平面1AB C ,所以11BC AB ⊥.例7.(2022·全国·高一课时练习)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,,E F 分别为,AD PB 的中点.(1)求证:PE BC ⊥;(2)求证:平面PAB ⊥平面PCD ;【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)根据等腰三角形的性质得到PE AD ⊥,再根据//BC AD 可得PE BC ⊥; (2)根据面面垂直的性质定理得到AB ⊥平面PAD ,进一步得到AB PD ⊥,再根据线面垂直的判定定理得到PD ⊥平面PAB ,最后根据面面垂直的判定定理可证平面PAB ⊥平面PCD .(1)因为PA PD =,E 为AD 的中点,所以PE AD ⊥.因为底面ABCD 为矩形,所以//BC AD ,所以PE BC ⊥.(2)因为底面ABCD 为矩形,所以AB AD ⊥.又因为平面PAD ⊥平面ABCD ,所以AB ⊥平面PAD ,所以AB PD ⊥.又因为PA PD ⊥,PA AB A =,所以PD ⊥平面PAB .因为PD⊂平面PCD,所以平面PAB⊥平面PCD.例8.(2022·山西·大同一中高一阶段练习)如图,在四面体P ABD中,AD⊥平面P AB,PB ⊥P A(1)求证:PB⊥平面APD;(2)若AG⊥PD,G为垂足,求证:AG⊥BD.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由线面垂直的性质有AD PB⊥,再根据线面垂直的判定证结论.(2)由(1)及面面垂直的判定可得面PBD⊥面APD,再由面面垂直的性质有AG⊥面PBD,根据线面垂直的性质即可证结论.(1)由AD⊥平面P AB,PB⊂面PAB,则AD PB⊥,又PB⊥P A,PA AD A⋂=,则PB⊥平面APD;(2)由(1)及PB⊂面PBD,则面PBD⊥面APD,=,AG⊥PD,AG⊂面APD,又面PBD面APD PD所以AG⊥面PBD,而BD⊂面PBD,所以AG⊥BD.【过关测试】一、单选题1.(2022·江苏·海安县实验中学高一期中)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是().A.B.C.D.【答案】A【解析】【分析】根据线面平行的判定定理,结合图形逐一分析各个选项,即可得答案.【详解】⋂=,连接QO,对于A:如图所示,连接BC、DE,设BC DE O∕∕,因为Q、O分别为所在棱的中点,所以AB QOMNQ Q,即直线QO与平面MNQ不平行,又QO⋂平面=所以直线AB与平面MNQ不平行,故A符合题意;对于B:如图所示,取DG的中点E,连接CB、AD、EQ、NE,则////MQ CB MN AC ,,且AC CB C MNMQ M ==,,所以平面//ACBD 平面MNQE ,又AB 平面ACBD ,AB ⊄平面MNQ , 所以AB ∕∕平面MNQ ,故B 不符合题意.对于C :如图所示,连接DC ,则//AB DC ,因为M 、Q 为所在棱的中点,所以//MQ DC ,又MQ 平面MNQ ,DC ⊄平面MNQ ,所以//DC 平面MNQ ,所以//AB 平面MNQ ,故C 不符合题意;对于D :如图所示,连接DC ,//AB DC ,因为Q 、N 为所在棱的中点,所以NQ CD ∕∕,所以//AB NQ ,又NQ ⊂平面MNQ ,AB ⊄平面MNQ ,所以AB ∕∕平面MNQ ,故D 不符合题意.故选:A.2.(2022·广东·海珠外国语实验中学高一期中)已知平面α平面l β=,直线//,//a a αβ,则直线a 与l 的位置关系是( ) A .平行或异面 B .相交 C .平行 D .异面【答案】C【解析】【分析】过a 作平面m γα=、n ηβ=,由线面平行的性质得//m a 、//n a ,即//m n ,根据线面平行判定及性质有//m l ,最后由平行公理的推论判断直线a 与l 的位置关系.【详解】过a 作平面m γα=,//a α,则//m a , 过a 作平面n ηβ=,//a β,则//n a所以//m n ,m β⊄,n β⊂,则//m β,而m α⊂,平面α平面l β=,则//m l , 综上,//a l .故选:C3.(2022·广东·广州市第四十一中学高一阶段练习)已知直线m 、n 和平面αβ、,下列命题正确的是( )A .若,m n n α∥∥,则m αB .若,,m n m n ααβ⊂∥∥、,则αβ∥C .若,,m n αβαβ⊂⊂∥,则m n ∥D .若α∥,m ββ⊂,则m α 【答案】D【解析】【分析】本题考查平行关系的理解,常见错误有对平行线传递性的误解以及平行相关定义、定理的条件结论理解错误.【详解】A 中,可知m 与n 的位置关系:平行或相交或异面,A 不正确;B 中,根据面面平行的判定定理,前提m 与n 必须相交,B 不正确;C 中,可知m 与n 的位置关系:平行或异面,C 不正确;D 中,若α∥β,则平面α内任一条直线均平行平面β,D 正确.故选:D .4.(2022·江苏省太湖高级中学高一期中)已知,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( )A .若m ∥α,n ⊂α,则m ∥nB .若m ∥n ,m α⊄, n ⊂α则m ∥αC .若m ∥α, n ∥α,m β⊂,n β⊂,则α∥βD .若m ∥α,n ∥β, α∥β,则m ∥n【答案】B【解析】【分析】利用直线和平面平行的判定定理和直线与平面平行的性质定理即可求解.【详解】对于选项A ,由直线和平面的性质定理可知,直线m 只能和过这条直线的任意平面与平面α的交线平行,则直线m 和n 不一定平行,则A 不正确;对于选项B ,利用直线与平面平行的判定定理可知选项B 正确;对于选项C ,平面α和平面β可能相交,则选项C 不正确,对于选项D ,直线m 和直线n 可能相交或异面,则D 不正确;故选:B .5.(2022·全国·高一课时练习)下列说法中正确的是( )①过平面外一点有且只有一条直线和已知平面垂直;②过直线外一点有且只有一个平面和已知直线垂直;③过平面外一点可作无数条直线与已知平面平行;④过直线外一点只可作一条直线与已知直线垂直.A .①②③B .①③④C .②③D .②③④ 【答案】A【解析】【分析】根据空间中线面的关系,可以求解.【详解】由线面垂直的性质及线面平行的性质知①②③正确;④错,过直线外一点作平面与直线垂直,则平面内过这一点的所有直线都与该直线垂直.故选:A6.(2022·全国·高一课时练习)在正方体ABCD ­A 1B 1C 1D 1中,点P 是线段BC 1上任意一点,则下列结论中正确的是( )A .AD 1⊥DPB .AP ⊥B 1C C .AC 1⊥DPD .A 1P ⊥B 1C【答案】B【解析】【分析】 由正方体的性质有B 1C ⊥BC 1,B 1C ⊥AB ,再根据线面垂直的性质判断B ,根据正方体性质判断A 、C 、D.【详解】在正方体ABCD ­A 1B 1C 1D 1中,DP 与1BC 不垂直,而11//AD BC ,即DP 与1AD 也不垂直,A 错误;因为B 1C ⊥BC 1,B 1C ⊥AB ,BC 1∩AB =B ,所以B 1C ⊥平面ABC 1D 1,因为点P 是线段BC 1上任意一点,即AP 面ABC 1D 1,所以AP ⊥B 1C ,B 正确;若E 为AB 中点,则1//AC PE ,而DP 与PE 不垂直,则1AC 不与DP 垂直,C 错误;由下图知:结合正方体性质知,1A P 与1B C 不垂直,D 错误.故选:B7.(2022·全国·高一课时练习)如图,正四面体ABCD 中,E ,F 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是直线BD 上的动点,则( )A .存在点G ,使PG ⊥EF 成立B .存在点G ,使FG ⊥EP 成立C .不存在点G ,使平面EFG ⊥平面ACD 成立D .不存在点G ,使平面EFG ⊥平面ABD 成立【答案】C【解析】【分析】A 选项假设PG ⊥EF ,证得AC ⊥面ABD ,与题设矛盾即可判断;B 选项由PE BF ∥求出异面直线,PE FG 的夹角小于2π即可判断;C 选项取CD 中点N ,过B 作BH AN ⊥于H ,先证BH ⊥面ACD ,再由BH 与面EFG 相交即可判断;D 选项直接证明当G 与BD 中点M 重合时,面ABD ⊥面EFG 即可.【详解】在A 中,取BD 中点M ,连接,AM CM ,易得,AM BD CM BD ⊥⊥,,AM CM ⊂面ACM ,AM CM M ⋂=,故BD ⊥面ACM ,又AC ⊂面ACM ,故BD AC ⊥,若PG ⊥EF ,,PG BD ⊂面ABD ,PG BD G ⋂=,则AC ⊥面ABD ,显然不成立,故不存在点G ,使PG ⊥EF 成立,故A 错误;在B 中,连接,BF DF ,易得PE BF ∥,故BFG ∠或其补角即为异面直线,PE FG 的夹角,不妨设3AB =,在ABF 中,由余弦定理2222cos 3BF AB AF AB AF π=+-⋅⋅,即22213223272BF =+-⨯⨯⨯=,解得7BF 7DF =在BFD △中,222779cos 0227BF DF BD BFD BF DF +-+-∠==>⋅⨯,则2BFD π∠<,显然2BFG BFD π∠<∠<,故不存在点G ,使FG ⊥EP 成立,故B 错误;在C 中,取CD 中点N ,连接,AN BN ,过B 作BH AN ⊥于H ,易得,BN CD AN CD ⊥⊥,,AN BN ⊂面ABN ,AN BN N =,故CD ⊥面ABN ,又BH ⊂面ABN ,故CD BH ⊥,又,AN CD ⊂面ABN ,AN CD N ⋂=,故BH ⊥面ACD ,若平面EFG ⊥平面ACD ,则BH ⊂面EFG 或BH 面EFG ,显然BH 与面EFG 相交,故不存在点G ,使平面EFG ⊥平面ACD 成立,故C 正确;在D 中,当G 与BD 中点M 重合时,由A 选项知有BD ⊥面ACM ,即BD ⊥面EFG ,又BD ⊂面ABD ,故面ABD ⊥面EFG ,故存在点G ,使平面EFG ⊥平面ABD 成立,故D 错误.故选:C .8.(2022·内蒙古·呼和浩特市教育教学研究中心高一期末)如图,在三棱锥P ABC -中,不能证明⊥AP BC 的条件是( )A .BC ⊥平面APCB .AP PC ⊥,AP PB ⊥ C .PC BC ⊥,平面APC ⊥平面BPCD .BC PC ⊥,AB BC ⊥【答案】D【解析】【分析】 A 选项利用线面垂直(BC ⊥平面APC )可推出线线垂直(⊥AP BC ),B 选项利用两组线线垂直(AP PC ⊥,AP PB ⊥)推出线面垂直(AP ⊥平面BPC ),再推出线垂直(⊥AP BC ),C 选项利用面面垂直的性质定理可推出⊥AP BC ,D 选项不能证明出⊥AP BC .【详解】BC ⊥平面APC ,AP ⊂平面APC ,BC AP ∴⊥ ,故A 选项可以证明,因此不选.AP PC ⊥,AP PB ⊥,,,PC PB P PC PB ⋂=⊂平面BPC ,AP ∴⊥平面BPC ,BC ⊂平面BPC ,BC AP ∴⊥.故B 选项可以证明,因此不选.平面APC ⊥平面BPC ,平面APC 平面=BPC PC ,PC BC ⊥,由面面垂直的性质定理知BC ⊥平面APC .AP ⊂平面APC ,BC AP ∴⊥,故C 选项可以证明,因此不选.由D 选项BC PC ⊥,AB BC ⊥并不能推出⊥AP BC .故选:D.二、多选题9.(2022·江苏·盐城中学高一期中)如图,正方体1111ABCD A B C D -的棱长为1,点P 是11B CD 内部(不包括边界)的动点,若11AP B D ⊥,则线段AP 长度的可能取值为( )A .1110B 23C .65D 5 【答案】BC【解析】【分析】利用线面垂直得线线垂直,从而确定点P 的轨迹,再根据平面几何的知识求距离的最大、最小值,判断选项即可.【详解】取11B D 中点O ,在正方体1111ABCD A B C D -中,11AB AD =,O 是11B D 的中点,11B D AO ∴⊥,同理11B D OC ⊥,11B D ∴⊥面AOC ,又点P 是11B CD 内部(不包括边界)的动点,11AP B D ⊥P ∴一定在线段OC 上运动在AOC △中,6AO CO ==2AC = 故cos OCA ∠=132AC OC =26sin 1cos OCA OCA ∠=-∠, 故A 到OC 的距离23sin d AC OCA =⋅∠=232AP ≤故选BC .10.(2022·广东·广州市白云中学高一期中)在三棱锥P ABC -中,从顶点P 向底面作垂线,垂足是H ,给出以下命题中正确的是( )A .若,PA BC PB AC ⊥⊥,则H 是ABC 的垂心B .若,,PA PB PC 两两互相垂直,则H 是ABC 的垂心C .若PA PB PC ==,则H 是ABC 的外心D .若H 是AC 的中点,则PA PB PC ==【答案】ABC【解析】【分析】作出图形,结合选项逐项分析即可求出答案.【详解】由题意知PH ⊥平面ABC ,且BC ⊂平面ABC ,所以PH BC ⊥,又因为PA BC ⊥,且PA PH P =,所以BC ⊥平面PAH ,又AH ⊂平面PAH ,因此BC AH ⊥;同理AC BH ⊥,所以H 是ABC 的垂心,故A 正确;由题意知PH ⊥平面ABC ,且BC ⊂平面ABC ,所以PH BC ⊥,又因为PA PC ⊥,PA PB ⊥,且PC PB P =,所以PA ⊥平面PBC ,又因为BC ⊂平面PBC ,所以PA BC ⊥,且PA PH P =,所以BC ⊥平面PAH ,又AH ⊂平面PAH ,因此BC AH ⊥;同理AC BH ⊥,所以H 是ABC 的垂心,故B 正确;PH ⊥平面ABC ,且BC ⊂平面ABC ,AB 平面ABC ,AC ⊂平面ABC ,所以,,⊥⊥⊥PH AB PH AC PH BC ,又因为PA PB PC ==,所以≅≅Rt PAH Rt PBH Rt PCH ,因此AH BH CH ==,所以H 是ABC 的外心,故C 正确;由题意知PH ⊥平面ABC ,且AC ⊂平面ABC ,所以PH AC ⊥,又H 是AC 的中点,所以PA PC =,当12BH AC =时,有PA PB PC ==,当12≠BH AC ,PA PC PB =≠, 故D 不一定成立;故选:ABC.11.(2022·云南师大附中高一期中)已知m ,n 是互不重合的直线,α,β是互不重合的平面,下列四个命题中正确的是( ) A .若m α⊂,n ⊂α,m n P =,//m β,//n β,则//αβB .若m α⊥,m n ⊥,//αβ,则//n βC .若//m α,//m β,n αβ=,则//m nD .若m α⊥,m β⊂,则αβ⊥【答案】ACD【解析】【分析】A 根据面面平行的判定判断;B 由线面、面面位置关系,结合平面的基本性质判断;C 过m 作平面l γα⋂=,由线面平行性质及平行公理的推论判断;D 由面面垂直的判定判断.【详解】A :由//m β,//n β且,m n α⊂,m n P =,根据面面平行的判定知://αβ,正确;B :m α⊥,m n ⊥,//αβ,则//n β或n β⊂,错误;C :过m 作平面l γα⋂=,而//m α,则//m l ,又//m β则l β//,n αβ=,故//l n ,所以//m n ,正确;D :由m α⊥,m β⊂,根据面面垂直的判定知:αβ⊥,正确.故选:ACD12.(2022·河北省唐县第一中学高一期中)如图,在直四棱柱1111ABCD A B C D -中,BC CD ⊥,AB CD ∥,3BC =12AA AB AD ===,点P ,Q ,R 分别在棱1BB ,1CC ,1DD 上,若A ,P ,Q ,R 四点共面,则下列结论正确的是( )A .任意点P ,都有AP QR ∥B .存在点P ,使得四边形APQR 为平行四边形C .存在点P ,使得BC ∥平面APQRD .存在点P ,使得△APR 为等腰直角三角形【答案】AC【解析】【分析】根据面面平行的性质,结合假设法逐一判断即可.【详解】对于A :由直四棱柱1111ABCD A B C D -,//AB CD ,所以平面11//ABB A 平面11DCC D ,又因为平面APQR ⋂平面11ABB A AP =,平面APQR ⋂平面11DCC D QR =, 所以//AP QR ,故A 正确;对于B :若四边形APQR 为平行四边形,则//AR QP ,而AD 与BC 不平行,即平面11ADD A 与平面11BCC B 不平行,所以平面APQR ⋂平面11BCC B PQ =,平面APQR ⋂平面11ADD A AR =,直线PQ 与直线AR 不平行,与//AR QP 矛盾,所以四边形APQR 不可能是平行四边形,故B 不正确;对于C :当BP CQ =时,R 为D 时,满足//BC 平面APQR ,故C 正确.对于D :假设存在点P ,使得APR △为等腰直角三角形,令BP x =,过点D 作DE AB ⊥,则3DE BC ==DR 上取一点M 使得DM BP x ==,连接,BD PM ,则四边形BDMP 为矩形,所以2MP BD ==,则()2224PR PM MR DR x =+=+- 2224AP PB AB x +=+2224AR DR AD DR =+=+显然,AR PR AP PR ≠≠,若由AP AR =,则BP DR x ==且//BP DR ⇒四边形BPDR 为平行四边BPDR , 所以2222228282RP BC CD AP BP x +=++D 错误; 故选:AC.【点睛】关键点睛:运用假设法进行求解是解题的关键.三、填空题13.(2022·广东·广州市白云中学高一期中)正四棱锥S ABCD -的底面边长为a ,侧棱长为2a ,点P ,Q 分别在BD 和SC 上,并且:1:2=BP PD ,//PQ 平面SAD ,则线段PQ 的长为__________. 66a 【解析】【分析】过P 作//PM BC ,交CD 于M ,连结QM ,即可证明平面//PQM 平面SAD ,根据面面平行的性质得到//MQ SD ,再分别求出PM 、QM ,利用余弦定理求出cos ADS ∠,由此利用余弦定理能求出线段PQ 的长.【详解】 解:如图,过P 作//PM BC ,交CD 于M ,连结QM ,正四棱锥S ABCD -的底面边长为a ,侧棱长为2a ,点P ,Q 分别在BD 和SC 上, :1:2=BP PD ,//PQ 平面SAD ,因为//PM BC ,//AD BC ,所以//PM AD ,PM ⊄平面SAD ,AD ⊂平面SAD , 所以//PM 平面SAD ,又PM PQ P =,,PM PQ ⊂平面PQM ,所以平面//PQM 平面SAD ,平面PQM平面SDC MQ =,平面SDC 平面SAD SD =, //MQ SD ∴,2233PM BC a ∴==, //QM SD ∴,1233QM SD a ∴==, //SD QM ,//AD MP ,PMQ ADS ∴∠=∠,222222441cos 2224AD SD SA a a a ADS AD SD a a +-+-∠===⨯⨯⨯⨯, 22222244162cos 299492233a PQ PM QM PM QM PMQ a a a a =+-⋅⋅∠=+-⨯⨯⨯=, 6PQ ∴=. ∴线段PQ 6.6 14.(2022·广东·海珠外国语实验中学高一期中)如图,长方体1111ABCD A B C D -的底面ABCD 是正方形.其侧面展开图是边长为4的正方形,E 、F 分别是侧棱11,AA CC 上的动点,点P 在棱1AA 上,且1AP =,若//EF 平面PBD ,则EF 的长=___________.6【解析】【分析】连接AC 与BD 交于点O ,取PQ =AP =1,连接QC ,得到//OP QC ,再由//EF 平面PBD ,利用线面平行的性质得到//EF OP ,进而得到//EF QC 求解.【详解】解:因为长方体1111ABCD A B C D -的底面ABCD 是正方形,其侧面展开图是边长为4的正方形,所以底面边长为1AD =,高为14AA =,如图所示:连接AC 与BD 交于点O ,取PQ =AP =1,连接QC ,则//OP QC ,因为//EF 平面PBD ,且EF ⊂平面1A ACC ,平面11A ACC ⋂平面BPD OP =,所以//EF OP ,则//EF QC , 又//QE CF ,所以四边形QEFC 是平行四边形,所以26EF QC OP ===615.(2022·浙江浙江·高一期中)在棱长为1的正方体1111ABCD A B C D -中,Q 为线段AD 的中点,P 为正方体内部及其表面上的一动点,且1PQ BD ⊥,则满足条件的所有点P 构成的平面图形的的周长等于________.【答案】32【解析】【分析】分别取111111,,,,CD CC B C A B A A 的中点E ,N ,M ,G ,F ,易证AC ⊥平面11D DBB ,则1AC BD ⊥,从而1QE BD ⊥,同理1QF BD ⊥,由线面垂直判定定理得到1BD ⊥平面ENMGFG ,进而得到所有点P 构成的平面图形为正六边形ENMGFG 求解.【详解】如图所示:分别取111111,,,,CD CC B C A B A A 的中点E ,N ,M ,G ,F ,则//QE AC ,易知AC BD ⊥,1AC DD ⊥,又1DD BD D =, 所以AC ⊥平面11D DBB ,则1AC BD ⊥,所以1QE BD ⊥,同理 1QF BD ⊥,又1QE QF Q ⋂=,所以1BD ⊥平面ENMGFG ,即所有点P 构成的平面图形为正六边形ENMGFG ,因为正方体的棱长为1,所以正六边形ENMGFG 2,所以正六边形ENMGFG 2632= 故答案为:3216.(2022·全国·高一专题练习)如图,在直三棱柱ABC ­­A 1B 1C 1中,侧棱长为2,AC =BC =1,∠ACB =90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E ,要使AB 1⊥平面C 1DF ,则线段B 1F 的长为________.【答案】12##0.5【解析】【分析】根据线面垂直得到线线垂直,根据三角形面积求出DE 3求出线段B 1F 的长.【详解】设B 1F =x ,因为AB 1⊥平面C 1DF ,DF ⊂平面C 1DF ,所以AB 1⊥DF .由已知可得A 1B 1=2,设Rt △AA 1B 1斜边AB 1上的高为h ,则DE =12h . 又11AB A S =122=221222+ ,所以h 23DE 3 在Rt △DB 1E 中,B 1E 2223623⎛⎫⎛⎫-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 在Rt △DB 1F 中,由面积相等得:2216212222x x ⎛⎫+= ⎪ ⎪⎝⎭, 解得:x =12.即线段B 1F 的长为12.故答案为:12四、解答题17.(2022·江苏·无锡市第一中学高一期中)如图,三棱柱111ABC A B C -的侧棱与底面垂直,AC BC ⊥,点D 是AB 的中点.(1)求证1AC B C ⊥;(2)求证:1//AC 平面1CDB .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由侧棱与底面垂直可得1CC AC ⊥,结合AC BC ⊥,可得AC ⊥平面11BCC B ,即可得证;(2)连接1C B ,设1CB 与1C B 的交点为E ,连接DE ,则E 为1BC 中点,利用中位线的性质可知1//DE AC ,进而即可证明结论.(1)证明:在三棱柱111ABC A B C -中,因为1CC ⊥平面ABC ,AC ⊂平面ABC ,所以1CC AC ⊥,又AC BC ⊥,1CC AC C =,1CC ,BC ⊂平面11BCC B ,所以AC ⊥平面11BCC B , 又1B C ⊂平面11BCC B ,所以1AC B C ⊥.(2)证明:连接1C B ,设1CB 与1C B 的交点为E ,连接DE ,则E 为1BC 中点,因为点D 是AB 的中点,所以1//DE AC ,因为DE ⊂平面1CDB ,1AC ⊄平面1CDB ,所以1//AC 平面1CDB .18.(2022·广东·广州六中高一期中)如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,E 和F 分别是CD 和PC 的中点,求证:(1)//BE 平面PAD ;(2)CD ⊥平面BEF .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)根据线面平行的判定定理证明//BE 平面PAD ;(2)先根据平面与平面垂直的性质定理证明AB ⊥平面PAD ,再根据线面垂直的判定定理证明CD ⊥平面BEF .(1)因为E 是CD 的中点,2CD AB =,所以AB DE =,因为//AB CD ,所以//AB DE ,所以四边形ABED 为平行四边形,所以//BE AD ,BE ⊄平面PAD ,AD ⊂平面PAD ,所以//BE 平面PAD ;(2)因为平面PAD ⊥底面ABCD ,平面PAD 底面ABCD AD =,AB AD ⊥,AB 底面ABCD ,所以AB ⊥平面PAD ,又//AB CD ,所以CD ⊥平面PAD ,,AD PD ⊂平面PAD ,所以,CD AD ⊥,CD PD ⊥,因为//BE AD ,所以CD BE ⊥,因为E 和F 分别是CD 和PC 的中点,所以//EF DP ,又CD PD ⊥,所以CD EF ⊥,BE EF E =,,BE EF ⊂平面BEF ,所以CD ⊥平面BEF .19.(2022·山西·大同一中高一阶段练习)如图,等腰梯形ABCD 中,AD =DC =BC =2,AB =4,E 为AB 的中点,将△ADE 沿DE 折起、得到四锥P -DEBC ,F 为PC 的中点,M 为EB 的中点(1)证明:FM //平面PDE ;(2)证明:DE ⊥PC ;(3)当四棱锥P -DEBC 的体积最大时,求三棱锥E -DCF 的体积.【答案】(1)证明见解析;(2)证明见解析;(3)12.【解析】【分析】(1)连接CM 并延长与DE 延长线交于G ,在△CPG 中//FM PG ,根据线面平行的判定即可证结论.(2)H 为DE 中点,连接,PH CH ,易得DEBC 为平行四边形、△PDE 为等边三角形且60EDC ∠=︒,进而可得PH DE ⊥、CH DE ⊥,再根据线面垂直的判定、性质证明结论. (3)首先确定四棱锥P -DEBC 的体积最大时面PDE ⊥面DEBC ,再确定P -DEBC 的体高,并求得F 到面DEBC 的距离,由E DCF F DEC V V --=及棱锥的体积公式求体积.(1)连接CM 并延长与DE 延长线交于G ,则G 在面PDE 内,M 为EB 的中点,则M 为CG 中点,在△CPG 中//FM PG ,又PG ⊂面PDE ,FM ⊄面PDE ,所以FM //平面PDE .(2)若H 为DE 中点,连接,PH CH ,由题设//CD EB 且2CD EB ==,即DEBC 为平行四边形,则2DE BC ==, 所以△PDE 为等边三角形,故PH DE ⊥,又ABCD 为等腰梯形,则60EBC ∠=︒ 所以60EDC ∠=︒,又1DH =,2CD =,易知:CH DE ⊥,又PHCH H =,则DE ⊥面PHC ,PC ⊂面PHC ,故DE ⊥PC . (3)当四棱锥P -DEBC 的体积最大时,面PDE ⊥面DEBC ,则△PDE 的高PH 即为四棱锥P -DEBC 的体高,又F 为PC 的中点,所以F 到面DEBC 的距离32PH h ==,由(2)易知DEBC 为边长为2的菱形, 又132DEC DEBC S S =1132E DCF F DEC DEC V V hS --===. 20.(2022·湖南·长沙市南雅中学高一期中)已知正方体1111-ABCD A B C D .(1)求证:AD1//平面1C BD ;(2)求证:1AD ⊥平面1A DC .【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据给定条件,证明11//AD BC ,再利用线面平行的判定推理作答.(2)利用线面垂直的性质证明1CD AD ⊥,再利用线面垂直的判定推理作答.(1)在正方体1111ABCD A B C D -中,1111////C D A B AB ,1111C D A B AB ==,则有四边形11ABC D 是平行四边形,有11//AD BC ,而1BC ⊂平面1C BD ,1AD ⊄平面1C BD ,所以1//AD 平面1C BD .(2)在正方体1111ABCD A B C D -中,CD ⊥平面11A ADD ,1AD ⊂平面11A ADD ,则1CD AD ⊥, 在正方形11A ADD 中,11A D AD ⊥,又1A D CD D =,1,A D CD ⊂平而1A DC , 所以1AD ⊥平而1A DC .21.(2022·云南昆明·高一期中)如图,四棱柱1111ABCD A B C D -中,底面ABCD 是菱形,60ABC ∠=︒,1AA ⊥平面ABCD ,E 为1AA 中点,12AA AB ==.(1)求证:1AC ∥平面11B D E ;(2)求三棱锥11A B D E -的体积;(3)在1AC 上是否存在点M ,满足1AC ⊥平面11MB D ?若存在,求出AM 的长;若不存在,说明理由.【答案】(1)证明见解析 3(3)32【解析】【分析】 (1)连11A C 交11B D 于点F ,连EF ,由中位线定理以及线面平行的判定证明即可; (2)过1B 作111⊥B H D A 的延长线于点H ,由线面垂直的判定证明1B H ⊥平面11AA D D ,最后由1111113AED B AED V S B H =⋅三棱锥-△得出体积; (3)由线面垂直的性质证明111AC B D ,作1⊥FM AC ,垂足为M ,由线面垂直的判定证明1AC ⊥平面11MB D ,最后得出AM 的长.(1)证明:连11A C 交11B D 于点F ,连EF ,∵1111D C B A 是菱形,∴F 是11A C 中点,∵E 是1AA 中点,∴1∥EF AC ,∵EF ⊂平面11B D E ,1AC ⊄平面11B D E ,∴1AC ∥平面11B D E .(2)解:过1B 作111⊥B H D A 的延长线于点H ,由1AA ⊥底面ABCD 知1AA ⊥平面1111D C B A ,则11⊥AA B H ,又1111=⋂AA A A ,1B H ⊥平面11AA D D .由11160∠=∠=︒A B C ABC 知1160︒∠=A H B ,又112A B =,则13B H =1111111113123332AED A B D E B AED V V S B H --==⋅=⨯⨯⨯=三棱锥三棱锥 (3)解:∵1AA ⊥平面ABCD ,平面1111∥A B C D 平面ABCD ,∴1AA ⊥平面1111D C B A ,∵11B D ⊂平面1111D C B A ,∴111⊥B D AA ,∵菱形1111D C B A 中1111B D A C ⊥,1111A C AA A =,11A C ,1AA ⊂平面11AA C ,∴11B D ⊥平面11AA C ,又1AC ⊂平面11AA C ,∴111AC B D , 过F 在11Rt AAC △中,作1⊥FM AC ,垂足为M ,则由11⋂=M B F D F ,FM ,11B D ⊂平面11MB D 知1AC ⊥平面11MB D ,∴存在M 满足条件,在11Rt AAC △中,1112AA AC ==,122AC =F 是11A C 中点, ∴12==C M FM 23222==AM 22.(2022·江苏·盐城中学高一期中)如图,四棱锥P -ABCD 中,底面ABCD 为菱形,P A ⊥底面ABCD ,P A =2,3PC =E 是线段PC 上的一点,()R PE EC λλ=∈.(1)试确定实数λ,使//PA 平面BED ,并给出证明;(2)当2λ=时,证明:PC ⊥平面BED .【答案】(1)1λ=,证明见解析。

几何元素间的相交问题

几何元素间的相交问题

⑴.直线与平面相交
例:
2‘≡(3') m' k'
b' 1'
e'
a'
f'
X
n' c' O
B
P
M
E
K
C
N
b
f
m
3
k
c
A
F
(n)
a2
≡1 e PH
分析:• 交点K为△与EF的公有点 • 含 EF作 P⊥H
解题步骤:
• △与 P 相交于直线 MN
① 含已知线 EF作辅助面 P(垂直面) ② 求 P与已知面的交线 MN ③ 求MN与EF的交点 K ,即所求
•②利用辅辅助助面面所法包求E含F与的△直AB线C的是交任点选L 的 •••③④连利完用接成交若交重K△线所点L影A,B在 做在点C即与两的无判△△平辅穷断ABD可EC面助远F与见各图面处△性边形 与,D的EF的交应轮的公线重廓交线有平选区行辅内,助面X
5' (1') a'
1
e
e' b
3
4'
c'
O
重点: • 利用辅助面法求交线
c' PV
QV
O
c
10
本节要点
一.相交问题的核心-求公有点 二.辅助平面法求交点 三.利用重影点判断可见性
11
第三章 几何元素间 的相对位置
3.1 几何元素间的平行问题 3.2 几何元素间的相交问题 3.3 几何元素间的垂直问题 3.4 相对位置综合问题
1
3.2 几何元素间的 相交问题
2
一.直线与直线相交 1.两直线相交
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-2-3-2 试作一正方形 ABCD ,其 BC 边在正平线 BM 上。
求作BC 的真实距离。
面所成倾角的实际大小。 2-2-3-4 求三角形 ABC 与V面所成倾角的实际大小。
过点K做一条长12的直线KL 12的直线KL平行于三角形 2-2-1-3 过点K做一条长12的直线KL平行于三角形 ABC 和V面。
12Ⅰ
已知两条平行直线AB CD确定的平面 AB、 确定的平面P EFG,试完成平面P的投影。 2-2-1-4 已知两条平行直线AB、CD确定的平面P平行于三角形 EFG,试完成平面P的投影。
几何元素间的平行问题
平行于由两条平行直线CD EF确定的平面 CD、 确定的平面, 的投影。 2-2-1-1 已知直线 AB 平行于由两条平行直线CD、EF确定的平面,完成 AB 的投影。
已知直线MN和三角形ABC平行,求作此三角形的水平投影。 MN和三角形ABC平行 2-2-1-2 已知直线MN和三角形ABC平行,求作此三角形的水平投影。
c
与由两相交直线AB AC确定的平面的交点 并判断可见性。 AB、 确定的平面的交点, 2-2-2-3 求直线 EF 与由两相交直线AB、AC确定的平面的交点,并判断可见性。
PV e’ b’ 1’ k’ l’ 2’ c’ d’ f’ db f 1 k l 2 c e
a’ X a
方法三
O
利用线面求交法求解 作e’d’∥b’c’ ∥ 点D在AF延长线上 在 延长线上 为所求。 点 K 为所求。
相互平行, 的水平投影。 2-2-1-5 平面 ABC 和 DEF 相互平行,完成 DEF 的水平投影。
三角形ABC平行于直线DE FG,画出三角形ABC的水平投影。 ABC平行于直线DE和 ABC的水平投影 2-2-1-6 三角形ABC平行于直线DE和FG,画出三角形ABC的水平投影。
几何元素间的相交问题
过点A 相交。 2-2-2-7 过点A作直线与两已知直线 BC 及 EF 相交。
的交线。 2-2-2-8 求作两已知平面 ABC 与 DEFG 的交线。
Rv∥Pv : 4n∥a1 , gn∥32 ; MN为 所求
几何元素间的垂直问题
求作三角形ABC的垂心K ABC的垂心 2-2-3-1 求作三角形ABC的垂心K。
与已知平面的交点,并判断可见性。 2-2-2-1 求直线 EF 与已知平面的交点,并判断可见性。
与已知平面的交点,并判断可见性。 2-2-2-2 求直线 EF 与已知平面的交点,并判断可见性。
与由两相交直线AB AC确定的平面的交点 并判断可见性。 AB、 确定的平面的交点, 2-2-2-3 求直线 EF 与由两相交直线AB、AC确定的平面的交点,并判断可见性。
与由两相交直线AB AC确定的平面的交点 并判断可见性。 AB、 确定的平面的交点, 2-2-2-3 求直线 EF 与由两相交直线AB、AC确定的平面的交点,并判断可见性。
方法四
利用侧面投影求解
为所求。 点 K 为所求。
求三角形ABC 与矩形DEFG的相交的交线,并判断可见性。 DEFG的相交的交线 2-2-2-4 求三角形ABC 与矩形DEFG的相交的交线,并判断可见性。
求作直线AB与相交两平面CDF DEF的交点 并判断可见性。 AB与相交两平面CDF及 的交点, 2-2-2-5 求作直线AB与相交两平面CDF及DEF的交点,并判断可见性。
求作三角形ABC与三角形DEF的交线,并判别可见性。 ABC与三角形DEF的交线 2-2-2-6 求作三角形ABC与三角形DEF的交线,并判别可见性。
与由两相交直线AB AC确定的平面的交点 并判断可见性。 AB、 确定的平面的交点, 2-2-2-3 求直线 EF 与由两相交直线AB、AC确定的平面的交点,并判断可见性。
e’ PV 1’ 3’ l’ a’ X a f’ 3 f 1 l
b’
k’ 2’
c’ b
方法二
O 2 k e
利用三面共点法求解 PV∥a’f’ ,且过点 。 且过点c’ 为所求。 点 K 为所求。
提示: 提示: 的共有点! 点A为△ABC与△AEF的共有点! 为 与 的共有点
e’ PV a’ X f’ 3 f a k l 1 2 e 1’ 3’ 2’ k’ l’
b’ 4’ c’ b 4 c
方法一
O
说明: 说明: 向有利于解题的方向转化: 向有利于解题的方向转化 侧平线 与 一般位置面 相交 转化为 两个一般位置面相交问题 点A 为△ABC与△AEF的共有点! 与 的共有点! 求作△ 的另一共有点! 求作△ABC与△AEF的另一共有点! 与 的另一共有点 利用三面共点法求解 利用三面共点法求解 三面共点法 取 PV∥a’f’ 为所求。 点 K 为所求。
相关文档
最新文档