空间数据结构和数据模型新
三维空间数据模型与数据结构
详细描述
基于激光雷达的三维重建是利用激光雷达设 备获取三维点云数据,然后通过点云处理算 法和计算机视觉技术,将点云数据转化为三 维空间模型。该方法精度高,能够获取丰富 的几何信息,但成本较高,适用于需要高精 度测量的场景。
04
三维空间数据模型优化 技术
数据压缩与编码技术
数据压缩
通过减少数据冗余和去除不必要的信 息,以更紧凑的形式存储和传输三维 空间数据。
基于图像的三维重建
总结词
利用多视角图像和计算机视觉技术,重 建出三维空间模型。
VS
详细描述
基于图像的三维重建是利用多视角图像和 计算机视觉技术,通过图像对齐、特征匹 配和三维重建算法,重建出三维空间模型 。该方法成本较低,但精度相对较低,适 用于纹理信息丰富的场景。
基于激光雷达的三维重建
总结词
利用激光雷达设备获取三维点云数据,通过 算法和计算机视觉技术重建三维空间模型。
要点二
安全保护技术
采用访问控制、身份验证等技术,防止未经授权的访问和 数据泄露。
05
三维空间数据模型应用 案例
城市规划与建筑建模
城市规划
三维空间数据模型能够提供城市的地形、建 筑物、道路等详细信息,帮助规划师更好地 理解城市空间布局,制定合理的城市规划方 案。
建筑建模
利用三维空间数据模型,建筑师可以创建精 确的建筑模型,进行设计优化和施工模拟,
灾害评估
在灾害发生后,三维空间数据模型可以帮助评估灾害损 失、预测灾情发展趋势,为救援和重建工作提供支持。
虚拟现实与游戏设计
虚拟现实
三维空间数据模型是虚拟现实技 术的重要组成部分,能够提供逼 真的场景模拟,增强用户的沉浸 感和体验感。
游戏设计
测绘工程中的地理空间数据模型与数据结构
测绘工程中的地理空间数据模型与数据结构在测绘工程领域,地理空间数据模型与数据结构是至关重要的组成部分,它们为有效地收集、存储、管理和分析地理空间信息提供了基础框架。
地理空间数据,简单来说,就是描述地球表面及相关现象的位置、形状、属性等信息的数据。
这些数据来源广泛,包括卫星影像、航空摄影、地面测量等。
而如何将这些海量、复杂的数据进行合理的组织和管理,以便能够快速、准确地获取和处理所需的信息,就需要依靠有效的数据模型和数据结构。
地理空间数据模型是对地理空间现象的抽象和概念化表示。
常见的数据模型有矢量数据模型和栅格数据模型。
矢量数据模型将地理空间中的实体表示为点、线、面等几何对象,并通过坐标来精确描述其位置和形状。
比如,一条道路可以用一系列有序的点连接成的线来表示,一个湖泊可以用一个封闭的多边形面来表示。
矢量数据模型的优点在于数据精度高、存储空间小,并且能够方便地进行几何计算和空间分析。
然而,它在处理连续变化的地理现象,如地形起伏时,就显得不够灵活。
栅格数据模型则将地理空间划分成规则的网格单元,每个单元对应一个数值,用来表示该位置的某种属性。
例如,数字高程模型就是一种常见的栅格数据,其中每个网格单元的值代表该点的海拔高度。
栅格数据模型适用于表示连续变化的地理现象,但其数据量通常较大,精度相对较低。
除了这两种基本的数据模型,还有面向对象的数据模型。
这种模型将地理空间中的实体看作具有属性和方法的对象,能够更好地模拟现实世界中的复杂地理现象。
在实际应用中,往往需要根据具体的需求和数据特点选择合适的数据模型。
比如,在城市规划中,对于建筑物、道路等具有明确边界的地理实体,通常采用矢量数据模型;而在进行大面积的地形分析时,栅格数据模型可能更为适用。
数据结构则是数据模型在计算机中的具体实现方式。
常见的地理空间数据结构有链表、数组、树、图等。
链表结构适合处理数据量较小、插入和删除操作频繁的数据。
数组结构则具有随机访问速度快的优点,但插入和删除操作相对复杂。
三维空间数据模型与数据结构
三维空间数据模型与数据结构三维空间数据模型与数据结构1.引言1.1 研究背景1.2 目的与目标1.3 文档结构2.三维空间数据模型2.1 点、线、面的表示方法2.2 基本几何对象的属性2.3 三维坐标系的建立2.4 地理坐标系与投影坐标系3.三维空间数据结构3.1 常见的数据结构3.1.1 三角网格3.1.2 边界表示3.1.3 引索格网3.2 空间索引结构3.2.1 R树3.2.2 KD树3.2.3 四叉树3.3 数据组织与存储方式3.3.1 点云数据3.3.2 体素数据3.3.3 多边形网格数据4.三维空间数据模型与数据结构的应用4.1 地理信息系统4.2 三维建模与可视化4.3 四维空间数据模型4.4 三维分析与计算5.本文档涉及附件5.1 附件一:三维空间数据模型示例代码5.2 附件二:三维空间数据结构图示6.本文所涉及的法律名词及注释6.1 数据模型:指描述现实世界对象及其相互关系的数据结构和操作的概念模型。
6.2 数据结构:指数据元素之间相互关系的一种结构或组织形式。
6.3 三维坐标系:由三个相互垂直的坐标轴构成的坐标系,用于描述点的位置。
6.4 地理坐标系:一种地球表面坐标系统,用经度和纬度表示点的位置。
6.5 投影坐标系:地理坐标系在地图上的投影表示。
6.6 R树:一种用于索引多维空间数据的数据结构,用于加速空间查询操作。
6.7 KD树:一种用于分割k维空间的数据结构,用于加速最近邻搜索等操作。
6.8 四叉树:一种用于划分二维空间的数据结构,用于加速空间查询操作。
6.9 点云数据:由一系列点组成的三维数据表示形式。
6.10 体素数据:将三维空间划分为小立方体,每个立方体存储一个属性值。
6.11 多边形网格数据:由一系列相邻三角形或四边形组成的三维网格数据。
空间数据模型与数据结构ppt课件
•篮球比赛 是根据 运动队 在规定 的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
关系模型
多边形和弧段的关系
多边形号 弧段号
弧段和结点的关系
P1
a1 a2 a3
弧段号 起点 终点
P2
a2 a5 a7
P3
a3 a6 a4
a1
N1
N2
a2
N3
我们生活的世界
8
•篮球比赛 是根据 运动队 在规定 的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
9
•篮球比赛 是根据 运动队 在规定 的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
P1 a2 a5
a4
8 a6
P2
a8
a3
a13 P5
P4
a15 a12
a16 a14
a20
P8
a22
P6
a18
a23 a21
16
a9 a7
P3 a11
a10
P7 a17
a19
P9
a24
•篮球比赛 是根据 运动队 在规定 的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 于记录的数据模型:是把数据库定义为多种固 定格式的记录型,每个记录型由固定数量的域或 属性构成,每个域或属性具有固定的长度。
包括:层次模型、网络模型、关系模型
• 基于对象的数据模型:用于在概念和视图抽象级 别上的数据描述,具有相当灵活的结构和较强的 表达能力,允许明确地定义完整性约束。
空间数据结构与数据库数据模型
三、空间数据结构与GIS数据模型地理信息系统所处理的数据与一般事务性信息系统如银行管理系统、图书检索系统不同。
GIS的数据处理不仅包括所研究对象的属性关系,还包括研究对象的空间位臵以及空间拓扑关系等信息,数据量大,结构复杂。
因此,人们对GIS中的数据结构和数据模型进行了大量的研究,并发展了一整套空间数据处理的算法。
一、空间数据结构的概念数据结构是指数据的组织形式,可以分为抽象数据结构(或称逻辑结构)和数据存贮结构(或称物理结构)来进行研究。
所谓抽象数据结构是指人们仅从概念上描绘数据之间的排列和联系,而并不涉及数据和具体程序管理细节。
数据存贮结构则是为实现某一抽象数据结构而具体设计的数据存贮管理方式.是依照任务的不同,软件系统和设计者的不同而改变的,具有一定的特殊性,是前者的一个具体实现。
地理空间数据在GIS中的流向可以认为经历了四个阶段。
用户认知的数据结构输入GIS系统后转换成为GIS空间数据结构,然后,为有效地进行数据管理,将其转化为数据库结构,最后按某种特定程式以硬件结构写入存贮介质。
上述流程即为数据的输入过程。
地理空间实体可以抽象为点、线、面三种基本地形要素来表示它的位臵、形状、大小、高低等。
---点(零维):又称为元素或像元,是一个数据点,具有一对(x,y)坐标相至少—个属性,逻辑上不能再分。
这里所谓逻辑上不能再分是指抽象的点而不是几何点,因为事实上抽象的点可以是实体线段或面块,对某个比例尺或图像分辨率而言,它们可以被抽象为以一对坐标表示的数据点。
---线:是由一个(x,y)坐标对序列表示的具有相同属性的点的轨迹。
线的形状决定坐标对序列的排列顺序,线上每个点有不多于二个邻点。
地理实体,如河流、道路、地形线、公共设施走廊、区域边界、地质界线等均属线状地物,其特点是线上各点有相同的公共属性并至少存在一个属性。
---面:是以(x,y)坐标对的集合表示的具有相同属性的点的轨迹。
面的形状不受各点坐标对排列顺序的影响。
空间数据结构
空间数据结构摘要:空间数据模型和空间数据结构是地理信息系统(GIS)课题的中心内容。
本文对空间数据结构的定义、分类进行了一定的研究性的归纳与总结。
关键词:空间数据结构,矢量数据,栅格数据引言GIS中空间数据结构和空间数据模型是紧密相关的。
数据模型的建立必须通过一定的数据结构,但两者之间也有非常大的区别。
数据模型是一个总得概念,是人为概念化的真实,是对现实世界的提取,对现实世界的认识和选择。
而数据结构指数据元素之间的相互关系,它是软件常规内涵,根据空间数据结构和数据模型的特点及其关系,可以建立空间数据库系统。
空间数据结构定义空间数据结构是带有空间数据单元的集合。
这些数据单元是数据的基本单位,一个数据单元可以有几个数据项组成,数据单元之间存在某种联系叫做结构。
所以,研究空间数据结构,是指空间目标间的相互关系,包括几何和非几何的关系,数据结构是数据模型的表述,数据结构往往通过一系列的图表和矩阵,以及计算机码的数据记录来说明。
空间数据结构的分类矢量数据结构定义矢量数据结构是基于矢量模型,利用欧几里得(EUCLID)几何学中的点、线、面及其组合体来表示地理实体的空间分布,是通过记录坐标的方式,尽可能精确地表示点线多边形等地理实体,自然地理实体的位置是用其在坐标参考系中的空间位置来定义的,坐标空间设为连续,允许任意位置长度和面积的精确定义,其特点是定位明显,属性隐含。
GIS采用的矢量数据结构模型,是将空间地质实体抽象成点、线、面三种几何要素,矢量数据结构通过优化拓扑结构表达空间实体的相关关系,为空间数据库建立基本框架。
矢量数据结构的特点优点:数据按照点、线或多边形为单元进行组织,结构简单、直观、易实现以实体为单位的运算和显示。
缺点:A. 独立存储方式造成相邻多边形的公共边界被数字化并存储两次,出现数据冗余和细碎多边形,导致数据不一致;点位字典存储可保证公共边的唯一性。
B.自成体系,缺少多边形的邻接信息,邻域处理复杂,需追踪出公共边。
地理信息系统原理-空间数据模型与数据结构
面对象 Class
属性
属性
体 3-Complex
面 2-Complex
线对象 Class
属性
线 1-Complex
点对象 Class
属性
点 0-Complex
三角形 2-simplex
线段 1-simplex
节点 0-simplex
33
空间地物
复杂地物
13 类空间对象
复杂
柱状地物
体状地物
数字立体模型
部分
节点 0-simplex
X,Y,Z
31
三维对象的拓扑数据模型
体状对象
面状对象
线状对象
点状对象
1 BodyID
1 SurfaceID
1
LineID
1 PointID
N
体1
N
4
5
面
1
6
N
3 4
边
1
1
2 结点
ElementID
FaceID
EdgeID
NodeID
X
Y
Z
32
三维复杂实体的逻辑模型
体对象 Class
• 模型:
• 时间作为属性(time stamp)
• 序列快照模型( Sequent Snap shots) • 基态修正模型(Base State with Amendments) • 时空复合模型( Space - time Composite) • 时空立方体模型( Space - time Cube)
表示形成三维空间目标表示,其优点是便于显示和数据更新, 不足之 处是空间分析难以进行。 (2)体模型(Volume model)
三维空间数据模型与数据结构
三维空间数据模型与数据结构三维空间数据模型与数据结构一、引言⑴提出背景在现代科技发展的背景下,越来越多的领域开始应用三维空间数据模型与数据结构。
三维空间数据模型与数据结构可以帮助我们更好地理解和分析三维空间中的各种数据,如地理环境、建筑结构、工程模型等。
⑵目的本文档旨在介绍三维空间数据模型与数据结构的基本概念、关键技术和应用领域,为相关领域的从业人员和研究者提供一个参考。
二、基本概念⑴三维空间数据模型三维空间数据模型是描述三维空间中各种对象属性和关系的理论模型。
它包括点、线、面等基本几何元素和相关属性信息,如颜色、材质、纹理等。
⑵三维空间数据结构三维空间数据结构是在三维空间数据模型基础上构造的具体数据表示方式。
它包含了数据存储和索引结构,以便于快速检索和查询三维空间数据。
三、关键技术⑴数据模型建模数据模型建模是将现实世界的三维数据抽象为模型的过程。
包括定义数据对象、属性和关系等,选择适合的数据结构和数据类型,并考虑数据的一致性和完整性。
⑵数据存储和索引三维空间数据的存储和索引涉及到对数据进行组织和管理的技术。
常用的数据存储方式包括关系数据库、面向对象数据库和文件系统等。
索引的建立可以提高数据的检索效率,常见的索引结构有R树、Quadtree等。
⑶数据可视化数据可视化是将三维空间数据以直观的方式表达出来的过程。
包括选择合适的表示方法、光照和渲染技术,以及交互式的用户界面设计等。
四、应用领域⑴地理信息系统地理信息系统是应用三维空间数据模型与数据结构进行地理空间数据管理和分析的系统。
它广泛应用于地理环境、地质资源、城市规划等领域。
⑵建筑信息模型建筑信息模型是应用三维空间数据模型与数据结构进行建筑设计和管理的模型。
它能够提供全方位的建筑信息,包括结构、设备、材料等。
⑶虚拟现实与游戏虚拟现实和游戏行业借助三维空间数据模型与数据结构,实现了逼真的视觉效果和交互体验。
它广泛应用于游戏开发、虚拟现实设备等领域。
第二章 空间数据模型和空间数据结构
地理空间定位框架即大地测量控制,由平面控制网和
高程控制网组成; GIS的任何空间数据都必须纳入一个统一的空间参照系 中,以实现不同来源数据的融合、连接与统一。
湖北大学资源环境学院
6
中国的大地控制网
由平面控制网和高程控制网组成,控制点遍布全国各地。
平面控制网 :
按统一规范,由精确测定地理坐标的地面点组成,由 三角测量或导线测量完成,依精度不同,分为四等。
5 f 6
c
4
d
g
点 1 x1 2 x2 3 x3 4 x4 5 x5 6 x6
地图MAP及多边形实体I和II
湖北大学资源环境学院
2.3.2.3 空间物理数据模型
• 解决如何把设计的空间逻辑数据模型在计 算机上实现,同时考虑效率。常常涉及到 索引文件的构建。
湖北大学资源环境学院
30
2.3.3 时空数据模型
1)单重继承、多重继承;全部继承、部分继承;取 代继承、包含继承
湖北大学资源环境学院
39
(四)面向对象数据模型的核心工具
公有域 私有域 保护域:
2)状态继承(数据)
数据 父类 函数 子类
实例
子类继承父类的数据结构,子类还可定义自己 新的数据结构。 子类任意使用父类的数据结构,有可能破坏封 装,若只能通过发送消息来使用父类的域,又可 能失去有效性,具体办法: 公有域:类可操作,实例也可操作。 私有域:只有类本身使用,用户不得访问。 保护域:子类可使用,继承使用,实例不能使用。
湖北大学资源环境学院
7
湖北大学资源环境学院
陕西省泾阳县永乐镇北洪流村为 “1980西安坐标系” 大地坐标的 起算点——大地原点。
8
高程控制网
几种常见的空间数据模型
ARC/INFO数据模型 地理数据库(GeoDatabase)
GeoDatabase拓扑关系检查与处理 ➢ 以错误查看器提供拓扑关系的错误信息 ➢ 用户可选择错误处理方式 ▪ 用编辑工具改正这个错误 ▪ 对该错误暂不处理 ▪ 将该错误置为例外
ARC/INFO数据模型 地理数据库(GeoDatabase)
✓ 位置数据用矢量和栅格数据表示; ✓ 属性数据存储在一组数据库表格中; ✓ 通过空间和属性数据的连接实现对空间数据的查询、分析和制
图输出。
ARC/INFO数据模型
ARC/INFO的数据模型支持六种重要的数据结构
✓ Coverage 矢量数据表示的主要形式
✓ GRID 栅格数据表示的主要形式
路径(Route)
定义为基于基本线特征基础上的路由。如在道路网上划分出 的公共汽车线路,不同的公共汽车线路公用部分道路时不用重复 输入线特征。路径的起点或终点可不与线特征起始点或终点重合, 可定义为线路上离起点或终点一定距离的点,这样就不用断开线 特征。
ARC/INFO数据模型
地理相关模型(GeoRelational model, Coverage)
✓ TIN 适合于表达连续表面
✓ 属性表 ✓ 影像
用作地理特征的描述性数据 ✓ CAD图像
地理信息系统原理第三章 空间数据模型与数据结构3.2
第1行第N列亮度值 波段n 波段1 第2行第1列亮度值 波段n
BSQ结构
BIP结构
BIL结构
星蓝海学习网13
以行为记录单位按行存储 地理数据。属性明显,位 置隐含。 缺点:存在大量冗余,精 度提高有限制。
星蓝海学习网14
0 0 0 0 0 4 4 4 记录1 0 0 0 0 0 4 4 4
星蓝海学习网
• 优点:
• 栅格加密时,数据量不会明显 增加,压缩效率高,最大限度 保留原始栅格结构,
• 编码解码运算简单,且易于检 索、叠加、合并等操作,得到 广泛应用。
• 缺点:
• 不适合于类型连续变化或类型 区域分散的数据。
星蓝海学习网
(2)压缩栅格数据结构
块码(二维游程编码)(行,列,半径,属性值)
弧段ID a b c d e
起始点 5 7 1 13 7
终结点 1 1 13 7 5
… … … 左多边形 Q A Q D D
右多边形 A B B B A
f
13
5
Qห้องสมุดไป่ตู้
D
点号 1 2
…… 25
坐标 (x1,y1) (x2,y2)
…… (x25,y25)
g
25
弧段ID
点号
a
5,4,3,2,1
b
7,8,1
c
1,9,10,11,12,13
• 采用方形区域作为记录单元,每个记录单元包括相邻的若干栅格,数据结构由初始位置(行、 列号)和半径,再加上记录单元代码组成。特点:
• 一个多边形所包含的正方形越大,多边形的边界越简单,块状编码的效率就越好。
• 块状编码对大而简单的多边形更为有效,而对那些碎部较多的复杂多边形效果并不好。
第3讲-空间数据模型和空间数据结构
空间现象 客观世界的现象划分为5类:
可精密观测的自然对象(如建筑物边界) 受采样限制的自然对象(如河流的边界) 受定义限制的自然对象(如植被覆盖率大小和范围) 不规则的人为对象(如行政区、TIN、Voronoi多边形) 规则的人为对象(栅格、立方体元)
空间实体
➢ 对复杂地理事物和现象进行简化抽象得到的不可再分割的同 类对象,就是地理空间实体,简称空间实体。
➢ 空间实体具有4个基本特征:
➢ 空间位置特征 ➢ 属性特征 ➢ 时间特征 ➢ 空间关系
观察和认知
现实世界
概念世界
ቤተ መጻሕፍቲ ባይዱ抽还 象原 世世 界界
信息
数据世界 (计算机)
空间事物或现象
选择、综合、简化和抽象
程度、地表温度、土壤湿度、地形高度以及大面积空气和水域
的流速和方向等;
根据不同的应用,场可以表现为二维或三维; 一个二维场就是在二维空间R2中任意给定的一个空间位置上,
都有一个表现某现象的属性值,即 A=f(x,y)
一个三维场是在三维空间R3中任意给定一个空间位置上,都对 应一个属性值,即 A=f(x,y,z)
可被标识 在观察中的重要程度 有明确的特征且可被描述
传统的地图是以对象模型进行地理空间抽象和建模的实例。
空间关系 非空间关系 时间关系
地理空间 空间要素
分类
子类 超类
几何坐标 子部分 超部分
非空间属性
对象模型对空间要素的描述
场/域(field)模型
把地理空间中的现象作为连续的变量或体来看待,如大气污染
空间数据结构
第五章空间数据结构数据结构即指数据组织的形式,是适合于计算机存储、管理和处理的数据逻辑结构。
地理信息系统空间数据结构是指空间数据在系统内的组织和编码形式(GIS数据结构也可称为图形数据格式),它是指适合于计算机系统存储、管理和处理地理图形的逻辑结构。
GIS中,空间数据一般有着较为复杂的数据结构,目前,主要有两种数据模型表示空间数据,即矢量数据模型和栅格数据模型。
4.1 栅格数据结构4.1.1概述栅格数据是计算机和其它信息输入输出设备广泛使用的一种数据模型,如电视机、显示器、打印机等的空间寻址。
甚至专门用于矢量图形的输入输出设备,如数字化仪、矢量绘图仪及扫描仪等,其内部结构实质上是栅格的。
遥感数据也是采用特殊扫描平台获得的栅格数据。
栅格数据就是用数字表示的像元阵列,其中,栅格的行和列规定了实体所在的坐标空间,而数字矩阵本身则描述了实体的属性或属性编码。
栅格数据最显著的特点就是存在着最小的、不能再分的栅格单元,在形式上常表现为整齐的数字矩阵,因而便于计算机进行处理,特别是存储和显示。
4.1.2编码方案以图4-1为例,介绍几种编码方法的编码思路、方案和特点。
图4-1 栅格数据结构1. 游程长度编码地理数据往往有较强的相关性,也就是说相邻象元的值往往是相同的。
游程长度编码的基本思想是:按行扫描,将相邻等值的象元合并,并记录代码的重复个数。
游程长度编码的数据结构: 行号,属性,重复次数。
图4-1的游程长度编码为:1,A,4,R,1,A,6…对于游程长度编码,区域越大,数据的相关性越强,则压缩越大。
其特点是,压缩效率较高,叠加、合并等运算简单,编码和解码运算快。
2. 块式编码块式编码是将游程扩大到二维情况,把多边形范围划分成若干具有同一属性的正方形,然后对各个正方形进行编码。
块式编码的基本思想:由初始位置(行列号)、半径和属性代码组成。
图4-1的块状编码为:(1,1,3,A),(1,5,1,R),(1,6,2,A),…块状编码对大而简单的多边形更为有效,对一些虽不较多的复杂多边形效果并不好。
三维空间数据模型与数据结构简版
三维空间数据模型与数据结构三维空间数据模型与数据结构1. 引言三维空间数据模型是用来描述物理空间中的对象、关系和属性的数学模型。
在计算机图形学、地理信息系统和计算机辅助设计等领域,对三维空间数据的建模与处理是至关重要的。
本文将介绍三维空间数据模型的概念以及常用的数据结构。
2. 三维空间数据模型三维空间数据模型是对物理空间中的对象和关系进行抽象和建模的数学模型。
它定义了一组与空间相关的基本元素、操作和约束。
常见的三维空间数据模型有:2.1. 矢量数据模型矢量数据模型使用点、线和多边形等基本几何要素来表示空间对象。
每个空间对象由一组坐标点构成,这些坐标点描述了对象的形状和位置信息。
矢量数据模型适合表示简单的几何要素,例如建筑物、道路和河流等。
2.2. 栅格数据模型栅格数据模型将空间对象划分为规则的网格单元,每个单元表示一个空间位置。
每个网格单元可以包含一个属性值,用于表示该位置的特征信息。
栅格数据模型适合表示连续变化的空间数据,例如高程数据和遥感图像等。
2.3. TIN数据模型TIN(三角不规则网格)数据模型使用无结构的三角形网格来表示空间对象。
每个三角形由三个顶点和三条边构成,可以表示任意形状的空间对象。
TIN数据模型在地形建模和计算机图形学中广泛应用。
3. 三维空间数据结构为了有效地存储和操作三维空间数据,需要采用适合的数据结构。
常用的三维空间数据结构有:3.1. 空间索引结构空间索引结构是一种用于加速空间查询的数据结构。
它通过将空间数据分割成多个单元,并为单元建立索引,以实现高效的空间查询。
常见的空间索引结构有四叉树、R树和KD树等。
3.2. 三角网格数据结构三角网格数据结构用于存储和管理三角不规则网格。
它可以表示复杂的空间对象,并提供快速的点定位和拓扑操作。
常见的三角网格数据结构有Delaunay三角剖分和Voronoi图等。
3.3. 多重分辨率数据结构多重分辨率数据结构将空间数据按照不同的精度进行分层存储。
第4讲-空间数据模型-逻辑模型与数据结构
3D空间数据模型分类
面模型
规则体元
体模型 非规则体元
不规则三角网 (TIN)
结构实体几何 (CSG)
四面体格网 (TEN)
格网(Grid)
体素(Voxel)
金字塔 (Pyramid)
边界表示模型
八叉树 (Octree)
三棱柱(TP)
线框(或相连切片) 针体(Needle)
地质细胞
断面(Section) 断面-三角网混合
间属性。 空间对象的维数与比例尺是相关的
道路的维数与尺度
道路的维数与尺度
1、矢量数据模型
矢量数据模型起源于“Spaghetti模型 ”——一种计算机制图模
型
6575000
5 1
4
河流 6555000
5610000
杨树林
2 3
松树林 6
电力塔
5810000
实体类型 点 点 线
多边形
多边形
多边形
实体ID 5 6 4
B
❖❖ ……… …
重 要 性
A
连续分布地理要素
C
具有特殊意义 的较小地物
A
分类较细、 地物斑块较小
4、镶嵌数据模型
镶嵌(Tessellation)数据模型采用规则或不规则的小面块集合来逼近 自然界不规则的地理单元,适合于用场模型抽象的地理现象;
通过描述小面块的几何形态、相邻关系及面块内属性特征的变化来建立 空间数据的逻辑模型;
• 空间数据结构是指对空间数据逻辑模型描述的数据组织 关系和编排方式,对地理信息系统中数据存储、查询检索 和应用分析等操作处理的效率有着至关重要的影响。
• 同一空间数据逻辑模型往往采用多种空间数据结构,例如 游程长度编码结构、四叉树结构都是栅格数据模型的具体 实现。
空间数据模型与数据结构
空间数据模型与数据结构空间数据模型是一种用于描述和操作空间数据的理论模型。
空间数据是指与地理、地质、天文等相关的二维或三维地理空间信息。
在空间数据模型中,空间对象被抽象为点、线、面或其他形状,并与属性数据(如颜色、高度等)相关联。
空间数据模型可以帮助我们更好地理解和分析空间数据,并为空间数据的存储和查询提供基础。
向量是由有序的点,线和多边形组成的,向量数据模型是基于几何对象的。
在向量数据模型中,地理空间被划分为离散的几何对象,每个对象都有唯一的标识符和属性。
常见的向量数据模型有对象集模型和拓扑模型。
对象集模型将空间数据表示为一个个独立的对象,而拓扑模型则通过描述空间对象之间的拓扑关系来表示空间数据。
栅格数据模型把地理空间划分为均匀的栅格单元,每个栅格单元都有唯一的标识符和属性。
栅格数据模型适用于以栅格为基本单位的空间数据,例如遥感影像。
栅格数据模型可以将连续的空间数据离散化,便于计算机处理和存储。
除了向量数据模型和栅格数据模型,还有其他的空间数据模型,如网格数据模型和层次化数据模型。
网格数据模型通过将地理空间划分为不规则的网格来表示空间数据。
网格数据模型适用于网格化的空间数据,如地球表面的地理栅格。
层次化数据模型是基于分层结构的数据模型,将地理空间划分为多个层次,每个层次都有不同的细节级别。
层次化数据模型可以在不同的细节级别上处理和分析空间数据。
在实际应用中,空间数据模型通常与数据库系统结合使用。
关系数据库管理系统(RDBMS)可以支持空间数据模型,并提供空间数据的存储、查询、分析和可视化功能。
此外,地理信息系统(GIS)也是空间数据管理和分析的重要工具,它结合了空间数据模型和数据库系统,可以帮助用户更好地管理和利用空间数据。
总之,空间数据模型是描述和操作空间数据的理论模型,包括向量数据模型、栅格数据模型、网格数据模型和层次化数据模型等。
空间数据模型可以帮助我们更好地理解和分析空间数据,并为空间数据的存储和查询提供基础。
三维空间数据模型与数据结构
三维空间数据模型与数据结构三维空间数据模型与数据结构⒈引言⑴目的本文档旨在介绍三维空间数据模型与数据结构的概念、特点以及常用的方法和技术,以供开发人员参考。
⑵背景随着科技的发展和计算机技术的进步,三维空间数据的处理和应用日益广泛。
三维空间数据模型与数据结构是对三维空间中数据进行组织、存储和管理的重要方法,在计算机图形学、虚拟现实、地理信息系统等领域有着广泛应用。
⒉三维空间数据模型⑴定义三维空间数据模型是对三维空间中实体、属性和关系进行建模的方式。
它包括几何模型、拓扑模型和属性模型等组成部分。
⑵几何模型几何模型描述了实体的形状和位置信息,常用的几何模型有点线面模型、多边形模型和体素模型等。
⑶拓扑模型拓扑模型描述了实体之间的空间关系,主要包括邻接关系、连接关系和关联关系等。
⑷属性模型属性模型描述了实体的属性信息,如颜色、纹理、透明度等。
⒊三维空间数据结构⑴点点是三维空间中最基本的数据单元,由坐标值表示。
⑵线线由两个或多个点连接而成,表示两点之间的直线段。
⑶面面由三个或多个点构成,表示一个封闭的区域。
⑷体体由多个面组成,表示一个封闭的空间。
⒋三维空间数据管理⑴数据采集数据采集是获取三维空间数据的过程,常用的方法包括激光扫描、摄影测量和传感器等。
⑵数据存储数据存储是将采集得到的三维空间数据进行组织和存储,常用的数据存储方法有关系型数据库、面向对象数据库和文件系统等。
⑶数据查询和分析数据查询和分析是对存储的三维空间数据进行搜索和分析,常用的查询和分析方法有空间查询、属性查询和拓扑分析等。
⒌附件本文档附带以下附件:附件1:三维空间数据模型示例代码附件2:三维空间数据结构图示⒍法律名词及注释⑴数据采集法律名词解释●隐私权:指个人或组织在特定情况下不愿意个人信息被获取和使用的权利。
⑵数据存储法律名词解释●数据保护:指对存储的数据进行安全保护,防止未经授权的访问、使用和泄露。
⑶数据查询和分析法律名词解释●聚合分析:指将多个数据进行汇总和统计分析,从中得出有用的信息和洞见。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时空修正模型
4.空间数据结构
• 空间数据结构是研究空间数据在计算机 中的组织和表示方法,以便于计算机存 储和管理。 • 空间数据结构和空间数据模型的关系
表达地理空间的空间元素
点、线、面、体
表达地理空间的方法
栅格、矢量
西北望
栅格图
卧佛寺 西苑 颐和园 香山
主要地名
Labels of 主要地名
玉泉山
l1
l6 v4 l2
l3
l4
v2
l5
v3
返回
3、面表:给出围成多面体某个面的各条边。 s1 s2 s3 l1 l2 l3 l2 l4 l5 l5 l3 l6
s4
l3 l1 l4
4、当有若干个多面体时,还必须有一个对象表。 O1 S1,s2… 属性1…
时空数据模型
时空立方体模型
序列快照模型 基态修正模型
2.3空间数据模型
1. 数据模型: 概念数据模型
概念数据模型是面向用户的数据模型,它是用户所容易理解的现 实世界特征的数据抽象(如e-r模型)
逻辑数据模型
常被简称为数据模型,用于表达概念数据模型中数据实体之间的 关系。
物理数据模型
描述数据在物理存储介质上的组织结构,与具体的应用软件、操 作系统和硬件有关。
a5 a6 a4 a6
a3 p3 a4
N1 a1 a5 N4 p1
N3
P4 N5 a7 a2 a6 p2 N2
2)拓扑的邻接性和连通性
表示同类型元素(结点、弧段、多边形)之间的关
系
多边形之间的邻接性;弧段之间的邻接性; 结点之间的连通性
P1 p2 p3 p4 p1 \ 1 1 0 p2 1 \ 1 1 p3 1 1 \ 0 p4 0 1 0 \ a1 a2 a3 a4 a5 a6 a7 a1 a2 \ 1 1 \ 1 1 0 1 1 0 1 1 0 0 a3 1 1 \ 1 1 0 0 a4 0 1 1 \ 1 1 0 a5 1 0 1 1 \ 1 0 a6 a7 1 0 1 0 0 0 1 0 1 0 \ 0 0 \ N1 N2 N3 N4 N5 N1 \ 1 1 1 0 N2 1 \ 1 1 0 N3 1 1 \ 1 0 N4 1 1 1 \ 0 N5 0 0 0 0 \
坐标(纬度. ,经度λ )表示,而平面上点的位置是用直角坐标(纵坐 标X,横坐标Y)或极坐标(极径ρ ,极角δ )表示,所以要想将地 球表面上的点转移到平面上,必须采用一定的数学方法来确定地理 坐标与平面直角坐标或极坐标之间的关系。这种在球面和平面之间 建立点与点之间函数关系的数学方法,称为地图投影。 • 类似概念:空间参考、geo reference
2. 地理空间定位框架
*****国家平面控制网 国家平面控制网主要是采用三角测量方法 建立的,即在全国范围内将控制点组成一系列 的三角形,通过测定所有三角形的内角,推算 出各控制点的坐标。国家控制网也是按照“由 高级到低级、由整体到局部”的原则布设的。 国家平面控制网按其精度可分为一、二、三、 四等四个等级。
GIS中的拓朴
主要用来表示地理空间对象之间的位置 关系,与地理空间对象的形状没有关系。
矢量数据的拓朴关系表达
• 拓朴学中的基本元素: 结点、弧段、多边形(图斑、面、小班) • 拓朴学中的基本元素的关系及其性质
关联、相交、相离、包含、邻接、相等、 连通
2、拓扑学中空间元素
拓扑学是几何学的一个分支,它研究的不是具体的 几何体的面积、周长、边长、角度。而是将几何体抽 象成点、线、面等元素,再研究其间的关系。 1)拓扑学中的空间基本元素: 结点(NOD):弧段的交点。 岛结点是特殊结点。 弧段(ARC):相邻两结点之间的坐标链。 岛边界弧段是特殊弧段。 多边形(polygon)(图斑或面):有限弧段组成的 封闭区。
八叉树结构
1、思想:
四叉树在三维空间的推广。 将要表示的形体V放在一个充分大的正方体C内, C的边长为2n,不断用两个与XOY、XOZ的平面均 分C为8个子体,并判断属性单一性。 当子体部分为V---灰结点 需再1分为8。 4 0 子体全为V—黑结点 2 3 1 5
子体中无V---白结点
停止分割,叶结点。
第二章 空间数据模型和 空间数据结构
学习目标
· 理解地理空间、地理空间数据的概念
· 掌握空间数据的特点
· 理解空间数据模型和空间数据结构 · 了解三维数据模型、时空数据模型 · 理解和掌握地理空间数据的拓扑关系 · 掌握栅格和矢量数据结构及其编码方法 · 掌握栅格与矢量数据结构的比较
重点:地理空间数据的拓扑关系,栅格和矢量数据结 构的特点及编码方法。 难 点:拓扑结构、栅格数据编码
点之间拓扑关系(连通性)的描述
a b c e d b c d a e a b c d e a 1 0 0 1 b 1 1 0 1 c 0 1 1 0 d 0 0 1 1 e 1 1 0 1 -
面之间拓扑关系(邻接性)的描述
a b d a b c d a 1 0 1 b 1 1 1 c 0 1 1 d 1 1 1 c
沙坪坝区 江北区 璧山县 渝中区 南岸区 九龙坡区 大渡口区 巴南区 江津市
0.0 7.5 15.0 22.5 30.0 37.5 km
武隆县
彭水苗族土家族
矢量和栅格的区别
• 栅格表达方式是用离 • 散的量化的格网值来 表示和描述空间实体, 也称图像数据。放大 后会失真。 • 如:遥感图像、jpg、 • tiff等几乎所有网上 下载的图片 矢量表达方式是用离 散的点、线、面来表 示和描述连续地理空 间中的实体,也称图 形数据,放大后不失 真。 如:mapinfo示例数 据,word绘图所产 生的数据。
3.地理空间数据
• 就是以地球表面作为基本定位框架的空间数据。
地理空间数据 地理空间特征实体
类似概念:空间对象、空间实体、空间数据、空间要素 (不特别强调“地理”) 如果只强调图形:几何对象、图形对象
2.2 空间数据的特点
• 空间特征 表示了实体的位置或所处的地理位置、空 间实体几何特征以及空间实体间的拓朴关系, 从而形成了空间物体的位置、形态以及由此产 生的一系列特性。 • 属性特征 表示实体的特征。如名称、分类、质量特 征和数量特征等。 • 时间特征 描述实体随时间的变化,其变化的周期有 超短周期的、短期的、中期的和长期的。
• 地理坐标系(经纬坐标系)是描述地理空间信息最直接的方法。 • 平面直角坐标系(X,Y)建立了对地理空间良好的视觉感,并易于进行 距离、方向、面积等空间参数的量算,以及进一步的空间数据处理
和分析。
• 地图投影 简单地讲,地图投影的实质是将地球椭球面上的纬线网按照一定的
数学法则转移到平面。具体来说,由于球面上一点的位置是用地理
多边形 p1 P2 P3 p4 弧段号 a1 a5 a6 a2 a4 a6 a3 a4 a5 a7 a7 弧段号 a1 a2 a3 a4 a5 a6 a7 起点 N2 N2 N3 N3 N1 N4 N5 终点 N1 N3 N1 N4 N4 N2 N5 结点 N1 N2 N3 N4 N5 弧段 a1 a3 a1 a2 a2 a3 a4 a5 a7
***** 国家高程控制网 我国的高程系统是以1956年由青岛验潮站测 出的“黄海平均海水面”作为起算高程的基 准面,并在青岛市内观象山设置了水准原点, 该点的高程为72.289 m。80年代初又重新测 定水准原点的高程为72.260 m。全国性高程 控制测量是从青岛原点出发,用精密的水准 测量方法 国家高程控制网的建立,也是按照“由高级 到低级、由整体到局部”的原则进行的。按 其精度的不同也分为一、二、三、四等四个 等级。
2.空间数据模型 空间概念数据模型
域模型、实体(要素)模型、网络模型、不 规则三角网模型
空间逻辑数据模型
包括数据结构、数据操作、数据约束
空间物理数据模型
要考虑操作效率,提供索引
3.常见数据模型 三维数据模型 时空数据模型
面向对象空间数据模型
三维数据模型
真三维模型V=f(x,y,z),z是一自变量,不受x,y的影响。 三维数据的组织与重建,三维变换、查询、运算、 分析、维护较为复杂。 三维结构存在栅格和矢量两种形式: 栅格:将地理实体的三维空间分成细小单元---体元。 普遍用八叉树。 矢量:x,y,z,抽象为点、线、面、体,面构成体。 常用三维边界表示法。
三、矢量数据结构模型
1、无拓扑关系的矢量数据结构
无拓扑关系的矢量模型实质上是面向实体的一种数据结构。 它以单个的空间实体为数据组织和存储的基本单位。它采用面向 对象的软件开发方式,每个对象有自己的特性、自己的行为。只 记录空间目标的位置坐标和属性信息,不记录空间拓扑关系。 如采用坐标系列编码。 点目标(x,y) 线目标 (x1y1,x2y2,…….xnyn) 面目标 (x1y1,x2y2,…….xnyn,x1y1) 具体实现形式可将点,线,面直接用空间坐标点数据表示;也 可将坐标点组成文件,每个点给予一个点号,而点,线,面用点 号数据表示。
2.4矢量数据结构及其表达
• 空间信息的表达
位置、形状的表达 空间关系的表达
• 属性表达
一、矢量数据的几何信息 表达
• • • • 0维矢量 1维矢量 2维矢量 3维矢量
二、矢量数据的空间关系 表达
• 什么叫拓朴 • GIS中的拓朴主要指什么,有什么作用 • GIS的拓朴包括哪些内容
矢量数据的空间关系表达
• 地理空间信息不仅包含空间几何信息,还 包含空间关系信息。空间关系信息主要有 空间度量关系,方位关系和拓朴关系。 (但在数据结构中,一般不记录度量和方 位关系) • 矢量数据结构:空间几何信息、拓朴关系。
拓朴
拓朴是将各种物体的位置表示成抽象位置。 在网络中,拓朴形象地描述了网络的安排和配 置,包括各种结点和结点的相互关系。拓朴不 关心事物的细节也不在乎什么相互的比例关系, 只将讨论范围内的事物之间的相互关系表示出 来,将这些事物之间的关系通过图表示出来。 在几何学、计算机等学科中有重要应用