大学固体物理教程习题集
固体物理-例题思考题习题集及答案
不同的晶体结构,不同的B格子,可以属于相同的群,例如,B格子分别为fcc和bcc均
属于Oh群。 13. 七种晶系和十四种 B 格子是根据什么划分的?
七种晶系:B 格子的点对称性的种类数只有 7 种,称之为七种晶系。
十四种 B 格子:B 格子的空间对称性的种类数共有 14 种,称之为 14 种 B 格子。
i
a 2
(
−
k
x
+
k
y
+
k
z
)
i
a 2
(
−
k
x
+
k
y
−k
z
)
i
a 2
(
−
k
x
−k
y
+
k
z
)
i
a 2
(
−
k
x
−
)
=E
at s
-A-2B×
] a
⎡⎢ei 2 (kx +ky ) ⎣
cos
a 2
kz
+
a
ei 2(kx −kz
)
cos
a 2
kz
+
a
ei 2 (−kx
+ky
)
cos
a 2
kz
固体物理教程答案
固体物理教程答案【篇一:黄昆固体物理课后习题答案4】>思考题1.设晶体只有弗仑克尔缺陷, 填隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异?[解答]正常格点的原子脱离晶格位置变成填隙原子, 同时原格点成为空位,这种产生一个填隙原子将伴随产生一个空位的缺陷称为弗仑克尔缺陷. 填隙原子与相邻原子的距离要比正常格点原子间的距离小,填隙原子与相邻原子的力系数要比正常格点原子间的力系数大. 因为原子的振动频率与原子间力系数的开根近似成正比, 所以填隙原子的振动频率比正常格点原子的振动频率要高. 空位附近原子与空位另一边原子的距离, 比正常格点原子间的距离大得多, 它们之间的力系数比正常格点原子间的力系数小得多, 所以空位附近原子的振动频率比正常格点原子的振动频率要低.2.热膨胀引起的晶体尺寸的相对变化量?l/l与x射线衍射测定的晶格常数相对变化量?a/a存在差异,是何原因?[解答]la.3.kcl晶体生长时,在kcl溶液中加入适量的cacl2溶液,生长的kcl晶体的质量密度比理论值小,是何原因?[解答]2?2??由于ca离子的半径(0.99a)比k离子的半径(1.33a)小得不是太多, 所以caoo离子难以进入kcl晶体的间隙位置, 而只能取代k占据k离子的位置. 但ca一价, 为了保持电中性(最小能量的约束), 占据k离子的一个ca?2???2?比k高?将引起相邻的一个k?变成空位. 也就是说, 加入的cacl2越多, k?空位就越多. 又因为ca的原子量(40.08)?与k的原子量(39.102)相近, 所以在kcl溶液中加入适量的cacl2溶液引起k空位, 将导致kcl晶体的质量密度比理论值小.4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低?[解答]形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子. 因此形成形成一个肖特基缺陷所需的能量, 可以看成晶体表面一个原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子的相互作用能的差值. 形成一个弗仑克尔缺陷时,晶体内留下一个空位,多一个填隙原子. 因此形成一个弗仑克尔缺陷所需的能量, 可以看成晶体内部一个填隙原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子相互作用能的差值. 填隙原子与相邻原子的距离非常小, 它与其它原子的排斥能比正常原子间的排斥能大得多. 由于排斥能是正值, 包括吸引能和排斥能的相互作用能是负值, 所以填隙原子与其它原子相互作用能的绝对值, 比晶体表面一个原子与其它原子相互作用能的绝对值要小. 也就是说, 形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量要低.5.金属淬火后为什么变硬?[解答]我们已经知道晶体的一部分相对于另一部分的滑移, 实际是位错线的滑移, 位错线的移动是逐步进行的, 使得滑移的切应力最小. 这就是金属一般较软的原因之一. 显然, 要提高金属的强度和硬度, 似乎可以通过消除位错的办法来实现. 但事实上位错是很难消除的. 相反, 要提高金属的强度和硬度, 通常采用增加位错的办法来实现. 金属淬火就是增加位错的有效办法. 将金属加热到一定高温, 原子振动的幅度比常温时的幅度大得多, 原子脱离正常格点的几率比常温时大得多, 晶体中产生大量的空位、填隙缺陷. 这些点缺陷容易形成位错. 也就是说, 在高温时, 晶体内的位错缺陷比常温时多得多. 高温的晶体在适宜的液体中急冷, 高温时新产生的位错来不及恢复和消退, 大部分被存留了下来. 数目众多的位错相互交织在一起, 某一方向的位错的滑移,会受到其它方向位错的牵制, 使位错滑移的阻力大大增加, 使得金属变硬.6.在位错滑移时, 刃位错上原子受的力和螺位错上原子受的力各有什么特点?[解答]在位错滑移时, 刃位错上原子受力的方向就是位错滑移的方向. 但螺位错滑移时, 螺位错上原子受力的方向与位错滑移的方向相垂直.7.试指出立方密积和六角密积晶体滑移面的面指数.[解答]滑移面一定是密积面, 因为密积面上的原子密度最大, 面与面的间距最大, 面与面之间原子的相互作用力最小. 对于立方密积, {111}是密积面. 对于六角密积, (001)是密积面. 因此, 立方密积和六角密积晶体滑移面的面指数分别为{111}和(001).8.离子晶体中正负离子空位数目、填隙原子数目都相等, 在外电场作用下, 它们对导电的贡献完全相同吗?[解答]??由(4.48)式可知, 在正负离子空位数目、填隙离子数目都相等情况下, ab离子晶体的热缺陷对导电的贡献只取决于它们的迁移率?. 设正离子空位附近的离子和填隙离子的?a??a?ea?vi振动频率分别为和, 正离子空位附近的离子和填隙离子跳过的势垒高度分别为v????e?和ai, 负离子空位附近的离子和填隙离子的振动频率分别为bv和bi, 负离子空位附近e?e?的离子和填隙离子跳过的势垒高度分别bv为bi, 则由(4.47)矢可得?a??vea2?a?vkbte?e?av/kbt,i?a??iea2?a?kbtea2?b?ve?eai?/kbt, ?b??vkbtea2?b?ie?e?bv/kbt, ?b??ikbte?ebi?/kbt.由空位附近的离子跳到空位上的几率, 比填隙离子跳到相邻间隙位置上的几率大得多, 可e?e?以推断出空位附近的离子跳过的势垒高度, 比填隙离子跳过的势垒高度要低, 即avai,????????eb?eb???vi. 由问题1.已知, 所以有avai, bvbi. 另外, 由于a和b的离子半e??eb??a???b?径不同, 质量不同, 所以一般a, .?a???a???b???b?ivi也就是说, 一般v. 因此, 即使离子晶体中正负离子空位数目、填隙离子数目都相等, 在外电场作用下, 它们对导电的贡献一般也不会相同.9.晶体结构对缺陷扩散有何影响?[解答]扩散是自然界中普遍存在的现象, 它的本质是离子作无规则的布郎运动. 通过扩散可实现质量的输运. 晶体中缺陷的扩散现象与气体分子的扩散相似, 不同之处是缺陷在晶体中运动要受到晶格周期性的限制, 要克服势垒的阻挡, 对于简单晶格, 缺陷每跳一步的间距等于跳跃方向上的周期.10.填隙原子机构的自扩散系数与空位机构自扩散系数, 哪一个大? 为什么?[解答]填隙原子机构的自扩散系数1d2??02ae?(u2?e2)/kbt2,空位机构自扩散系数1d1??01ae?(u1?e1)/kbt2.自扩散系数主要决定于指数因子, 由问题4.和8.已知, u1u2,e1e2, 所以填隙原子机构的自扩散系数小于空位机构的自扩散系数.11.一个填隙原子平均花费多长时间才被复合掉? 该时间与一个正常格点上的原子变成间隙原子所需等待的时间相比, 哪个长?[解答]与填隙原子相邻的一个格点是空位的几率是n1/n, 平均来说, 填隙原子要跳n/n1步才遇到一个空位并与之复合. 所以一个填隙原子平均花费n1(u1?e2)/kbtt??2?en1?02的时间才被空位复合掉.由(4.5)式可得一个正常格点上的原子变成间隙原子所需等待的时间 1n2?21(u1?u2?e2)/kbt????epn1n2?02.由以上两式得ntn21.这说明, 一个正常格点上的原子变成间隙原子所需等待的时间, 比一个填隙原子从出现到被空位复合掉所需要的时间要长得多.12.一个空位花费多长时间才被复合掉?[解答]对于借助于空位进行扩散的正常晶格上的原子, 只有它相邻的一个原子成为空位时, ?eu2/kbt??它才扩散一步, 所需等待的时间是?1. 但它相邻的一个原子成为空位的几率是n1/n, 所以它等待到这个相邻原子成为空位, 并跳到此空位上所花费的时间n1(u1?e1)/kbtt??1?en1?01.13.自扩散系数的大小与哪些因素有关?[解答]填隙原子机构的自扩散系数与空位机构自扩散系数可统一写成11d??0a2e??/kbt??0a2e?n0?/rt22.可以看出, 自扩散系数与原子的振动频率?0, 晶体结构(晶格常数a), 激活能(n0?)三因素有关.14.替位式杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么? [解答]占据正常晶格位置的替位式杂质原子, 它的原子半径和电荷量都或多或少与母体原子半径和电荷量不同. 这种不同就会引起杂质原子附近的晶格发生畸变, 使得畸变区出现空位的几率大大增加, 进而使得杂质原子跳向空位的等待时间大为减少, 加大了杂质原子的扩散速度.15.填隙杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]正常晶格位置上的一个原子等待了时间?后变成填隙原子, 又平均花费时间n?2n1后被空位复合重新进入正常晶格位置, 其中?2是填隙原子从一个间隙位置跳到相邻间隙位置所要等待的平均时间. 填隙原子自扩散系数反比于时间nt????2n1.因为所以填隙原子自扩散系数近似反比于?. 填隙杂质原子不存在由正常晶格位置变成填隙原子的漫长等待时间?, 所以填隙杂质原子的扩散系数比母体填隙原子自扩散系数要大得多.16.你认为自扩散系数的理论值比实验值小很多的主要原因是什么? [解答]目前固体物理教科书对自扩散的分析, 是基于点缺陷的模型, 这一模型过于简单, 与晶体缺陷的实际情况可能有较大差别. 实际晶体中, 不仅存在点缺陷, 还存在线缺陷和面缺陷, 这些线度更大的缺陷可能对扩散起到重要影响. 也许没有考虑线缺陷和面缺陷对自扩散系数的贡献是理论值比实验值小很多的主要原因.??17.ab离子晶体的导电机构有几种?[解答]??离子晶体导电是离子晶体中的热缺陷在外电场中的定向飘移引起的. ab离子晶体??????中有4种缺陷: a填隙离子, b填隙离子, a空位, b空位. 也就是说, ab离子晶体的导电机构有4种. 空位的扩散实际是空位附近离子跳到空位位置, 原来离子的位置变n?2n?1,????成了空位. ab离子晶体中, a空位附近都是负离子, b空位附近都是正离子. 由此可知, a空位的移动实际是负离子的移动, b空位的移动实际是正离子的移动. 因此, 在外电场作用下, a填隙离子和b空位的漂移方向与外电场方向一致, 而b填隙离子和?????a?空位的漂移方向与外电场方向相反.【篇二:黄昆版固体物理课后习题解答】>黄昆原著韩汝琦改编(陈志远解答,仅供参考)第一章晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
(整理)固体物理课后习题与答案
第一章 金属自由电子气体模型习题及答案1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?[解答] 自由电子论只考虑电子的动能。
在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。
在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。
也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。
2. 晶体膨胀时,费米能级如何变化?[解答] 费米能级3/222)3(2πn mE o F= , 其中n 单位体积内的价电子数目。
晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。
3. 为什么温度升高,费米能反而降低?[解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。
除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。
4. 为什么价电子的浓度越大,价电子的平均动能就越大?[解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。
价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必然结果。
在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。
由式3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能就越大。
这一点从3/2220)3(2πn m E F=和3/222)3(10353πn mE E oF ==式看得更清楚。
电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度32l n。
《固体物理学》基础知识训练题及其参考答案
《固体物理》基础知识训练题及其参考答案说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。
第一章作业1:1.固体物理的研究对象有那些?答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。
2.晶体和非晶体原子排列各有什么特点?答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。
非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。
3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。
有那些单质晶体分别属于以上三类。
答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。
常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。
面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。
常见的面心立方晶体有:Cu, Ag, Au, Al等。
六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。
常见的六角密排晶体有:Be,Mg,Zn,Cd等。
4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。
答:NaCl:先将两套相同的面心立方晶格,并让它们重合,然后,将一套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格;金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格;Cscl::先将组成两套相同的简单立方,并让它们重合,然后将一套晶格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。
中南大学版固体物理学习题及答案详解
第一章晶体结构1.试述晶态、非晶态、准晶、多晶和单晶的特征性质。
解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。
非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。
准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。
另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。
2.晶格点阵与实际晶体有何区别和联系?解:晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点。
当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。
晶格点阵与实际晶体结构的关系可总结为:晶格点阵+基元=实际晶体结构3.晶体结构可分为Bravais格子和复式格子吗?解:晶体结构可以分为Bravais格子和复式格子,当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表该原子,这种晶体结构就称为简单格子或Bravais格子;当基元包含2个或2个以上的原子时,各基元中相应的原子组成与格点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。
4.图1.34所示的点阵是布喇菲点阵(格子)吗?为什么?如果是,指明它属于那类布喇菲格子?如果不是,请说明这种复式格子的布喇菲格子属哪类?(a)(b)(c)(d)图 1.34(a)“面心+体心”立方;(b)“边心”立方;(c)“边心+体心”立方;(d)面心四方解:(a)“面心+体心”立方不是布喇菲格子。
从“面心+体心”立方体的任一顶角上的格点看,与它最邻近的有12个格点;从面心任一点看来,与它最邻近的也是12个格点;但是从体心那点来看,与它最邻近的有6个格点,所以顶角、面心的格点与体心的格点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。
大学固体物理试题及答案
大学固体物理试题及答案一、选择题(每题5分,共20分)1. 下列关于晶体结构的描述,错误的是:A. 晶体具有规则的几何外形B. 晶体内部的原子排列是无序的C. 晶体具有各向异性D. 晶体具有固定的熔点答案:B2. 固体物理中,描述电子在晶格中运动的方程是:A. 薛定谔方程B. 牛顿运动方程C. 麦克斯韦方程D. 热力学第一定律答案:A3. 固体中,电子能带的宽度与下列哪个因素有关?A. 电子的电荷B. 电子的质量C. 晶格的周期性D. 电子的自旋答案:C4. 金属导电的原因是:A. 金属内部存在自由电子B. 金属内部存在空穴C. 金属内部存在离子D. 金属内部存在分子答案:A二、填空题(每题5分,共20分)1. 晶体的周期性结构可以用_________来描述。
答案:晶格常数2. 能带理论中,电子在能带之间跃迁需要吸收或释放_________。
答案:光子3. 根据泡利不相容原理,一个原子轨道内最多可以容纳_________个电子。
答案:24. 半导体的导电性介于金属和绝缘体之间,其原因是半导体的_________较窄。
答案:能带间隙三、简答题(每题10分,共30分)1. 简要说明什么是费米能级,并解释其在固体物理中的重要性。
答案:费米能级是指在绝对零度时,电子占据的最高能级。
在固体物理中,费米能级是描述电子分布状态的重要参数,它决定了固体的导电性、磁性等物理性质。
2. 解释为什么金属在常温下具有良好的导电性。
答案:金属具有良好的导电性是因为其内部存在大量的自由电子,这些电子可以在电场作用下自由移动,形成电流。
3. 什么是超导现象?请简述其物理机制。
答案:超导现象是指某些材料在低于某一临界温度时,电阻突然降为零的现象。
其物理机制与电子之间的库珀对形成有关,这些库珀对在低温下能够无阻碍地流动,从而实现零电阻。
四、计算题(每题15分,共30分)1. 假设一个一维晶格,晶格常数为a,电子的有效质量为m*,求电子在第一能带的最低能级。
固体物理习题带答案
第二章:原子的结合
1. 设原子间的互作用能表示为 u (r ) 态,则 n>m. 解:原子间的相互作用能为: u (r )
作用能处于极小值: 这时有
r
m
rn
。证明:要使两原子处于平衡状
r
m
rn
。若两原子处于平衡状态时,则其相互
du (r ) (m) m 1 (n) n 1 dr r r
子晶格的情形比较, 与 q 之间存在着两种不同的色散关系。一维复式晶体中可以存在两 种独立的格波。两种不同的格波的色散关系:
2 2
(m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M ) (m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M )
xn (t ) A cos(t 2 naq) 。试求格波的色散关系。
解:一维单原子链中,牛顿方程为:
n ( x n 1 xn 1 2 xn ) m x
若将其振动位移写成 xn (t )
A cos(t 2 naq) 代入牛顿方程,则有
2
2 [1 cos(2aq)] 因此其色散关系为 m
0 。 所 以 有
r0
m
r0
m 1
n
r0
n 1
。所以
m nm r0 。 n
0
r0
同
时
有
d 2u ( r ) (m)( m 1) m 2 (n)( n 1) n 2 2 dr r r
。
所
以
固体物理学题库.docx
固体物理学题库.docx.一、填空1. 固体按其微结构的有序程度可分为、和准晶体。
2. 组成粒子在空间中周期性排列,具有长程有序的固体称为;组成粒子在空间中的分布完全无序或仅仅具有短程有序的固体称为。
3. 在晶体结构中,所有原子完全等价的晶格称为;而晶体结构中,存在两种或两种以上不等价的原子或离子的晶格称为。
4 晶体结构的最大配位数是____;具有最大配位数的晶体结构包括 ______________ 晶体结构和晶体结构。
5. 简单立方结构原子的配位数为______;体心立方结构原子的配位数为______。
6.NaCl 结构中存在_____个不等价原子,因此它是晶格,它是由氯离子和钠离子各自构成的格子套构而成的。
7. 金刚石结构中存在 ______个不等价原子,因此它是晶格,由两个结构的布拉维格子沿空间对角线位移1/4 的长度套构而成,晶胞中有 _____个碳原子。
8. 以结晶学元胞(单胞)的基矢为坐标轴来表示的晶面指数称为指数。
r r当 i时r rr2 ,9. 满足 a i b j 2ij,当i 时( i, j1,2,3) 关系的 b 1 ,b 2 , b 3 为基矢,由jrrr3r。
K h 1 13 构成的点阵,称为hb h 2b 2hb10. 晶格常数为 a 的一维单原子链,倒格子基矢的大小为。
11. 晶格常数为 a 的面心立方点阵初基元胞的体积为 _______;其第一布里渊区的体积为。
12. 晶格常数为 a 的体心立方点阵初基元胞的体积为 _______;其第一布里渊区的体积为。
13.晶格常数为 a 的简立方晶格的 ()面间距为 ________14.体心立方的倒点阵是点阵,面心立方的倒点阵是点阵,简单立方的倒点阵是。
15.一个二维晶格的第一布里渊区形状是。
16.若简单立方晶格的晶格常数由a 增大为2a,则第一布里渊区的体积变为原来的倍。
17.考虑到晶体的平移对称性后,晶体点群的独立对称素有种,分别是。
固体物理第一章习题
15
得到:
d 1 h 2 k l a 2 s h i n 2 2 b k 2 2 c 2 s l i n 2 2 a 2 c h s c i o n s 2 s i n 1 2 a h 2 2 c l 2 2 2 h l a c c o s b k 2 2
即:
1
1 h2 l2 2hlcos k22 dhkl sin2a2c2 ac b2
bc
•
ca
0
b*•c* 42 2
ca
•
ab
0
将以上诸式代入:
d 1 h 2 k l 4 1 2 h 2 a 2 k 2 b 2 l 2 c 2 2 h k a * • b * 2 k lb * • b * 2 h la * • c *
编辑版pppt
1
1
2p K h 1 h 2h 32p (h 1 b 1h 2 b 2h 3 b 3)
Kh1h2h3 与晶面族(h1h2h3)正交。
因此,若已知晶面族的密勒指数(hkl),则原胞坐标 系中的面指数
(h1h2h3)1 p{(kl)(lh)(hk)} 其中p是(k+l)(l+h)(h+k)的公约数。
编辑版pppt
只有当 n(4 3h2 3kl)奇数时才出现衍射消光
编辑版pppt
23
(a)n为奇数时:若l是偶数,nl也是偶数 为保证n(4/3h+2/3k+l)=奇数成立, 须n(4/3h+2/3k)=奇数 由此,2n(2h+k)=3奇数=奇数。 由于h, k为整数,上式左端是偶数,右端为奇数,显
然不成立。
矛盾的产生是l为偶数的条件导致的,所以l不能为偶 数,只能为奇数。因而n(4/3h+2/3k)=偶数,即(2h+k)=3 整数/n=整数。
固体物理习题和解答-2010.5.13
第一章 晶体结构习题2010.3.151. 画出下列晶体的惯用元胞和布拉菲格子,写出它们的初基元胞基矢表达式,指明各晶体的结构及两种元胞中的原子个数和配位数。
(1) 氯化钠 (2)硅 (3)砷化镓2. 对于六角密积结构,初基元胞基矢为→1a =→→+j i a 3(2) →→→+-=j i a a 3(22)求其倒格子基矢,并判断倒格子也是六角的。
3.用倒格矢的性质证明,立方晶格的[hkl]晶向与(hkl )晶面垂直。
4. 若轴矢→→→c b a 、、构成简单正交系,证明。
晶面族(hkl )的面间距为2222)()()(1c l b k a h hkld++=证:对于正交晶系,晶胞基矢相互垂直,但晶格常数c b a ≠≠. 设沿晶轴的单位矢量分别为k j i,,,则正格子基矢为:倒格子基矢为:k cc j b b i aa πππ2,2,2***===与晶面族()hkl 正交的倒格矢为:***cl b k a h K hkl++=由晶面间距与倒格矢的关系式:hkl hkl K d π2=得:21222-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=c l b k a h d hkl(2分)c b a ,,k c c j b b i a a ===,,5.用X 光衍射对Al 作结构分析时,测得从(111)面反射的波长为1.54Å反射角为θ=19.20 求面间距d 111。
6. 能量为150eV 的电子束射到镍粉末上,镍是面心立方晶格,晶格常数为3.25×10-10m,求最小的布拉格衍射角。
附:1eV=1.602×10-19J, h=6.262×10-34J ·s, c=2.9979×108m/s7.试证明:1〕劳厄方程与布拉格公式是一致的; 2〕劳厄方程亦是布里渊区界面方程;1) 证:lk a k k a h k a πππ222321=∆⋅=∆⋅=∆⋅ijj i a b πδ2=⋅ 321b k b k b h G++=02)(222'=+⋅=+=+=∆G G k k G k k G k G k22sin 2)90cos(2GG k G G k ==-θθ(2分)(2分)8.Ewald 反射球是在哪种空间画的,如何画?起什么作用?倒格子空间(波矢空间)形象展示衍射最大条件(Laue 方程的几何描述)λθλθn d ndd d hkl hkl ===sin 2sin 2λπππθλπθ2,22sin 222/sin ===∴=k Gd d G k hklhkl9. 原子散射因子和几何结构因子是如何表示的,它的物理意义如何?与哪些因素有关?原子形状因子反映一个原子对于(HKL )布拉格(Bragg)衍射的衍射能力大小。
固体物理习题及解答
固体物理习题及解答一、填空题1. 晶格常数为a 的立方晶系 (hkl)晶面族的晶面间距为222/l k h a ++;该(hkl)晶面族的倒格子矢量hkl G ρ为k al j a k i a h ρρρπππ222++。
2.晶体结构可看成是将基元按相同的方式放置在具有三维平移周期性的晶格的每个格点构成。
3. 晶体结构按晶胞形状对称性可划分为7大晶系,考虑平移对称性晶体结构可划分为14种布拉维晶格。
4. 体心立方(bcc )晶格的结构因子为[]{})(ex p 1l k h i f S hkl ++-+=π,其衍射消光条件是奇数=++l kh 。
5. 与正格子晶列[hkl]垂直的倒格子晶面的晶面指数为(hkl),与正格子晶面(hkl )垂直的倒格子晶列的晶列指数为[hkl]。
6. 由N 个晶胞常数为a 的晶胞所构成的一维晶格,其第一布里渊区边界宽度为a /2π,电子波矢的允许值为Na /2π的整数倍。
7. 对于体积为V,并具有N 个电子的金属, 其波矢空间中每一个波矢所占的体积为()V /23π,费米波矢为3/123???? ??=V N k F π。
8. 按经典统计理论,N 个自由电子系统的比热应为B Nk 23,而根据量子统计得到的金属三维电子气的比热为F B T T Nk /22 ,比经典值小了约两个数量级。
9.在晶体的周期性势场中,电子能带在布里渊区边界将出现带隙,这是因为电子行波在该处受到布拉格反射变成驻波而导致的结果。
10.对晶格常数为a 的简单立方晶体,与正格矢R =a i +2a j +2a k 正交的倒格子晶面族的面指数为(122), 其面间距为.11. 铁磁相变属于典型的二级相变,在居里温度附近,自由能连续变化,但其一阶导数(比热)不连续。
12. 晶体结构按点对称操作可划分为32 个点群,结合平移对称操作可进一步划分为 230个空间群。
13.等径圆球的最密堆积方式有六方密堆(hcp )和面心立方密堆(fcc )两种方式,两者的空间占据率皆为74%。
4-固体物理学习题解答(完整版)
《固体物理学》部分习题参考解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a那么,R f R b31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。
分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123oo o a n hda n kd a n id=== ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°由于a 3=–(a 1+ a 2)313()ooa n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为 (001)→(0001),(13)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(28(3)面心立方:6(4)六方密堆积:6(5)金刚石:16。
大学固体物理考试题及答案参考
固体物理 【2 】演习题1.晶体构造中,面心立方的配位数为 12 .2.空间点阵学说以为 晶体内部微不雅构造可以算作是由一些雷同的点子在三维空间作周期性无穷散布 .3.最常见的两种原胞是 固体物理学原胞.结晶学原胞 .4.声子是 格波的能量量子 ,其能量为 ħωq ,准动量为 ħq .5.倒格子基矢与正格子基矢知足 正交归一关系 .6.玻恩-卡曼边界前提表明描写有限晶体振动状况的波矢只能取 分立的值 , 即只能取 Na的整数倍. 7.晶体的点缺点类型有 热缺点.填隙原子.杂质原子.色心 .8.索末菲的量子自由电子气模子的四个根本假设是 自由电子近似.自力电子近似.无碰撞假设.自由电子费米气体假设 .9.依据爱因斯坦模子,当T→0时,晶格热容量以 指数 的情势趋于零.10.晶体联合类型有 离子联合.共价联合.金属联合.分子联合.氢键联合 .11.在绝对零度时,自由电子基态的平均能量为 0F 53E . 12.金属电子的 B m ,23nk C V = . 13.按照通例,面心立方原胞的基矢为 ⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=)(2)(2)(2321j i a a k i a a k j a a,体心立方原胞基矢为 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=+-=++-=)(2)(2)(2321k j i a a k j i a a k j i a a. 14 .对晶格常数为a 的简略立方晶体,与正格矢k a j a ia R ˆˆˆ22++=正交的倒格子晶面族的面指数为 122 , 其面间距为 a 32π .15.依据晶胞基矢之间的夹角.长度关系可将晶体分为 7大晶系 ,对应的只有14种 布拉伐格子.16.按几何构型分类,晶体缺点可分为 点缺点.线缺点.面缺点.体缺点.微缺点 .17. 由同种原子构成的二维密排晶体,每个原子四周有 6 个比来邻原子.18.低温下金属的总摩尔定容热容为 3m ,bT T C V +=γ .19. 中子非弹性散射 是肯定晶格振动谱最有用的试验办法.1.固体呈现宏不雅弹性的微不雅本质是什么?原子间消失互相感化力.2.简述倒格子的性质.P29~303. 依据量子理论简述电子比较热的进献,写出表达式,并解释为什么在高温时可以不斟酌电子比较热的进献而在低温时必须斟酌?4.线缺点对晶体的性质有何影响?举例解释.P1695.简述根本术语基元.格点.布拉菲格子.基元:P9构成晶体的最小根本单元,全部晶体可以算作是基元的周期性反复分列构成.格点:P9将基元抽象成一个代表点,该代表点位于各基元中等价的地位.布拉菲格子:格点在空间周期性反复分列所构成的阵列.6.为什么很多金属为密积构造?答:金属联合中, 受到最小能量道理的束缚,请求原子实与共有电子电子云间的库仑能要尽可能的低(绝对值尽可能的大).原子实越紧凑,原子实与共有电子电子云靠得就越慎密,库仑能就越低.所以,很多金属的构造为密积构造.7.简述爱因斯坦模子,并解释其成功之处.不足之处及原因答:爱因斯坦模子:假定所有的原子以雷同的频率振动成功之处:经由过程拔取适合的爱因斯坦温度值,在较大温度变化的规模内,理论盘算的成果和试验成果相当好地相符.且热容量跟着温度下降而趋于零不足之处:温度异常低时,热容量按温度的指数情势下降,而试验测得成果表明:热容量按温度的3次方下降原因:是爱因斯坦模子疏忽了各格波的频率差别8.金属中共有化电子对热容进献为什么和经典理论值消失较大误差?在什么情形下应对电子的热容进献予以斟酌,为什么?因为电子是费米子,遵守费米-狄拉克散布和泡利不相容道理,是以共有化电子不能全体填充在最低能级上,而是填充在能带中由低到高准持续的能级上.在热激发生发火用下,只有费米能邻近能级上的电子消失必定跃迁到高能级的机遇,从而对热容有进献,而大多半电子并没有参与热激发,这时造成金属中共有化电子对热容进献和经典理论值消失较大误差原因.经由过程盘算发明,电子对热容量的进献和温度的一次方成正比,而晶格振动的热容量在低温时和温度的三次方成正比,是以,在温度趋于零的情形下,电子的热容量是重要方面,应当予以斟酌.1.证实自由电子的能级密度为2123224//)(E m V dE dZ E g ⎪⎭⎫ ⎝⎛==h π.证实:P190 2.证实倒格矢332211b h b h b h G h ++=与正格子晶面族(321h h h )正交.证实:P303. 证实体心立方点阵的倒易点阵是面心立方.证实:P311.一个单胞的尺寸为o o o A a A a A a 864321===,,,0012090===γβα,,求:3.倒易点阵单胞基矢;(2)倒易点阵单胞体积;(3)(210)平面的面间距.P322. 已知金属钠Na 在常温常压下的质量密度3970cm g m /.=ρ,原子量为23,价电子数为1,试推算绝对温度时金属钠Na 的费米能量.费米温度 .费米波矢和费米速度.P1933.设原子质量为m=8.35×10-24g,恢复力常数为β=1.5×10-1N/cm.一维单原子链华夏子的振动位移写成如下情势:)cos()(naq t A t x n πω2-=,求:(1)格波的色散关系;(2)求出由5个原子构成的一维原子晶格的振动频率.4. 已知金属铜Cu 是面心立方晶体,晶格常数a=3.61 ⨯10-10m,每个原子电离时放出一个自由电子,试推算绝对温度时金属铜的费米能量.费米温度 .费米波矢和费米速度.P1945.设两原子间的互相感化能可由V (r )= r m n r αβ-+表述.若m=2,n=10,并且两原子构成稳固的分子,均衡时其核间距离为 3 ⨯10-10m,离解能为4eV,试盘算:α和β(1eV=1.60⨯10-12J )P726. 一维复式格子的晶格常数为2a,恢复力常数为β,大原子质量为M,小原子质量为m,(1)列出原子活动方程及解的情势.(2)求出格波的色散关系ω(q ).英文文献格局[6]M. D. Segall, Philip J. D. Lindan, M. J. Probert et al. First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Cond. Matt . 2002, 14: 2717–2744。
固体物理习题12
固体物理补充习题晶体的结构1. 写出NaCl 和CsCl 的结构类型。
2.分别指出简单立方、体心立方和面心立方晶体的倒格子点阵的结构类型。
3 .画出下列晶体的惯用元胞和布拉菲格子,写出它们的初基元胞基矢表达式,指明各晶体的结构及两种元胞中的原子个数。
(1) 氯化钾 (2)氯化钛 (3)硅 (4)砷化镓 (5)钽酸锂(6)铍 解:基矢表示式参见教材(1-5)、(1-6)、(1-7)式。
4.对于六角密积结构,初基元胞基矢为.求其倒格子基矢,并判断倒格子也是六角的。
倒空间 ↑→ji i (B)晶胞体积为其倒格矢为晶体的结合1. 晶体的结合能, 晶体的内能, 原子间的相互作用势能有何区别自由粒子结合成晶体过程中释放出的能量, 或者把晶体拆散成一个个自由粒子所需要的能量, 称为晶体的结合能.原子的动能与原子间的相互作用势能之和为晶体的内能.在0K 时, 原子还存在零点振动能. 但零点振动能与原子间的相互作用势能的绝对值相比小得多. 所以, 在0K 时原子间的相互作用势能的绝对值近似等于晶体的结合能.2.共价结合为什么有 “饱和性”和 “方向性”?设N 为一个原子的价电子数目, 对于IV A 、V A 、VI A 、VII A 族元素,价电子壳层一共有8个量子态, 最多能接纳(8- N )个电子, 形成(8- N )个共价键. 这就是共价结合的 “饱和性”. 共价键的形成只在特定的方向上, 这些方向是配对电子波函数的对称轴方向, 在这个方向上交迭的电子云密度最大. 这就是共价结合的 “方向性”. 3.已知某晶体两相邻原子间的互作用能可表示成 nmrb ra r U +-=)((1) 求出晶体平衡时两原子间的距离; (2) 平衡时的二原子间的结合能;(3) 若取m=2,n=10,两原子间的平衡距离为3Å,仅考虑二原子间互作用则离解能为4ev ,计算a 及b 的值; (4) 若把互作用势中排斥项b/r n 改用玻恩-梅叶表达式λexp(-r/p),并认为在平衡时对互作用势能具有相同的贡献,求n 和p 间的关系。
固体物理习题及答案
固体物理第一章习题及参考答案1.题图1-1表示了一个由两种元素原子构成的二维晶体,请分析并找出其基元,画出其布喇菲格子,初基元胞和W -S 元胞,写出元胞基矢表达式。
解:基元为晶体中最小重复单元,其图形具有一定任意性(不唯一)其中一个选择为该图的正六边形。
把一个基元用一个几何点代表,例如用B 种原子处的几何点代表(格点)所形成的格子 即为布拉菲格子。
初基元胞为一个晶体及其空间点阵中最小周期性重复单元,其图形选择也不唯一。
其中一种选法如图所示。
W -S 也如图所示。
左图中的正六边形为惯用元胞。
2.画出下列晶体的惯用元胞和布拉菲格子,写出它们的初基元胞基矢表达式,指明各晶体的结构及两种元胞中的原子个数和配位数。
(1) 氯化钾 (2)氯化钛 (3)硅 (4)砷化镓 (5)碳化硅 (6)钽酸锂 (7)铍 (8)钼 (9)铂 解:基矢表示式参见教材(1-5)、(1-6)、(1-7)式。
11.对于六角密积结构,初基元胞基矢为→1a =→→+j i a 3(2 →→→+-=j i a a 3(22求其倒格子基矢,并判断倒格子也是六角的。
倒空间 ↑→ji i (B)由倒格基失的定义,可计算得Ω⨯=→→→3212a a b π=a π2)31(→→+j i →→→→→+-=Ω⨯=j i a a a b 31(22132ππ→→→→=Ω⨯=k ca ab ππ22213正空间二维元胞(初基)如图(A )所示,倒空间初基元胞如图(B )所示(1)由→→21b b 、组成的倒初基元胞构成倒空间点阵,具有C 6操作对称性,而C 6对称性是六角晶系的特征。
(2)由→→21a a 、构成的二维正初基元胞,与由→→21b b 、构成的倒初基元胞为相似平行四边形,故正空间为六角结构,倒空间也必为六角结构。
12.用倒格矢的性质证明,立方晶格的(hcl )晶向与晶面垂直。
证:由倒格矢的性质,倒格矢→→→→++=321b l b k b h G hkl 垂直于晶面(h 、k 、l )。
固体物理习题及答案汇总整理终极版
11级第一次(作业)请充分利用网络、本校及外校图书馆的相关资料,同时联系相关专业的老师,调查关于固体物理的简史、发展趋势以及当代的热门前沿课题(针对自己感兴趣的某个方面),形成一份报告,阐述自己的看法,要求2000字以上。
(已经在第一次课布置,11月1日前后上交)11级固体物理第2次习题和思考题1.在结晶学中,我们课堂上讲的单胞,也叫元胞,或者叫结晶学原胞,也叫晶胞,试回忆一下晶胞是按晶体的什么特性选取的?答:在结晶学中,晶胞选取的原则是既要考虑晶体结构的周期性又要考虑晶体的宏观对称性。
2.解释Bravais 点阵并画出氯化钠晶体的结点所构成的Bravais 点阵。
答:晶体的内部结构可以概括为由一些相同的结点构成的基元在空间有规则的作周期性的无限分布,这些结点构成点阵,如果基元只由一个结点构成,这种点阵称为Bravais 点阵。
氯化钠晶体的Bravais 点阵可参照书p8的图1-13,点阵的结点由钠离子和氯离子组成。
3.说明金刚石结构是复式点阵的原因。
答:金刚石结构可这样描述:面心立方的体心向顶角引8条对角线,在互不相邻的四条对角线中点,各有一个原子。
以金刚石为例,顶角和面心处的原子周围情况和对角线上的原子周围情况不相同,因而金刚石结构是复式晶格,可看作两套面心立方子晶格沿体对角线移开1/4体对角线长度而成。
Bravais 点阵包含两个原子。
4.体心立方点阵和面心立方点阵互为正、倒格子,试证明之。
答:面心立方的三个基矢为:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=)(2)(2)(2321i k a a k j a a j i a a其体积为43a ,根据倒格矢的定义得:⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=⨯⋅⨯=++-=⨯⋅⨯=+-=⨯⋅⨯=)(2)(2)(2)(2)(2)(2321213321132321321k j i a a a a a a b k j i a a a a a a b k j i a a a a a a bππππππ 可见,除了系数不同之外,方向正好是体心立方的晶格基矢。
大学固体物理考试题及答案参考
固体物理训练题之阳早格格创做1.晶体结构中,里心坐圆的配位数为 12 .晶体里里微瞅结构不妨瞅成是由一些相共的面子正在三维空间做周期性无限分集 .固体物理教本胞、结晶教本胞 .格波的能量量子 ,其能量为 ħωq ,准动量为 ħq .正接归一闭系 .分坐的值 , 即只可与 Na的整数倍. 7.晶体的面缺陷典型有 热缺陷、挖隙本子、纯量本子、色心 .自由电子近似、独力电子近似、无碰碰假设、自由电子费米气体假设 .9.根据爱果斯坦模型,当T→0时,晶格热容量以 指数 的形式趋于整.10.晶体分离典型有 离子分离、共价分离、金属分离、分子分离、氢键分离 . 11.正在千万于整度时,自由电子基态的仄稳能量为 0F 53E . 摩我定容热容为 B m ,23nk C V = .13.依照惯例,里心坐圆本胞的基矢为 ⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=)(2)(2)(2321j i a a k i a a k j a a,体心坐圆本胞基矢为 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=+-=++-=)(2)(2)(2321k j i a a k j i a a k j i a a. 14 .对于晶格常数为a 的简朴坐圆晶体,与正格矢k a j a i a R ˆˆˆ22++=正接的倒格子晶里族的里指数为 122 , 其里间距为 a 32π .15.根据晶胞基矢之间的夹角、少度闭系可将晶体分为 7大晶系 ,对于应的惟有14种 布推伐格子.16.按几许构型分类,晶体缺陷可分为 面缺陷、线缺陷、里缺陷、体缺陷、微缺陷 .17. 由共种本子组成的二维稀排晶体,每个本子周围有 6 个迩来邻本子.18.矮温下金属的总摩我定容热容为 3m ,bT T C V +=γ .19. 中子非弹性集射 是决定晶格振荡谱最灵验的真验要领.1.固体浮现宏瞅弹性的微瞅真量是什么?本子间存留相互效率力.2.简述倒格子的本量.P29~303. 根据量子表里简述电子对于比热的孝敬,写出表白式,并道明为什么正在下温时不妨不思量电子对于比热的孝敬而正在矮温时必须思量?4.线缺陷对于晶体的本量有何效率?举例道明.P1695.简述基础术语基元、格面、布推菲格子.基元:P9组成晶体的最小基础单元,所有晶体不妨瞅成是基元的周期性沉复排列形成.格面:P9将基元抽象成一个代表面,该代表面位于各基元中等价的位子.布推菲格子:格面正在空间周期性沉复排列所形成的阵列.6.为什么许多金属为稀积结构?问:金属分离中, 受到最小能量本理的拘束,央供本子真与公有电子电子云间的库仑能要尽大概的矮(千万于值尽大概的大).本子真越紧稀,本子真与公有电子电子云靠得便越稀切,库仑能便越矮.所以,许多金属的结构为稀积结构.7.简述爱果斯坦模型,并道明其乐成之处、缺累之处及本果问:爱果斯坦模型:假定所有的本子以相共的频次振荡乐成之处:通过采用符合的爱果斯坦温度值,正在较大温度变更的范畴内,表里估计的截止战真验截止相称佳天切合.且热容量随着温度落矮而趋于整缺累之处:温度非常矮时,热容量按温度的指数形式落矮,而真验测得截止标明:热容量按温度的3次圆落矮本果:是爱果斯坦模型忽略了各格波的频次不共8.金属中公有化电子对于热容孝敬为什么战典范表里值存留较大偏偏好?正在什么情况下应付于电子的热容孝敬给予思量,为什么? 由于电子是费米子,按照费米-狄推克分集战泡利不相容本理,果此公有化电子不克不迭局部弥补正在最矮能级上,而是弥补正在能戴中由矮到下准连绝的能级上.正在热激励效率下,惟有费米能附近能级上的电子存留一定跃迁到下能级的机会,进而对于热容有孝敬,而大普遍电子并不介进热激励,那时制成金属中公有化电子对于热容孝敬战典范表里值存留较大偏偏好本果.通过估计创制,电子对于热容量的孝敬战温度的一次圆成正比,而晶格振荡的热容量正在矮温时战温度的三次圆成正比,果此,正在温度趋于整的情况下,电子的热容量是主要圆里,该当给予思量.1.道明自由电子的能级稀度为2123224//)(E m V dE dZ E g ⎪⎭⎫ ⎝⎛==h π.道明:P1902.道明倒格矢332211b h b h b h G h ++=与正格子晶里族(321h h h )正接. 道明:P303. 道明体心坐圆面阵的倒易面阵是里心坐圆.道明:P31oo o A a A a A a 864321===,,,0012090===γβα,,供: 3.倒易面阵单胞基矢;(2)倒易面阵单胞体积;(3)(210)仄里的里间距.P322. 已知金属钠Na 正在常温常压下的品量稀度3970cm g m /.=ρ,本子量为23,价电子数为1,试推算千万于温度时金属钠Na 的费米能量、费米温度 、费米波矢战费米速度.P193×10-24g ,回复力常数为×10-1N/cm.一维单本子链中本子的振荡位移写成如下形式:)cos()(naq t A t x n πω2-=,供:(1)格波的色集闭系;(2)供出由5个本子组成的一维本子晶格的振荡频次.4. 已知金属铜Cu 是里心坐圆晶体,晶格常数a=3.61 10-10m ,每个本子电离时搁出一个自由电子,试推算千万于温度时金属铜的费米能量、费米温度 、费米波矢战费米速度.P194V (r )= r m n r αβ-+表述.若m=2,n=10,而且二本子形成宁静的分子,仄稳时其核间距离为310-10m ,离解能为4eV ,试估计:α战β(10-12J )P726.一维复式格子的晶格常数为2a,回复力常数为β,大本子品量为M,小本子品量为m,(1)列出本子疏通圆程及解的形式.(2)供特别波的色集闭系w(q).英文文件要领[6]M. D. Segall, Philip J. D. Lindan, M. J. Probert et al.First-principles simulation: ideas, illustrations and the CASTEP code, J.Phys.: Cond. Matt. 2002, 14: 2717–2744。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、简答题
1.写出晶体的八种宏观基本对称操作?
2.面心立方的消光条件为何?
3.由一个中性埃夫琴晶胞得到的NaCl 结构的马德隆常数为多少?
4.用能带概念说明导体与绝缘体?
5.简述Bloch 定理,解释简约波矢k 的物理意义,并阐述其取值原则。
6.晶体分为几大晶系(写出名称)?有多少种布拉菲格子?
7.什么是晶体的结合能,按照晶体的结合力的不同,晶体有哪些结合类型?
8.简述爱因斯坦模型和德拜模型的本质区别,以及德拜模型能在低温与实验结果相符合的原因?
9.写出体心立方的原胞基矢和倒格基矢。
试问体心立方第一布里渊区体积为多少?
二、证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。
证明:试证明正格子中一族晶面(h 1 h 2 h 3)和倒格矢332211b h b h b h K h ++=
正交。
三、对一维简单格子,按德拜模型,求出晶格热容,并讨论高低温极限。
四、使用近自由电子近似模型,用微扰理论处理周期场中运动电子的薛定谔方程, 讨论非简并与简并情况下电子的能量及波函数。
五、推导一维单原子链晶格热振动的色散关系,并作出ω-q 图。
六、用紧束方法处理体心立方晶体,求出s 态电子能带为
)2cos 2cos 2(cos 8a k a k a k J C E E z
y x S
S at s s --= 并画出沿第一布里渊区[111]方向的能带曲线。
填写。