高考生物必备知识点:生物光合作用考点归纳
高中生物光合作用知识点总结
高中生物光合作用知识点总结定义:光合作用是绿色植物吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。
反应场所:主要在叶绿体的类囊体薄膜上进行,而暗反应(碳反应)则在叶绿体基质中进行。
光反应:水的光解:在光下,叶绿体中的色素吸收光能,将水分解为氧气和[H]。
ATP的生成:在光反应中,利用光能合成ATP,提供暗反应所需的能量。
色素吸收光能:叶绿素和类胡萝卜素主要吸收红光和蓝紫光,将光能传递给少数特殊状态的叶绿素a分子,引发光反应。
暗反应(碳反应):CO₂的固定:在暗反应开始时,CO₂与五碳化合物(C₅)结合生成两个三碳化合物(C₃)。
C₃的还原:在光反应中生成的[H]和ATP作用下,C₃被还原为三碳糖(C₃H₆O₃),并释放出能量。
五碳化合物的再生:三碳糖的一部分合成五碳化合物(C₅),完成五碳化合物的再生。
糖类的合成:三碳糖的另一部分转化为葡萄糖或其他糖类。
光暗反应的联系:光反应产生的[H]和ATP是暗反应的原料,暗反应产生的五碳化合物是光反应的产物。
二者相互依存,缺一不可。
影响因素:光照强度:直接影响光反应速率,间接影响暗反应速率。
CO₂浓度:直接影响暗反应速率。
温度:通过影响酶的活性来影响光合作用速率。
矿质元素和水:矿质元素是叶绿素的组成成分,水是光合作用的光反应和暗反应的原料。
光合作用的意义:为生物圈提供有机物和氧气。
维持大气中氧和二氧化碳的平衡。
对生物的进化有重要作用,对地球的温室效应有重要影响。
以上仅为光合作用的基础知识点总结,更深入的理解和掌握可能需要通过更多的学习和实践来实现。
高中生物光合作用知识点总结
高中生物光合作用知识点总结光合作用是生物体中发生的一种重要的生化过程,通过光合作用,植物可以利用光能将二氧化碳和水转化为有机物,同时释放出氧气。
光合作用是维持地球上所有生物生存的关键过程之一,它不仅为植物提供能量和营养物质,还为其他生物提供氧气,并且调节着地球上的气候。
光合作用的主要步骤包括光能捕捉、光化学反应和暗反应三个过程。
下面将对这三个过程进行详细的介绍。
1. 光能捕捉光合作用的第一步是光能捕捉,植物通过叶绿素等色素分子吸收光能。
叶绿素是光合作用中最重要的色素之一,它可以吸收光谱中的红光和蓝光,而绿光则被反射出来,所以植物叶子呈现绿色。
光能捕捉发生在植物叶子的叶绿体中,叶绿体是一种专门用来进行光合作用的细胞器。
2. 光化学反应在光能捕捉后,光化学反应开始进行。
光化学反应发生在叶绿体的脉络膜上,其中包含许多色素分子。
在光化学反应中,吸收到的光能被转化为化学能,同时释放出了氧气。
在光化学反应中,水分子被分解成氧气、氢离子和电子。
氢离子和电子会被用于下一个过程——暗反应。
3. 暗反应暗反应也被称为Calvin循环,它发生在叶绿体的基质中。
在暗反应中,利用光化学反应产生的氢离子和电子,植物将二氧化碳转化为有机物(例如葡萄糖)。
暗反应是光合作用的核心步骤,它需要通过一系列酶的催化作用完成。
暗反应不依赖光能,因此可以在黑暗中进行。
此外,光合作用中还有一些其他重要的知识点:1. 光合作用对环境的影响:光合作用通过吸收二氧化碳和释放氧气,调节了地球上的气候。
光合作用还是地球上所有食物链的起点,提供了所有生物的能量源。
2. 光合作用与呼吸作用的关系:光合作用和呼吸作用是相互依赖的。
光合作用产生的有机物可以被用于呼吸作用产生能量,而呼吸作用产生的二氧化碳则可以被光合作用利用。
3. 光合作用的影响因素:光合作用的速率受到光强度、温度和二氧化碳浓度等因素的影响。
光强度越高、温度适宜以及二氧化碳浓度越高,光合作用的速率也越快。
高中生物光合作用知识点总结
高中生物光合作用知识点总结一、光合作用的概念光合作用是绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧气的过程。
简单来说,就是植物将光能转化为化学能并储存起来的过程。
二、光合作用的场所——叶绿体叶绿体是进行光合作用的细胞器。
它具有双层膜结构,内部含有类囊体薄膜,这些类囊体堆叠形成基粒,基粒和基质中都含有与光合作用有关的酶和色素。
叶绿体中的色素分为两大类:叶绿素(包括叶绿素 a 和叶绿素 b)和类胡萝卜素(包括胡萝卜素和叶黄素)。
叶绿素主要吸收红光和蓝紫光,类胡萝卜素主要吸收蓝紫光。
这些色素能够吸收、传递和转化光能,为光合作用提供能量基础。
三、光合作用的过程光合作用分为光反应和暗反应两个阶段。
1、光反应光反应发生在类囊体薄膜上,需要光的参与。
条件:光、色素、酶。
物质变化:(1)水的光解:水分子在光的作用下分解成氧气和H(还原型辅酶Ⅱ)。
(2)ATP 的合成:ADP 和磷酸在酶的作用下结合,利用光能转化的能量合成 ATP。
能量变化:光能转化为活跃的化学能(ATP 和H)。
2、暗反应暗反应发生在叶绿体基质中,有没有光都可以进行。
条件:酶、ATP、H。
物质变化:(1)二氧化碳的固定:二氧化碳与五碳化合物结合生成两个三碳化合物。
(2)三碳化合物的还原:在酶的作用下,三碳化合物接受 ATP 释放的能量并且被H还原,经过一系列的反应生成糖类等有机物和五碳化合物。
能量变化:活跃的化学能转化为稳定的化学能(有机物中)。
四、影响光合作用的因素1、光照强度在一定范围内,光照强度增强,光合作用速率加快;当光照强度达到一定值后,光合作用速率不再增加。
2、二氧化碳浓度二氧化碳是光合作用的原料之一,在一定范围内,增加二氧化碳浓度可以提高光合作用速率。
3、温度温度通过影响酶的活性来影响光合作用速率,一般来说,在最适温度之前,随着温度的升高,光合作用速率加快;超过最适温度,光合作用速率会下降。
4、水分水是光合作用的原料之一,缺水会导致气孔关闭,影响二氧化碳的吸收,从而影响光合作用。
高中生物—光合作用知识点全面总结
高中生物—光合作用知识点全面总结一、叶绿体的结构与功能(一)叶绿体的结构模型.(二)相关知识1、.叶绿体是真核细胞进行光合作用的场所2、叶绿体由两层膜(内膜和外膜)包围而成,内部有许多基粒,基粒和基粒之间充满了基质。
3、每个基粒都有许多个类囊体构成,类囊体薄膜上含有吸收、传递和转化光能的色素以及光反应所需的酶,是光反应的场所。
4、基质中含有暗反应所需的酶,是进行暗反应的场所。
5、光合色素的相关知识。
(1)叶绿体色素的种类及含量:叶绿素a叶绿素(3/4)叶绿素b叶绿体色素胡萝卜素类胡萝卜素(1/4)叶黄素(2)叶绿体色素的分布:叶绿体类囊体薄膜上。
(3)叶绿体色素的功能:吸收,传递(4种色素),转化光能(只有少量的叶绿素a把光能转为电能)(4)影响叶绿素合成的因素:①光照:光是影响叶绿素合成的主要条件,一般植物在黑暗中不能合成叶绿素,因而叶片发黄。
(例如韭黄,蒜黄)②温度:温度可影响与叶绿素合成有关的酶的活性,进而影响叶绿素的合成。
低温(秋末)时,叶绿素分子易被破坏,而使叶子变黄。
③必需元素:叶绿素中含N、Mg等必需元素,缺乏N、Mg将导致叶绿素无法合成,叶变黄。
另外,Fe是叶绿素合成过程中某些酶的辅助成分,缺Fe也将导致叶绿素合成受阻,叶变黄。
(5)叶绿体色素的吸收光谱:①叶绿体中的色素只吸收可见光,而对红外光和紫外光等不吸收。
②叶绿素a和叶绿素b主要吸收红光和蓝紫光,类胡萝卜素(胡萝卜素和叶黄素)主要吸收蓝紫光。
色素对绿光吸收最少。
对其他波段的光并非不吸收,只是吸收量较少。
经过色素吸收后,光谱出现两条黑带。
说明:叶绿体中的色素主要吸收红光和蓝紫光。
(6)叶绿体色素的性质:易溶于酒精、丙酮和石油醚等有机溶剂,不溶于水,叶绿素的性质不稳定,易被破坏,类胡萝卜素性质相对稳定。
(7)植物叶片的颜色与所含色素的关系:正常绿色正常叶片的叶绿素和类胡萝卜素的比例约为3∶1,且对绿光吸收最少,所以正常叶片总是呈现绿色叶色变黄寒冷时,叶绿素分子易被破坏,类胡萝卜素较稳定,显示出类胡萝卜素的颜色,叶子变黄叶色变红 秋天降温时,植物体为适应寒冷,体内积累了较多的可溶性糖,有利于形成红色的花青素,而叶绿素因寒冷逐渐降解,叶子呈现红色6、色素的提取和分离实验。
高中生物光合作用知识点总结
高中生物光合作用知识点总结1、光合作用的发现:①1771年英国科学家普里斯特利发现,将点燃的蜡烛与绿色植物一起放在密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠不容易窒息而死,证明:植物可以更新空气。
②1864年,德国科学家把绿叶放在暗处理的绿色叶片一半暴光,另一半遮光。
过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。
证明:绿色叶片在光合作用中产生了淀粉。
③1880年,德国科学家思吉尔曼用水绵进行光合作用的实验。
证明:叶绿体是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。
④20世纪30年代美国科学家鲁宾卡门采用同位素标记法研究了光合作用。
第一组相植物提供H218O和CO2,释放的是18O2;第二组提供H2 O和C18O,释放的是O2。
光合作用释放的氧全部来自来水。
2、叶绿体的色素:①分布:基粒片层结构的薄膜上。
②色素的种类:高等植物叶绿体含有以下四种色素。
A、叶绿素主要吸收红光和蓝紫光,包括叶绿素a(蓝绿色)和叶绿素b( ;B、类胡萝卜素主要吸收蓝紫光,包括胡萝卜素和叶素。
3、叶绿体的酶:分布在叶绿体基粒片层膜上(光反应阶段的酶)和叶绿体的基质中(暗反应阶段的酶)。
4、光合作用的过程:①光反应阶段a、水的光解:2H2O→4[H]+O2(为暗反应提供氢)b、ATP的形成:ADP+Pi+光能—→ATP(为暗反应提供能量)②暗反应阶段: a、CO2的固定:CO2+C5→2C3 b、C3化合物的还原:2C3+[H]+ATP→(CH2O)+C55、光反应与暗反应的区别与联系:①场所:光反应在叶绿体基粒片层膜上,暗反应在叶绿体的基质中。
②条件:光反应需要光、叶绿素等色素、酶,暗反应需要许多有关的酶。
③物质变化:光反应发生水的光解和ATP的形成,暗反应发生CO2的固定和C3化合物的还原。
④能量变化:光反应中光能→ATP中活跃的化学能,在暗反应中ATP中活跃的化学能→CH2O中稳定的化学能。
高中生物光合作用知识点总结
高中生物光合作用知识点总结光合作用是植物、某些细菌和藻类通过光能将无机物转化为有机物的过程,同时释放氧气。
以下是高中生物中光合作用的知识点总结:1. 光合作用的定义:光合作用是植物、藻类和某些细菌利用光能将二氧化碳和水转化为葡萄糖和氧气的过程。
2. 光合作用的重要性:- 是生态系统能量流动的起点。
- 为生物圈提供氧气和有机物。
- 促进了大气中氧气的积累。
3. 光合作用的过程:- 光依赖反应:在叶绿体的类囊体膜上进行,需要光能,产生ATP和NADPH。
- 光合磷酸化:光能转化为化学能,储存在ATP中。
- 光合电子传递链:光能激发叶绿素分子,电子在一系列电子受体间传递。
- 光合色素:主要包括叶绿素a、叶绿素b、类胡萝卜素和叶黄素,其中叶绿素a是主要的光合色素。
4. 光合作用的场所:主要在植物的叶绿体中进行。
5. 光合作用的条件:- 光照:提供必要的光能。
- 二氧化碳:作为原料之一。
- 水:作为原料之一,同时参与光依赖反应。
6. 光合作用的产物:- 葡萄糖:是光合作用的主要产物,用于植物的生长和维持生命活动。
- 氧气:作为副产品释放到大气中。
7. 光合作用的类型:- C3植物:大多数植物,光合作用的主要途径。
- C4植物:如玉米、甘蔗等,具有特殊的二氧化碳固定机制,提高光合效率。
- CAM植物:如仙人掌,通过夜间固定二氧化碳,减少水分蒸发。
8. 光合作用的光反应和暗反应:- 光反应:在光照下进行,产生ATP和NADPH。
- 暗反应(Calvin循环):不依赖光照,利用ATP和NADPH将二氧化碳转化为有机物。
9. 光合作用的调控:- 光强、温度、水分等环境因素都会影响光合作用的效率。
10. 光合作用与呼吸作用的关系:- 呼吸作用是光合作用的逆过程,消耗有机物,释放能量。
11. 光合作用的限制因素:- 光强、二氧化碳浓度、温度、水分等。
12. 光合作用与全球气候变化:- 植物的光合作用对全球碳循环有重要影响,有助于缓解温室效应。
高中生物光合作用知识点总结
高中生物光合作用知识点总结光合作用是生物体通过利用光能驱动的化学反应将二氧化碳和水转化为有机物和氧气的过程。
光合作用是生命活动的基础,对维持地球上所有生命物种的生存和进化起着重要作用。
1. 光合作用的概念光合作用是生物体利用光能将无机物转化为有机物的过程。
植物、藻类和一些细菌都能进行光合作用。
光合作用分为光化反应和暗反应两个阶段,光化反应需要光能驱动,暗反应则不需要光能直接参与。
2. 光合作用的过程光合作用的过程可以分为光化反应和暗反应两个阶段。
2.1 光化反应光化反应发生在叶绿体的光合膜内,通过叶绿体中的叶绿体色素分子吸收光能,激发电子,形成高能化学物质ATP和NADPH。
2.1.1 光能的吸收叶绿素是植物中的光合色素,它能吸收蓝色和红色光线,而反射和透过绿色光线,因此植物呈现绿色。
叶绿体膜中的叶绿素分子吸收光能后,电子会被激发到高能态,从而开始光合作用的过程。
2.1.2 光合色素集合体叶绿体膜中的叶绿素分子会组成光合色素集合体,其中的光合单位包括两个类型的反应中心:光系统I和光系统II。
光系统I主要吸收700nm附近的红光,而光系统II主要吸收680nm附近的红光。
2.1.3 光系统I和光系统II的作用光系统I和光系统II各自有特定的光敏色素,它们吸收光能后会激发电子,并传递到电子传递链中。
光系统II先被激发,产生高能电子,并生成ATP。
随后,电子通过电子传递链传递到光系统I,激发光敏色素并产生NADPH。
2.1.4 水的光解和氧气的释放光系统II在光化反应中的最后一步是水的光解,即将水分子分解为氧气和氢离子。
这是光合作用中产生氧气的重要过程。
2.2 暗反应暗反应发生在叶绿体基质中,是一系列以光化反应生成的ATP 和NADPH为能量和还原力来源的化学反应。
暗反应主要包括碳固定、还原和再生三个阶段。
2.2.1 碳固定暗反应的第一步是碳固定,即将二氧化碳与含有5个碳的化合物——磷酸核糖(RuBP)反应,生成稳定的6碳分子。
高考生物呼吸作用光合作用考点总结
高考生物呼吸作用光合作用考点总结高考生物考题中,呼吸作用与光合作用是常常涉及的重要概念。
下面是对两个考点的总结:一、呼吸作用:呼吸作用是生物体将有机物转化为能量的一种代谢现象,主要包括有氧呼吸和无氧呼吸。
1.有氧呼吸:有氧呼吸是指生物体在充分供氧的情况下进行的呼吸作用,可分为三个阶段:糖解(糖原的分解)、Krebs循环和氧化磷酸化。
糖解:将葡萄糖分子分解成两个三碳的丙酮酸,然后通过有机酸分解成乙醇。
反应方程式为:C6H12O6+2ADP+2Pi→2C3H6O3+2ATPKrebs循环:乙醇进一步被氧化成乙醛酸,最终释放出二氧化碳。
反应方程式为:2C3H6O3 + 9ADP + 9Pi + 6NAD+ + 6FAD → 6CO2 +6C2H4O2 + 9ATP + 6NADH + 6FADH2氧化磷酸化:乙醛酸被氧化成乙酸,并通过线粒体呼吸链最终生成水。
反应方程式为:6C2H4O2+24ADP+24Pi+18O2→12CO2+12H2O+24ATP2.无氧呼吸:无氧呼吸是指在缺氧的情况下进行的呼吸作用,主要产生能量的方式为乳酸发酵和乙酸发酵。
乳酸发酵:糖在肌肉中发酵产生乳酸,反应方程式为:C6H12O6+2ADP+2Pi→2C3H6O3+2ATP乙酸发酵:细菌在无氧条件下将糖转化为乙酸和二氧化碳,反应方程式为:C6H12O6+2ADP+2Pi→2C2H5OH+2CO2+2ATP二、光合作用:光合作用是指绿色植物利用光能将二氧化碳和水转化为有机物质(葡萄糖)的过程。
1.光化学反应:光能被吸收,激发叶绿素a的电子,产生高能电子;水分子被光解,产生氧气和两个氢离子。
反应方程式为:光能+2H2O→2H++1/2O22.光合糖合成反应:高能电子通过光合色素系统传递,最终与二氧化碳反应生成葡萄糖。
反应方程式为:6CO2+18ATP+12NADPH+12H+→C6H12O6+18ADP+18Pi+12NADP++6H2O 值得注意的是,光合作用不仅出现在植物中,还出现在一些浮游植物和光合细菌中。
高中生物光合作用知识点总结
高中生物光合作用知识点总结光合作用是生物体利用光能将无机物转化为有机物的过程,是维持地球生态平衡的重要途径。
下面将对高中生物光合作用的相关知识点进行总结。
一、光合作用的基本概念光合作用是指植物和一些单细胞生物在光的作用下,将二氧化碳和水转化为有机物和氧气的化学反应。
这个过程主要发生在植物叶绿体的内膜系统中,包括光合色素的吸收光能、光能转化为化学能、化学能合成有机物等多个步骤。
二、光合作用的反应方程式光合作用的反应方程式可以用化学式表示为:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2其中,CO2代表二氧化碳,H2O代表水,C6H12O6代表葡萄糖,O2代表氧气。
三、光合作用的两个阶段光合作用可以分为光能捕获和光能转化两个阶段。
1. 光能捕获阶段:光合色素吸收光能的过程。
光合色素主要包括叶绿素a、叶绿素b等,它们能吸收不同波长的光。
其中,叶绿素a 的吸收峰在蓝光和红光的波长范围内,而叶绿素b的吸收峰在橙光和蓝绿光的波长范围内。
光合色素吸收光能后,激发电子进入光化学反应中心。
2. 光能转化阶段:光合色素激发的电子经过一系列的传递过程,最终被NADP+接受并还原为NADPH。
同时,光能转化为化学能,用于合成ATP。
这个过程称为光化学反应。
四、光合作用的影响因素光合作用的速率受到多个因素的影响,主要包括光强、温度和二氧化碳浓度。
1. 光强:光合作用的速率随光强的增加而增加,但达到一定光强后会趋于饱和,即光合作用速率不再增加。
2. 温度:适宜的温度可以促进光合作用的进行,但过高或过低的温度都会抑制光合作用的进行。
3. 二氧化碳浓度:二氧化碳是光合作用的底物之一,二氧化碳浓度的增加可以促进光合作用的速率。
五、光合作用的产物和作用光合作用的产物主要包括葡萄糖和氧气。
葡萄糖是植物的主要有机物质,可以被植物用来产生能量和合成其他有机物。
而氧气则释放到大气中,供动物呼吸所需。
光合作用不仅提供了植物的能量和有机物质,还维持了地球上大气中氧气和二氧化碳的平衡。
高考生物必考之光合作用
高考光合作用辅导讲义一、知识点讲解知识点一:光合作用的基本过程本节知识点讲解1.叶绿体的结构与功能(1)结构模式图(2)结构(3)功能:进行 光合作用 的场所2.影响叶绿素合成的三大因素3.光合作用的基本过程概念:指绿色植物通过 叶绿体 ,利用光能,把 二氧化碳和水 转化成储存着能量的有机物,并且释放出氧气的过程。
⎩⎪⎪⎪⎨⎪⎪⎪⎧ 外表:① 内部⎩⎪⎪⎨⎪⎪⎧ ②基质:含有与 有关的酶③ :由类囊体堆叠而成,分布有 和与光反应有关的酶答案:叶绿体类囊体的薄膜、[H]+O2、叶绿体基质、稳定的化学能反应式(写出反应式并标出元素的去向)(1)若有机物为(CH2O):(2)若有机物为C6H12O6:※重难点突破①光反应和暗反应之间的联系(1)光反应为暗反应提供两种重要物质:[H](NADPH)和ATP,[H]既可作还原剂,又可提供能量;暗反应为光反应也提供三种物质:ADP、Pi以及NADP+,注意产生位置和移动方向(2)暗反应有光无光都能进行。
若光反应停止,暗反应可持续进行一段时间,但时间不长,故晚上一般认为只进行呼吸作用,不进行光合作用。
(3)相同光照时间内,光照和黑暗间隔处理比一直光照有机物积累得多,因为[H]、ATP基本不积累,利用充分;但一直光照会造成[H]、ATP的积累,利用不充分。
例如:若同一植物处于两种不同情况下进行光合作用,甲一直光照10分钟,黑暗处理10分钟;乙光照5秒,黑暗5秒,持续20分钟,则光合作用制造的有机物:甲<乙(暗反应时间长)②利用同位素示踪法判断光合作用C、H、O的转移途径(1)H :3H 2O ———→光反应[3H ]———→暗反应(C 3H 2O)。
(2)C :14CO 2—————→CO 2的固定14C 3————→C 3的还原 (14CH 2O)。
(3)O :H 182O ———→光反应18O 2;C 18O 2—————→CO 2的固定C 3————→C 3的还原 (CH 182O)。
高中生物光合作用知识点总结
高中生物光合作用知识点总结光合作用是植物和一些蓝藻细菌的重要生物过程,通过光合作用,它们能够利用光能将二氧化碳和水转化为有机物质(如葡萄糖)和氧气。
这个过程对于维持生物圈的能量平衡和氧气的释放至关重要。
下面是一个关于高中生物光合作用知识点的详细总结:1.光合作用的反应方程式:光合作用的反应方程式是6CO2+6H2O+光能→C6H12O6+6O2、这个方程式表示光合作用过程中发生的化学反应,其中光合作用将碳(CO2)和水(H2O)转化为葡萄糖(C6H12O6)和氧气(O2)。
2.光合作用的两个主要阶段:光合作用可以分为光反应和暗反应两个主要阶段。
光反应发生在叶绿体的内膜系统中,需要阳光作为能量源将水分解产生氧气、电子和氢离子。
暗反应发生在叶绿体基质中,利用光反应产生的能量和产物二次反应,将二氧化碳还原为葡萄糖。
3.光反应:光反应发生在叶绿体的叶绿体内膜系统中的光合色素中。
光反应主要包括两个过程:光能的吸收和电子传递链。
光能通过叶绿体内膜上的叶绿素吸收,并转化为激发态的电子。
这些激发态的电子将通过一系列的电子传递链,产生能量和极性梯度,最终使得水分子在内膜中被分解成氧气、电子和氢离子。
4.暗反应:暗反应发生在叶绿体基质中,利用光反应产生的能量和产物二次反应。
暗反应的关键是卡尔文循环或称光合作用固定路径。
卡尔文循环包括碳的固定、中间产物的生成和再生三个步骤。
在这个过程中,二氧化碳和氢离子通过一系列的酶反应被转化成有机物质,最终形成葡萄糖。
5.光合色素:光合色素是叶绿体细胞中一类负责吸收光能并参与光合作用的生物分子。
其中最重要的是叶绿素,特别是叶绿素a。
叶绿素a能够吸收蓝光和红光,而反射绿光,因此植物呈现绿色。
其他的光合色素如叶黄素(吸收蓝光和绿光),类胡萝卜素(吸收蓝光和紫外线)等也参与光合作用。
6.光合作用的调节:光合作用的速率通过一系列的调节机制来控制,以适应不同环境条件下的能量需求。
主要的调节机制包括光强、温度、二氧化碳浓度、水分等因素的影响。
高中生物光合作用知识点
高中生物光合作用知识点光合作用是植物、某些细菌和藻类在光照条件下,通过叶绿体将二氧化碳和水转化为有机物,并释放氧气的过程。
它是自然界中能量转换和物质循环的重要环节。
以下是高中生物中关于光合作用的知识点:1. 光合作用的定义:光合作用是植物、藻类和某些细菌在光照下,利用叶绿素等色素吸收光能,将二氧化碳和水转化为有机物,并释放氧气的过程。
2. 光合作用的条件:光照是光合作用的必要条件,同时需要适宜的温度和充足的二氧化碳和水。
3. 光合作用的场所:主要在植物的叶绿体中进行,叶绿体是光合作用的主要场所。
4. 光合作用的过程:分为光反应和暗反应两个阶段。
- 光反应:在叶绿体的类囊体膜上进行,通过色素吸收光能,产生ATP和NADPH,同时释放氧气。
- 暗反应(Calvin循环):在叶绿体的基质中进行,利用ATP和NADPH将二氧化碳还原为有机物,如葡萄糖。
5. 光合作用的产物:有机物(主要是葡萄糖)和氧气。
6. 光合作用的意义:- 为植物自身提供能量和物质基础。
- 为其他生物提供食物来源。
- 维持大气中氧气和二氧化碳的平衡。
7. 光合作用的影响因素:- 光照强度:影响光合作用的速率。
- 二氧化碳浓度:二氧化碳是光合作用的原料之一。
- 温度:影响酶的活性,进而影响光合作用的速率。
- 水分:水分不足会影响植物的光合作用。
8. 光合作用的效率:实际光合作用效率较低,大部分光能以热能形式散失。
9. 光合作用与呼吸作用的关系:光合作用产生的有机物是呼吸作用的原料,而呼吸作用释放的能量又可以支持光合作用的进行。
10. 光合作用在生态系统中的作用:光合作用是生态系统能量流动和物质循环的基础,维持生态系统的稳定。
了解这些知识点有助于深入理解光合作用的机制和它在自然界中的重要性。
生物光合作用高三知识点
生物光合作用高三知识点光合作用是生物体利用光能将二氧化碳和水转化为有机物质的过程。
它是地球上生物能源的来源,也是氧气的主要产生过程。
对于高三生物学考试来说,理解和掌握光合作用的相关知识点是非常重要的。
本文将重点介绍高三生物光合作用的知识点。
1. 光合作用的方程式光合作用的方程式可以总结为:6CO2 + 6H2O + 光能→C6H12O6 + 6O2。
在这个过程中,光能被植物利用来将二氧化碳和水合成葡萄糖,并释放出氧气。
2. 光合作用的三个阶段光合作用分为光能捕捉、光化学反应和暗反应三个阶段。
- 光能捕捉:叶绿素是进行光合作用的关键物质之一,它能够吸收太阳光中的能量。
在光能捕捉阶段,叶绿素分子吸收光能,并将其转化为化学能。
- 光化学反应:光化学反应发生在叶绿体的脉络体内,其中的光能被转化为化学能。
在这个过程中,光能将水分子分解为氢离子(H+)和氧气(O2),释放的氧气通过气孔排出。
- 暗反应:暗反应发生在叶绿体的基质中,它是光合作用的最终阶段。
在这个阶段,光能转化的化学能被用来将二氧化碳还原成有机物。
3. 光合作用的调节因素光合作用的效率受到多种因素的影响,包括温度、光强和二氧化碳浓度等。
- 温度:适宜的温度有利于酶的活性,过高或过低的温度都会降低光合作用的速率。
- 光强:适宜的光强可以提高光合作用的速率,但过强的光线可能造成叶绿素和酶的损伤。
- 二氧化碳浓度:二氧化碳是光合作用的底物之一,适宜的二氧化碳浓度可以提高光合作用的效率。
4. 光合作用的作用和意义光合作用不仅是植物生长和发育的基础过程,也是地球上大气中氧气含量的主要来源。
- 供能:光合作用是生物体能量的来源,通过合成葡萄糖,植物为自身提供能量,并在需要时供给其他生物。
- 产氧:光合作用能够释放氧气,保持地球上生物的呼吸过程。
- 排放二氧化碳:光合作用还能够吸收大气中的二氧化碳,有助于调节地球上的气候。
总结:生物光合作用是高三生物学中的重要知识点。
高中生物知识点:光合作用
高中生物知识点:光合作用
1. 光合作用的定义
光合作用是指植物利用光能将二氧化碳和水转化为有机物质和氧气的过程。
它是地球生物圈中最为重要的能量转化过程之一。
2. 光合作用的反应方程式
光合作用的反应方程式如下:
光合作用:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2
该方程式表示,光合作用将光能转化为葡萄糖(C6H12O6)和氧气(O2),同时消耗二氧化碳(CO2)和水(H2O)。
3. 光合作用的过程
光合作用可以分为光能捕捉和光化学反应两个阶段。
光能捕捉阶段
光能捕捉阶段发生在叶绿素分子中的光合色素复合物中。
在这个阶段中,叶绿素分子吸收光能并将其转化为化学能,进而激发电子。
光化学反应阶段
光化学反应阶段发生在叶绿体中的光合体系中。
在这个阶段中,激发的电子经过光合色素分子间的传递,最终用于还原NADP+和
生成ATP。
4. 光合作用的条件
光合作用需要一定的条件才能正常进行:
- 光能:光合作用依赖于阳光提供的光能,因此只能在光照充
足的环境中进行。
- 光合色素:植物细胞内的叶绿素是光合作用的关键色素,它
能够吸收光能并驱动光合作用的进行。
- 二氧化碳和水:光合作用需要二氧化碳和水作为反应物质。
二氧化碳在植物叶片的气孔中进入叶绿体,水则从植物根部吸收,
并通过管道输送到叶绿体中。
高中生物光合作用知识点
高中生物光合作用知识点一、引言光合作用是生物学中的一个核心概念,它是植物、藻类以及某些细菌通过太阳能将二氧化碳和水转化为有机物和氧气的过程。
本文将总结高中生物课程中关于光合作用的关键知识点。
二、光合作用的基本理解1. 光合作用的定义:光合作用是生物体利用太阳光能将无机物质(二氧化碳和水)转化为有机物质(如葡萄糖)并释放氧气的过程。
2. 光合作用的重要性:光合作用是地球上生命存在的基础,它不仅为植物自身提供能量,而且是几乎所有生物能量的来源。
三、光合作用的类型1. 光依赖性反应(光反应):发生在叶绿体的类囊体膜上,依赖光能进行。
2. 光合磷酸化:在光反应中,通过电子传递链产生ATP的过程。
3. 光独立性反应(暗反应):发生在叶绿体的基质中,不依赖光能,通过固定二氧化碳合成有机物。
四、光合作用的过程1. 光反应:- 光系统II(PSII):水分子分解产生氧气、质子和电子。
- 电子传递链:电子通过一系列载体传递,产生ATP和NADPH。
- 光系统I(PSI):利用NADP+和ADP生成NADPH和ATP。
2. 暗反应(Calvin循环):- 二氧化碳的固定:通过RuBisCO酶将二氧化碳与RuBP结合形成3-磷酸甘油酸。
- ATP和NADPH的消耗:用于将3-磷酸甘油酸转化为葡萄糖等有机物。
五、光合作用的效率1. 光合作用效率的影响因素:光照强度、二氧化碳浓度、温度、水分等。
2. 光饱和点:光照强度达到一定水平后,光合作用速率不再增加。
3. 光补偿点:植物进行光合作用与呼吸作用相抵消时的光照强度。
六、光合作用的应用1. 农业生产:通过控制光照、温度和二氧化碳浓度提高作物产量。
2. 生态系统研究:了解不同生态系统中光合作用的变化,评估生态系统的生产力。
3. 气候变化研究:研究植物对气候变化的适应性和反馈机制。
七、结论光合作用是维持地球生态系统平衡的关键过程,对人类生活和生产具有重要意义。
了解光合作用的基本原理和过程,有助于我们更好地利用自然资源,保护生态环境,促进可持续发展。
生物光合知识点总结高中
生物光合知识点总结高中一、光合作用的基本原理光合作用是植物利用光能合成有机物质的过程。
它的基本原理包括光能的吸收、光合色素的作用和化学能的转化。
植物的叶绿素是最主要的光合色素,它具有吸收光能的能力。
当叶绿素吸收到光能后,会激发电子,然后通过光反应和暗反应,将这些光能转化成化学能,最终合成有机物质。
光合作用的化学方程式如下所示:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2在这个方程式中,CO2为二氧化碳,H2O为水,C6H12O6为葡萄糖,O2为氧气。
这个方程式概括了光合作用的基本过程,即植物利用二氧化碳和水,在光能的作用下,合成有机物质和氧气。
二、光合色素光合色素是植物叶绿色素和类囊体中的其他色素的统称。
其中,叶绿素是最主要的光合色素,它吸收不同波长的光能,从而激发电子,并参与光合作用的光反应过程。
叶绿素主要有叶绿素a和叶绿素b两种类型,它们的吸收光谱分别在绿色和黄绿色波段,因此可以更充分地利用太阳光的光谱。
除了叶绿素外,类囊体中还含有类胡萝卜素、类黄酮素和植物黄素等其他色素,它们也能吸收光能,参与光合作用的光反应过程,起到辅助和保护作用。
三、光反应光反应是光合作用中的第一步,它发生在叶绿体的类囊体膜上。
在光反应中,光能被吸收后,激发了类囊体膜上的叶绿素,激发的电子会被传递给电子接受体,然后通过一系列电子传递链,最终将光能转化成化学能。
同时,光反应还会释放氧气作为副产品。
光反应可以分为光系统Ⅰ和光系统Ⅱ两个部分。
光系统Ⅱ先吸收光能,激发了电子,然后经过一系列电子传递的过程,最终将这些光能转化成化学能,生成ATP。
而光系统Ⅰ则继续吸收光能,再次激发了电子,并最终将这些光能转化成化学能,生成NADPH。
总的来说,光反应是光合作用中,通过叶绿体的光系统Ⅱ和光系统Ⅰ,将光能转化成化学能,最终生成了ATP和NADPH,为暗反应提供了能量和电子供体。
四、暗反应暗反应是光合作用的第二步,它发生在叶绿体的基质中。
高中生物光合作用知识点总结
高中生物光合作用知识点总结光合作用是植物体内发生的一种重要的生物化学反应,它是植物生长发育和生存的基础。
光合作用是指植物利用光能将二氧化碳和水转化为有机物质的过程。
下面我们来总结一下高中生物中关于光合作用的相关知识点。
一、光合作用的基本反应方程式:一般来说,光合作用的基本反应方程式可用如下的化学方程式表示:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2这个方程式表示了光合作用的整体过程,即将6分子二氧化碳和6分子水在光照的条件下,经过一系列生物化学反应,形成1分子葡萄糖和6分子氧气。
这个方程式可以分解为两个子反应方程式:1、光反应:在叶绿体的类囊体膜内,光能被叶绿体色素吸收后,激发电子从叶绿体光系统Ⅱ(PSⅡ)经过一系列传递,最终被叶绿体色素I(PSⅠ)捕获。
在这一过程中,光能被转化为了化学能,同时释放氧气。
反应式如下:2H2O → 4H+ + 4e- + O2↑2、暗反应(Calvin循环):PSⅠ中的激发电子最终被用于将二氧化碳还原为葡萄糖。
暗反应的化学方程式如下:6CO2 + 12NADPH + 18ATP + 12H2O → C6H12O6 + 12NADP+ + 18ADP + 18Pi + 6H2O这两个子反应方程式共同构成了光合作用的整体过程。
二、光合色素:光合作用中起到捕获光能的关键作用的是光合色素,其中叶绿素是最重要的光合色素之一。
叶绿素分子有两个重要的部分,一个是色素分子本身,能够吸收光能,另一个是辅助基团,能够保持叶绿素分子的结构稳定和在光合作用中传递电子。
在植物体内,还存在其他的光合色素,比如叶黄素和类胡萝卜素等。
它们都能够吸收不同波长的光能,并参与光合作用的过程。
三、光合作用的影响因素:光合作用的效率受到许多因素的影响,主要包括光照、二氧化碳浓度和温度等因素。
1、光照:光合作用是一种依赖光能的生物化学反应,因此光照是光合作用最基本的影响因素。
光照充足时,光合作用效率较高;光照不足时,光合作用效率较低。
高中生物光合作用知识点总结
高中生物光合作用知识点总结光合作用是生物体中一种重要的能量转化过程,通过光合作用,植物能够利用太阳能将二氧化碳和水转化为有机物质,并释放出氧气。
以下是关于高中生物光合作用的几个重要知识点的总结:1. 光合作用的基本方程式:光合作用的基本方程式可以用化学式表示为:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2。
这个方程式表明,光合作用需要二氧化碳、水和光能作为原料,产生葡萄糖和氧气。
2. 光合作用的两个阶段:光合作用可以分为光反应和暗反应两个阶段。
光反应发生在叶绿体的基质中,需要光能作为驱动力,将光能转化为化学能,生成ATP 和NADPH。
而暗反应则发生在叶绿体基质和细胞质中,利用ATP 和NADPH将二氧化碳还原为葡萄糖。
3. 光合作用的光反应:光反应主要发生在叶绿体的光合体中,包括光系统I和光系统II。
光系统II先被激发,将光能转化为化学能,生成ATP。
随后,光系统I被激活,将光能转化为化学能,生成NADPH。
同时,在光系统II 的过程中,水分子被光解,释放出氧气。
4. 光合作用的暗反应:暗反应发生在叶绿体基质和细胞质中,不需要光能直接参与。
暗反应的关键步骤是卡尔文循环,包括碳同化、还原和再生三个阶段。
在碳同化阶段,光合固定二氧化碳生成3-磷酸甘油酸,然后通过还原和再生阶段将3-磷酸甘油酸转化为葡萄糖。
5. 光合作用的调控因素:光合作用的速率受到许多因素的影响。
光强、温度、二氧化碳浓度和水分等因素都会影响光合作用的进行。
光合作用速率随着光强的增加而增加,但在一定光强下会达到饱和。
温度的升高可以促进光合作用,但超过一定温度则会抑制光合作用。
二氧化碳浓度的增加可以增加光合作用速率,但也会达到饱和。
水分不足会导致气孔关闭,限制二氧化碳的进入,从而影响光合作用。
6. 光合作用的意义:光合作用是地球上最重要的能量转化过程之一,对维持生态平衡和气候稳定起着重要作用。
通过光合作用,植物能够吸收二氧化碳,释放氧气,净化空气。
高考 光合作用知识点总结
高考光合作用知识点总结在生物学的学习中,光合作用是一个重要的概念,也是高中生物学科中的一大难点。
光合作用是指绿色植物和某些细菌通过光能转化为化学能的过程。
它不仅让植物得以生长和繁殖,也为整个生态系统注入了能量。
下面,我们将对光合作用的相关知识点进行总结,希望能帮助大家更好地掌握这一重要概念。
1. 光合作用的基本概念光合作用是一种自养营养方式,利用光能将二氧化碳和水转化为有机物质(如葡萄糖)和氧气的同时释放能量。
光合作用可分为光反应和暗反应两个阶段,光反应在叶绿体的叶绿体内膜上进行,产生ATP 和NADPH;暗反应在叶绿体基质中进行,是将ATP和NADPH的能量转化为化学能的过程。
2. 光合作用的影响因素光合作用受到光照强度、温度、二氧化碳浓度和水分供应等因素的影响。
在光合作用中,光照强度较弱时,光反应和暗反应的速率都会受到限制;温度过高或过低会影响酶的活性,从而降低光合作用速率;二氧化碳浓度低时,暗反应中的碳酸化速率减慢,从而限制了光合作用的进行;水分供应不足会导致植物体内的水分流失,减少光合作用的进行。
3. 光能的吸收和利用植物的叶绿体中含有叶绿素和其他色素,它们能够吸收光的能量。
叶绿素a是其中最重要、最常见的叶绿素,它能吸收红光和蓝光,而绿光则被反射和透过,因此植物呈现绿色。
其他的色素如叶绿素b、类胡萝卜素等起到辅助吸收光能的作用。
4. 光反应的过程光反应包括光系统Ⅰ和光系统Ⅱ两个部分。
光系统Ⅱ通过光能将水分解为氢离子和氧气,释放电子,其中生成的氧气通过叶子的气孔排出。
光系统Ⅰ则接收光能激发电子,通过一系列电子传递过程最终将电子和氢离子转移到NADP+上,生成NADPH。
5. 暗反应的过程暗反应是在光反应的基础上进行的。
它的主要产物是葡萄糖和其他有机物质,能满足植物生长和代谢的需要。
在暗反应中,首先是碳酸化反应,光合固定CO2,产生3-磷酸甘油,然后是还原反应,通过NADPH的供应将3-磷酸甘油还原为磷酸核糖和其他有机化合物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考生物必备知识点:生物光合作用
考点归纳
查字典生物网的小编给各位考生整理了2019年高考生物必备知识点:生物光合作用考点归纳技巧,希望对大家有所帮助。
更多的资讯请持续关注查字典生物网。
2019年高考复习正在进行中,高考生物想在原有的基础上提分,这就要求考生要掌握一定的知识量,能随机应变,灵活运用已掌握的知识。
以下是小编对《2019年高考生物必备知识点:生物光合作用考点归纳技巧》进行的总结,供考生参考。
光合作用(Photosynthesis),即光能合成作用,是植物、藻类和某些细菌,在可见光的照射下,经过光反应和暗反应,利用光合色素,将二氧化碳(或硫化氢)和水转化为有机物,并释放出氧气(或氢气)的生化过程。
光合作用是一系列复杂的代谢反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。
光合作用(Photosynthesis)是绿色植物利用叶绿素等光合色素和某些细菌(如带紫膜的嗜盐古菌)利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为有机物,并释放出氧气(细菌释放氢气)的生化过程。
植物之所以被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。
通过食用,食物链的消费者可以吸收到植物及细菌所贮存的能量,
效率为10%~20%左右。
对于生物界的几乎所有生物来说,这个过程是它们赖以生存的关键。
而在地球上的碳氧循环,光合作用是必不可少的。
高考生物必备知识点:光合作用原理
光反应
1水的光解:2H2O→4[H]+O2(为暗反应提供氢)
2.ATP的形成:ADP+Pi+光能—→ATP(为暗反应提供能量) 暗反应
1.CO2的固定:CO2+C5→2C3
2.C3化合物的还原:2C3+[H]+ATP→(CH2O)+C5
高考生物必备知识点:光合作用必会知识点
1、光合作用中色素的吸收峰
2、叶绿体结构
⑴具有内外双层膜.
⑵具有基粒——由类囊体色素.
⑶二氧化硅作用:使研磨更充分.
3、化能合成作用
⑴概念:指利用环境中某些无机物氧化时释放的能量,将二氧化碳和水制造成储存能量的有机物的合成作用.
⑵典型生物:硝化细菌、铁细菌、瘤细菌等.
⑶硝化细菌:原核生物,能利用环境中氨(NH3)氧化生成亚硝酸(HNO2)或硝酸(HNO3)释放的化学能,将二氧化碳和水
合成为糖类.
⑷能进行化能合成作用的生物也是自养生物
高考生物必备知识点:光合作用相关人物
1771年,英国科学家普利斯特利(J .Priestly,1773—1804)实验证实:植物能更新空气.(将点燃的蜡烛与绿色植物一起放在密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠不容易窒息而死,)
荷兰科学家英格豪斯(J .Ingen – housz)发现:只有在阳光照射下,只有绿叶才能更新空气.
1785年明确了:绿叶在光下吸收二氧化碳,释放氧气. 1845年,各国科学家梅耶(R .Mayer)指出:植物进行光合作用时,把光能转换成化学能储存起来.
1864年,德国科学家萨克斯(J .von .Sachs,1832——1897)实验证明:光合作用产生淀粉.(把绿叶放在暗处理的绿色叶片一半暴光,另一半遮光。
过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。
)
1880年,德国科学家思吉尔曼用水绵进行光合作用的实验。
证明:叶绿体是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。
1939年,美国科学家鲁宾(S .Ruben)卡门(M .Kamen)同位素标记法实验证明:光合作用释放的。
(采用同位素标记法研究
了光合作用。
第一组相植物提供H218O和CO2,释放的是18O2;第二组提供H2O和C18O,释放的是O2。
)
卡尔文循环——卡尔文(M .Calvin,1911——)实验
高考生物必备知识点:光合作用产生淀粉实验
⑴饥饿处理——将绿叶置于暗处数小时,耗尽其营养.
⑵遮光处理——绿叶一半遮光,一半不遮光.
⑶光照数小时——将绿叶放在光下,使之能进行光合作用.
⑷碘蒸汽处理——遮光的一半无颜色变化,暴光的一侧边蓝绿色.
高考生物必备知识点:光合作用释放的氧气来自水
⑴同位素标记法三要点:
①用途:指用放射性同位素追踪物质的运行和变化规律.
②方法:放射性同位素能发出射线,可以用仪器检测到.
③特点:放射性同位素标记的化合物化学性质不改变,不影响细胞的代谢.
⑵用18O标记H2O和CO2,得到H218O和C18O2.
⑶将植物分成两组,一组提供H218O,另一组提供C18O2.
⑷在其他条件都相同的情况下,分别检测植物释放的O2.
⑸结果,只有提供H218O时,植物释放出18O2.
高考生物必备知识点:叶绿体的色素和酶
色素:①分布:基粒片层结构的薄膜上。
②色素的种类:高等植物叶绿体含有以下四种色素。
A、叶
绿素主要吸收红光和蓝紫光,包括叶绿素a(蓝绿色)和叶绿素b(;B、类胡萝卜素主要吸收蓝紫光,包括胡萝卜素和叶素酶:分布在叶绿体基粒片层膜上(光反应阶段的酶)和叶绿体的基质中(暗反应阶段的酶)。
高考生物必备知识点:光合作用的过程
⑴、光合作用包括:光反应、暗反应两个阶段.
⑵、光反应:
①、特点:指光合作用第一阶段,必须有光才能进行.
②、主要反应:色素分子吸收光能;分解水,产生[ H ]和氧气;生成ATP.
③、场所:叶绿体基粒囊状膜上.
④、能量变化:光能转变成ATP中活跃化学能.
⑶、暗反应
①、特点:指光合作用第二阶段,有光无光都能进行.
②、主要反应:固定二氧化碳生成三碳化合物;[ H ]做还原剂,ATP提供能量,还原三碳化合物,生成有机物和水.
③、场所:叶绿体基质中.
④、能量变化:活跃化学能转变成有机物中稳定化学能. ⑷、过程图(P-103图5-15)
①光反应阶段a、水的光解:2H2O→4[H]+O2(为暗反应提供氢)b、ATP的形成:ADP+Pi+光能—→ATP(为暗反应提供能量)
②暗反应阶段:a、CO2的固定:CO2+C5→2C3b、C3化合物的还原:2C3+[H]+ATP→(CH2O)+C5
高考生物必备知识点:光反应与暗反应的区别与联系
①场所:光反应在叶绿体基粒片层膜上,暗反应在叶绿体的基质中。
②条件:光反应需要光、叶绿素等色素、酶,暗反应需要许多有关的酶。
③物质变化:光反应发生水的光解和ATP的形成,暗反应发生CO2的固定和C3化合物的还原。
④能量变化:光反应中光能→ATP中活跃的化学能,在暗反应中ATP中活跃的化学能→CH2O中稳定的化学能。
⑤联系:光反应产物[H]是暗反应中CO2的还原剂,ATP为暗反应的进行提供了能量,暗反应产生的ADP和Pi为光反应形成ATP提供了原料。
高考生物必备知识点:光合作用的意义
①提供了物质来源和能量来源。
②维持大气中氧和二氧化碳含量的相对稳定。
③对生物的进化具有重要作用。
总之,光合作用是生物界最基本的物质代谢和能量代谢。
高考生物必备知识点:影响光合作用的因素
有光照(包括光照的强度、光照的时间长短)、二氧化碳浓度、温度(主要影响酶的作用)和水等。
这些因素中任何一种的改
变都将影响光合作用过程。
如:在大棚蔬菜等植物栽种过程中,可采用白天适当提高温度、夜间适当降低温度(减少呼吸作用消耗有机物)的方法,来提高作物的产量。
再如,二氧化碳是光合作用不可缺少的原料,在一定范围内提高二氧化碳浓度,有利于增加光合作用的产物。
当低温时暗反应中(CH2O)的产量会减少,主要由于低温会抑制酶的活性;适当提高温度能提高暗反应中(CH2O)的产量,主要由于提高了暗反应中酶的活性。
在光合作用中:a、由强光变成弱光时,[产生的H]、ATP数量减少,此时C3还原过程减弱,而CO2仍在短时间内被一定程度的固定,因而C3含量上升,C5含量下降,(CH2O)的合成率也降低。
b、CO2浓度降低时,CO2固定减弱,因而产生的C3数量减少,C5的消耗量降低,而细胞的C3仍被还原,同时再生,因而此时,C3含量降低,C5含量上升。
以上内容就是小编为大家整理的《2019年高考生物必备知识点:生物光合作用考点归纳技巧》,对于高考政治知识点了解是否更加加深了一点呢?更多学习相关材料,敬请关注查字典生物网,小编随时为大家更新更多有效的复读材料及方法!。