一次函数的应用典型练习题
第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册一、利用一次函数模型解决实际问题例1.实验表明,在某地,温度在15℃至25℃的范围内,一种蟋蟀1min的平均鸣叫次数y可近似看成该地当时温度x(℃)的一次函数.已知这种蟋蟀在温度为16℃时,1min平均鸣叫92次;在温度为23℃时,1min平均鸣叫155次.(1)求y与x之间的函数表达式;(2)当这种蟋蟀1min平均鸣叫128次时,该地当时的温度约是多少?变式1.如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位:cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm,求此时碗的数量最多为多少个?变式2.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.二、利用一次函数解决行程问题例2.小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.变式1.在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A 地路程s(米)之间的函数图象.(1)a=,乐乐去A地的速度为;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.变式2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时后,两车相距200km.变式3.某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.(1)求货车B距甲地的距离y与时间x的关系式;(2)求货车B到乙地后,货车A还需多长时间到达甲地.三、利用一次函数解决最低费用和最高利润问题例3.某校开设棋类社团,购买了五子棋和象棋.五子棋比象棋的单价少8元,用1000元购买的五子棋数量和用1200元购买的象棋数量相等.(1)两种棋的单价分别是多少?(2)学校准备再次购买五子棋和象棋共30副,根据学生报名情况,购买五子棋数量不超过象棋数量的3倍.问购买两种棋各多少副时费用最低?最低费用是多少?变式1.眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用960元购进的A款文创产品和用780元购进的B款文创产品数量相同.每件A款文创产品进价比B款文创产品进价多15元.(1)求A,B两款文创产品每件的进价各是多少元?(2)已知A款文创产品每件售价为100元,B款文创产品每件售价为80元,根据市场需求,商店计划再用不超过7400元的总费用购进这两款文创产品共100件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?变式 2.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?变式3.某小区物管中心计划采购A,B两种花卉用于美化环境.已知购买2株A 种花卉和3株B种花卉共需要21元;购买4株A种花卉和5株B种花卉共需要37元.(1)求A,B两种花卉的单价.(2)该物管中心计划采购A,B两种花卉共计10000株,其中采购A种花卉的株数不超过B种花卉株数的4倍,当A,B两种花卉分别采购多少株时,总费用最少?并求出最少总费用.变式4.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.变式5.成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A 种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.变式6.某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.(1)分别求出每件豆笋、豆干的进价;(2)某特产店计划用不超过10440元购进豆笋、豆干共200件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?变式7.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?四、利用一次函数解决含参数的最高利润问题例4.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.变式1.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?变式2.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.变式3.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:衬衫价格甲乙m m﹣10进价(元/件)260180售价(元/件)若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a元(60<a<80)出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?五、利用一次函数解决方案问题例5.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.变式1.某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.。
一次函数的应用测试题.pptx

16、已知一次函数y=M+〃的图象经过点(α2)和点(I,-1)、 (I)求这个一次函数的解析式: (2)在直角坐标系中画出它的图象、 17、如图所示,直线,是-一次函数y∙h+b在直角坐标系内的图象、 (1)观察图象,试求此一次函数的表达式: (2)当χ=20时,其对应的J,的值是多少? (3)J,的值随X值的增大怎样变化? 18、已知一次函数的图象经过点(0,0),(2,-姐S1.3)三点,且函数值随自变 量X值的增大而增大,求这个一次函数的表达式、 19、声音在空气中传播的速度y(m∕s)(简称音速)是气温X(C)的一次函数,如表所示,列出了一组不同气温时的音速 : (I)求y与*之间的函数关系式: (2)气温X为22C时,某人看到烟花燃放5s后才听到声响,那么此人与燃放烟花所在地约相距多远? 20.如图所示,公路上有A、B、C三站,一辆汽车在上午8时从离/1站I。km的产出发向C站匀速前进,15min后离 月站20km、
5、若一次函数.v=Jlr-(2jt+l)的图象与y轴交「点/1(0.2),则M=、
6、已知点J(3,0),//(0.-3),C(I在同一条直线上,则m=、
7、已知两条直线y=Λlx+M%=3+4的交点的横坐标为>且&>。,ki<0,当x>”时,贝∣J( )
λ'aB、y,>>•,C、>∙1<)∙,D、)∙,≥yi
8、一次函数y,k+b的图象经过点/1(0.-2)和国-3.6)两点,那么该函数的表达式是(
)
88
Λ%y=-Zv+6B、y=-Zv--C%V=-8.v-6D、F=x-23 3
9、正比例函数F=M的图象经过点(.3),那么它一定经过的点是(
一次函数的应用练习题及答案

一次函数的应用练习题及答案一次函数是数学中一个非常基础且常见的函数类型,其形式为 y = ax + b。
在现实生活中,我们经常会遇到一次函数的应用场景。
本文将提供一些基于一次函数的应用练习题,并附带答案,希望能够帮助读者更好地理解一次函数的概念和应用。
练习题1:某公司的年工资总额与员工人数之间存在一次函数关系。
已知当公司的员工人数为100人时,年工资总额为500万元;当员工人数为200人时,年工资总额为800万元。
求该公司年工资总额与员工人数的一次函数表达式,并根据该函数回答以下问题:a) 当员工人数为300人时,年工资总额是多少?b) 当员工人数为0人时,年工资总额是多少?解答:设年工资总额为 y,员工人数为 x。
根据题意,我们可以列出两个方程:100a + b = 500200a + b = 800通过解这个方程组,我们可以得到 a 的值为 1.5,b 的值为 350。
因此,该公司的年工资总额与员工人数的一次函数表达式为 y = 1.5x + 350。
a) 当员工人数为 300 人时,将 x = 300 代入函数表达式中,可得年工资总额为 1.5 * 300 + 350 = 850 万元。
b) 当员工人数为 0 人时,将 x = 0 代入函数表达式中,可得年工资总额为 1.5 * 0 + 350 = 350 万元。
练习题2:某手机品牌的某款手机的售价与销量之间存在一次函数关系。
已知当该手机的销量为3000部时,售价为2000元/部;当销量为5000部时,售价为1500元/部。
求该手机的售价与销量的一次函数表达式,并根据该函数回答以下问题:a) 当销量为4000部时,售价是多少?b) 当销量为0部时,售价是多少?解答:设售价为 y,销量为 x。
根据题意,我们可以列出两个方程:3000a + b = 20005000a + b = 1500通过解这个方程组,我们可以得到 a 的值为 -0.1,b 的值为 500。
一次函数综合应用(习题及解析)精选全文

精选全文完整版(可编辑修改)一次函数综合应用(习题及解析)例题示范例 1:一次函数 y=kx+b 的图象经过点 A(0,3),且与正比例函数y=-x 的图象相交于点 B,点 B 的横坐标为-1,求一次函数的表达式.思路分析:从完整的表达式入手,由正比例函数过点 B,可得 B 点坐标,然后由一次函数 y=kx+b 的图象经过点 A,B,待定系数法求解.解:∵点 B 在正比例函数 y=-x 的图象上,且点 B 的横坐标为-1∴B(-1,1)将 A(0,3),B(-1,1)代入 y=kx+b,得b 3k b 1k 2b 3∴一次函数的表达式为 y=2x+3.巩固练习一次函数 y=2x+a 和 y=-x+b 的图象都经过点 A(-2,0),且与 y 轴分别交于点 B,C,那么△ABC 的面积为.直线 y=kx+b 和直线 y 1 x 3 与 y 轴的交点相同,且经2过点(2,-1),那么这个一次函数的表达式是.一次函数 y=kx-3 经过点 M,那么此直线与 x 轴、y 轴围成的三角形的面积为.在平面直角坐标系中,O 为原点,直线 y=kx+b 交 x 轴于点A(-2,0),交 y 轴于点 B、假设△AOB 的面积为 8,那么 k 的值为直线 y=kx+1,y 随 x 的增大而增大,且与直线 x=1,x=3以及 x 轴围成的四边形的面积为 10,那么 k 的值为.一次函数 y=kx+b 的图象经过点(0,2),且与坐标轴围成的三角形的面积为 2,那么这个一次函数的表达式是如图,在平面直角坐标系中,一次函数 y 1 x 6 的图象与2x 轴、y 轴分别交于点 A,B,与正比例函数 y=x 的图象交于第一象限内的点 C、〔1〕求 A,B,C 三点的坐标;〔2〕S△AOC= .如图,直线 y=2x+3 与直线 y=-2x-1 相交于 C 点,并且与 y 轴分别交于 A,B 两点.〔1〕求两直线与 y 轴交点 A,B 的坐标及交点 C 的坐标;〔2〕求△ABC 的面积.一次函数 y=2x-3 的图象与 y 轴交于点 A,另一个一次函数图象与 y 轴交于点 B,两条直线交于点 C,C 点的纵坐标为 1,且 S△ABC=5,求另一条直线的解析式.一次函数 y=kx+b 的图象经过点(0,10),且与正比例函数y 1 x 的图象相交于点(4,a).2〔1〕求一次函数 y=kx+b 的解析式;〔2〕求这两个函数图象与 y 轴所围成的三角形的面积.如图,直线 y=kx+4 与 x 轴、y 轴分别交于点 A,B,点 A的坐标为(-3,0),点 C 的坐标为(-2,0).〔1〕求 k 的值;〔2〕假设 P 是直线 y=kx+4 上的一个动点,当点 P 运动到什么位置时,△OPC 的面积为 3?请说明理由.【参考答案】巩固练习1.6 2.y=-2x+3 3.9 44.4 或-4 5.2 6. y x 2或y ﹣x 2 7.〔1〕A(12,0),B(0,6),C(4,4) 〔2〕24 8.〔1〕A(0,3) B(0,-1) C(-1,1);〔2〕2 9. y 1 x 2 或 y 9 x 8 2 210. 〔1〕 y 2x 10 〔2〕2011. 〔1〕 k 在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。
一次函数的应用精选题42道

一次函数的应用精选题42道一.选择题(共16小题)1.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t (分钟),所走的路程为s (米),s 与t 之间的函数关系如图所示.下列说法错误的是( )A .小明中途休息用了20分钟B .小明休息前爬山的平均速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度2.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中1l 和2l 分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地.其中正确的个数是( )A .1B .2C .3D .43.在20km 越野赛中,甲乙两选手的行程y (单位:)km 随时间x (单位:)h 变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个B.2个C.3个D.4个4.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类5025B类20020C类40015例如,购买A类会员年卡,一年内游泳20次,消费502520550+⨯=元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡5.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,32t=或72t=,其中正确的结论有()A.1个B.2个C.3个D.4个6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,32t=或72t=,其中正确的结论有()A.1个B.2个C.3个D.4个7.甲、乙两车从A地出发,匀速驶向B地.甲车以80/km h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离()y km与乙车行驶时间()x h之间的函数关系如图所示.下列说法:①乙车的速度是120/km h;②160m=;③点H的坐标是(7,80);④7.5n=.其中说法正确的有()A.4个B.3个C.2个D.1个8.已知,A市到B市的路程为260 千米,甲车从A市前往B市运送物资,行驶 2 小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20 分钟修好甲车后以原速原路返回A市,同时甲车以原来 1.5 倍的速度前往B市,如图是两车距A 市的路程y(千米)与甲车所用时间x(小时)之间的函数图象,下列四种说法:①甲车提速后的速度是60 千米/时;②乙车的速度是96 千米/时;③乙车返回时y与x的函数关系式为96384y x=-+;④甲车到达B市乙车已返回A市 2 小时10 分钟.其中正确的个数是()A .1 个B .2 个C .3 个D .4 个9.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离()x miny m与甲所用时间()之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③960b=;④34a=.以上结论正确的有()A.①②B.①②③C.①③④D.①②④10.“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()A.赛跑中,兔子共休息了50分钟B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟11.甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是()A.甲车的速度是80/km hB.乙车的速度是60/km hC.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离B地10km12.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度()h cm和燃烧时间t (小时)之间的函数关系用图象可以表示为图中的()A.B.C.D.13.某快递公司每天上午9:0010:00-为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为()A.9:15B.9:20C.9:25D.9:3014.甲、乙两名运动员同时从A地出发前往B地,在笔直的公路上进行骑自行车训练.如图所示,反映了甲、乙两名运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t (小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时,乙在甲前10千米处;④甲、乙两名运动员相距5千米时,0.5t=或2t=.其中正确的个数有()A.1个B.2个C.3个D.4个15.若等腰三角形的周长是80cm,则能反映这个等腰三角形的腰长ycm与底边长xcm的函数关系式的图象是()A.B.C.D.16.一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min 内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:)L与时间x(单位:)min之间的关系如图所示,则图中a的值是( )A.32B.34C.36D.38二.填空题(共17小题)17.A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2/km h的速度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离()t h的关系如图所示,则甲出y km与时间()发小时后和乙相遇.18.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起分钟该容器内的水恰好放完.19.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的54快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为 米.20.A ,B 两地相距240km ,甲货车从A 地以40/km h 的速度匀速前往B 地,到达B 地后停止.在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止.两车之间的路程()y km 与甲货车出发时间()x h 之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是(0,240),点D 的坐标是(2.4,0),则点E 的坐标是 .21.甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A ,B 两处同时出发,都以不变的速度相向而行,图1是甲离开A 处后行走的路程y (单位:)m 与行走时间x (单位:)min 的函数图象,图2是甲、乙两人之间的距离y (单位:)m 与甲行走时间x (单位:)min 的函数图象,则a b -= .22.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y (千米)与货车行驶时间x (小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B 的坐标为3(34,75); ④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是 .23.如图,射线OA 、BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s 、t 分别表示行驶距离和时间,则这两人骑自行车的速度相差 /km h .24.甲、乙两人分别从A,B两地相向而行,他们距B地的距离()t h的关系如s km与时间()图所示,那么乙的速度是/km h.25.一辆货车从A地匀速驶往相距350km的B地,当货车行驶1小时经过途中的C地时,一辆快递车恰好从C地出发以另一速度匀速驶往B地,当快递车到达B地后立即掉头以原来的速度匀速驶往A地.(货车到达B地,快递车到达km与货车A地后分别停止运动)行驶过程中两车与B地间的距离y(单位:)从出发所用的时间x(单位:)h间的函数关系如图所示.则货车到达B地后,快递车再行驶h到达A地.26.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.27.小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行米.28.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象.当快车到达甲地时,慢车离甲地的距离为千米.29.已知A、B两地之间的路程为3000米,甲、乙两人分别从A、B两地同时出发,相向而行,甲到B地停止,乙到A地停止,出发10分钟后,甲原路原速返回A地取重要物品,取到该物品后立即原路原速前往B地(取物品的时间忽略不计),结果到达B地的时间比乙到达A地的时间晚,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程()x min之间的关系如图所示,则乙到达A地时,甲与y m与甲运动的时间()B地相距的路程是米.30.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地,两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示根据图象信息知,点A的坐标是.31.某航空公司规定,旅客乘机所携带行李的质量()x kg 与其运费y (元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为 kg .32.小刚从家出发匀速步行去学校上学.几分钟后发现忘带数学作业,于是掉头原速返回并立即打电话给爸爸,挂断电话后爸爸立即匀速跑步去追小刚,同时小刚以原速的两倍匀速跑步回家,爸爸追上小刚后以原速的12倍原路步行回家.由于时间关系小明拿到作业后同样以之前跑步的速度赶往学校,并在从家出发后23分钟到校(小刚被爸爸追上时交流时间忽略不计).两人之间相距的路程y (米)与小刚从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小刚家到学校的路程为 米.33.A 、B 两地相距630千米客车、货车分别从A 、B 两地同时出发,匀速相向行驶货车两小时可到达途中C 站,客车需9小时到达C 站.货车的速度是客车的34,客、货车到C 站的距离分别为1y 、2y (千米),它们与行驶时间x (小时)之间的函数关系如图.下列说法:①客、货两车的速度分别为60千米/小时,45千米/小时;②A、C两站间的距离是540千米;③P点横坐标为12;④E点坐标为(6,180),其中正确的说法是(填序号).三.解答题(共9小题)34.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调(0100)<<元,且限定商店最多购进A型m m电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.35.某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.36.A ,B 两地相距60km ,甲、乙两人从两地出发相向而行,甲先出发.图中1l ,2l 表示两人离A 地的距离()s km 与时间()t h 的关系,请结合图象解答下列问题:(1)表示乙离A 地的距离与时间关系的图象是 (填1l 或2)l ;甲的速度是 /km h ,乙的速度是 /km h ;(2)甲出发多少小时两人恰好相距5km ?37.某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y (个)与甲品牌文具盒的数量x (个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.(1)根据图象,求y 与x 之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货单价;(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?38.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟 米,乙在A 地时距地面的高度b 为 米.(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式.(3)在(2)的条件下,登山多长时间时,甲、乙两人距地面的高度差为50米?39.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y (元)与种植面积2()x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x 和300x 时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?40.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC 做匀速直线运动的模型.甲、乙两车同时分别从A ,B 两处出发,沿轨道到达C 处,B 在AC 上,甲的速度是乙的速度的1.5倍,设t (分)后甲、乙两遥控车与B 处的距离分别为1d ,2d ,则1d ,2d 与t 的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度2v 米/分;(2)写出1d 与t 的函数关系式:(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?41.为保障我国海外维和部队官兵的生活,现需通过A 港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示: 港口 运费(元/吨)甲库 乙库A 港 14 20B 港 108 (1)设从甲仓库运送到A 港口的物资为x 吨,求总运费y (元)与x (吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.42.小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.(1)求小张骑自行车的速度;(2)求小张停留后再出发时y与x之间的函数表达式;(3)求小张与小李相遇时x的值.一次函数的应用精选题42道参考答案与试题解析一.选择题(共16小题)1.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t (分钟),所走的路程为s (米),s 与t 之间的函数关系如图所示.下列说法错误的是( )A .小明中途休息用了20分钟B .小明休息前爬山的平均速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度【解答】解:A 、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:604020-=分钟,故正确;B 、根据图象可知,当40t =时,2800s =,所以小明休息前爬山的平均速度为:28004070÷=(米/分钟),故B 正确;C 、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;D 、小明休息后的爬山的平均速度为:(38002800)(10060)25-÷-=(米/分),小明休息前爬山的平均速度为:28004070÷=(米/分钟),7025>,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确; 故选:C .2.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中1l 和2l 分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是()A.1B.2C.3D.4【解答】解:由函数图象可知,乙比甲晚出发1小时,故①正确;乙出发312-=小时后追上甲,故②错误;甲的速度为:1234÷=(千米/小时),故③正确;乙的速度为:12(31)6÷-=(千米/小时),则甲到达B地用的时间为:2045÷=(小时),乙到达B地用的时间为:120633÷=(小时),11134533+=<,∴乙先到达B地,故④正确;正确的有3个.故选:C.3.在20km越野赛中,甲乙两选手的行程y(单位:)km随时间x(单位:)h变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km ,故②正确;甲的图象的解析式为10y x =,乙AB 段图象的解析式为46y x =+,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.故选:C .4.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠: 会员年卡类型 办卡费用(元)每次游泳收费(元) A 类 5025 B 类 20020 C 类400 15 例如,购买A 类会员年卡,一年内游泳20次,消费502520550+⨯=元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为( )A .购买A 类会员年卡B .购买B 类会员年卡C .购买C 类会员年卡D .不购买会员年卡 【解答】解:设一年内在该游泳馆游泳的次数为x 次,消费的钱数为y 元,根据题意得:5025A y x =+,20020B y x =+,40015C y x =+,当4555x 时,11751425A y ;11001300B y ;10751225C y ;发现45x =时,C B y y <,46x =时,C B y y <,⋯,由此可见,C 类会员年卡消费最低,所以最省钱的方式为购买C 类会员年卡.故选:C .5.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,32t =或72t =,其中正确的结论有( )A .1个B .2个C .3个D .4个【解答】解:由图象可知A 、B 两城市之间的距离为300km ,故①正确;设甲车离开A 城的距离y 与t 的关系式为y kt =甲,把(5,300)代入可求得60k =,60y t ∴=甲,把150y =代入60y t =甲,可得: 2.5t =,设乙车离开A 城的距离y 与t 的关系式为y mt n =+乙,把(1,0)和(2.5,150)代入可得02.5150m n m n +=⎧⎨+=⎩,解得100100m n =⎧⎨=-⎩, 100100y t ∴=-乙,令y y =乙甲可得:60100100t t =-,解得 2.5t =,即甲、乙两直线的交点横坐标为 2.5t =,乙的速度:150(2.51)100÷-=,乙的时间:3001003÷=,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故②错误;甲、乙两直线的交点横坐标为 2.5t =,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误; 令40y y -=乙甲,可得|60100100|40t t -+=,即|10040|40t -=,当1004040t -=时,可解得32t =, 当1004040t -=-时,可解得72t =, 又当23t =时,40y =甲,此时乙还没出发, 当133t =时,乙到达B 城,260y =甲; 综上可知当t 的值为32或72或23或133t =时,两车相距40千米,故④不正确; 故选:A .6.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,32t =或72t =,其中正确的结论有( )A .1个B .2个C .3个D .4个【解答】解:由图象可知A 、B 两城市之间的距离为300km ,故①正确;设甲车离开A 城的距离y 与t 的关系式为y kt =甲,把(5,300)代入可求得60k =,60y t ∴=甲,把150y =代入60y t =甲,可得: 2.5t =,设乙车离开A 城的距离y 与t 的关系式为y mt n =+乙,把(1,0)和(2.5,150)代入可得02.5150m n m n +=⎧⎨+=⎩, 解得100100m n =⎧⎨=-⎩, 100100y t ∴=-乙,令y y =乙甲可得:60100100t t =-,解得 2.5t =,即甲、乙两直线的交点横坐标为 2.5t =,乙的速度:150(2.51)100÷-=,乙的时间:3001003÷=,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故②正确;甲、乙两直线的交点横坐标为 2.5t =,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误; 令40y y -=乙甲,可得|60100100|40t t -+=,即|10040|40t -=,当1004040t -=时,可解得32t =, 当1004040t -=-时,可解得72t =, 又当23t =时,40y =甲,此时乙还没出发, 当133t =时,乙到达B 城,260y =甲; 综上可知当t 的值为32或72或23或133t =时,两车相距40千米,故④不正确; 故选:B .7.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80/km h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离()y km 与乙车行驶时间()x h 之间的函数关系如图所示.下列说法:①乙车的速度是120/m=;③点H的坐标是(7,80);④7.5n=.其中说法正确km h;②160的有()A.4个B.3个C.2个D.1个【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120/km h.①正确;由图象第26-小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离440160km⨯=,则160m=,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80(12080)0.4÷+=小时,则610.47.4n=++=,④错误.故选:B.8.已知,A市到B市的路程为260 千米,甲车从A市前往B市运送物资,行驶 2 小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20 分钟修好甲车后以原速原路返回A市,同时甲车以原来 1.5 倍的速度前往B市,如图是两车距A 市的路程y(千米)与甲车所用时间x(小时)之间的函数图象,下列四种说法:①甲车提速后的速度是60 千米/时;②乙车的速度是96 千米/时;③乙车返回时y与x的函数关系式为96384y x=-+;④甲车到达B市乙车已返回A市 2 小时10 分钟.其中正确的个数是()。
专题5.5一次函数的应用(举一反三)(浙教版)(原卷版)

专题5.5 一次函数的应用【八大题型】【浙教版】【题型1 行程问题】 (1)【题型2 工程问题】 (2)【题型3 利润最大问题】 (4)【题型4 费用最低问题】 (6)【题型5 调运问题】 (7)【题型6 体积问题】 (9)【题型7 几何图形问题】 (10)【题型8 其他问题】 (11)【题型1 行程问题】【例1】(2022春•大足区期末)甲、乙两车分别从A,B两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过12小时后两车同时到达距A地300千米的C地(中途休息时间忽略不计).设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则当乙车到达A地时,甲车距A地150千米.【变式11】(2022•前进区校级开学)甲、乙两车从佳木斯出发前往哈尔滨,甲车先出发,1h以后乙车出发,在整个过程中,两车离开佳木斯的距离y(km)与乙车行驶时间x(h)的对应关系如图所示:(1)直接写出佳木斯、哈尔滨两城之间距离是多少km?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车在行驶过程中经过多长时间,与乙车相距18km.【变式12】(2022秋•舞钢市期末)甲、乙两人分别从笔直道路上的A、B两地出发相向匀速而行,已知甲比乙先出发6分钟,两人在C地相遇,相遇后甲立即按原速原路返回A地,乙继续向A地前行,约定先到A地者停止运动就地休息.若甲、乙两人相距的路程y(米)与甲行走的时间x(分钟)之间的关系如图所示,有下列说法:①甲的速度是60米/分钟,乙的速度是80米/分钟;②甲出发30分钟时,两人在C地相遇;③乙到达A地时,甲与A地相距450米,其中正确的说法有()A.0个B.1个C.2个D.3个【变式13】(2022春•南川区期末)甲、乙两运动员在直线跑道上同起点、同终点、同方向匀速跑步560米,先到终点的运动员原地休息.已知甲先出发1秒,两运动员之间的距离y(米)与乙出发的时间x (秒)之间的关系如图所示.给出以下结论:①a=7;②b=63;③c=80.其中正确的是()A.①②③B.②③C.①②D.①③【题型2 工程问题】【例2】(2022•李沧区一模)李沧区海绵工程建设过程中,需要将某小区内两段长度相等的人行道改造为透水人行道,人行道绿篱改造为下沉式绿篱.现分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设人行道的长度y(米)与施工时间x(时)之间关系的部分图象,请解答下列问题:(1)求乙队在2≤x≤6的时间段内,y与x的函数关系式;(2)若甲队施工速度不变,乙队在施工6小时后,施工速度增加到12米/时,结果两队同时完成了任务,求甲队从开始施工到完成,所铺设的人行道共是多少米.【变式21】(2022春•华容县期末)某乳品公司向某地运输一批牛奶,由铁路运输每千克需运费0.60元,由公路运输,每千克需运费0.30元,另需补助600元.(1)设该公司运输的这批牛奶为x千克,选择铁路运输时,所需运费为y1元,选择公路运输时,所需运费为y2元,请分别写出y1、y2与x之间的关系式;(2)若公司只支出运费1500元,则选用哪种运输方式运送的牛奶多?若公司运送1500千克牛奶,则选用哪种运输方式所需用较少?【变式22】(2022春•庐江县期末)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x (时)的函数图象为折线BC﹣﹣CD﹣﹣DE,如图所示,从甲队开始工作时计时.(1)直接写出乙队铺设完的路面长y(米)与时间x(时)的函数关系式;(2)当甲队清理完路面时,乙队还有多少米的路面没有铺设完?【变式23】(2022•无锡模拟)甲,乙两人同时各接受了300个零件的加工任务,甲比乙每小时加工的数量多,两人同时开工,其中一人因机器故障停止加工若干小时后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y(个)与加工时间x(小时)之间的函数关系,观察图象解决下列问题:(1)其中一人因故障,停止加工小时,C点表示的实际意义是.甲每小时加工的零件数量为个;(2)求线段BC对应的函数关系式和D点坐标;(3)乙在加工的过程中,多少小时时比甲少加工75个零件?(4)为了使乙能与甲同时完成任务,现让丙帮乙加工,直到完成.丙每小时能加工80个零件,并把丙加工的零件数记在乙的名下,问丙应在第多少小时时开始帮助乙?并在图中用虚线画出丙帮助后y与x 之间的函数关系的图象.【题型3 利润最大问题】【例3】(2022春•遵义期末)钓鱼成为越来越多人休闲娱乐的选择,鱼密度大的鱼塘的门票在300﹣600元不等,这让爱好钓鱼的钓友们喜欢到能回鱼的鱼塘垂钓(回鱼是指钓友钓上的鱼返卖给塘主),如果鱼情和钓鱼技能好的话还能获得一些利润.欢乐鱼塘的门票为450元5小时,回鱼标准为56斤以内为12元/斤,超过56斤的部分7元/斤:云门鱼塘门票为320元5小时,回鱼标准是律按8元/斤.(斤是重量单位,1斤0.5千克),设钓友获得的利润为y元,鱼的重量为x斤.(1)求在两家鱼塘钓鱼时y欢乐、y云门与x之间的函数关系式;(2)如图,在平面直角坐标系中,M,N为图象的交点,m,n分别为点M,N的横坐标,写出图中m,n的值分别为、;(3)钓友会根据自己的钓鱼技能和鱼塘的回鱼标准选择不同的鱼塘垂钓,请帮钓友们分析选择在哪家鱼塘钓鱼更划算?【变式31】(2022春•武汉期末)某商店销售一种产品,该产品成本价为6元/件,售价为8元/件,销售人员对该产品一个月(30天)销售情况记录绘成图象.图中的折线ODE表示日销量y(件)与销售时间x(天)之间的函数关系,若线段DE表示的函数关系中,时间每增加1天,日销量减少5件.(1)第25天的日销量是件,这天销售利润是元;(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?销售期间日销售最大利润是多少元?【变式32】(2022•济宁二模)某商店购进了A,B两种家用电器,相关信息如下表:家用电器进价(元/件)售价(元/件)A m+2001800B m1700已知用6000元购进的A种电器件数与用5000元购进的B种电器件数相同.(1)求表中m的值.(2)由于A,B两种家用电器热销,该商店计划用不超过23000元的资金再购进A,B两种电器总件数共20件,且获利不少于13300元.请问:有几种进货方案?哪一种方案才能获得最大利润?最大利润是多少?【变式33】(2022•长垣市模拟)某营业厅销售3部A型号和2部B型号的营业额为10800元,销售4部A型号和1部B型号的营业额为10400元.(1)求每部A型号和B型号的售价;(2)该营业厅计划一次性购进两种型号共50部,其中B型号的进货数量不超过A型号数量的3倍.已知A型和B型的进货价格分别为1500元/部和1800元/部,设购进A型号a部,这50部的销售总利润为W元.①求W关于a的函数关系式;②该营业厅购进A型号和B型号各多少部时,才能使销售总利润最大,最大利润为多少元?【题型4 费用最低问题】【例4】(2022春•前郭县期末)共享电动车是一种新理念下的交通工具,主要面向3~10km的出行市场现有A、B品牌的共享电动车,收费与骑行时间之间的函数关系如图所示,其中A品牌收费方式对应y1,B 品牌的收费方式对应y2.(1)请求出两个函数关系式.(2)如果小明每天早上需要骑行A品牌或B品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为20km/h,小明家到工厂的距离为6km,那么小明选择哪个品牌的共享电动车更省钱呢?(3)直接写出第几分钟,两种收费相差1.5元.【变式41】(2022春•碑林区校级期末)某校张老师寒假准备带领他们的“三好学生”外出旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人400元,经协商,甲旅行社表示:“如果带队张老师买一张全票,则学生可半价”;乙旅行社表示:“所有游客全部享受6折优惠.”则:(1)设学生数为x(人),甲旅行社收费为y甲(元),乙旅行社收费为y乙(元),两家旅行社的收费各是多少?(2)哪家旅行社收费较为优惠?【变式42】(2022春•滦南县期末)某人因需要经常去复印资料,甲复印社直接按每次印的张数计费,乙复印社可以加入会员,但需按月付一定的会员费.两复印社每月收费情况如图所示,根据图中提供的信息解答下列问题:(1)乙复印社要求客户每月支付的会员费是元;甲复印社每张收费是元;(2)求出乙复印社收费情况y关于复印页数x的函数解析式,并说明一次项系数的实际意义;(3)当每月复印多少页时,两复印社实际收费相同;(4)如果每月复印200页时,应选择哪家复印社?【变式43】(2022春•石河子期末)某种黄金饰品在甲、乙两个商店销售,甲店标价280元/克,按标价出售,不优惠,乙店标价300元/克,但若买的黄金饰品重量超过3克,则超出部分可打八折出售.(1)分别写出到甲、乙商店购买该种黄金饰品所需费用y(元)和重量x(克)之间的函数关系,并写出定义域;(2)李阿姨要买一条重量不超过10克的此种黄金饰品,到哪个商店购买最合算?请说明理由.【题型5 调运问题】【例5】(2022•贺兰县模拟)云南某县境内发生地震,某市积极筹集救灾物资260吨从该市区运往该县甲、乙两地,若用大、小两种货车共20辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:甲地(元/辆)乙地(元/辆)车型运往地大货车720800小货车500650(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于132吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.【变式51】(2022春•扎鲁特旗期末)某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如表:每台甲型收割机的租金每台乙型收割机的租金A地区1800元1600元B地区1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)试问有无可能一天获得总租金是80050元?若有可能,请写出相应的调运方案;若无可能,请说明理由.【变式52】(2022春•海淀区校级期末)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾民安置点从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值:C D总计/tA200B x300总计/t240260500(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.【变式53】(2022春•巴南区月考)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现要调往A县10辆,调往B县8辆,已知调运一辆农用车的费用如表:县名A B费用仓库甲4080乙3050(1)设从乙仓库调往A县农用车x辆,求总运费y关于x的函数关系式.(2)若要求总运费不超过900元.共有哪几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?【题型6 体积问题】【例6】(2022秋•邗江区月考)某水池的容积为90m3,水池中已有水10m3,现按8m3/h的流量向水池注水.(1)写出水池中水的体积y(m3)与进水时间t(h)之间的函数表达式,并写出自变量t的取值范围;(2)当t=1时,求y的值;当y=50时,求t的值.【变式61】(2022春•北京期末)如图,有一个装水的容器,容器内的水面高度是10cm,水面面积是100cm2.现向容器内注水,并同时开始计时.在注水过程中,水面高度以每秒0.2cm的速度匀速增加.容器注满水之前,容器内水面的高度h,注水量V随对应的注水时间t的变化而变化,则h与t,V与t满足的函数关系分别是()A.正比例函数关系,正比例函数关系B.正比例函数关系,一次函数关系C.一次函数关系,一次函数关系D.一次函数关系,正比例函数关系【变式62】(2022春•梁子湖区期末)水龙头关闭不严会造成漏水浪费,已知漏水量与漏水时间之间满足一次函数关系,八年级同学进行了以下实验:在漏水的水龙头下放置一个能显示水量的容器,每10分钟记录一次容器中的水量.下表是一位同学的记录结果,老师发现有一组数据记录有较大偏差,它是()组别12345010203040时间t(min)1 2.4 3.8 5.2 6.8水量w(ml)A.第2组B.第3组C.第4组D.第5组【变式63】(2022•宣城模拟)某容器有一个进水管和一个出水管,从某时刻开始的前4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水.已知进水管进水的速度与出水管出水的速度是两个常数,容器内水量y (升)与时间x (分钟)之间的关系如图所示.则每分钟的出水量为( )A .4升B .152升C .154升D .134升 【题型7 几何图形问题】【例7】(2022春•交城县期末)菜农张大叔要用63米的篱笆围一个矩形的菜地,已知在菜地的一边AB 边上留有1米宽的入口.设AB 边的长为x ,BC 边的长为y ,则y 与x 之间的函数关系式是( )A .y =63−2x 2B .y =63−2x+12C .y =63﹣2xD .y =632−12x 【变式71】(2022春•阿荣旗期末)已知等腰三角形周长为20(1)写出底边长y 关于腰长x 的函数解析式(x 为自变量);(2)写出自变量的取值范围;(3)在直角坐标系中,画出函数图象.【变式72】(2022秋•富民县校级期末)如图,正方形ABCD 的边长为6cm ,动点P 从A 点出发,在正方形的边上由A ⇒B ⇒C ⇒D 运动,设运动的时间为t (s ),△APD 的面积为S (cm 2),S 与t 的函数图象如图所示,请回答下列问题:(1)点P 在AB 上运动的速度为 ,在CD 上运动的速度为 ;(2)求出点P 在CD 上时S 与t 的函数关系式;(3)t为何值时,△APD的面积为10cm2?【变式73】(2022春•泰和县期末)如图1是一个大型的圆形花坛建筑物(其中AB与CD是一对互相垂直的直径),小川从圆心O出发,按图中箭头所示的方向匀速散步,并保持同一个速度走完下列三条线路:①线段OA、②圆弧A→D→B→C、③线段CO后,回到出发点.记小川所在的位置距离出发点的距离为y(即所在位置与点O之间线段的长度)与时间t之间的图象如图2所示,(注:圆周率π取近似值3)(1)a=,b=.(2)当t≤2时,试求出y关于t的关系式;(3)在沿途某处小川遇见了他的好朋友小翔并聊了两分钟的时间,然后继续保持原速回到终点O,请回答下列两小问:①小川渝小翔的聊天地点位于哪两点之间?并求出此时他距离终点O还有多远;②求他此行总共花了多少分钟的时间.【题型8 其他问题】【例8】(2022春•昌平区期末)某旅客携带x(公斤)的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李质量x(公斤)的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李质量x(公斤)的对应关系,行李的质量x(公斤)快递费不超过1公斤10元超过1公斤但不超过5公斤的3元/公斤部分5元/公斤超过5公斤但不超过15公斤的部分(1)如果旅客选择托运,求可携带的免费行李的最大质量为多少公斤?(2)如果旅客选择快递,当1≤x≤15时,求快递费y2(元)与行李质量x(公斤)的函数关系式;(3)某旅客携带25公斤的行李,设托运m(公斤)行李(10≤m<24,m为正整数),剩下的行李选择快递,m为何值时,总费用y的值最小,总费用的最小值是多少?【变式81】(2022春•正定县期中)弹簧挂物体会伸长,测得弹簧长度y(cm)(最长为20cm),与所挂物体质量x(kg)之间有下面的关系:x/kg01234…y/cm88.599.510…下列说法不正确的是()A.x与y都是变量,x是自变量,y是x的函数B.所挂物体质量为6kg时,弹簧长度为11cmC.y与x的函数表达式为y=8+0.5xD.挂30kg物体时,弹簧长度一定比原长增加15cm【变式82】(2022秋•和平县期末)某生物小组观察一植物生长,得到植物高度y(单位:厘米)与观察时间x(单位:天)之间的关系,并画出如图所示的图象(AC是线段,射线CD平行于x轴).有下列说x+6;③观察第40天时,法:①从开始观察起,60天后该植物停止长高;②直线AC的函数表达式为y=15该植物的高度为14厘米;④该植物最高为15厘米.其中说法正确的是()A.①②③B.②④C.②③D.①②③④【变式83】(2022•阿城区模拟)某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中240度仍按照“基础电价”计费,超过的部分按照“提高电价”收费,设每个家庭月用电量为x度时,应交电费为y元.具体收费情况如折线图所示,下列叙述错误的是()A.“基础电价”是0.5元/度B.“提高电价”是0.6元/度C.小红家5月份用电260度的电费是132元D.小红家4月份198元电费的用电量是129度。
一次函数的应用练习题

一次函数的应用练习题一、选择题(每题3分,共15分)1. 已知一次函数\( y = 2x + 3 \),当\( x = 1 \)时,\( y \)的值是多少?A. 5B. 4C. 3D. 22. 一次函数\( y = -3x + 5 \)的斜率是:A. 3B. -3C. 5D. -53. 如果直线\( y = -4x + 6 \)与\( x \)轴相交,求交点的\( x \)坐标:A. 0B. 1C. 1.5D. 24. 一次函数\( y = 5x - 1 \)与\( y \)轴的交点坐标是:A. (0, -1)B. (1, -1)C. (0, 5)D. (0, 4)5. 直线\( y = 3x - 2 \)与\( y = -2x + 4 \)的交点坐标是:A. (2, 4)B. (1, 1)C. (2, 2)D. (0, 0)二、填空题(每题3分,共15分)6. 一次函数\( y = kx + b \)的斜率是\( k \),当\( k \)为正时,函数图象从左向右上升,当\( k \)为负时,函数图象从左向右下降。
7. 已知一次函数\( y = 4x - 7 \)与\( x \)轴相交于点A,求点A的坐标为\( ( \frac{7}{4}, 0) \)。
8. 一次函数\( y = -x + 2 \)的\( y \)截距是\( 2 \),\( x \)截距是\( -2 \)。
9. 如果直线\( y = 6x + 5 \)经过点\( (1, 11) \),则该直线的斜率是\( 6 \)。
10. 一次函数\( y = 3x - 8 \)的图象与\( x \)轴相交于点B,求点B的\( x \)坐标为\( \frac{8}{3} \)。
三、解答题(每题20分,共70分)11. 已知一次函数\( y = mx + n \)的图象经过点\( (1, 5) \)和点\( (3, 9) \),求\( m \)和\( n \)的值。
一次函数应用题含答案

一次函数应用题含答案一次函数应用题含答案一、方案优化问题我市某乡A、B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨.现将这些柑桔运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨,A、B两村运往两仓库的柑桔运输费用分别为yA元和yB元.(1)请填写下表,并求出yA,yB与x之间的函数关系式;(2)试讨论A、B两村中,哪个村花的运费较少;(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元.在这种情况下,请问该怎样调运才能使两村运费之和最小?求出这个最小值.解:(1)yA=-5x+5000(0≤x≤200),yB=3x+4680(0≤x≤200).(2)当yA=yB时,-5x+5000=3x+4680,x=40;当yA>yB时,-5x+5000>3x+4680,x<40;当yA<yb时,-5x+5000<3x+4680,x style="padding: 0px; margin: 0px; font-family: Arial, 宋体; font-size: 14px; white-space: normal; background-color: rgb(255, 255, 255);">40.当x=40时,yA=yB即两村运费相等;当0≤x<40时,ya>yB即B村运费较少;当40<x≤200时,ya<yb即a村费用较少.(3)由yB≤4830得3x+4680≤4830∴x≤50设两村的运费之和为y,∴y=yA+yB.即:y=-2x+9680.又∵0≤x≤50时,y随x增大而减小,∴当x=50时,y有最小值,y最小值=9580(元).答:当由A村调往C仓库的柑桔重量为50吨、调往D仓库为150吨,由B村调往C仓库为190吨、调往D仓库110吨的时候,两村的运费之和最小,最小费用为9580元.要点提示:解答方案比较问题,求函数式时,对有图象的,多用待定系数法求;对没有给出图象的,直接依题意列式子;方案比较问题通常与不等式、方程相联系;比较方案,即比较同一自变量所对应的函数值,要将函数问题转化为方程、不等式问题;解答方案比较问题尤其要注意:不同的区间,对应的大小关系也多不同.二、利润最大化问题某个体小服装店主准备在夏季来临前,购进甲、乙两种T恤.两种T恤的相关信息如下表:根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.解:(1)设购进甲种T恤x件,则购进乙种T恤(100-x)件.可得,6195≤35x+70(100-x)≤6299.解得,20■≤x≤23.∵x为解集内的正整数,∴x=21,22,23.∴有三种进货方案:方案一:购进甲种T恤21件,购进乙种T恤79件;方案二:购进甲种T恤22件,购进乙种T恤78件;方案三:购进甲种T恤23件,购进乙种T恤77件.(2)设所获得利润为W元.W=30x+40(100-x)=-10x+4000.∵k=-10<0,∴W随x的增大而减小.∴当x=21时,W=3790.该店购进甲种T恤21件,购进乙种T恤79件时获利最大,最大利润为3790元.(3)购进甲种T恤9件、乙种T恤1件.要点提示:在一次函数y=kx+b中,x、y均可取一切实数.如果缩小x的取值范围,则其函数值就会出现最大值或最小值.求一次函数的最大值、最小值,一般都是采用“极端值法”,即用自变量的端点值,根据函数的增减性,对应求出函数的端点值(最值).三、行程问题从甲地到乙地,先是一段平路,然后是一段上坡路.小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间.假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图1中的折线OABCDE表示x与y之间的函数关系.(1)小明骑车在平路上的速度为 km/h;他途中休息了 h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?解:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15-5=10,小明骑车在下坡路的速度为:15+5=20.∴小明返回的时间为:(6.5-4.5)÷20+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1-0.5-0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意得4.5=0.3k1+b16.5=0.5k1+b1,解得:k1=10b1=1.5,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2x+b2,由题意得6.5=0.5k2+b24.5=0.6k2+b2,解得:k2=-20b2=16.5,∴y=-20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在坡路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意得10t+1.5=-20(t+0.15)+16.5,解得:t= 0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.要点提示:行程类一次函数试题以图象、点坐标相组合的形式呈现,灵活性强,对学生分析问题、解决问题的能力要求较高,重在考查学生的识图能力和创新意识.解决图象中的行程问题除了要掌握好路程、速度和时间三者之间的基本关系外,最重要的'是要学会从图象中获取信息,理清各变量之间的关系,然后根据题意选择适当的解题方法.四、分段计费问题已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为实施省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定若企业的月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收■元.若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.解:(1)设y关于x的函数关系式y=kx+b,∵直线y=kx+b经过点(50,200),(60,260)∴50k+b=20060k+b=260解得k=6b=-100∴y关于x的函数关系式是y=6x-100(x≥50);(2)由可知,当y=620时,x>50∴6x-100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x-100+■(x-80)=600,化简得x2+40x-14000=0解得:x1=100,x2=-140(不合题意,舍去).答:这家企业2014年3月份的用水量是100吨.要点提示:分段函数的特征是不同的自变量区间所对应的函数式不同,其函数图象是一个折线.解决分段计费问题,关键是要与所在的区间相对应.分段函数中“折点”既是两段函数的分界点,同时又分别在两段函数上,在求解析式时要用好“折点”坐标,同时在分析图象时还要注意“折点”所表示的实际意义,“折点”的纵坐标通常是不同区间的最值.2015年第3期《锐角三角函数》参考答案1.D;2.A;3.B;4.■;5.9■;6.2■;7.120;8. 解:(1)■-3tan30°+(π-4)0-(■)-1=2■-3×■+1-2=■-1(2)■(2cos45°-sin60°)+■=■(2×■-■)+■=2-■+■=29. 解:过点A作直线BC的垂线,垂足为D.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=240米,在Rt△ACD中,tan∠CAD=■,∴AD=■=■=80■,在Rt△ABD中,tan∠BAD=■,∴BD=ADtan30°=80■×■=80,∴BC=CD-BD=240-80=160. 答:这栋大楼的高为160米. 10.解:在Rt△CDB中,∠C=90°,BC=■=■=4,∴tan∠CBD=■.在Rt△ABC中,∠C=90°,AB=■=4■,∴sinA=■.。
一次函数的应用专项练习30题有答案

一次函数的应用专项练习30题(有答案)1.向一个空水池注水,水池蓄水量y(米3)与注水时间x(小时)之间的函数图象如图所示.(1)第20小时时蓄水量为_________ 米3;(2)水池最大蓄水量是_________ 米3;(3)求y与x之间的函数关系式.2.小王的父母经营一家饲料店,拟投入a元购入甲种饲料,现有两种方案:①如果月初出售这批甲种饲料可获利8%,并用本金和利润再购入乙种饲料,到月底售完又获利10%;②如果月底出售这批甲种饲料,可获利20%,但要付仓储费600元.(1)分别写出方案①、②获利金额的表达式;(2)请你根据小王父母投入资金的多少,定出可多获利的方案.3.某工厂现在年产值是15万元,计划以后每年增加2万元,设x年后的年产值为y(万元).(1)写出y与x之间的关系式;(2)用表格表示当x从0变化到5(每次增加1)y的对应值;(3)求10年后的年产值?4.我们知道海拔一定高度的山区气温随着海拔高度的增加而下降.小明暑假到去旅游,沿途他利用随身所带的测量仪器,测得以下数据:1400 1500 1600 1700 …海拔高度x(m)气温y(°C)32.00 31.40 30.80 30.20 …(1)现以海拔高度为x轴,气温为y轴建立平面直角坐标系,根据提供的数据描出各点;(2)已知y与x的关系是一次函数关系,求出这个关系式;(3)若小明到达天都峰时测得当时的气温是29.24°C.求天都峰的海拔高度.5.如图,l1,l2分别表示一种白炽灯和一种节能灯的费用y与照明时间x(h)的函数图象,假设两种灯的使用寿命都是2000h,照明效果一样.(费用=灯的售价+电费,单位:元)(1)根据图象分别求出l1,l2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?6.某物流公司的快递车和货车每天沿同一公路往返于A、B两地,快递车比货车多往返一趟.图表示快递车与货车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B 地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.(1)两车在途中相遇的次数为_________ 次;(直接填入答案)(2)求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时.7.某农户有一水池,容量为10立方米,中午12时打开进水管向水池注水,注满水后关闭水管同时打开出水管灌溉农作物,当水池中的水量减少到1立方米时,再次打开进水管向水池注水(此时出水管继续放水),直到再次注满水池后停止注水,并继续放水灌溉,直到水池中无水,水池中的水量y(单位:立方米)随时间x(从中午12时开始计时,单位:分钟)变化的图象如图所示,其中线段CD所在直线的表达式为y=﹣0.25x+33,线段OA所在直线的表达式为y=0.5x,假设进水管和出水管每分钟的进水量和出水量都是固定的.(1)求进水管每分钟的进水量;(2)求出水管每分钟的出水量;(3)求线段AB所在直线的表达式.8.为发展电信事业,方便用户,电信公司对移动采取不同的收费方式,其中“如意卡”无月租,每通话一分钟收费0.25元,“便民卡”收费信息如图(1)分别求出两种卡在某市围每月(30天)的通话时间x(分钟)与通话费y(元)之间的函数关系式.(2)请你帮助用户计算一下,在一个月使用哪种卡便宜.9.如图是甲、乙两人去某地的路程S(km)与时间t(h)之间的函数图象,请你解答下列问题:(1)甲去某地的平均速度是多少?(2)甲出发多长时间,甲、乙在途中相遇?10.如图,在甲、乙两同学进行400米跑步比赛中,路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OAB和线段OC,请根据图上信息回答下列问题:(1)_________ 先到达终点;(2)第_________ 秒时,_________ 追上_________ ;(3)比赛全程中,_________ 的速度始终保持不变;(4)写出优胜者在比赛过程中所跑的路程s(米)与时间t(秒)之间的函数关系式:_________ .11.甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)当x=2.8时,甲、乙两组共加工零件_________ 件;乙组加工零件总量a的值为_________ .(3)加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱?12.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象提供的信息解答下列问题:(1)甲队在0≤x≤6的时间段,挖掘速度为每小时_________ 米;乙队在2≤x≤6的时间段,挖掘速度为每小时_________ 米;请根据乙队在2≤x≤6的时间段开挖的情况填表:时间(h) 2 3 4 5 630 50乙队开挖河渠(m)(2)①请直接写出甲队在0≤x≤6的时间段,y甲与x之间的关系式;②根据(1)中的表中规律写出乙队在2≤x≤6的时间段,y乙与x之间的关系式;(3)在(1)的基础上,如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到每小时12米,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?13.百舟竞渡,激悄飞扬,端午节期间,龙舟比赛在九龙江举行.甲、乙两支龙舟队在比赛时的路程y(米)与时间x(分钟)的函数关系的图象如图所示,根据图象解答下列问题:(1)出发后1.5分钟,_________ 支龙舟队处于领先位置(填“甲”或“乙“);(2)_________ 支龙舟队先到达终点(填“甲“或“乙”),提前_________ 分钟到达;(3)求乙队加逨后,路程y(米)与时问分钟)之间的函数关系式,并写出自变x的取值围.14.在人才招聘会上,某公司承诺:录用后第一年的月工资为2000元,以后每年的月工资比上一年的月工资增加300元,一年按12个月计算.(1)如果某人在该公司连续工作x年,他在第x年后的月工资是y元,写出y与x的关系式.(2)如果这个人期望第五年的工资收入超过4万元,那么他是否应该在该公司应聘?15.褚向同学乘车从学校出发回家,他离家的路程y(km)与所用时间x(时)之间的关系如图所示.(1)求y与x之间的关系式;(2)求学校和褚向同学家的距离.16.某软件公司开发出一种图书管理软件,前期投入的各种费用总共50000元,之后每售出一套软件,软件公司还需支付安装调试费用200元,设销售套数x(套).(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.(2)该公司计划以400元每套的价格进行销售,并且公司仍要负责安装调试,试问:软件公司售出多少套软件时,收入超出总费用?17.甲和乙上山游玩,甲乘坐缆车,乙步行,两人相约在山顶的缆车终点会合.已知乙行走到缆车终点的路程是缆车到山顶的线路长的2倍,甲在乙出发后50min才乘上缆车,缆车的平均速度为180m/min.设乙出发xmin后行走的路程为ym.图中的折线表示乙在整个行走过程中y与x的函数关系.(1)乙行走的总路程是_________ m,他途中休息了_________ min.(2)①当50≤x≤80时,求y与x的函数关系式;②当甲到达缆车终点时,乙离缆车终点的路程是多少?18.经理到家果园里一次性采购一种水果,他俩商定:经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)如果采购量x满足20≤x≤40,求y与x之间的函数关系式;(2)已知家种植水果的成本是2 800元/吨,经理的采购量x满足20≤x≤40,那么当采购量为多少时,家在这次买卖中所获的利润w最大?最大利润是多少?19.某移动通讯公司开设了“全球通”和“神舟行”两种通讯业务,收费标准见下表:通讯业务月租费(元)通话费(元/分钟)全球通50 0.4神舟行0 0.6某用户一个月通话x分钟,“全球通”和“神舟行”的收费分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)在通话时间相同的情况下,你认为该用户应选择哪种通讯业务更为合算?20.某长途汽车客运站规定,乘客可以免费携带一定质量的行,但超过该质量则需交纳行费,已知行费y(元)是行质量x(千克)的一次函数.现在黄明带了60千克的行,交了行费5元,王华带了78千克的行,交了8元.(1)写出y与x之间的函数关系式;(2)旅客最多可以免费携带多少千克的行?21.某长途汽车客运站规定,乘客可免费携带一定质量的行,但超过该质量则需要购买行票,且行费y(元)是行质量x(千克)的一次函数,如图所示.(1)求y与x之间的函数关系式.(2)最多可免费携带多少质量的行?22.小明从A地出发向B地行走,同时小聪从B地出发向A地行走.如图所示,线段l1、l2分别表示小明、小聪离B地的距离y(km)与已用时间x(h)之间的关系.观察图象,回答以下问题:(1)出发_________ (h)后,小明与小聪相遇,此时两人距离B地_________ (km);(2)求小聪走1.2(h)时与B地的距离.23.某公司生产一种新产品,前期投资300万元,每生产1吨新产品还需其他投资0.3万元,如果生产这一产品的产量为x吨,每吨售价为0.5万元.(1)设生产新产品的总投资y1万元,试写出y1与x之间的函数关系式和定义域;(2)如果生产这一产品能盈利,且盈利为y2万元,求y2与x之间的函数关系式,并写出定义域;(3)请问当这一产品的产量为1800吨时,该公司的盈利为几万元?24.根据市场调查,某厂家决定生产一批产品投放市场,安排750名工人计划10天完成a件的生产量.(1)按计划,该厂平均每天应生产产品多少件?(用含a的式子表示)(2)该厂按计划生产几天后,该厂家又抽调了若干名工人支援生产,同时,通过技术革新等手段使每位工人的工作效率比原计划每位工人的工作效率提高25%,结果提前完成任务,图中折线表示实际工作情况.求厂家又抽调了多少名工人支援生产?25.某公司库存挖掘机16台,现在运往甲、乙两地支援建设,每运一台到甲、乙两地的费用分别是500元和300元.设运往甲地x台挖掘机,运这批挖掘机的总费用为y元.(1)写出y与x之间的函数关系式;(2)如果公司决定将这16台挖掘机平均分配给甲、乙两地,求此次运输的总费用;(3)如果公司决定按运输费用平均分配这16台挖掘机,求此时运输的总费用又是多少.26.A市和B市各有机床12台和6台,现运往C市10台,D市8台.若从A市运1台到C市、D市各需要4万元和8万元,从B市运1台到C市、D市各需要3万元和5万元.(1)设B市运往C市x台,求总费用y关于x的函数关系式;(2)若总费用不超过90万元,问共有多少种调运方法?(3)求总费用最低的调运方法,最低费用是多少万元?27.某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2060万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:A B成本(万元/套)25 28售价(万元/套)30 34(1)该公司如何建房获得利润最大?(2)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?(注:利润=售价﹣成本)28.某工厂研制一种新产品并投放市场,根据市场调查的信息得出这种新产品的日销售量y(万件)与销售的天数x(天)的关系如图所示.根据图象按下列要求作出分析:(1)求开始时,不断上升的日销售量y(万件)与销售天数x(天)的函数关系式;(2)已知销售一件产品获利0.9元,求在该产品日销售量不变期间的利润有多少万元.29.两种移动计费方式如下:全球通神州行月租费15元/月0本地通话费0.10元/分0.20元/分(1)一个月某用户在本地通话时间是x分钟,请你用含有x的式子分别写出两种计费方式下该用户应该支付的费用.(2)若某用户一个月本地通话时间是5个小时,你认为采用哪种方式较为合算?(3)小王想了解一下一个月本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下.30.为了学生的健康,学校课桌、课凳的高度都是按一定的关系科学设计的,小明对学校所添置的一批课桌、课凳进行观察研究,发现他们可以根据人的身长调节高度,于是,他测量了一套课桌、课凳上相对的四档高度,得到如下数据:档次/高度第一档第二档第三档第四档凳高x/cm 37.0 40.0 42.0 45.0桌高y/cm 70.0 74.8 78.0 82.8(1)小明经过数据研究发现,桌高y是凳高x的一次函数,请你求出这个一次函数的解析式(不要求写出x的取值围).(2)小明回家后,量了家里的写字台和凳子,凳子的高度是41厘米,写字台的高度是75厘米,请你判断它们是否配套.一次函数的应用30题参考答案:1.(1)由图形可知,当x=20时,y=1000,∴第20小时时蓄水量为1000米3.(2)由图形可知,当x=230时,y=4000,∴水池最大储水量为4000米3.(3)由图形可知,x=20为图象的拐点,①当0<x<20时:为正比例函数,设y1=kx1,过点(20,1000),∴k=50,∴y1=50x1,(0<x<20).②当20≤x ≤30时,设y2=k1x2+b,过点(20,1000)和(30,4000),∴代入方程式中,求解为k1=300,b=﹣5000,∴y2=300x2﹣5000,(20≤x≤30)2.(1)方案①获利a(1+8%)•(1+10%)﹣a=0.188a 方案②a•20%﹣600=0.2a﹣600(2)当0.188a=0.2a﹣600时,解得:a=50000.当a=50000元时,获利一样多;当a高于50000元时,第二种方案获利多一些;当a低于50000元时,第一种方案获利多一些3.(1)依题意,得y=15+2x;(2)列表如下:x 0 1 2 3 4 5y 15 17 19 21 23 25(3)当x=10时,y=15+2×10=35,即10年后的年产值为35万元4.(1)描点:(2)设解析式为y=kx+b,把点(1400,32),(1500,31.4)分别代入可得:,解得:,所以此一次函数关系式为:y=﹣x+40.4;(3)当y=29.24时,有:x+40.4=29.24,解得:x=,即山巅的海拔为:米5.(1)设l1、l2的解析式分别为y1=k1x+b1,y2=k2x+b2,由图象,得,,解得:,.故l1的解析式为:y1=x+2,l2的解析式为:y2=x+20(2)由题意,得x+2=x+20,解得x=1000.故当照明1000小时时两种灯的费用相等6.(1)由图象得:两车在途中相遇的次数为4次.故答案为:4;(2)由题意得:快递车的速度为:400÷4=100,货车的速度为:400÷8=50,∴200÷50=4,600÷100=6∴E(6,200),C(7,200).如图,设直线EF的解析式为y=k1x+b1,∵图象过(10,0),(6,200),∴,∴k1=﹣50,b1=500,∴y=﹣50x+500①.设直线CD的解析式为y=k2x+b2,∵图象过(7,200),(9,0),∴,∴k1=﹣100,b 1=900,∴y=﹣100x+900②.解由①,②组成的方程组得:,解得:,∴最后一次相遇时距离A地的路程为100km,货车从A 地出发了8小时.7.(1)∵线段OA所在直线的表达式为y=0.5x,∴x=1时,y=0.5,则求出进水管每分钟的进水量为0.5立方米.(2)∵线段CD所在直线的表达式为y=﹣0.25x+33,∴10=﹣0.25x+33,解得:x=92,0=﹣0.25x+33,解得:x=132,∵132﹣92=40(分钟),∴10÷40=0.25,则求出出水管每分钟的出水量为0.25立方米.(3)对于C来说,纵坐标为10,代入y=﹣0.25x+33中得:10=﹣0.25x+33,解得:x=92,点A的纵坐标为10,代入y=0.5x中得到x=20,故A(20,10),设从B到C经过了a分钟,则:(0.5﹣0.25)a=10﹣1=9,解得:a=36,∴B的横坐标为92﹣36=56,故B(56,1).设AB 解析式为y=kx+b(k≠0),将A,B坐标代入得:,解得:,即直线AB 解析式为8.(1)设便民卡每月的通话时间与费用之间的关系为y2=kx+b,根据图象得:,解得:,故使用如意卡每月的费用与时间之间的关系式为:y1=0.25x;“便民卡”y与x之间的函数关系式为:y2=0.2x+12.(2)当y1>y2时,0.25x>0.2x+12,解得:x>240;当y1=y2时,0.25x=0.2x+12,解得:x=240当y1<y2时,0.25x<0.2x+12,解得x<240.故当x<240时使用如意卡划算些,当x=240时,两种收费一样划算,当x>240时.使用便民卡划算些9.(1)利用图表得出甲所行驶的总路程为:30千米,行驶时间为:3小时,故甲去某地的平均速度是:30÷3=10千米/时;(2)由图象得出:直线CD经过点(3,30),(1,0)代入s=kt+b,得:,解得:,故直线CD解析式为:s=15t﹣15,由图象得出s=15千米时两人相遇,则15=15t﹣15,解得:t=2.故甲出发2小时,甲、乙在途中相遇10.依题意,得(1)乙先到达终点;(2)第40秒时,乙追上甲;(3)比赛全程中,乙的速度始终保持不变;(4)乙的速度为:400÷50=8,∴S=8t(0≤t≤50).故答案为:(1)乙;(2)40,乙,甲;(3)乙;(4)S=8t (0≤t≤50)11.(1)∵图象经过原点及(6,360),∴设解析式为:y=kx,∴6k=360,解得:k=60,∴y=60x(0<x≤6);(2)∵乙2小时加工100件,∴乙的加工速度是:每小时50件,∴2.8小时时两人共加工60×2.8+50×2=268(件),∴乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.∴更换设备后,乙组的工作速度是:每小时加工50×2=100件,a=100+100×(4.8﹣2.8)=300;(3)乙组加工的零件的个数y与时间x的函数关系式为y=50x(0≤x≤2)y=100(2<x≤2.8)y=100x﹣(2.8<x≤4.8)∵当2.8<x≤4.8时,60x+100x﹣=230×2,得x=4,∴再经过4小时恰好装满第2箱12.(1)甲:60÷6=10;乙:(50﹣30)÷(6﹣2)=20÷4=5;30+5(3﹣2)=35,30+5(4﹣2)=40,30+5(5﹣2)=45,∴表格容依次填35、40、45;(3分)(2)①∵甲图象经过点(0,0)(6,60),∴设y甲与x之间的关系式是y甲=ax,则6a=60,解得a=10,∴y甲与x之间的关系式是:y甲=10x,(5分)②∵图象经过点(2,30)(6,50),∴设y乙与x之间的关系式是y乙=kx+b,则,解得,∴y乙与x之间的关系式是:y乙=30+5(x﹣2)=5x+20;(7分)(3)设甲队从开挖到完工所挖河渠的长度为z米,由题意得=(9分)解得z=110,∴甲队从开挖到完工所挖河渠的长度为110米.13.(1)当x=1.5时,甲对应的函数图象在乙的图象的上方,所以甲支龙舟队处于领先位置.故答案为甲;(2)乙比赛用时4.5分,甲用时5分,所以乙支龙舟队先到达终点,比甲提前0.5分钟到达.故答案为乙,0.5;(3)设乙队加逨后,路程y(米)与时间(分钟)之间的函数关系式为y=kx+b,把(2,300)和(4.5,1050)代入得,2k+b=300,4.5k+b=1050,解得k=300,b=﹣300,∴y=300x﹣300(2≤x≤4.5)14.(1)由题意得y=2000+300(x﹣1)=1700+300x;(2)把x=5代入y=1700+300n=3200(元),3200×12=38400(元).∵38400元<40 000元,∴他不可以到该公司应聘15.(1)设y与x的关系式为y=kx+b,有函数的图象可知点(3,40),(5,0),则,解得:所以y与x的关系式为y=﹣20x+100;(2)当x=0时,y=100,所以学校与褚向同学的距离为100千米.16.(1)设总费用y(元)与销售套数x(套),根据题意得到函数关系式:y=50000+200x.(2)设软件公司至少要售出x套软件才能收入超出总费用,则有:400x>50000+200x解得:x>250.答:软件公司至少要售出251套软件才能收入超出总费用17.(1)由图象得:乙行走的总路程是:3600米,他途中休息了20分钟.故答案为:3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b.根据题意得:,解得:,∴y与x的函数关系式为:y=55x﹣800②缆车到山顶的路线长为3600÷2=1800(m),缆车到达终点所需时间为1800÷=10(min).甲到达缆车终点时,乙行走的时间为10+50=60(min).把x=60代入y=55x﹣800,得y=55×60﹣800=2500.所以,当甲到达缆车终点时,乙离缆车终点的路程是:3600﹣2500=1100(m)18.(1)当20≤x≤40时,设y与x之间的函数关系式:y=kx+b,∵当x=20时,y=8000,当x=40时,y=4000∴,,∴y=﹣200x+12000;(2)当20≤x≤40时,w=(y﹣2800)x=﹣200x2+9200x=﹣200(x﹣23)2+105800,∴当x=23时,w有最大值,是105800,当采购量为23吨时,家在这次买卖中所获的利润w最大,最大利润是105800元19.(1)利用图表直接得出:y1=0.4x+50;y2=0.6x;(2)当y1=y2,即0.4x+50=0.6x时,解得:x=250;当y1<y2,即0.4x+50<0.6x时,解得:x>250;当y1>y2,即0.4x+50>0.6x时,解得:x<250;答:通话时间为250分钟时,两种通讯业务一样,当通话时间为大于250分钟时,全球通业务合算,当通话时间为小于250分钟时,神舟行业务合算20.(1)设行费y(元)关于行质量x(千克)的一次函数关系式为y=kx+b,由题意得,解得k=,b=﹣5,∴该一次函数关系式为;(2)∵,解得x≤30,∴旅客最多可免费携带30千克的行.答:(1)行费y (元)关于行质量x(千克)的一次函数关系式为;(2)旅客最多可免费携带30千克的行21.(1)设一次函数y=kx+b,∵当x=60时,y=6,当x=80时,y=10,∴,解之,得,∴所求函数关系式为y=x﹣6(x≥30);(2)当y=0时,x﹣6=0,所以x=30,故旅客最多可免费携带30kg行.22.(1)由函数图象可以得出l1、l2的交点坐标是(0.6,2.4),故出发0.6小时后,小明与小聪相遇,此时两人距B地2.4,(2)设l2的解析式为y=kx,由题意,得2.4=0.6k,k=4则l2的解析式为y=4x.当x=1.2时,y=4.8答:小聪走1.2(h)时与B地的距离是4.8(km).故答案为:0.6,2.4.23.(1)由题意,得y1=0.3x+300,定义域为x>0.(2)由题意,得y2=0.5x﹣0.3x﹣300,y2=0.2x﹣300;定义域为x>1500;(3)当x=1800时,y2=0.2×1800﹣300=60.故当这一产品的产量为1800吨时,该公司的盈利为60万元24.(1)由题意,得该厂平均每天应生产产品的件数为:件,故答案为:;(2)设厂家又抽调了x名工人支援生产,由题意及图象得:×2+(1+25%)(750+x)×6=a,解得:x=50.答:厂家又抽调了50名工人支援生产25.(1)设运往甲地x台挖掘机,运这批挖掘机的总费用为y元,则:y=500x+300(16﹣x)=200x+4800;(2)当x=8时,y=200x+4800=1600+4800=6400;(3)依题意有500x=300(16﹣x),解得:x=6,当x=6时,y=200x+4800=1200+4800=6000.26.(1)设B市运往C市x台,则运往D市(6﹣x)台,A市运往C市(10﹣x)台,运往D市(x+2)台,由题意得:y=4(10﹣x)+8(x+2)+3x+5(6﹣x),y=2x+86.(2)由题意得:,解得:0≤x≤2,∵x为整数,∴x=0或1或2,∴有3种调运方案.当x=0时,从B市调往C市0台,调往D市6台.从A市调往C 市10台,调往D市2台,当x=1时,从B市调往C市1台,调往D市5台.从A市调往C 市9台,调往D市3台,当x=2时,从B市调往C市2台,调往D市4台.从A市调往C 市8台,调往D市4台,(3)∵y=2x+86.∴k=2>0,∴y随x的增大增大,∴当x最小为0时,y最小,∴运费最小的调运方案是:从B市调往C市0台,调往D市6台,从A市调往C市10台,调往D市2台.y最小=86万元27.(1)设建A型的住房x套,B型的住房(80﹣x)套,利润为y,根据题意得:,解得:48≤x≤50.利润y=(30﹣25)x+(34﹣28)(80﹣x)=480﹣x.∵y随x的增加而减小,∴x=48时利润最大,即建A型住房48套,B型住房32套.(2)利润y=480+(a﹣1)x.当a>1时,x=50时利润y最大,即建A型住房50套,B型住房30套.当a=1时,建A型住房48到50之间即可.当0<a<1时,x=48时利润最大,即建A型48套,建B型32套28.(1)设开始时,不断上升的日销售量y(万件)与销售天数x (天)的函数关系式为y=kx,由图象得:3=60k,k=,故y与x之间的函数关系式为:y=x(0≤x≤60);(2)由图象得日销售量不变期间的销量为:3万件.则利润为:3×0.9=2.7万元29.(1)全球通:15+0.1x,神州行:0.2x;(2)5小时=300分钟,全球通:15+0.1×300=45(元),神州行:0.2×300=60(元),∴应选择全球通;(3)∵两种计费方式的收费一样多,∴0.2x=15+0.1x,解得:x=150,答:一个月本地通话时间为150分钟时,两种计费方式的收费一样多30.(1)设一次函数的解析式为:y=kx+b,将x=37,y=70;x=42,y=78代入y=kx+b,得,解得,∴y=1.8x+10.8;(2)当x=41时,y=1.8×41+10.8=84.6,∴家里的写字台和凳子不配套.。
一次函数的应用 练习题(带答案

一次函数的应用 题集一、一次函数与实际应用(1)(2)(3)1.某周六上午小明从家出发,乘车小时到郊外某基地参加社会实践活动.在基地活动小时后,因家里有急事,他立即按原路以千米/时的平均速度步行返回,同时爸爸开车从家出发沿同一路线接他,在离家千米处与小明相遇.接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为小时,小明离家的路程(千米)与(小时)之间的函数图象如图所示.(小时)(千米)小明去基地乘车的平均速度是 千米/时,爸爸开车的平均速度是 千米/时.求线段所表示的函数关系式,不用写出自变量的取值范围.问小明能否在中午前回到家?若能,请说明理由;若不能,请算出中午时他离家的路程.【答案】(1)(2)(3) ;.不能在前回家,此时离家的距离为千米.【解析】(1)观察图象可知:小明去基地乘车小时后离基地的距离为千米,(2)(3)因此小明去基地乘车的平均速度是千米/小时;在返回时小明以千米/时的平均速度步行,行驶千米后遇到爸爸,∵两个人同时走,小明走了小时,即爸爸也走了小时,∴他爸爸在小时内行驶了千米,故爸爸开车的平均速度应是千米/小时.设线段所表示的函数关系式为,易得,,∴,解得,∴.小明从家出发到回家一共需要时间:(小时),从经过小时已经过了,∴不能在前回家,此时离家的距离:(千米).【标注】【知识点】函数图象与实际问题(1)(2)12(3)2.,两地相距千米,甲车从地出发匀速行驶到地,乙车从地出发匀速行驶到地.乙车行驶小时后,甲车出发,两车相向而行.设行驶时间为小时(),甲、乙两车离地的距离分别为,千米,,与之间的函数关系图象如图所示,根据图象解答下列问题:小时千米图小时千米图求,与的函数关系式.乙车出发几小时后,两车相遇?相遇时,两车离地多少千米?设行驶过程中,甲、乙两车之间的距离为千米,在图的直角坐标系中,已经画出了与之间的部分函数图象.图中点的坐标为,则.求与的函数关系式,并在图中补全整个过程中与之间的函数图象.【答案】(1)(2)12(3),.乙车出发小时后两车相遇,两车相遇时,两车相距地千米.当时,,当时,.画图见解析.【解析】(1)(2)12(3)设,,由图象可知,时,,时,,∴,,∴.由图象可知,,,时,,∴,,∴.故与的关系式分别为:,.两车相遇时,甲乙两车距地距离相等,∴,∴,∴.将代入中得.故乙车出发小时后两车相遇,两车相遇时,两车相距地千米.由图可知,乙车速度为(千米/小时).过程中甲车在地,乙车在行驶.时,甲乙两车相距千米.时,甲乙两车相距(千米).∴.由图可知,甲车速度为(千米/小时).由()可知甲乙两车在时相遇.∴当时,,当时,.,故整个过程中与函数图象如下图所示:小时千米【标注】【知识点】一元一次方程的行程问题-相遇问题(1)(2)(3)3.在一条直线上依次有、、三个港口,甲、乙两船同时分别从、港口出发,沿直线匀速驶向港,最终到达港.设甲、乙两船行驶后,与港的距离分别为、,、与的函数关系如图所示.甲乙填空:、两港口间的距离为 , .求图中点的坐标.若两船的距离不超过时能够相互望见,求甲、乙两船可以相互望见时的取值范围.【答案】(1)(2)(3); .或.【解析】(1)、两港口间距离,又由于甲船行驶速度不变,(2)(3)故,则.故答案为:;.由点求得,.当时,由点,求得,.当时,,解得,.此时.所以点的坐标为.根据题意知甲、乙两船的速度分别为小时、小时,①当时,根据题意可知甲船开始出发到达港这段时间,甲乙两船的距离从逐渐缩小,两船行驶时,乙船在甲船的前方:处,所以这段时间内,两船不能相互望见;②当时,乙船在甲船的前方(直至追上).依题意,,解得,即时,甲、乙两船可以相互望见;③当时,甲船在乙船的前方依题意,,解得,即时,甲、乙两船可以相互望见;④当时,甲船已经到达港,而乙船继续行驶向甲船靠近,依题意,,解得,即,甲、乙两船可以相互望见.综上所述,当或时,甲、乙两船可以相互望见.【标注】【知识点】一次函数的依据图象解决实际问题4.某地为了鼓励市民节约用水,采取阶梯分段收费标准,共分三个梯段,吨为基本段,吨为极限段,超过吨为较高收费段,且规定每月用水超过吨时,超过的部分每吨元,居民每月应交水费(元)是用水量(吨)的函数,其图象如图所示:(1)(2)(3)吨元求出基本段每吨水费,若某用户该月用水吨,问应交水费多少元?写出与的函数解析式.若某月一用户交水量元,则该用户用水多少吨?【答案】(1)(2)(3)元..吨.【解析】(1)(2)∵用水吨交水费元,∴基本段每吨水费元,∴若某用户该月用水吨,应交水费元.分三种情况:①当时,易得;②当时,设,∵,在直线上,∴,解得,∴;③当时,设,∵,在直线上,∴,解得,∴.综上所述,与的函数解析式为.(3)若某月一用户交水量元,设该用户用水吨.∵用水吨交水费元,用水吨交水费元,而,∴.由题意,得,解得.答:若某月一用户交水量元,则该用户用水吨.【标注】【能力】运算能力【知识点】一元一次方程的梯度计价问题【知识点】有理数乘除法与实际问题【知识点】一次函数与实际问题【思想】函数思想【思想】方程思想(1)(2)(3)5.某市按阶梯电价进行收费,阶梯电价收费标准为:若每月用电量为度及以下,收费标准为元/度,若每月用电量超过度,收费标准由两部分组成:①度按元/度收费,②超出度的部分按元/度收费.如果月用电量用(度)来表示,实付金额用(元)来表示,请分别写出这两种情况实付金额与月用电量之间的函数关系式.若小芳和小华家一个月的实际用电量分别为度和度,则实付金额分别为多少元?按照阶梯电价方案的规定,一居民家某月电费为元,请你计算这个家庭本月的实际用电量.【答案】(1)(2)(3).实付金额分别为元、元.这个家庭本月的实际用电量是度.【解析】(1)根据度时,按元/度收费,(2)(3)则当时,;根据超出度的部分按元/度收费得:当时,;故函数关系式为:.小芳家用电量是 度,则实付金额是:(元);小华家用电量是 度,则实付金额是:(元).答:实付金额分别为元、元.设这个家庭本月的实际用电量度,根据题意得:解得:,答:这个家庭本月的实际用电量是度.【标注】【知识点】一次函数与实际问题(1)(2)(3)6.在某次抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地需要台,乙地需要台;、两省获知情况后慷慨相助,分别捐赠该型号挖掘机台和台并将其全部调往灾区.如果从省调运一台挖掘机到甲地要耗资万元,到乙地要耗资万元;从省调运一台挖掘机到甲地要耗资万元,到乙地要耗资万元.设从省调往甲地台挖掘机,、两省将捐赠的挖掘机全部调往灾区共耗资万元.省捐赠台省捐赠台甲灾区需台乙灾区需台请直接写出与之间的函数关系式及自变量的取值范围.若要使总耗资不超过万元,有哪几种调运方案?怎样设计调运方案能使总耗资最少?最少耗资多少万元?【答案】(1)(2)(3)( ).两种.方案二可使总耗资最少为万元.【解析】(1)(2)(3) 省省台数(台)耗资(万元)台数(台)耗资(万元)甲区乙区或由上表可知化简得,又∵,,,∴自变量的取值范围为.,得,∵为整数且,∴,.∴调运方案有两种,如下列:方案一:甲乙方案二:甲乙由可知随的增大而减小,∴当时,,∴()问中的方案二可使总耗资最少为万元.【标注】【知识点】一次函数与实际问题(1)7.育才中学需要购置某种仪器,方案:到商家购买,每件元;方案:学校自己制作,每件元,另外需付制作工具的租用费元.设购置仪器件,方案与方案的费用(单位:元)分别为,.分别写出,的函数表达式.(2)(3)当购置仪器多少件时,两种方案的费用相同?若方案便宜,则仪器件数范围是多少?【答案】(1)(2)(3),.件..【解析】(1)(2)(3)(,且为整数),(,且为整数).依题意,得,即,解得,∴当购置的仪器为件时,两种方案的费用相同.∵,∴,解得.∴当需要的仪器件数为整数且时,选择方案便宜.【标注】【知识点】一次函数与实际问题【知识点】不等式组的方案选择问题二、一次函数与三角形面积(1)(2)8.已知一次函数的图象与轴交于点,且与正比例函数的图象相交于点,求:求点的坐标.求出这两个函数的图象与轴围成的的面积.【答案】(1)(2)..【解析】(1)(2)由题意知,,解得,,∴点的坐标为.令,则,∴,∴.【标注】【知识点】一次函数与面积(1)(2)9.如图,在平面直角坐标系中,直线与轴,轴分别交于、两点,且直线上所有点的坐标都是二元一次方程的解,直线与轴,轴分别交于、两点,且直线上所有点的坐标都是二元一次方程的解,直线与交于点.分别求出点,点的坐标.求四边形的面积.【答案】(1)(2),..【解析】(1)∵直线上所有点的坐标都是二元一次方程的解,∴当时,,(2)∴点的坐标为:,∵直线上所有点的坐标都是二元一次方程的解,∴时,,∴点的坐标为:.作轴于,,解得,∴点的坐标为,则四边形的面积四边形的面积的面积.【标注】【知识点】一次函数与面积10.在平面直角坐标系中,为坐标原点,已知及在第一象限的动点,且.则当时,点的坐标为 .【答案】【解析】∵,∴.∴∵∴.得:.∴,∴时,点坐标为.【标注】【知识点】一次函数与面积(1)(2)(3)(4)11.如图,直线的解析表达式为:,且与轴交于点,直线经过点、,直线,交于点.求点的坐标.求直线的解析表达式.求的面积.在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标.【答案】(1)(2)(3)(4).直线的解析表达式为...【解析】(1)(2)(3)由,令,得,∴,∴.设直线的解析表达式为,,由图象知:、,、,代入表达式,∴,∴,∴直线的解析表达式为.由,(4)∴,∴,∵,∴.与底边都是,面积相等所以高相等,高就是点到直线的距离,即纵坐标的绝对值,则到距离,∴纵坐标的绝对值,点不是点,∴点纵坐标是,∵,,∴,∴,∴.【标注】【知识点】公式法求面积12.如图直线与轴、轴分别交于、两点,以线段为边在第一象限内作等腰直角,且,如果在第二象限内有一点,且的面积与的面积相等,求的值.【答案】【解析】∵直线与轴、轴分别交于、两点,∴,,,∴,又∵,∴,解得.【标注】【知识点】一次函数与面积,,三、一次函数与线段最值(1)(2)13.如图,一次函数的图象与、轴分别交于点、.求该函数的解析式.为坐标原点,设、的中点分别为、,为上一动点,求的最小值,并求取得最小值时点的坐标.【答案】(1)(2),点坐标为.【解析】(1)(2)将、代入得,.∴解析式为:.设点关于点的对称点为,连接、,则.∴,即、、共线时,的最小值是.连接,在中,;易得点坐标为.【标注】【知识点】一次函数与轴对称最值问题14.直角坐标系中,有两个点,,在轴上找一个点,在轴上找一点,使四边形的周长最短,此时点的坐标为.【答案】【解析】如图设所在直线的表达式为.由于、在直线上,有解得∴所在直线表达式为,它与轴交于.【标注】【知识点】四边形周长最小15.在平面直角坐标系中,点,点,在轴上存在一个点,直线上存在点,使得四边形的周长最小,求满足条件的、两点的坐标.xy OABCD【答案】,.【解析】将点、分别关于轴,对称到、,直线与轴,的交点即为、点,求得直线的解析式为,得:,.故答案为:,.【标注】【知识点】一次函数与轴对称最值问题(1)(2)16.如图,在直角坐标系中,,,点是轴正半轴上的一个动点.当点到,两点的距离相等时,求点的坐标.当点到,两点的距离之和最小时,求点的坐标,并求出此时的值.【答案】(1)(2)..【解析】(1)如图作的中垂线与轴交于,过作轴于,∵,∴,,∵,∴,设,则,又∵,,,,(2)∴,即,,得,∴.如图,作关于轴对称点,连接交于,则即为所求,∵,∴且,设所在直线解析式为()代入,得,∴,∴直线,∴当,,∴,.【标注】【知识点】一次函数与轴对称最值问题17.如图,直线的函数表达式为,且与轴交于点,直线经过点且与交于点,已知点的横坐标是.(1)(2)求点和点的坐标.在轴上求点的坐标,使得最小.【答案】(1)(2),..【解析】(1)(2)对于直线,令,得到,∴,∵点的横坐标为,∴.作点关于轴的对称点,连接交轴于,此时的值最小,设最小的解析式为,则有,解得,∴直线的解析式为,∴.A. B.C.D.18.如图,在中,,,点在边上,且,点为的中点,点为边上的动点,当点在上移动时,使四边形周长最小的点的坐标为( ).【答案】C 【解析】∵在中,,,∴,,∵,点为的中点,∴,,∴,,作关于直线的对称点,连接交于,则此时,四边形周长最小,,∵直线的解析式为,设直线的解析式为,∴,解得:,∴直线的解析式为,解得,∴.故选.19.如图,已知点坐标为,点坐标为,在直线上有一点,满足轴,连接,,当线段位于何位置时,线段最短?求出的最小值,并求出点坐标.【答案】最小值是;点坐标为【解析】'坐标为,解析式为:,点坐标为,点坐标为,.【标注】【知识点】一次函数与轴对称最值问题,20.如图,平面直角坐标系中,已知点的坐标为,点的坐标为时,在轴上另取两点,,且.线段在轴上平移,线段平移至何处时,四边形的周长最小?求出此时点的坐标.【答案】.【解析】如图,过点作轴的平行线,并且在这条平行线上截取线段,使,作点关轴的对称点,连接,交轴于点,在轴上截取线段,则此时四边形的周长最小.∵,∴,∵,∴,设直线的解析式为,则,解得.∴直线的解析式为,当时,,解得.故线段平移至如图所示位置时,四边形的周长最小,此时点的坐标为,∴点的坐标为.【标注】【知识点】一次函数与轴对称最值问题(1)(2)(3)21.如图,一次函数的图象与轴和轴分别交于点和,再将沿直线对折,使点与点重合、直线与轴交于点,与交于点.点的坐标为 ,点的坐标为 .在直线上是否存在点使得的面积为?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.求的长度.【答案】(1)(2)(3) ;存在,或..【解析】(1)已知函数为,∴令,则,(2)(3)令,则,∴,.∵,,∴以为底,则的高为,即点到的距离为,又∵点在,∴,∴或,∴或.在折叠后,,所以.因为,设,,则.在中,,由勾股定理知,即,去括号得,整理得,解得.故.【标注】【知识点】一次函数与直角三角形结合。
一次函数的应用专项练习30题有答案

一次函数的应用专项练习30题(有答案)1.向一个空水池注水,水池蓄水量y(米3)与注水时间x(小时)之间的函数图象如图所示.(1)第20小时时蓄水量为_________ 米3;(2)水池最大蓄水量是_________ 米3;(3)求y与x之间的函数关系式.2.小王的父母经营一家饲料店,拟投入a元购入甲种饲料,现有两种方案:①如果月初出售这批甲种饲料可获利8%,并用本金和利润再购入乙种饲料,到月底售完又获利10%;②如果月底出售这批甲种饲料,可获利20%,但要付仓储费600元.(1)分别写出方案①、②获利金额的表达式;(2)请你根据小王父母投入资金的多少,定出可多获利的方案.3.某工厂现在年产值是15万元,计划以后每年增加2万元,设x年后的年产值为y(万元).(1)写出y与x之间的关系式;(2)用表格表示当x从0变化到5(每次增加1)y的对应值;(3)求10年后的年产值?4.我们知道海拔一定高度的山区气温随着海拔高度的增加而下降.小明暑假到去旅游,沿途他利用随身所带的测量仪器,测得以下数据:1400 1500 1600 1700 …海拔高度x(m)气温y(°C)32.00 31.40 30.80 30.20 …(1)现以海拔高度为x轴,气温为y轴建立平面直角坐标系,根据提供的数据描出各点;(2)已知y与x的关系是一次函数关系,求出这个关系式;(3)若小明到达天都峰时测得当时的气温是29.24°C.求天都峰的海拔高度.5.如图,l1,l2分别表示一种白炽灯和一种节能灯的费用y与照明时间x(h)的函数图象,假设两种灯的使用寿命都是2000h,照明效果一样.(费用=灯的售价+电费,单位:元)(1)根据图象分别求出l1,l2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?6.某物流公司的快递车和货车每天沿同一公路往返于A、B两地,快递车比货车多往返一趟.图表示快递车与货车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B 地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.(1)两车在途中相遇的次数为_________ 次;(直接填入答案)(2)求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时.7.某农户有一水池,容量为10立方米,中午12时打开进水管向水池注水,注满水后关闭水管同时打开出水管灌溉农作物,当水池中的水量减少到1立方米时,再次打开进水管向水池注水(此时出水管继续放水),直到再次注满水池后停止注水,并继续放水灌溉,直到水池中无水,水池中的水量y(单位:立方米)随时间x(从中午12时开始计时,单位:分钟)变化的图象如图所示,其中线段CD所在直线的表达式为y=﹣0.25x+33,线段OA所在直线的表达式为y=0.5x,假设进水管和出水管每分钟的进水量和出水量都是固定的.(1)求进水管每分钟的进水量;(2)求出水管每分钟的出水量;(3)求线段AB所在直线的表达式.8.为发展电信事业,方便用户,电信公司对移动采取不同的收费方式,其中“如意卡”无月租,每通话一分钟收费0.25元,“便民卡”收费信息如图(1)分别求出两种卡在某市围每月(30天)的通话时间x(分钟)与通话费y(元)之间的函数关系式.(2)请你帮助用户计算一下,在一个月使用哪种卡便宜.9.如图是甲、乙两人去某地的路程S(km)与时间t(h)之间的函数图象,请你解答下列问题:(1)甲去某地的平均速度是多少?(2)甲出发多长时间,甲、乙在途中相遇?10.如图,在甲、乙两同学进行400米跑步比赛中,路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OAB和线段OC,请根据图上信息回答下列问题:(1)_________ 先到达终点;(2)第_________ 秒时,_________ 追上_________ ;(3)比赛全程中,_________ 的速度始终保持不变;(4)写出优胜者在比赛过程中所跑的路程s(米)与时间t(秒)之间的函数关系式:_________ .11.甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)当x=2.8时,甲、乙两组共加工零件_________ 件;乙组加工零件总量a的值为_________ .(3)加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱?12.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象提供的信息解答下列问题:(1)甲队在0≤x≤6的时间段,挖掘速度为每小时_________ 米;乙队在2≤x≤6的时间段,挖掘速度为每小时_________ 米;请根据乙队在2≤x≤6的时间段开挖的情况填表:时间(h) 2 3 4 5 630 50乙队开挖河渠(m)(2)①请直接写出甲队在0≤x≤6的时间段,y甲与x之间的关系式;②根据(1)中的表中规律写出乙队在2≤x≤6的时间段,y乙与x之间的关系式;(3)在(1)的基础上,如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到每小时12米,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?13.百舟竞渡,激悄飞扬,端午节期间,龙舟比赛在九龙江举行.甲、乙两支龙舟队在比赛时的路程y(米)与时间x(分钟)的函数关系的图象如图所示,根据图象解答下列问题:(1)出发后1.5分钟,_________ 支龙舟队处于领先位置(填“甲”或“乙“);(2)_________ 支龙舟队先到达终点(填“甲“或“乙”),提前_________ 分钟到达;(3)求乙队加逨后,路程y(米)与时问分钟)之间的函数关系式,并写出自变x的取值围.14.在人才招聘会上,某公司承诺:录用后第一年的月工资为2000元,以后每年的月工资比上一年的月工资增加300元,一年按12个月计算.(1)如果某人在该公司连续工作x年,他在第x年后的月工资是y元,写出y与x的关系式.(2)如果这个人期望第五年的工资收入超过4万元,那么他是否应该在该公司应聘?15.褚向同学乘车从学校出发回家,他离家的路程y(km)与所用时间x(时)之间的关系如图所示.(1)求y与x之间的关系式;(2)求学校和褚向同学家的距离.16.某软件公司开发出一种图书管理软件,前期投入的各种费用总共50000元,之后每售出一套软件,软件公司还需支付安装调试费用200元,设销售套数x(套).(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.(2)该公司计划以400元每套的价格进行销售,并且公司仍要负责安装调试,试问:软件公司售出多少套软件时,收入超出总费用?17.甲和乙上山游玩,甲乘坐缆车,乙步行,两人相约在山顶的缆车终点会合.已知乙行走到缆车终点的路程是缆车到山顶的线路长的2倍,甲在乙出发后50min才乘上缆车,缆车的平均速度为180m/min.设乙出发xmin后行走的路程为ym.图中的折线表示乙在整个行走过程中y与x的函数关系.(1)乙行走的总路程是_________ m,他途中休息了_________ min.(2)①当50≤x≤80时,求y与x的函数关系式;②当甲到达缆车终点时,乙离缆车终点的路程是多少?18.经理到家果园里一次性采购一种水果,他俩商定:经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)如果采购量x满足20≤x≤40,求y与x之间的函数关系式;(2)已知家种植水果的成本是2 800元/吨,经理的采购量x满足20≤x≤40,那么当采购量为多少时,家在这次买卖中所获的利润w最大?最大利润是多少?19.某移动通讯公司开设了“全球通”和“神舟行”两种通讯业务,收费标准见下表:通讯业务月租费(元)通话费(元/分钟)全球通50 0.4神舟行0 0.6某用户一个月通话x分钟,“全球通”和“神舟行”的收费分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)在通话时间相同的情况下,你认为该用户应选择哪种通讯业务更为合算?20.某长途汽车客运站规定,乘客可以免费携带一定质量的行,但超过该质量则需交纳行费,已知行费y(元)是行质量x(千克)的一次函数.现在黄明带了60千克的行,交了行费5元,王华带了78千克的行,交了8元.(1)写出y与x之间的函数关系式;(2)旅客最多可以免费携带多少千克的行?21.某长途汽车客运站规定,乘客可免费携带一定质量的行,但超过该质量则需要购买行票,且行费y(元)是行质量x(千克)的一次函数,如图所示.(1)求y与x之间的函数关系式.(2)最多可免费携带多少质量的行?22.小明从A地出发向B地行走,同时小聪从B地出发向A地行走.如图所示,线段l1、l2分别表示小明、小聪离B地的距离y(km)与已用时间x(h)之间的关系.观察图象,回答以下问题:(1)出发_________ (h)后,小明与小聪相遇,此时两人距离B地_________ (km);(2)求小聪走1.2(h)时与B地的距离.23.某公司生产一种新产品,前期投资300万元,每生产1吨新产品还需其他投资0.3万元,如果生产这一产品的产量为x吨,每吨售价为0.5万元.(1)设生产新产品的总投资y1万元,试写出y1与x之间的函数关系式和定义域;(2)如果生产这一产品能盈利,且盈利为y2万元,求y2与x之间的函数关系式,并写出定义域;(3)请问当这一产品的产量为1800吨时,该公司的盈利为几万元?24.根据市场调查,某厂家决定生产一批产品投放市场,安排750名工人计划10天完成a件的生产量.(1)按计划,该厂平均每天应生产产品多少件?(用含a的式子表示)(2)该厂按计划生产几天后,该厂家又抽调了若干名工人支援生产,同时,通过技术革新等手段使每位工人的工作效率比原计划每位工人的工作效率提高25%,结果提前完成任务,图中折线表示实际工作情况.求厂家又抽调了多少名工人支援生产?25.某公司库存挖掘机16台,现在运往甲、乙两地支援建设,每运一台到甲、乙两地的费用分别是500元和300元.设运往甲地x台挖掘机,运这批挖掘机的总费用为y元.(1)写出y与x之间的函数关系式;(2)如果公司决定将这16台挖掘机平均分配给甲、乙两地,求此次运输的总费用;(3)如果公司决定按运输费用平均分配这16台挖掘机,求此时运输的总费用又是多少.26.A市和B市各有机床12台和6台,现运往C市10台,D市8台.若从A市运1台到C市、D市各需要4万元和8万元,从B市运1台到C市、D市各需要3万元和5万元.(1)设B市运往C市x台,求总费用y关于x的函数关系式;(2)若总费用不超过90万元,问共有多少种调运方法?(3)求总费用最低的调运方法,最低费用是多少万元?27.某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2060万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:A B成本(万元/套)25 28售价(万元/套)30 34(1)该公司如何建房获得利润最大?(2)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?(注:利润=售价﹣成本)28.某工厂研制一种新产品并投放市场,根据市场调查的信息得出这种新产品的日销售量y(万件)与销售的天数x(天)的关系如图所示.根据图象按下列要求作出分析:(1)求开始时,不断上升的日销售量y(万件)与销售天数x(天)的函数关系式;(2)已知销售一件产品获利0.9元,求在该产品日销售量不变期间的利润有多少万元.29.两种移动计费方式如下:全球通神州行月租费15元/月0本地通话费0.10元/分0.20元/分(1)一个月某用户在本地通话时间是x分钟,请你用含有x的式子分别写出两种计费方式下该用户应该支付的费用.(2)若某用户一个月本地通话时间是5个小时,你认为采用哪种方式较为合算?(3)小王想了解一下一个月本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下.30.为了学生的健康,学校课桌、课凳的高度都是按一定的关系科学设计的,小明对学校所添置的一批课桌、课凳进行观察研究,发现他们可以根据人的身长调节高度,于是,他测量了一套课桌、课凳上相对的四档高度,得到如下数据:档次/高度第一档第二档第三档第四档凳高x/cm 37.0 40.0 42.0 45.0桌高y/cm 70.0 74.8 78.0 82.8(1)小明经过数据研究发现,桌高y是凳高x的一次函数,请你求出这个一次函数的解析式(不要求写出x的取值围).(2)小明回家后,量了家里的写字台和凳子,凳子的高度是41厘米,写字台的高度是75厘米,请你判断它们是否配套.一次函数的应用30题参考答案:1.(1)由图形可知,当x=20时,y=1000,∴第20小时时蓄水量为1000米3.(2)由图形可知,当x=230时,y=4000,∴水池最大储水量为4000米3.(3)由图形可知,x=20为图象的拐点,①当0<x<20时:为正比例函数,设y1=kx1,过点(20,1000),∴k=50,∴y1=50x1,(0<x<20).②当20≤x ≤30时,设y2=k1x2+b,过点(20,1000)和(30,4000),∴代入方程式中,求解为k1=300,b=﹣5000,∴y2=300x2﹣5000,(20≤x≤30)2.(1)方案①获利a(1+8%)•(1+10%)﹣a=0.188a 方案②a•20%﹣600=0.2a﹣600(2)当0.188a=0.2a﹣600时,解得:a=50000.当a=50000元时,获利一样多;当a高于50000元时,第二种方案获利多一些;当a低于50000元时,第一种方案获利多一些3.(1)依题意,得y=15+2x;(2)列表如下:x 0 1 2 3 4 5y 15 17 19 21 23 25(3)当x=10时,y=15+2×10=35,即10年后的年产值为35万元4.(1)描点:(2)设解析式为y=kx+b,把点(1400,32),(1500,31.4)分别代入可得:,解得:,所以此一次函数关系式为:y=﹣x+40.4;(3)当y=29.24时,有:x+40.4=29.24,解得:x=,即山巅的海拔为:米5.(1)设l1、l2的解析式分别为y1=k1x+b1,y2=k2x+b2,由图象,得,,解得:,.故l1的解析式为:y1=x+2,l2的解析式为:y2=x+20(2)由题意,得x+2=x+20,解得x=1000.故当照明1000小时时两种灯的费用相等6.(1)由图象得:两车在途中相遇的次数为4次.故答案为:4;(2)由题意得:快递车的速度为:400÷4=100,货车的速度为:400÷8=50,∴200÷50=4,600÷100=6∴E(6,200),C(7,200).如图,设直线EF的解析式为y=k1x+b1,∵图象过(10,0),(6,200),∴,∴k1=﹣50,b1=500,∴y=﹣50x+500①.设直线CD的解析式为y=k2x+b2,∵图象过(7,200),(9,0),∴,∴k1=﹣100,b 1=900,∴y=﹣100x+900②.解由①,②组成的方程组得:,解得:,∴最后一次相遇时距离A地的路程为100km,货车从A 地出发了8小时.7.(1)∵线段OA所在直线的表达式为y=0.5x,∴x=1时,y=0.5,则求出进水管每分钟的进水量为0.5立方米.(2)∵线段CD所在直线的表达式为y=﹣0.25x+33,∴10=﹣0.25x+33,解得:x=92,0=﹣0.25x+33,解得:x=132,∵132﹣92=40(分钟),∴10÷40=0.25,则求出出水管每分钟的出水量为0.25立方米.(3)对于C来说,纵坐标为10,代入y=﹣0.25x+33中得:10=﹣0.25x+33,解得:x=92,点A的纵坐标为10,代入y=0.5x中得到x=20,故A(20,10),设从B到C经过了a分钟,则:(0.5﹣0.25)a=10﹣1=9,解得:a=36,∴B的横坐标为92﹣36=56,故B(56,1).设AB 解析式为y=kx+b(k≠0),将A,B坐标代入得:,解得:,即直线AB 解析式为8.(1)设便民卡每月的通话时间与费用之间的关系为y2=kx+b,根据图象得:,解得:,故使用如意卡每月的费用与时间之间的关系式为:y1=0.25x;“便民卡”y与x之间的函数关系式为:y2=0.2x+12.(2)当y1>y2时,0.25x>0.2x+12,解得:x>240;当y1=y2时,0.25x=0.2x+12,解得:x=240当y1<y2时,0.25x<0.2x+12,解得x<240.故当x<240时使用如意卡划算些,当x=240时,两种收费一样划算,当x>240时.使用便民卡划算些9.(1)利用图表得出甲所行驶的总路程为:30千米,行驶时间为:3小时,故甲去某地的平均速度是:30÷3=10千米/时;(2)由图象得出:直线CD经过点(3,30),(1,0)代入s=kt+b,得:,解得:,故直线CD解析式为:s=15t﹣15,由图象得出s=15千米时两人相遇,则15=15t﹣15,解得:t=2.故甲出发2小时,甲、乙在途中相遇10.依题意,得(1)乙先到达终点;(2)第40秒时,乙追上甲;(3)比赛全程中,乙的速度始终保持不变;(4)乙的速度为:400÷50=8,∴S=8t(0≤t≤50).故答案为:(1)乙;(2)40,乙,甲;(3)乙;(4)S=8t (0≤t≤50)11.(1)∵图象经过原点及(6,360),∴设解析式为:y=kx,∴6k=360,解得:k=60,∴y=60x(0<x≤6);(2)∵乙2小时加工100件,∴乙的加工速度是:每小时50件,∴2.8小时时两人共加工60×2.8+50×2=268(件),∴乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.∴更换设备后,乙组的工作速度是:每小时加工50×2=100件,a=100+100×(4.8﹣2.8)=300;(3)乙组加工的零件的个数y与时间x的函数关系式为y=50x(0≤x≤2)y=100(2<x≤2.8)y=100x﹣(2.8<x≤4.8)∵当2.8<x≤4.8时,60x+100x﹣=230×2,得x=4,∴再经过4小时恰好装满第2箱12.(1)甲:60÷6=10;乙:(50﹣30)÷(6﹣2)=20÷4=5;30+5(3﹣2)=35,30+5(4﹣2)=40,30+5(5﹣2)=45,∴表格容依次填35、40、45;(3分)(2)①∵甲图象经过点(0,0)(6,60),∴设y甲与x之间的关系式是y甲=ax,则6a=60,解得a=10,∴y甲与x之间的关系式是:y甲=10x,(5分)②∵图象经过点(2,30)(6,50),∴设y乙与x之间的关系式是y乙=kx+b,则,解得,∴y乙与x之间的关系式是:y乙=30+5(x﹣2)=5x+20;(7分)(3)设甲队从开挖到完工所挖河渠的长度为z米,由题意得=(9分)解得z=110,∴甲队从开挖到完工所挖河渠的长度为110米.13.(1)当x=1.5时,甲对应的函数图象在乙的图象的上方,所以甲支龙舟队处于领先位置.故答案为甲;(2)乙比赛用时4.5分,甲用时5分,所以乙支龙舟队先到达终点,比甲提前0.5分钟到达.故答案为乙,0.5;(3)设乙队加逨后,路程y(米)与时间(分钟)之间的函数关系式为y=kx+b,把(2,300)和(4.5,1050)代入得,2k+b=300,4.5k+b=1050,解得k=300,b=﹣300,∴y=300x﹣300(2≤x≤4.5)14.(1)由题意得y=2000+300(x﹣1)=1700+300x;(2)把x=5代入y=1700+300n=3200(元),3200×12=38400(元).∵38400元<40 000元,∴他不可以到该公司应聘15.(1)设y与x的关系式为y=kx+b,有函数的图象可知点(3,40),(5,0),则,解得:所以y与x的关系式为y=﹣20x+100;(2)当x=0时,y=100,所以学校与褚向同学的距离为100千米.16.(1)设总费用y(元)与销售套数x(套),根据题意得到函数关系式:y=50000+200x.(2)设软件公司至少要售出x套软件才能收入超出总费用,则有:400x>50000+200x解得:x>250.答:软件公司至少要售出251套软件才能收入超出总费用17.(1)由图象得:乙行走的总路程是:3600米,他途中休息了20分钟.故答案为:3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b.根据题意得:,解得:,∴y与x的函数关系式为:y=55x﹣800②缆车到山顶的路线长为3600÷2=1800(m),缆车到达终点所需时间为1800÷=10(min).甲到达缆车终点时,乙行走的时间为10+50=60(min).把x=60代入y=55x﹣800,得y=55×60﹣800=2500.所以,当甲到达缆车终点时,乙离缆车终点的路程是:3600﹣2500=1100(m)18.(1)当20≤x≤40时,设y与x之间的函数关系式:y=kx+b,∵当x=20时,y=8000,当x=40时,y=4000∴,,∴y=﹣200x+12000;(2)当20≤x≤40时,w=(y﹣2800)x=﹣200x2+9200x=﹣200(x﹣23)2+105800,∴当x=23时,w有最大值,是105800,当采购量为23吨时,家在这次买卖中所获的利润w最大,最大利润是105800元19.(1)利用图表直接得出:y1=0.4x+50;y2=0.6x;(2)当y1=y2,即0.4x+50=0.6x时,解得:x=250;当y1<y2,即0.4x+50<0.6x时,解得:x>250;当y1>y2,即0.4x+50>0.6x时,解得:x<250;答:通话时间为250分钟时,两种通讯业务一样,当通话时间为大于250分钟时,全球通业务合算,当通话时间为小于250分钟时,神舟行业务合算20.(1)设行费y(元)关于行质量x(千克)的一次函数关系式为y=kx+b,由题意得,解得k=,b=﹣5,∴该一次函数关系式为;(2)∵,解得x≤30,∴旅客最多可免费携带30千克的行.答:(1)行费y (元)关于行质量x(千克)的一次函数关系式为;(2)旅客最多可免费携带30千克的行21.(1)设一次函数y=kx+b,∵当x=60时,y=6,当x=80时,y=10,∴,解之,得,∴所求函数关系式为y=x﹣6(x≥30);(2)当y=0时,x﹣6=0,所以x=30,故旅客最多可免费携带30kg行.22.(1)由函数图象可以得出l1、l2的交点坐标是(0.6,2.4),故出发0.6小时后,小明与小聪相遇,此时两人距B地2.4,(2)设l2的解析式为y=kx,由题意,得2.4=0.6k,k=4则l2的解析式为y=4x.当x=1.2时,y=4.8答:小聪走1.2(h)时与B地的距离是4.8(km).故答案为:0.6,2.4.23.(1)由题意,得y1=0.3x+300,定义域为x>0.(2)由题意,得y2=0.5x﹣0.3x﹣300,y2=0.2x﹣300;定义域为x>1500;(3)当x=1800时,y2=0.2×1800﹣300=60.故当这一产品的产量为1800吨时,该公司的盈利为60万元24.(1)由题意,得该厂平均每天应生产产品的件数为:件,故答案为:;(2)设厂家又抽调了x名工人支援生产,由题意及图象得:×2+(1+25%)(750+x)×6=a,解得:x=50.答:厂家又抽调了50名工人支援生产25.(1)设运往甲地x台挖掘机,运这批挖掘机的总费用为y元,则:y=500x+300(16﹣x)=200x+4800;(2)当x=8时,y=200x+4800=1600+4800=6400;(3)依题意有500x=300(16﹣x),解得:x=6,当x=6时,y=200x+4800=1200+4800=6000.26.(1)设B市运往C市x台,则运往D市(6﹣x)台,A市运往C市(10﹣x)台,运往D市(x+2)台,由题意得:y=4(10﹣x)+8(x+2)+3x+5(6﹣x),y=2x+86.(2)由题意得:,解得:0≤x≤2,∵x为整数,∴x=0或1或2,∴有3种调运方案.当x=0时,从B市调往C市0台,调往D市6台.从A市调往C 市10台,调往D市2台,当x=1时,从B市调往C市1台,调往D市5台.从A市调往C 市9台,调往D市3台,当x=2时,从B市调往C市2台,调往D市4台.从A市调往C 市8台,调往D市4台,(3)∵y=2x+86.∴k=2>0,∴y随x的增大增大,∴当x最小为0时,y最小,∴运费最小的调运方案是:从B市调往C市0台,调往D市6台,从A市调往C市10台,调往D市2台.y最小=86万元27.(1)设建A型的住房x套,B型的住房(80﹣x)套,利润为y,根据题意得:,解得:48≤x≤50.利润y=(30﹣25)x+(34﹣28)(80﹣x)=480﹣x.∵y随x的增加而减小,∴x=48时利润最大,即建A型住房48套,B型住房32套.(2)利润y=480+(a﹣1)x.当a>1时,x=50时利润y最大,即建A型住房50套,B型住房30套.当a=1时,建A型住房48到50之间即可.当0<a<1时,x=48时利润最大,即建A型48套,建B型32套28.(1)设开始时,不断上升的日销售量y(万件)与销售天数x (天)的函数关系式为y=kx,由图象得:3=60k,k=,故y与x之间的函数关系式为:y=x(0≤x≤60);(2)由图象得日销售量不变期间的销量为:3万件.则利润为:3×0.9=2.7万元29.(1)全球通:15+0.1x,神州行:0.2x;(2)5小时=300分钟,全球通:15+0.1×300=45(元),神州行:0.2×300=60(元),∴应选择全球通;(3)∵两种计费方式的收费一样多,∴0.2x=15+0.1x,解得:x=150,答:一个月本地通话时间为150分钟时,两种计费方式的收费一样多30.(1)设一次函数的解析式为:y=kx+b,将x=37,y=70;x=42,y=78代入y=kx+b,得,解得,∴y=1.8x+10.8;(2)当x=41时,y=1.8×41+10.8=84.6,∴家里的写字台和凳子不配套.。
一次函数实际应用题_含答案

一次函数实际应用问题练习1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y(百元)关于观众人数x(百人)的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)1、解:⑴由图象可知:当0≤x≤10时,设y关于x的函数解析y=kx-100,∵(10,400)在y=kx-100上,∴400=10k-100,解得k=50∴y=50x-100,s=100x-(50x-100),∴s=50x+100⑵当10<x≤20时,设y关于x的函数解析式为y=mx+b,∵(10,350),(20,850)在y=mx+b上,∴ 10m+b=350 解得 m=5020m+b=850 b=-150∴y=50x-150 ∴s=100x-(50x-150)-50∴s=50x+100∴y= 50x-100 (0≤x≤10)50x-150 (10<x≤20)令y=360 当0≤x≤10时,50x-100=360 解得x=9.2 s=50x+100=50×9.2+100=560 当10<x≤20时,50x-150=360解得x=10.2 s=50x+100=50×10.2+100=610。
要使这次表演会获得36000元的毛利润.要售出920张或1020张门票,相应支付的成本费用分别为56000元或61000元。
2甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:⑴分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量的取值范围)⑵当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;⑶在⑵的条件下,设乙同学从A点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙同学相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米?12623S(千米)t(小时)CD EF B甲乙2、解:⑴设甲、乙两同学登山过程中,路程s (千米)与时间t (时)的函数解析式分别为s 甲=k 1t ,s 乙=k 2t 。
《一次函数的应用》典型例题

《一次函数图像的应用》典型例题例 1 某气象研究中心观测一场沙尘暴从发生到结束的全过程。
开始时风速平均每小时增加 2 千米 /时,4 小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加 4 千米 /时。
一段时间,风速保持不变。
当沙尘暴遇到绿色植被区时,其风速平均每小时减少 1 千米 /时,最终停止。
结合风速与时间的图像,回答下列问题:(1)在 y 轴()内填入相应的数值;(2)沙尘暴从发生到结束,共经过多少小时?(3)求出当 x 25 时,风速 y(千米 /时)与时间 x(小时)之间的函数关系式。
例2 某批发商欲将一批海产品由A 地运往B 地.汽车货运公司和铁路货运公司均开办海产品运输业务.已知运输路程为120 千米,汽车和火车的速度分别为60 千米 /时、 100 千米 /时.两货运公司的收费项目及收费标准如下表所示:运输工具运输费单冷藏费单价过路费(元)装卸及管理费(元 /吨·千米)(元 /吨·小时)(元)汽车252000火车 1.8501600注:“元 /吨·千米”表示每吨货物每千米的运费,“元 /吨·小时”表示每吨货物每小时的冷藏费.(1)设该批发商待运的海产品有 x(吨),汽车货运公司和铁路货运公司所要收取的费用分别为 y1(元)和 y2(元),试求 y1与 y2与x的函数关系式;(2)若该批发商待运的海产品不少于30 吨,为节省运费,他应该选择哪个货运公司承担运输业务?例 3 某市 20 位下岗职工在近郊承包了 50 亩土地,这些地可种蔬菜、烟叶或小麦,种这几种农作物每亩所需职工数和产值预测如下表:蔬菜烟叶小麦每亩地所需职工数111 234每亩地预计产值1100750600请你设计一个种植方案,使每亩地都种上农作物, 20 位职工都有工作,且使农作物预计总产值最多.例4 下表所示为装运甲、乙、丙三种蔬菜的重量及利润,某汽车公司计划装运甲、乙、丙三种蔬菜到外地销售(每辆汽车按规定满载,并且每辆汽车只能装一种蔬菜).甲乙丙每辆汽车能满载的吨数21 1.5每吨蔬菜可获利润(百元)574(1)若用 8 辆汽车装运乙、丙两种蔬菜11 吨到 A 地销售,问装运乙、丙两种蔬菜的汽车各多少辆?(2)公司计划用 20 辆汽车装运甲、乙、丙三种蔬菜36 吨到 B 地销售(每种蔬菜不少于一车),如何装运,可使公司获得最大利润?最大利润是多少?例 5我省某水果种植场今年喜获丰收,据估计,可收获荔枝和芒果共200吨.按合同,每吨荔枝售价为人民币 0.3 万元,每吨芒果售价为人民币 0.5 万元.现设销售这两种水果的总收入为人民币 y 万元,荔枝的产量为 x 吨( 0<x<200).(1)请写出 y 关于 x 的函数关系式;(2)若估计芒果产量不小于荔枝和芒果总产量的 20%,但不大于 60%,请求出 y 值的范围.例 6 A 市和 B 市分别有某种库存机器12 台和 6 台,现决定支援 C 村 10 台,D 村 8 台.已知从 A 市调运一台机器到 C 村和 D 村的运费分别是 400 元和 800 元,从 B 市调运一台机器到 C 村和 D 村的运费分别是 300 元和 500 元.(1)设 B 市运往 C 村机器x台,求总运费 W (元)关于x的函数关系式;(2)若要求总运费不超过9000 元,共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?参考答案例 1 分析 (1)沙尘暴开始时,风速平均每小时增加 2 千米,那么 4 小时后,风速达到 8 千米,后来的 6 个小时中,风速每小时增加 4 千米,那么 6 个小时风速增加 24 千米,达到 32 千米 /时,后来风速平均每小时减少 1 千米,那么已达到 32 千米 /时的沙尘暴要 32 个小时才平息。
一次函数应用题(习题及答案)

一次函数应用题(习题及答案)一次函数应用题(习题及答案)题一:某手机品牌每月销售量与售价之间存在一次函数关系,已知售价为3000元时销售量为4000台,售价为5000元时销售量为3000台,请问每增加一台售价,销售量减少多少台?解析:这是一个典型的一次函数应用题。
首先,我们可以设定售价为x元,销售量为y台。
根据题目已知条件,可以列出两个点的坐标:(3000, 4000)和(5000, 3000)。
根据一次函数的一般式y = kx + b,可以得到方程组:4000 = 3000k + b -------(1)3000 = 5000k + b -------(2)通过解方程组,可以求解出k和b的值,从而确定函数关系。
首先,我们用(1)式减去(2)式,消去b的项,得到:1000 = -2000k解得k = -1/2。
将k的值代入(1)式或(2)式,可解得b = 7000/2 = 3500。
因此,该函数的函数关系为:y = -1/2x + 3500。
根据函数关系,我们可以计算每增加一台售价,销售量减少的台数。
由于每增加一台售价,x的变化量为1,代入函数关系,得到y的变化量为-1/2。
因此,每增加一台售价,销售量减少的台数为1/2台。
答案:每增加一台售价,销售量减少0.5台。
题二:一家电商公司将某商品的售价从每件100元提高到120元后,销售量下降了25%。
求原来的每件商品的销售量。
解析:这同样是一个一次函数的应用题。
我们可以设定原售价为x 元,销售量为y件。
根据题目已知条件,可以得到两个点的坐标:(100, y)和(120, 0.75y)(销售量下降25%相当于销售量的0.75倍)。
根据一次函数的一般式y = kx + b,可以得到方程组:y = 100k + b -------(1)0.75y = 120k + b -------(2)通过解方程组,我们可以求解出k和b的值,从而确定函数关系。
将(1)式代入(2)式,得到:0.75(100k + b) = 120k + b化简可得:75k + 0.75b = 120k + b整理得:0.25b = 45k解得:k = 0.25b/45将k的值代入(1)式,解得b = 11y/12因此,该函数的函数关系为:y = (0.25b/45)x + (11y/12)由于题目求解的是原来的每件商品的销售量,即求解y的值。
一次函数应用题(习题及答案)

一次函数应用题(习题)例题示范例1:一辆警车在高速公路的A 处加满油,以每小时60 千米的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y(升)与行驶时间x(小时)之间的函数关系图象是如图所示的直线l 的一部分.(1)求直线l 的函数表达式;(2)如果警车要回到 A 处,且要求警车中的余油量不能少于10 升,那么警车可以行驶到离A 处的最远距离是多少?y/升5442-1 O解:(1)∵(1,54),(3,42)∴l:y =-6x + 60(2)由y =-6x + 60 得,当y=10 时,x =2531 2 3 4 x/小时∴警车可以行驶到离 A 处的最远距离是25⨯ 60 ⨯1= 250 (千米)3 2答:直线l 的函数关系式为y =-6x + 60 ,警车可以行驶到离A 处的最远距离是250 千米.巩固练习1.李老师开车从甲地到相距240 千米的乙地,油箱剩余油量y(升)与行驶里程x(千米)之间的函数关系如图所示.(1)求y 与x 之间的函数关系式(不必注明自变量x 的取值范围);(2)李老师到达乙地时油箱剩余油量是多少?3.52.5O160 x/千米2.某校食堂有一太阳能热水器,其水箱的最大蓄水量为 1 000升,往空水箱中注水,在没有放水的情况下,水箱的蓄水量y(升)与匀速注水时间x(分钟)之间的关系如图所示.(1)求y 与x 之间的函数关系式;(2)若水箱中原有水400 升,则按上述速度注水15 分钟,能否将水箱注满?240 180 120 60 O y/升2 4 68 x/分钟3.如图,折线AB-BC 是某市区出租车所收费用y(元)与出租车行驶路程x(km)之间的函数关系图象.(1)当x≥2 时,求y 与x 之间的函数关系式;(2)若某人付车费15.6 元,则出租车行驶了多少千米?4.我国西南五省市的部分地区发生严重旱灾,为鼓励节约用水,某市自来水公司采取分段收费标准.每月收取的水费y(元)与用水量x(吨)之间的函数关系如图所示.(1)若小明家五月份用水8 吨,则应交水费元;(2)按上述分段收费标准,若小明家三、四月份分别交水费26 元、18 元,则四月份比三月份节约用水多少吨?5.小敏从A 地出发,向B 地行走,小聪从B 地同时出发,向A地行走.如图,相交于点P 的两条线段l1,l2 分别表示小敏、小聪离B 地的距离y(km)与已用时间x(h)之间的函数关系,则当小敏、小聪两人相距7km 时,x 的值为多少?6.高铁的开通,给衢州市民出行带来了极大的方便,“五一”期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1 小时后,颖颖乘坐高铁从衢州出发,先到杭州火车站,然后再转车出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,乐乐和颖颖离衢州的距离分别为y1,y2(km),与乘车时间x(h)的关系如图所示.请结合图象解决下面问题:(1)当1≤x≤2 时,求颖颖离开衢州的距离y2 与乘车时间x 之间的函数关系式;(2)当颖颖达到杭州火车东站时,乐乐距离游乐园还有多少千米?y(千米)240 216 杭州火车站游乐园私家车高铁出租车O 1 1.5 2x(小时)思考小结1.从应用题处理框架的角度来回顾一次函数应用题:①理解题意,梳理信息通过看轴、点、线,把和对应起来.②建立一次函数模型首先确定一次函数表达式,并把所求目标转化为,然后借助一次函数表达式进行求解.③结合实际意义进行验证2.结合下图梳理本章知识,并回答下列问题.实际问题分析变量之间的关系建立数学模型函数关键点坐标k的实际意义表达式实际问题的答案用函数工具处理、求解结合实际情况验证结果一次函数图象y=kx+b(k≠0)性质计算坐标和一次函数表达式之间的关系(点在一次函数图象上):若表达式完整而坐标残缺,把残缺坐标代入即可求出坐标;若坐标完整而表达式残缺(k,b 有一个未知),把代入即可求出表达式.若已知两点坐标求直线的表达式,则利用待定系数法,四步操作为、、、.若已知两条直线的表达式,要求交点坐标,则求交点坐标.1.【参考答案】巩固练习1.(1)y =-1 x +1 (2)2 升160 22. (1)y=30x(0 ≤x ≤100)(2)不能33. (1)y =6x +3(x ≥2 )(2)12.5 千米5 54. (1)16 (2)3 吨5. x 的值为0.6 或2.66. (1)y2=240x-240 (2)56 千米思考小结1.①看轴、点、线②一次函数2.表达式;坐标,表达式一设、二代、三解、四还原.联立3.y=kx+b(k,b 为常数,k≠0);正比例.两,(0,b),( -b,0).k倾斜程度;y,纵.k 相同,b 不同.一、二、三;一、三、四;一、二、四;二、三、四.增大,同向变化;减小,反向变化.。
一次函数的应用典型练习题.doc

一次函数的应用典型练习题1、若点 (1,2) 及 (m, 3)都在正比例函数y=kx 的图象上,求m 的值 .2、已知直线y=kx+b 经过点 (-2,-1)和点 (2,-3),求这条直线的函数解析式.3、某一次函数的图象平行于直线y 1 ,且过点 (4,7),求函数解析式 .2 x4、某地市区打电话的收费标准为: 3 分钟以内(含钟 (不足 1 分钟 ,按 1 分钟计算 )加收元 ,那么当时间超过之间的函数关系式. 3 分钟)收费元,超过分钟 ,每增加3 分钟时 ,求 :电话费 y(元 )与时间1 分t( 分 )5、为了加强公民的节水意识,某市制定了如下的用水收费标准:每户每月的用水不超过10 吨时,水价为每吨元;超过 10 吨时 ,超过的部分按每吨元收费,该市某户居民吨 (x> 10),应交水费y 元 ,求 y 与 x 之间的函数关系式.5 月份用水x6、声音在空气中传播的速度y(米 / 秒)(简称音速)是气温x(℃)的一次函数,下表列出了一组不同气温时的音速:气温x(℃)0 5 101520音速(米/ 秒)331334337340343(1)求 y 与 x 之间的函数关系式;(2)气温 x=22(℃)时,某人看到烟花燃放花所在地约相距多远5 秒后才听到声音响,那么此人与燃放的烟7、去年入夏以来,全国大部分地区发生严重干旱,某市自来水公司为了鼓励市民节约用水,采取分段收费标准,若某居民每月应交水费是用水量的函数,其函数图象如图所示:(1)分别写出 x≤ 5 和 x>5 时, y 与 x 的函数解析式;(2) 观察函数图象,利用函数解析式,回答自来水公司采取的收费标准.(3) 若某户居民该月用水吨,则应交水费多少元若该月交水费 9 元,则用水多少吨A BM 60 1008、甲乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20 元,乒乓球每盒 5 元,现两家商店搞促销活动,甲店:每买一付球拍赠一盒乒乓球;乙店:按定价的9 折优惠,某班级需要购球拍 4 付,乒乓球若干盒(不少于 4 盒) .(1)、设购买乒乓球盒数为x(盒),在甲店购买的付款数为y 甲(元),在乙店购买的付款数为y 乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x 之间的函数关系式.(2)就乒乓球盒数讨论去哪家商店购买合算9、某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡.使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如图所示.(1)分别写出用租书卡和会员卡租书的金额y(元)与租书时间x(天)之间的函数关系式;(2)两种租书方式每天租书的收费分别是多少元(3)若两种租书卡的使用期限均为一年,则在这一年中如何选择这两种租书方式比较合算10、预防“非典”期间,某种消毒液 A 市需要 6 吨, B 市需要 8 吨,正好M 市储备有 10 吨, N 市储备有 4 吨,预防“非典”领导小组决定将这 14 吨消毒液调往 A 市和 B 市,消毒液的运费价格如下表 ,设从 M 市调运 x 吨到 A 市 .(1)求调运 14 吨消毒液的总运费 y 关于 x 的函数关系式;(2)求出总运费最低的调运方案,最低运费的多少N 35 7011、已知一次函数y=( m-1) x+2m+1(1)若图象经过原点,求m 的值;(2)若图象平行于直线y=2x,求 m 的值;(3)若图象交y 轴于正半轴,求m 的取值范围;(4)若图象经过一、二、四象限,求m 的取值范围;( 5)若图象不过第三象限,求m 的取值范围;( 6)若随的增大而增大,求m 的取值范围 .12、已知一次函数y=-x+b 与 y=2x+a 的图像都经过A(-2,0),且与轴分别交于B、 C 两点 ,求△ABC 的面积 .13、若直线 y=3x+b 与两坐标轴所围成的三角形的面积为6,求 b 的值 .14、无论 m 为何值,直线y=x+2m 与 y=-x+4 的交点不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限15、已知 y=y1 +y2,其中 y1与 x 成正比例, y2与( x-2)成正比例,又当 x=-1 时, y=2;当 x=2 时, y=5. 求 y 与 x 的函数关系式 .16、为了迎接 2002 年世界杯足球赛的到来,某足球协会举办了一次足球联赛,其记分规则及奖励方案如下表:比赛进行到第12 轮 (每队均比赛12 场 )A 队积 19 分(1)请通过计算,判断 A 队胜、平、负各几场;(2)若每赛一场,每名参赛队员均得出场费500 元,设 A 队其中一名参赛队员所得的奖金与出场费的和为W(元 ),试求 W 的最大值 .胜一场平一场负一场积分310奖金 (元/ 人 )1500 700 017、已知 A、 B 两地相距300 千米,现有甲、乙两车同时从 A 地开往 B 地,甲车匀速行驶2 小时到达AB 中点 C 地,停留 2 小时后,再匀速行驶小时到达 B 地;乙车以每小时v 千米 (v≠ 75)的速度行驶(1)设 s (千米 )、 t ( 小时 )分别表示甲车离开 A 地的路程和时间,试在下列条件下:①0≤ t≤ 2 ② 2<t ≤ 4 ③ 4<t ≤分别求出s 与 t 的关系式,并在所给的坐标系中画出它的图象;(2)若甲、乙两车在途中恰好相遇两次(不含 A、 B 两地 ),试确定v 的取值范围 .18、某地长途汽车客运公司规定:旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y(元)是行李重量x(千克)的一次函数,其图象如图所示. 求( 1) y 与 x 之间的函数关系式;(2)旅客最多可免费携带行李的千克数.19、在边长为 2 的正方形 ABCD 的一边 BC 上,一点 P 从 B 点运动到 C 点,设 BP= x,四边形APCD的面积为 y.( 1)写出 y 与 x 的函数关系式;并写出 x 的取值范围( 2)当 x 为何值时,四边形 APCD 的面积为( 3)当点 P 沿 A B C D 路线从 A 运动到 D,点 P 运动的路程为x ,写出⊿ PAD 的面积 y 与 x 的函数关系式,并画出此函数的图象20、某单位计划 10 月份组织员工到外地旅游,甲、乙量旅行社的服务质量相同,且对外报价都是 200 元,该单位联系时,甲旅行社表示可给予每位游客八折优惠;乙旅行社表示,可先免去一位游客的旅游费用,其余游客九折优惠.(1)求出当人数为 x 时,甲、乙旅行社所需要的费用(2)当 x 取何值时,甲、乙旅行社的费用相同(3)人数在什么范围内,应选甲旅行社;在什么范围内,应选乙旅行社21、某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q1 吨,加油飞机的加油油箱余油量为Q2 吨,加油时间为 t 分钟, Q1、 Q2 与 t 之间的函数图象如图所示,结合图象回答下列问题:⑴ 加油飞机加油油箱中装载了多少吨油将这些油全部加给运输飞机需多少分钟⑵求加油过程中,运输飞机的余油量Q1(吨)与时间t(分钟)的函数关系式;⑶运输飞机加完油后,以原速继续飞行,需10 小时到达目的地,油料是否够用说明理由.22、杨嫂在再就业中心的扶持下,创办了”润扬”报刊零售点 ,对经营的某种晚报,杨嫂提供了如下信息 : ①买进每份元 ,卖出每份元 ; ②一个月内 (以 30 天计 ),有 20 天每天可以卖出200 份 , 其余 10 天每天只能卖出120 份 ; ③一个月内 ,每天从报社买进的报纸份数必须相同,当天卖不掉的报纸 ,以第份元退回报社.(1)填表 :一个月内每天买进该种晚报的份数100150当月利润(单位 :元 )(2)设每天从报社买进该种晚报x 份 (120 ≤ x ≤ 200) 时,月利润y 元,试求出y 与x 的函数关系式,并求月利润的最大值.23、宝应县上网方式有三种:方式一:每月费用 (y)的函数关系如图所示;方式三:以80 元包干;方式二:每月上网时间(x)与上网0 小时为起点,每小时收费元,月收费不超过120 元.(1)写出三种方式的函数关系式.(2)小华家每月上网60 个小时,选用哪种方式上网合算.24、一慢车和一快车沿相同路线从 A 地到 B 地,所行的路程与时间的函数图象如图所示试根据图象 ,回答下列问题:(1)慢车比快车早出发小时,快车追上慢车时行驶了千米,快车比慢车早小时到达 B地;(2)求解下列问题:①快车追上慢车需几个小时②求慢车、快车的速度.25、下表所示为装运甲、乙、丙三种蔬菜的重量及利润,某汽车运输公司计划装运甲、乙、丙三种蔬菜到外地销售(每辆汽车按规定满载,并且每辆汽车只能装一种蔬菜)每辆汽车能装载的吨数 (吨 ) 甲乙丙2 1每吨蔬菜可获利润 (百元 ) 5 7 4(1)若用 8 辆汽车装运乙、丙两种蔬菜11 吨到 A 地销售,问装乙、丙两种蔬菜的汽车各多少辆(2)某公司计划用 20 辆汽车装甲、乙、丙三种蔬菜36 吨到 B 地销售 (每种蔬菜不小于 1车 ),如何安排装运,可使公司获得最大利润,最大利润是多少26、在抗击”非典”时期 ,某医药器械厂接受了生产一批高质量医用口罩的任务,要在 8 天之内 (含 8 天 )生产 A 型和 B 型两种型号的口罩共 5 万只 ,其中 A 型口罩不得少于万只 ,该厂的生产能力是 :若生产 A 型口罩每天能生产万只,若生产 B 型口罩每天能生产万只 ,已知生产一只 A 型可获利元 ,生产一只 B 型口罩可获利元.设该厂在这次任务中生产了 A 型口罩 x 万只 . 问 (1)该厂生产 A 型口罩可获利多少万元生产 B 型口罩可获得利润多少元(2) 设该厂这次生产口罩的总利润是 y 万元 ,试写出 y 关于 x 的函数关系式 ,并求出自变量x 的取值范围 ;(3)如果你是该厂厂长 : ①在完成任务的前提下 ,你如何安排生产 A 型和 B 型 B 口罩的只数 ,使获得的总利润最大最大利润是多少②若要在最短的时间内完成任务,你又如何来安排生产 A型和 B 型口罩的只数最短时间是几天。
(805)一次函数的应用专项练习30题(有答案)14页 ok

一次函数的应用专项练习30题(有答案)1.向一个空水池注水,水池蓄水量y(米3)与注水时间x(小时)之间的函数图象如图所示.(1)第20小时时蓄水量为_________米3;(2)水池最大蓄水量是_________米3;(3)求y与x之间的函数关系式.2.小王的父母经营一家饲料店,拟投入a元购入甲种饲料,现有两种方案:①如果月初出售这批甲种饲料可获利8%,并用本金和利润再购入乙种饲料,到月底售完又获利10%;②如果月底出售这批甲种饲料,可获利20%,但要付仓储费600元.、(1)分别写出方案①、②获利金额的表达式;(2)请你根据小王父母投入资金的多少,定出可多获利的方案.3.某工厂现在年产值是15万元,计划以后每年增加2万元,设x年后的年产值为y(万元).-(1)写出y与x之间的关系式;(2)用表格表示当x从0变化到5(每次增加1)y的对应值;(3)求10年后的年产值"4.我们知道海拔一定高度的山区气温随着海拔高度的增加而下降.小明暑假到黄山去旅游,沿途他利用随身所带的测量仪器,测得以下数据:海拔高度x(m)1400150016001700…气温y(°C)[ …(1)现以海拔高度为x轴,气温为y轴建立平面直角坐标系,根据提供的数据描出各点;(2)已知y与x的关系是一次函数关系,求出这个关系式;(3)若小明到达黄山天都峰时测得当时的气温是°C.求黄山天都峰的海拔高度.;5.如图,l1,l2分别表示一种白炽灯和一种节能灯的费用y与照明时间x(h)的函数图象,假设两种灯的使用寿命都是2000h,照明效果一样.(费用=灯的售价+电费,单位:元)(1)根据图象分别求出l1,l2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等6.某物流公司的快递车和货车每天沿同一公路往返于A、B两地,快递车比货车多往返一趟.图表示快递车与货车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B 地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.(1)两车在途中相遇的次数为_________次;(直接填入答案)(2)求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时.$7.某农户有一水池,容量为10立方米,中午12时打开进水管向水池注水,注满水后关闭水管同时打开出水管灌溉农作物,当水池中的水量减少到1立方米时,再次打开进水管向水池注水(此时出水管继续放水),直到再次注满水池后停止注水,并继续放水灌溉,直到水池中无水,水池中的水量y(单位:立方米)随时间x(从中午12时开始计时,单位:分钟)变化的图象如图所示,其中线段CD所在直线的表达式为y=﹣+33,线段OA所在直线的表达式为y=,假设进水管和出水管每分钟的进水量和出水量都是固定的.(1)求进水管每分钟的进水量;(2)求出水管每分钟的出水量;(3)求线段AB所在直线的表达式.》8.为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中“如意卡”无月租,每通话一分钟收费元,“便民卡”收费信息如图(1)分别求出两种卡在某市范围内每月(30天)的通话时间x(分钟)与通话费y(元)之间的函数关系式.(2)请你帮助用户计算一下,在一个月内使用哪种卡便宜.9.如图是甲、乙两人去某地的路程S(km)与时间t(h)之间的函数图象,请你解答下列问题:】(1)甲去某地的平均速度是多少(2)甲出发多长时间,甲、乙在途中相遇10.如图,在甲、乙两同学进行400米跑步比赛中,路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OAB和线段OC,请根据图上信息回答下列问题:(1)_________先到达终点;(2)第_________秒时,_________追上_________;(3)比赛全程中,_________的速度始终保持不变;(4)写出优胜者在比赛过程中所跑的路程s(米)与时间t(秒)之间的函数关系式:_________.…11.甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)当x=时,甲、乙两组共加工零件_________件;乙组加工零件总量a的值为_________.(3)加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱/12.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象提供的信息解答下列问题:(1)甲队在0≤x≤6的时间段内,挖掘速度为每小时_________米;乙队在2≤x≤6的时间段内,挖掘速度为每小时_________米;请根据乙队在2≤x≤6的时间段内开挖的情况填表:时间(h)23456"乙队开挖河渠(m)3050(2)①请直接写出甲队在0≤x≤6的时间段内,y甲与x之间的关系式;②根据(1)中的表中规律写出乙队在2≤x≤6的时间段内,y乙与x之间的关系式;(3)在(1)的基础上,如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到每小时12米,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米'13.百舟竞渡,激悄飞扬,端午节期间,龙舟比赛在九龙江举行.甲、乙两支龙舟队在比赛时的路程y(米)与时间x(分钟)的函数关系的图象如图所示,根据图象解答下列问题:(1)出发后分钟,_________支龙舟队处于领先位置(填“甲”或“乙“);(2)_________支龙舟队先到达终点(填“甲“或“乙”),提前_________分钟到达;(3)求乙队加逨后,路程y(米)与时问分钟)之间的函数关系式,并写出自变x的取值范围.~14.在人才招聘会上,某公司承诺:录用后第一年的月工资为2000元,以后每年的月工资比上一年的月工资增加300元,一年按12个月计算.(1)如果某人在该公司连续工作x年,他在第x年后的月工资是y元,写出y与x的关系式.(2)如果这个人期望第五年的工资收入超过4万元,那么他是否应该在该公司应聘{15.陈褚向同学乘车从学校出发回家,他离家的路程y(km)与所用时间x(时)之间的关系如图所示.(1)求y与x之间的关系式;(2)求学校和陈褚向同学家的距离.16.某软件公司开发出一种图书管理软件,前期投入的各种费用总共50000元,之后每售出一套软件,软件公司还需支付安装调试费用200元,设销售套数x(套).(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.](2)该公司计划以400元每套的价格进行销售,并且公司仍要负责安装调试,试问:软件公司售出多少套软件时,收入超出总费用17.甲和乙上山游玩,甲乘坐缆车,乙步行,两人相约在山顶的缆车终点会合.已知乙行走到缆车终点的路程是缆车到山顶的线路长的2倍,甲在乙出发后50min才乘上缆车,缆车的平均速度为180m/min.设乙出发xmin后行走的路程为ym.图中的折线表示乙在整个行走过程中y与x的函数关系.(1)乙行走的总路程是_________m,他途中休息了_________min.(2)①当50≤x≤80时,求y与x的函数关系式;②当甲到达缆车终点时,乙离缆车终点的路程是多少—18.李经理到张家果园里一次性采购一种水果,他俩商定:李经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)如果采购量x满足20≤x≤40,求y与x之间的函数关系式;(2)已知张家种植水果的成本是2 800元/吨,李经理的采购量x满足20≤x≤40,那么当采购量为多少时,张家在这次买卖中所获的利润w最大最大利润是多少。
一次函数的应用含答案

一次函数的应用1.如图,是某工程队修路的长度y(单位:m)与修路时间t(单位:天)之间的函数关系.该工程队承担了一项修路任务,任务进行一段时间后,工程队提高了工作效率,则该工程队提高效率前每天修路的长度是()米.A.150B.110C.75D.702.早上9点,甲车从A地出发去B地,20分钟后,乙车从B地出发去A地.两车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图,下列描述不正确的是()A.AB两地相距240千米B.乙车平均速度是90千米/小时C.乙车在12:00到达A地D.甲车与乙车在早上10点相遇3.甲、乙两个草莓采摘园为吸引顾客,在草莓售价相同的条件下,分别推出下列优惠方案:进入甲园,顾客需购买门票,采摘的草莓按六折优惠;进入乙园,顾客免门票,采摘草莓超过一定数量后,超过的部分打折销售,活动期间,某顾客的草莓采摘量为x千克,若在甲园采摘需总费用y1元,在乙园采摘需总费用y2元.y1、y2与x之间的函数图象如图所示,则下列说法中错误的是()A.乙园草莓优惠前的销售价格是30元/千克B.甲园的门票费用是60元C.乙园超过5千克后,超过部分的价格按五折优惠D.顾客用280元在甲园采摘草莓比到乙园采摘更多4.学过一次函数的知识后,某数学兴趣小组通过实验估计某液体的沸点,经过几次测量,得到如下数据当加热80s时,该液体沸腾,则其沸点温度是()时间t(单位:S)0102030液体温度y(单位:°C)15253545A.100°C B.90°C C.85°C D.95°C5.某市乘出租车需付车费y(元)与行车里程x(千米)之间函数关系的图象如图所示,那么该市乘出租车超过2千米但不超过5千米时,每千米的费用是()A.1元B.1.1元C.1.2元D.2.5元6.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为()A.20kg B.25kg C.28kg D.30kg7.王老师一家自驾游去了离家170千米的黄山,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,他们出发2小时时,离目的地还有()千米.A.40B.60C.110D.1308.一个有进水管与出水管的容器,从某时刻开始的4min 内只进水不出水,在随后的8min 内既进水又出水,之后只出水不进水,每分的进水量和出水量是两个常数,容器内的水量y (单位:L )与时间x (单位:min )之间的关系如图.则下列说法正确的是( )A .进水管每分钟的进水量为4LB .当4<x ≤12时,y =54x +12 C .出水管每分钟的出水量为54LD .水量为15L 的时间为3min 或16min9.小明从家出发到商场购物后返回,如图表示的是小明离家的路程s (m )与时间t (min )之间的函数关系,已知小明购物用时30min ,返回速度是去商场的速度的1.2倍,则a 的值为( )A .46B .48C .50D .5210.声音在空气中传播的速度(简称声速)v (m /s )与空气温度t (℃)满足一次函数的关系(如表格所示),则下列说法错误的是( )温度t /℃ … ﹣20 ﹣10 0 10 20 30 … 声速v /(m /s )…318324330336342348……A .温度越高,声速越快B .当空气温度为20℃时,声速为342m /sC .声速v (m /s )与温度t (℃)之间的函数关系式为v =35t +330 D .当空气温度为40℃时,声速为350m /s11.物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)间有下表的关系.下列说法不正确的是()x/kg01234y/cm1517192123A.因变量y是自变量x的一次函数B.当弹簧长度为18cm时,所挂物体的质量为0.5kgC.随着所挂物体重量的增加,弹簧长度逐渐变长D.所挂物体的重量每增加1kg,弹簧长度增加2cm12.如图,落落同学从家沿着笔直的公路去跑步锻炼,她离开家的距离y(米)与时间t(分钟)的函数关系式的图象如图所示,下列结论中不正确的是()A.整个进行过程花了40分钟B.整个进行过程共跑了2700米C.在途中停下来休息了5分钟D.返回时休息后的速度比去的时候小60米/分13.某校增设了多种体育选修课来锻炼学生的体能,小颖从教学楼以1米/秒的速度步行去操场上乒乓球课,她从教学楼出发的同时小华从操场以5米/秒的速度跑步回教学楼拿球拍,再立刻以原速度返回操场上乒乓球课.已知小颖、小华之间的距离y(米)与出发时间x (秒)的部分函数图象,则下列说法错误的是()A.点C对应的横坐标表示小华从操场到教学楼所用的时间B.x=30时两人相距120米C.小颖、小华在75秒时第二次相遇D.CD段的函数解析式为y=﹣4x+40014.如图1是某湖最深处的一个截面图,湖水面下任意一点A的压强P(单位:cmHg)与其离水面的深度h(单位:m)的函数解析式为P=ah+P0,其图象如图2所示,其中P0为湖水面大气压强,a为常数且a>0,点M的坐标为(34.5,342),根据图中信息分析,下列结论正确的是()A.湖水面大气压强为76.0cmHgB.函数解析式P=ah+P0中P的取值范围是P<342C.湖水深20m处的压强为256cmHgD.P与h的函数解析式为P=8h+66(0≤h≤34.5)15.声音在空气中传播的速度v(简称声速)与空气温度t的关系(如下表所示),则下列说法错误的是()温度t/℃﹣20﹣100102030声速v/(m/s)318324330336342348 A.温度越高,声速越快B.在这个变化过程中,自变量是温度t,t是v的函数C.当空气温度为20℃,声速为342m/sD.声速v与温度t之间的关系式为v=35t+33016.小明同学在一次学科综合实践活动中发现,某品牌鞋子的长度ycm与鞋子的码数x之间满足一次函数关系,下表给出y与x的一些对应值:码数x26303442长度ycm18202226根据小明的数据,可以得出该品牌38码鞋子的长度为()A.24cm B.25cm C.26cm D.38cm17.美美在研究物体吸热与放热知识时,用相同的电加热器分别对质量为0.2kg的水和0.3kg的另一种液体进行加热,得到实验数据如图所示.下列说法错误的是()18的关系,并画出图象(AC是线段,射线CD平行于x轴),下列说法错误的是()19.李强一家自驾车到离家500km的九寨沟旅游,出发前将油箱加满油.如表记录了轿车行驶的路程x(km)与油箱剩余油量y(L)之间的部分数据:下列说法不正确的是()轿车行驶的路程x/km0100200300400…油箱剩余油量y/L5042342618…A.该车的油箱容量为50L B.该车每行驶100km耗油8LC.油箱剩余油量y(L)与行驶的路程x(km)之间的关系式为y=50﹣8xD.当李强一家到达九寨沟时,油箱中剩余10L油20.弹簧挂物体会伸长,测得弹簧长度y(cm)(最长为20cm)与所挂物体质量x(kg)之间有下面的关系,下列说法不正确的是()x/kg01234…y/cm88.599.510…A.y与x的函数表达式为y=8+0.5xB.所挂物体质量为6kg时,弹簧长度为11cmC.y与x的函数表达式中一次项系数表示“所挂物体质量每增加1kg弹簧伸长的长度”D.挂30kg物体时,弹簧长度为23cm一次函数的应用参考答案一.选择题(共20小题)1.C; 2.D; 3.D; 4.D; 5.A; 6.A; 7.A; 8.D; 9.D; 10.D;11.B;12.B;13.D;14.D;15.B;16.A;17.C;18.B;19.C;20.D;。
一次函数的应用精选优秀练习题(4套)包括详细答案保你百分百中意

一次函数的应用精选优秀练习题(一)◆基础训练1.托运行李x(千克)(x为整数)的费用为y元,已知托运一件行李的手续费为5元,每千克行李费为1.2元,那么y与x的函数关系式为________.2.某商店出售一种瓜子,其售价y(元)与瓜子质量x(千克)之间的关系如下表:质量x(千克)1234…售价y(元)++++…由上表得y与x之间的关系式是__________.3.两个物体A,B所受压强别离为P A(帕)与P B(帕)(P A,P B为常数),它们所受力面积S(米2)与受压力F(牛)的函数关系图象别离是如图7-5-4所示的射线L A,L B,那么()A.P A<P B B.P A=P B C.P A>P B D.不能确信4.某产品的生产流水线每小时可生产100件产品,生产前没有产品积存,生产3小时后另行安排工人装箱,假设每小时装产品150件,未装箱的产品数量y是时刻x的函数,那么那个函数的大致图象是()5.某销售公司销售人员的月工资y(元)与月销售量x(件)之间的关系如图7-5-•5所示,已知月销售量为250件时,营销人员的月工资是700元.(1)营销人员的月大体工资(即无销量时的工资)是多少元?(2)求月工资y与月销售量x之间的关系式;(3)月销售400件时,月工资是多少元?(4)若是营销人员想每一个月有1100元的工资收入,那么他每一个月应销售多少件?6.某产品每件本钱10元,试销时期每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x1 5225…假设日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.7.小东从A地起身以某一速度向B地走去,同时小明从B地起身以另一速度向A•地而行,如下图,图中的线段y1,y2别离表示小东,小明离B地的距离(千米)与所历时刻(时)的关系.(1)试用文字说明:交点P所表示的实际意义;(2)试求出A,B两地的距离.8.张明骑车上学,开始以某一速度行驶,途中车子发生了故障,修好后,张明加速了车速,准时赶到了学校,下面四个函数示用意中(s为路程,t为时刻),能反映上述进程的是()9.某软件公司开发出一种图书治理软件,•前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元.(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式;(2)若是每套定价700元,软件公司至少要售出多少套软件才能确保不赔本?10.为调动销售人员的踊跃性,A,B•两公司采取如下工资支付方式:•A•公司每一个月2000元大体工资,另加销售额的2%作为奖金,B公司每一个月1600元大体工资,另加销售额的4%作为奖金.已知A,B公司两位销售员小李,小张1~6月份的销售额如下表:(1)请问小李与小张3月份的工资各是多少?(2)小李1~6月份的销售额y1与月份x的函数关系式是y1=1200x+10400,小张1~6月份的销售额y2也是月份x的一次函数,请求出y2与x的函数关系式;(3)若是7~12月份两人的销售额也别离知足(2)中两个一次函数的关系,问几月份起小张的工资高于小李的工资?11.如图,某县农技员持续6年对该县农村甲鱼养殖业的规模和产量进行调查统计.图甲:反映每一个甲鱼养殖池的平均年产量p(万只)与年数t(年)的关系;图乙:•反映每一年甲鱼养殖池的个数q(个)与年数t(年)的函数关系.依照这两方面的信息说明:(1)第二年甲鱼养殖池的个数是多少?这一年全县甲鱼的总产量是多少只?(2)从这两个图象分析,该县的甲鱼养殖业规模是在扩大,仍是在缩小?什么缘故?12.北京某厂和上海某厂同时研制成大型电子运算机假设干台,北京厂可支援外地10台,上海厂可支援外地4台,现决定给重庆8台,汉口6台,•假定每台运算机的运费如下表所示:(1)假设总运费为8400元,上海运往汉口应是多少台?(2)假设要求总运费不超过8200元,共有几种调运方案?13.函数是两个变量x和y之间的一种对应关系,数学家欧拉在1734年提出一种简便的记法,利用“y=f(x)”来表示y和x的某种对应关系.如关于函数y=4-2x可用f(x)=4-2x来表示,那么当x=3时,y=4-2×3=-2,可表示成f(3)=-2.现假设f(x)=x-x,你能求出f(-1)和f(f(-1))的值吗?答案:1.y=+5 2.y=+ 3.A 4.A5.(1)300元(2)y=85x+300 (3)940元(4)500件6.(1)y=-x+40 (2)200元7.(1)通过小时,小东与小明在距离B地千米处相遇(2)20千米8.C 9.(1)y=200x+50000 (2)100套10.(1)小李2280元,小张2040元(2)y2=1800x+5600 (3)从9月份起11.(1)26个,万只(2)略 12.(1)4台(2)4种 13.2,2精选优秀练习题(三)一、填空题1.在直角坐标系中,点M的纵坐标是横坐标的2倍,写出一个M点的坐标__________,并写出一个过M点的直线解析式__________.2.假设y与成正比例,当时,,那么y关于x的函数关系式是__________.3.假设直线和直线的交点坐标为,那么__________.4.一个小球转动的时刻与转动的距离如下表所示:5.学校为成立多媒体教学中心,筹备了120万元,现打算购进电脑x台,每台电脑售价6千元,那么所剩资金y与购进电脑台数x之间的函数关系式是__________,自变量x的取值范围是__________.二、解答题1.某商场购进一批内衣,经实验觉察,假设每件按20元销售时,每一个月能卖360件;假设每件按25元销售时,每一个月能卖210件,假定每一个月销售数y(件)是销售单价x(元)的一次函数,求y与x 之间的函数关系式.2.已知甲、乙两人别离从相距18km的A、B两地同时相向而行,甲以4千米/时的平均速度步行,乙以每小时比甲快1千米的平均速度步行,相遇为止.(1)求甲、乙两人相距的距离为y(km)和所历时刻x(小时)的函数关系式;(2)求出函数图像与x轴、y轴的交点坐标,画出函数图像,并求出自变量的取值范围;(3)求当甲、乙两人相距6千米时,所需用的时刻.3.某市移动通信公司开设了两种通信业务:“全世界通”利用者先缴50元月基础费,然后每通话1分钟,再付费元;“神州行”不缴月基础费,每通话1分钟,付话费元(那个地址均指市内通话).假设一个月内通话x分钟,两种通信方式的费用别离为和元.(1)写出、与x之间的函数关系式;(2)一个月内通话多少分钟,两种通信方式的费用相同?(3)假设某人估量一个月内利用话费200元,那么应选择哪一种通信方式较合算?4.某城市按以下规定收取每一个月煤气费:用煤气不超过60,按元/收费;若是超过60,超过部份按元/收费.(1)设煤气用量为,应交煤气资为y元,写出y关于x的函数解析式,并画出函数的图像;(2)已知某用户一月份的煤气费平均每立方米元,那么一月份该用户应交煤气费共多少元?5.如图,公路上有A、B、C三个车站,一辆汽车在上午8时从离A站10km的P地起身向C站匀速前进,15分钟后,离A站20km.(1)设起身x小时后,汽车离A站y km,写出y与x之间的函数关系式;(2)当汽车行驶到离A站150km的B站时,接到通知要在中午12时前赶到离B站30千米的C站,汽车假设按原速可否按时抵达?假设能,是在几点几分抵达;假设不能,车速最少应提高多少?6.随着我国人口增加速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地域入学儿童人数的转变趋势.试用你所学的函数知识解决以下问题:(1)求入学儿童人数y(人)与年份x(年)的函数关系式;(2)利用所求函数关系式,预测该地域从哪一年起入学儿童的人数不超过1000人?7.《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过800元的部份没必要纳税,超过800元的部份为全月应纳税所得额,此项税款按下表累进计算:(纳税款=应纳税所得额×对应的税率)按此规定解答以下问题:(1)设某甲的月工资、薪金所得为x元(),需缴交的所得税款为y元,试写出y与x的函数关系式;(2)假设某乙一月份应缴交所得税款95元,那么他一月份的工资、薪金是多少元?8.某家电集团公司生产某种型号的新家电,前期投资200万元,每生产1台这种新家电,后期还需其他投资万元,已知每台新家电可实现产值万元.(1)别离求出总投资额(万元)和总利润比(万元)关于新家电的总产量x(台)的函数关系式;(2)当新家电的总产量为900台时,该公司的盈亏情形如何?(3)请你利用(1)中与x的函数关系式,分析该公司的盈亏情形.(注:总投资=前期投资+后期其他投资,总利润=总产值-总投资)9.通过电脑拨号上“因特网”的费用是由费和上网费两部份组成.以前我市通过“黄冈热线”上“因特网”的费用为费元/3分钟,上网费为元/小时,后依照信息产业部调整“因特网”资费的要求,自1999年3月1日起,我市上“因特网”的费用调整为费元/3分钟,上网费为每一个月不超过60小时,按4元/小时计算;超过60小时部份,按8元/小时计算.(1)依照调整后的规定,将每一个月上“因特网”的费用y (元)表示为上网时刻x(小时)的函数;(2)资费调整前,网民晓刚在其家庭经济预算中,一直有一笔每一个月70小时的上网费用支出,“因特网”资费调整后,晓刚要想不超过其家庭经济预算中的上网费用支出,他此刻每一个月最多可上网多少小时?(3)从资费调整前后的角度分析,比较我市网民上网费用的支出情形.10.某服装厂现有A种布料70m,B种布料52m,现打算用这两种布料生产M、N两种型号的时装共80套,已知做一套M型号的时装需用A种布料,B种布料,可获利润45元,做一套N型号的时装需用A种布料,B 种布料,可获利润50元,假设设生产N型号的时装套数为N,用这批布料生产这两种型号的时装所获的总利润为y元.(1)求y(元)与x(套)的函数关系式,并求出自变量的取值范围;(2)该服装厂在生产这批时装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?参考答案:一、1.(1,2), 2. 3.16 4. 5.二、1.2.(1)(2)(2,0),(0,18),(3)小时3.(1)(2)每一个月内通话250分钟,两种移动通信费用相同.(3)200元话费用“全世界通”可通话375分钟,“神州行”可通话分钟,选择“全世界通”合算.4.(1)(2),,(元)5.(1)汽车速度为40千米/时,(2)汽车假设按原速度不能按时抵达,假设要汽车按时抵达C站,车速最少应提高到每小时60km.6.(1)直线过(2000,2500),(2021,2330)两点,∴解得∴(2)设x年时,入学人数为1000人,,,即从2021年起入学儿童人数不超过1000人.7.(1)∵ ,∴,∴(2)∵ ,∴,某乙一月份工资、薪金是2000元.8.(1)(2)当总产量是900台时,该公司会亏损,亏损20万元.(3)产量小于1000台时,该公司亏损,产量是1000台时,该公司不亏损也不盈利,产量大于1000台时,该公司会盈利.9.(1)(2)资费调整前,上网70小时所需费用为元.资费调整后,假设上网60小时,那么所需费用为(元).∵,∴ 晓刚此刻上网时刻超过60小时.由,解得. ∴ 晓刚此刻每一个月最多可上网约小时.(3)设调整前所需费用为(元);调整后所需费用(元),那么.当时,,故.当时,,当时,;当时,;当时,.综上可得:当时,调整后所需费用少;当时,调整前后所需费用相同;当时,调整前所需费用少.10.(1).由解得.∴自变量的取值范围为40,41,42,43,44.(2)当时,有最大值,最大值为3820元.精选优秀练习题(三)第1题. 如下图的曲线表示一辆自行车离家的距离与时刻的关系,骑车者9点离开家,15点回家,依照那个曲线图,请你回答以下问题:(1)抵达离家最远的地址是什么时刻?离家多远? (2)何时开始第一次休息?休息多长时刻? (3)第一次休息时,离家多远?(4)11:00到12:00他骑了多少千米?(5)他在9:00~10:00和10:00~10:30的平均速度各是多少? (6)他在何时至何时停止前进并休息午饭? (7)他在停止前进后返回,骑了多少千米? (8)返回时的平均速度是多少?(9)11:30和13:30时,别离离家多远? (10)何时离家22km ?答案:解:(1)抵达离家最远地址的时刻是12点到13点,离家30km . (2)10点半开始第一次休息,休息了半小时. (3)第一次休息时离家17km .(4)11:00到12:00,他骑了13km .(5)9:00~10:00的平均速度是10km/h ;10:00~10:30的平均速度是14km/h. (6)从12点到13点间停止前进,并休息午饭较为符合实际情形. (7)返回骑了30km .(8)返回30km 共用了2h ,故返回时的平均速度是15km/h . (9)设直线DE 所在直线的解析式为:s kt b =+.将(1117)(1230)D E ,、,的坐标代入,得11171230.k b k b +=⎧⎨+=⎩,解得13126.k b =⎧⎨=-⎩,因此13126s t =-. 当11.5t =时,23.5s =,故11:30时,离家23.5km .(在用样的方式求出 13:30,离家22.5km 以后,你是不是能想出更简便的方式?)(10)由(9)的解答可知,直线DE 的解析式为13126s t =-,将22S =代入得11.3t =,即11点18分时离家22km ,在FG 上一样应有一点离家22km ,下面能够如此考虑:13点至15点的速度为15km/h ,从F 点到22km 处走了8km ,故需815h (即32min ),故在13点32分时刻一样离家22km .第2题. 某产品的生产流水线每小时可生产100件产品.生产前没有产品积存,生产3h 后安排工人装箱,假设每小时装产品150件,未装箱的产品数量()y 是时刻()t 的函数,那么那个函数大致图象只能是( )答案:A第3题. 一次函数y kx b =+的图象如下图,那么k 与b 的值为( ) A.22k b ==-,B.22k b =-=-, C.122k b ==-,D.122k b =-=-,答案:B第4题. 弹簧的长度与所挂物体质量的关系为一次函数,如下图,可知不挂物体时,弹簧的长度为( ) A.7cm B.8cm C.9cm D.10cmA .B .C.D.x答案:D第5题. 假定甲、乙两人一次赛跑中,路程s (m)与时刻t (s)的关系如下图,那么能够明白: (1)这是一次 米赛跑;(2)甲、乙两人中先抵达终点的是 ; (3)乙在这次赛跑中的速度为 .答案:(1)100 (2)甲 (3)8m/s第6题. 如下图,是某企业职工养老保险个人月缴费y (元)随个人月工资x (元)转变的图象.请你依照图象回答以下问题:(1)张总工程师五月份工资是3 000元,那个月他应缴个人养老保险费 元; (2)小王五月份工资为500元,他那个月应缴纳个人养老保险费 元. (3)当月工资在600~2 800元之间,其个人养老保险费y (元)与月工资x (元)之间的函数关系式为 .答案:(1)200 (2)40(3)4405511y x =-第7题. 已知函数21y x =-的图象如下图,请依照图象回答以下问题:y (m))(1)当0x =时,y 的值是多少? (2)当0y =时,x 的值是多少? (3)当x 为何值时,0y >?(4)当x 为何值时,0y <?答案:解:(1)当0x =时,1y =-;(2)当0y =时,12x =; (3)当12x >时,0y >;(4)当12x <时,0y <.第8题. 弹簧的长度与所挂物体的质量的关系如下图,观看图象回答: (1)弹簧未挂物体的长度是多少?(2)弹簧所挂物体的最大质量是多少?这时弹簧的长度是多少? (3)求出y (m)与x (kg)的函数关系式.答案:解:(1)弹簧未挂物体的长度为10cm ;(2)弹簧所挂物体的最大质量为20kg ,这时弹簧的长度为20cm ;(3)设y kx b =+,把(010)(2020),、,代入得102020.b k b =⎧⎨=+⎩,解得1210.k b ⎧=⎪⎨⎪=⎩,y ∴与x 之间的关系式为1102y x =+.第9题. 已知A B 、两市相距80km .甲乙两人骑自行车沿同一公路各自从A 市、B 市起身,相向而行,如下图 ,线段EF CD 、别离表示甲、乙两人离B 市距离s (km) 和所用去时刻t (h)之间的函数关系,观看图象回答下列问题: (1)乙在甲起身后几小时才从B 市起身? (2)相遇时乙走了多少小时?(3)试求出各自的s 与t 的关系式. (4)两人的骑车速度各是多少? (5)两人哪个先抵达目的地?答案:解:(1)乙在甲起身后1h ,才从B 市发出; (2)7721199-=(h),即相遇时,乙走了719h ;(3)设甲的函数关系式为11S k t b =+甲,将7(080)2409⎛⎫⎪⎝⎭,,代入得111802540.9b k b =⎧⎪⎨+=⎪⎩,解得1172580.k b ⎧=-⎪⎨⎪=⎩,∴甲的函数关系式为72805s t =-+甲. 设乙的函数关系式为22s k t b =+乙.将7(10)2409⎛⎫⎪⎝⎭,、,代入得222202540.9k b k b =+⎧⎪⎨=+⎪⎩,,解得2245245.2k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴乙的函数关系式为454522s t =-乙; (4)14.4v =甲km/h ,22.5v =乙km/h ; (5)在72805s t =-+甲中,当0s =甲时,720805t =-+. 509t ∴=, 在454522s t =-乙中,当80s =乙时,即45454180229t t =-=,. 504199>, ∴乙先抵达目的地.第10题. 某空军加油飞机接到命令,当即给另一架正在飞行的运输飞机进行空中加油.在加油进程中,设运输飞机的油箱余油量为1Q 吨,加油飞机的加油油箱余油量2Q 吨,加油时刻为t 分钟,12Q Q 、与t 之间的函数图象如下图,结合图象回答以下问题:(1)加油飞机的加油油箱中装载了多少吨油?将这些油全数加给运输飞机需要多少分钟? (2)全加油进程中,求运输飞机的余油量1Q (t)与时刻t (min)的函数关系式. (3)运输飞机加完油后,以原速继续飞行,需10h 抵达目的地,油料是不是够用? 说明理由.答案:解:(1)由图象知,加油飞机的加油油箱中装载了30t 油.全数加给运输飞机需10min . (2)设1Q kt b =+,把(040),和(1069),代入,406910.b k b =⎧⎨=+⎩,解得 2.940.k b =⎧⎨=⎩,1 2.940(010)Q t t ∴=+≤≤;(3)由图象可知运输飞机的耗油量为min .∴10h 耗油量为:10600.160t 69t =<××. 故油料够用.第11题. 某医药研究所开发了一种新药,在实验药效时觉察,若是成人按规定剂量服用,那么服药后2h 时血液中含药量最高,达6ug/ml (1ug 310-=mg ),接着慢慢衰减,10h 时的血液中含药量为每毫升3ug ,每毫升血液中含药量y (ug)随时刻t (h)的转变如图.当做人按规定剂量服药后: (1)别离求出2x ≤和2x ≥时,y 与x 之间的函数关系式;(2)若是每毫升血液中含药量为4ug 或4ug 以上时在医治疾病时是有效的,那么那个有效时刻多长?答案:解:当2x ≤时,设1y k x =,由题意,得162k =,133.k y x ∴=∴=,当2x ≥时,设2y k x b =+由题意得2262310.k b k b =+⎧⎨=+⎩,解得23827.4k b ⎧=-⎪⎪⎨⎪=⎪⎩,32784y x ∴=-+; (2)当2x ≤时,4y ≥,即4343x x ≥,≥; 当2x ≥时,4y ≥,即327224843x x -+≥,≤.∴有效医治时刻为:224633-=.即那个有效医治时刻为6h .第12题. 两个物体A B 、所受的压强别离为A B P P ,(都为常数)它们所受压力F 与受力面积S 的函数关系图象别离是射线A B l l ,如下图,那么( ) A.A B P P < B.A B P P = C.A B P P >D.A B P P ≤答案:A第13题. 如图是某固体物质在受热熔解进程中物质温度T (℃)与时刻(s)的关系图,其中A 时期物质为固态,B 时期为固液共存,C 时期为液态.(1)物质温度上升温度最快的是 时期,最慢的是 时期; (2)物质的温度是60℃,那么时刻t 的转变范围是 .t答案:(1)C B (2)2050t ≤≤第14题. 某图书出租店,有一种图书的租金y (元)与出租天数x (天)之间的关系如下图,那么两天后,每过一天,累计租金增加 元.答案:第15题. 甲、乙两辆汽车同时从相距280km 的A B 、两地相向而行,s (km)表示汽车与A 地的距离,t (min)表示汽车行驶的时刻,如下图,12l l 、别离表示两辆汽车的s 与t 的关系. (1)1l 表示哪辆汽车到A 地的距离与行驶时刻的关系; (2)汽车乙的速度是多少?(3)1h 后,甲、乙两辆汽车相距多少千米? (4)行驶多长时刻,甲、乙两辆汽车相遇?答案:解:(1)1l 表示汽车乙到A 地的距离与时刻之间的关系; (2)汽车乙的速度是80km/h ;(3)1h 后,甲、乙两辆汽车相距140km ;(4)280(6080)2+=÷,即行驶2h ,甲、乙两辆汽车相遇.)第16题. 如图,折线ABC 是长沙向北京打远程所需付的费y 元与通话时刻t min 之间的函数关系的图象,依照图象填空:①通话2min ;需付费 元 ②通话5min ;需付费 元 ③通话10min ;需付费 元.答案:①元 ②元 ③元第17题. 如图,某气象研究中心观测一场沙尘暴,从觉察到终止的全进程,开始时风速平均每小时增加2千米,4小时后,沙尘暴通过开阔荒漠地,风速为平均每小时增加4千米,一段时刻后,风速维持不变,当沙尘暴碰着绿色植被时,其风速平均每小时减少1千米,最终停止,结合风速与时刻的关系图象,回答以下问题:①在y 轴的( )内填入相应的值. ②沙尘暴从发生到终止,共通过量少时刻③求出25x ≥时,风速y (千米/小时)与时刻x 的函数关系式.答案:①8 32 ②57小时③57y x =-+.第18题. 随着教学手腕不断更新,要求计算器进入数学,其电子厂家通过市场调查,觉察某种计算器的供给量1x (百个)与价钱1y (万元)之间的关系,如下图,而需求量2x (万个)与价钱2y(万元)之间的关x (分钟)系如图中的需求线所示.若是你是那个电子厂厂长,应打算生产这种计算器多少个?每一个售价多少元,才能使市场达到供需平稳?答案:①11603y x =+ 280y x =-+ ②要使供求平稳,那么12y y =,160803x x +=-+65131565153x y ∴===,,(元).第19题. 如图,已知两直线233y x =-+和21y x =-,求它们与y 轴所围成的三角形的面积.答案:解:直线233y x =-+与21y x =-交点为C , (1分)在233y x =-+中,令0x =,得3y =,得(03)A ,.在21y x =-中,令0x =,得1y =-,得(01)B -, 由23321y x y x ⎧=-+⎪⎨⎪=-⎩,解得322x y ⎧=⎪⎨⎪=⎩ x (万个) 233x -+x∴交点为322C ⎛⎫⎪⎝⎭,,4AB =,点C 到AB 的距离为32.ABC ∴△的面积134322ABC S =⨯⨯=△第20题. 在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部份的高度y (厘米)与燃烧时刻x (小时)之间的关系如图10所示.请依照图象所提供的信息解答以下问题:(1)甲、乙两根蜡烛燃烧前的高度别离是 ,从点燃到燃尽所用的时刻别离是 ;(2)别离求甲、乙两根蜡烛燃烧时y 与x 之间的函数关系式;(3)燃烧多长时刻时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情形)?在什么时刻段内,甲蜡烛比乙蜡烛高?在什么时刻段内,甲蜡烛比乙蜡烛低?答案:解:(1)30厘米,25厘米; 2小时, 小时; (2)设甲蜡烛燃烧时y x 与之间的函数关系式为11y k x b =+.由图可知,函数的图象过点(20),、(030),,1112030.k b b +=⎧⎨=⎩,∴ 解得111530.k b =-⎧⎨=⎩,1530y x =-+∴.设乙蜡烛燃烧时y x 与之间的函数关系式为22y k x b =+.由图可知,函数的图象过点(2.50),、(025),,2222.5025.k b b +=⎧⎨=⎩,∴ 解得221025.k b =-⎧⎨=⎩,1025y x =-+∴.(3)由题意得15301025x x -+=-+,1x =解得.因此,当燃烧1小时的时候,甲、乙两根蜡烛的高度相等.观看图象可知:当01x <≤时,甲蜡烛比乙蜡烛高;当1 2.5x <<时,甲蜡烛比乙蜡烛低.(说明:本问中通过观看图象解决的问题也能够用不等式来解决)第21题. 某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个持续的进程,其中进水、清洗、排水时洗衣机中的水量y (升)与时刻x (分钟)之间的关系如折线图所示: 依照图象解答以下问题:(1)洗衣机的进水时刻是多少分钟?清洗时洗衣机中的水量是多少升? (2)已知洗衣机的排水速度为每分钟19升. ① 求排水时y 与x 之间的关系式;②若是排水时刻为2分钟,求排水终止时洗衣机中剩下的水量.答案:解:(1)由图象可知:洗衣机的进水时刻是4分钟,清洗时洗衣机中的水量是40升. (2)①y 与x 之间的关系式是:4019(15)y x =--, 即19325y x =-+.②法一:若是排水时刻为2分钟,那么排水终止时17x =.洗衣机中剩下的水量为:19173252-⨯+=(升). 法二:洗衣机中剩下的水量为第22题. 水库的库容一般是用水位的高低来预测的.下表是某市一水库在某段水位范围内的库容与水位高低的相关水文资料,请依照表格提供的信息回答下列问题.(1)将上表中的各对数据作为坐标()x y ,,在给出的坐标系顶用点表示出来:(2)用线段将(1)中所画的点从左到右按序连接.假设用此图象来模拟库容y 与水位高低x 的函数关系.依照图象的转变趋势,猜想y 与x 间的函数关系,求出函数关系式并加以验证; (3)由于临近市区连降暴雨,河水暴涨,抗洪形势十分严峻,上级要求该水库为其承担部份分洪任 务约800万立方米.假设该水库当前水位为65米,且最/分154(第25题)高水位不能超过79米.请依照上述信息预测:该水库 可否承担这项任务?并说明理由.答案:(1)描点如下图. (2)连线如下图.猜想:y 与x 具有一次函数关系.设其函数解析式为(0)y kx b k =+≠.把(103000)(203600),、,代入得:300010360020.k b k b =+⎧⎨=+⎩,解得:602400.k b =⎧⎨=⎩,602400y x ∴=+将(304200),、(40,4800)别离代入上式, 得:420060302400=⨯+, 480060402400.=⨯+因此(304200),、(40,4800)均在 602400y x =+的图象上.(3)能承担.当79x =时, 179602400y =⨯+. 当65x =时,265602400y =⨯+.1260(7965)6014840y y -=-=⨯=.840800>.∴该水库能同意这项任务.第23题. 种植草莓大户张华现有22吨草莓等售,有两种销售渠道,一是运往省会直接批发给零售商,二是受客观因素阻碍,张华天天只能采用一种销售渠道,草莓必需在10日内售出. (1)假设一部份草莓运往省会批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润y (元)与运往省会直接批发零售商的草莓量x (吨)之间的函数关系式;(1) 如何安排这22吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润.答案: 解:(1)所求函数关系式为12002000(22)y x x =+-即80044000y x =-+(2)由于草莓必需在10天内售完那么有22104xx +-≤ 解之,得16x ≥在函数80044000y x =-+中,8000-<y ∴随x 的增大而减小∴当16x =时,y 有最大值31200(元)22166-=,1644÷=,616÷=答:用4天时刻运往省会批发,6天时刻在本地零售.(回答销量也可)才使获利 润最大,最大利润为31200元.第24题. 已知一次函数y ax b =+(a 、b 是常数),x 与y 的部份对应值如下表:那么方程的解是 ;不等式0>的解集是 .答案:1x =;1x <.精选优秀练习题(四)第1题. 某工厂有甲、乙两条生产线前后投产,在乙生产线投产以前,甲生产线已生产了200吨成品;从乙生产线投产开始,甲、乙两条生产线天天生产20吨和30吨.(1)别离求出甲、乙两条生产线投产后,甲、乙的生产总量1y (吨)和2y (吨)与从乙开始投产以来所用的时刻x (天)之间的函数关系式,并指出第几天终止时,甲、乙两条生产线的总产量相同;(2)在直角坐标系中,作出上述两个函数在第一象限内的图象,观看图象别离指出第15天和第25天终止时,哪条生产线的总产量高?答案:解:(1)由题意,得120200y x =+.230y x =;要使甲、乙两条生产线总产量相同,即12y y =.202003020x x x ∴+==,.即第20天终止时,两生产线的总产量相同.(2)甲生产线的图象通过两点(0200)A ,和(20600)B ,;乙生产线的图象通过两点(00)O ,和(20600)B ,. 在直角坐标系中两条生产线的图象如下图.由图象可知,第15天终止时,甲生产线的总产量高; 第25天结时,乙生产线的总产量高.)。
一次函数的应用典型题整理

一次函数图像的应用练习(一)、旧知练习1、已知一次函数图象经过A (-2,-3),B (1,3)两点.(1)求这个一次函数解析式.(2)试判断点P (-1,1)是否在这个一次函数的图象上?2、如图3,已知M (3,2),N (1,-1),点P 在y 轴上且PM +PN 最短,求点P 的坐标.(二)、图像的应用1、 A 城有肥料200吨,B 城有肥料300吨,现要把这些肥料全部运往C 、D 两乡,从A 城往C 、D 两乡运肥料的费用分解为每吨20元和25元;从B 城往C 、D 两乡运肥料的费用分别为每吨15元和24元,现C 乡需要肥料240吨,D 乡需要肥料260吨,怎样调运总费用最少?C D 总计 A X 吨 200吨 B 300吨 总计240吨260吨500吨2、已知某服装厂现有A 种布料70米,B 种布料52米,现计划用这两种布料生产M 、N 两种型号的时装共80套,已知做一套M 型号的时装需用A 种布料0.6米,B 种布料0.9米,可获利润45元;做一套N 型号的时装需用A 种布料1.1米,B 种布料0.4米,可获利润50元,若设生产N 型号的时装数为x ,用这批布料生产两种型号的时装所获总利润为y 元。
(1)求y 与x 的函数关系式,并求出自变量x 的取值范围。
(2)服装厂在生产这批时装时,当N 型号的时装为多少套,所获利润最大?最大利润是多少?3、某地长途汽车客运公司规定旅客可以携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y (元)是行李重量的一次函数,如图所示,求: (1)y 与x 之间的函数关系式。
(2)旅客可免费携带的行李重量。
(3)某人携带100千克物品,需付行李费多少元?4、某医药研究所开发了一种新药,在试验药效时发现:如果成人按规定剂量服用,那么服药后2小时血液中含药量最高,达每毫升6微克,接着逐步衰减,10小时时血液中含药量为每毫升3微克,当成人按规定剂量服药后,每毫升血液中含药量y 随时间x 的变化如图所示: (1)分别求出x ≤2和x ≥2时,y 与x 之间的函数关系式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数的应用典型练习题
1、若点(1,2)及(m,3)都在正比例函数y=kx的图象上,求m的值.
2、已知直线y=kx+b经过点(-2,-1)和点(2,-3),求这条直线的函数解析式.
3、某一次函数的图象平行于直线,且过点(4,7),求函数解析式.
4、某地市区打电话的收费标准为:3分钟以内(含3分钟)收费0.2元,超过分钟,每增加
1分钟(不足1分钟,按1分钟计算)加收0.11元,那么当时间超过3分钟时,求:电话费y(元)
与时间t(分)之间的函数关系式.
5、为了加强公民的节水意识,某市制定了如下的用水收费标准:每户每月的用水不超过
10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5
月份用水x吨(x>10),应交水费y元,求y与x之间的函数关系式.
6、声音在空气中传播的速度y(米/秒)(简称音速)是气温x(℃)的一次函数,下表
列出了一组不同气温时的音速:
(1)求y与x之间的函数关系式;
(2)气温x=22(℃)时,某人看到烟花燃放5秒后才听到声音响,那么此人与燃放的
烟花所在地约相距多远?
7、去年入夏以来,全国大部分地区发生严重干旱,某市自来水公司为了鼓励市民节约用
水,采取分段收费标准,若某居民每月应交水费是用水量的函数,其函数图象如图所示:
(1)分别写出x≤5和x>5时,y与x的函数解析式;
(2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准.
(3)若某户居民该月用水3.5吨,则应交水费多少元?若该月交水费9元,则用水多少吨?
8、甲乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓
球每盒5元,现两家商店搞促销活动,甲店:每买一付球拍赠一盒乒乓球;乙店:按定价
的9折优惠,某班级需要购球拍4付,乒乓球若干盒(不少于4盒).
(1)、设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的
付款数为y乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系
式.
(2)就乒乓球盒数讨论去哪家商店购买合算?
9、某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡.使用这
两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如图所示.
(1)分别写出用租书卡和会员卡租书的金额y(元)与租书时间x(天)之间的函数关系式;
(2)两种租书方式每天租书的收费分别是多少元?
何选择这两种租书方式比较合算?
10、预防“非典”期间,某种消毒液A市需要6吨,B市需
要8吨,正好M市储备有10吨,N市储备有4吨,预防
“非典”领导小组决定将这14吨消毒液调往A市和B市,消
毒液的运费价格如下表,设从M市调运x吨到A市.
(1)求调运14吨消毒液的总运费y关于x的函数关系式;
(2)求出总运费最低的调运方案,最低运费的多少?
11、已知一次函数y=(m-1)x+2m+1
(1)若图象经过原点,求m的值;
(2)若图象平行于直线y=2x,求m的值;
(3)若图象交y轴于正半轴,求m的取值范围;
(4)若图象经过一、二、四象限,求m的取值范围;
(5)若图象不过第三象限,求m的取值范围;
(6)若随的增大而增大,求m的取值范围.
12、已知一次函数 y=-x+b 与 y=2x+a 的图像都经过A(-2,0),且与轴分别交于B、C 两点,求△ABC的面积.
13、若直线y=3x+b与两坐标轴所围成的三角形的面积为6,求b的值.
14、无论m为何值,直线y=x+2m与y=-x+4的交点不可能在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
15、已知y=y1+y2,其中y1与x成正比例,y2与(x-2)成正比例,又当x=-1时,y=2;当x=2时,y=5. 求y与x的函数关系式.
16、为了迎接2002年世界杯足球赛的到来,某足球协会举办了一次足球联赛,其记分规则及奖励方案如下表:
比赛进行到第12轮(每队均比赛12场)A队积19分
(1)请通过计算,判断A队胜、平、负各几场;
(2)若每赛一场,每名参赛队员均得出场费500元,设A队其中一名参赛队员所得的奖金
与出场费的和为W(元)
17、已知A、B两地相距300千米,现有甲、乙两车同时从A地开往B地,甲车匀速行
驶2小时到达AB中点C地,停留2小时后,再匀速行驶1.5小时到达B地;乙车以每
小时v千米(v≠75)的速度行驶
(1)设s (千米)、t (小时)分别表示甲车离开A地的路程和时间,试在下列条件下:
①0≤t≤2 ②2<t≤4 ③4<t≤5.5
分别求出s与t的关系式,并在所给的坐标系中画出它的图象;
(2)若甲、乙两车在途中恰好相遇两次(不含A、B两地),试确定v的取值范围.
18、某地长途汽车客运公司规定:旅客可随身携带一定重量的行李,如果超过规定,则
需要购买行李票,行李票费用y(元)是行李重量x(千克)的一次函数,其图象如图所示.求(1)y与x之间的函数关系式;(2)旅客最多可免费携带行李的千克数.
19、在边长为2的正方形ABCD的一边BC上,一点P从B点运动到C点,设BP=x,四边形APCD的面积为y.(1)写出y与x的函数关系式;并写出x的取值范围(2)当
x为何值时,四边形APCD的面积为2.5?(3)当点P沿A B C D路线从A运动到D,点P运动的路程为x ,写出⊿PAD的面积y与x的函数关系式,并画出此函数的图象
20、某单位计划10月份组织员工到外地旅游,甲、乙量旅行社的服务质量相同,且对外报价都是200元,该单位联系时,甲旅行社表示可给予每位游客八折优惠;乙旅行社表示,可先免去一位游客的旅游费用,其余游客九折优惠.
(1)求出当人数为x时,甲、乙旅行社所需要的费用
(2)当x取何值时,甲、乙旅行社的费用相同
(3)人数在什么范围内,应选甲旅行社;在什么范围内,应选乙旅行社?
21、某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加
油过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油油箱余油量为Q2吨,加
油时间为t分钟,Q1、Q2与t之间的函数图象如图所示,结合图象回答下列问题:
⑴加油飞机加油油箱中装载了多少吨油?将这些油全部加给运输飞机需多少分钟?
⑵求加油过程中,运输飞机的余油量 Q1(吨)与时间 t(分钟)的函数关系式;
⑶运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?
说明理由.
22、杨嫂在再就业中心的扶持下,创办了”润扬”报刊零售点,对经营的某种晚报,杨嫂提供了如下信息: ①买进每份0.2元,卖出每份0.3元; ②一个月内(以30天计),有20天每天可
以卖出200份,其余10天每天只能卖出120份; ③一个月内,每天从报社买进的报纸份数
必须相同,当天卖不掉的报纸,以第份0.1元退回报社.
(1)填表:
一个月内每天买进该种晚报的份数100 150
当月利润(单位:元)
(2)设每天从报社买进该种晚报x份(120 ≤x ≤200) 时,月利润y元,试求出y与x的函数关系式,并求月利润的最大值.
23、宝应县上网方式有三种:方式一:每月80元包干;方式二:每月上网时间(x)与上
网费用(y)的函数关系如图所示;方式三:以0小时为起点,每小时收费1.6元,月收费
不超过120元.
(1)写出三种方式的函数关系式.
(2)小华家每月上网60个小时,选用哪种方式上网合算?
24、一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的函数图象如图所示.
试根据图象,回答下列问题:
(1)慢车比快车早出发小时,快车追上慢车时行驶了千米,快车比慢车早小时
到达B地;
(2)求解下列问题:①快车追上慢车需几个小时? ②求慢车、快车的速度.
25、下表所示为装运甲、乙、丙三种蔬菜的重量及利润,某汽车运输公司计划装运甲、乙、
(1)若用8辆汽车装运乙、丙两种蔬菜11吨到A地销售,问装乙、丙两种蔬菜的汽车各
多少辆?
(2)某公司计划用20辆汽车装甲、乙、丙三种蔬菜36吨到B地销售(每种蔬菜不小于1车),如何安排装运,可使公司获得最大利润,最大利润是多少?
26、在抗击”非典”时期,某医药器械厂接受了生产一批高质量医用口罩的任务,要在8天之内(含8天)生产A型和B型两种型号的口罩共5万只,其中A型口罩不得少于1.8万只,该厂的生产能力是:若生产A型口罩每天能生产0.6万只,若生产B型口罩每天能生产0.8万只,已知生产一只A型可获利0.5元,生产一只B型口罩可获利0.3元.设该厂在这次任务中生产了A型口罩x万只.问(1)该厂生产A型口罩可获利多少万元?生产B型口罩可获得利润多少元?(2)设该厂这次生产口罩的总利润是y万元,试写出y关于x的函数关系式,并求
出自变量x的取值范围;(3)如果你是该厂厂长: ①在完成任务的前提下,你如何安排生产A 型和B型B口罩的只数,使获得的总利润最大?最大利润是多少? ②若要在最短的时间内完成任务,你又如何来安排生产A型和B型口罩的只数?最短时间是几天?。