数字电路实验

合集下载

数字电路实验测试

数字电路实验测试

数字电路实验测试数字电路实验测试是电子工程领域中非常重要的一项实验内容,通过对数字电路的测试与分析,可以验证电路设计的正确性、稳定性和可靠性。

本文将介绍数字电路实验测试的基本原理和常见的测试方法。

一、实验测试的基本原理数字电路实验测试的基本原理是通过输入不同的电信号,观察电路输出的情况,从而判断电路的工作状态和性能指标。

常见的数字电路实验测试基本原理包括输入输出特性测试、时序性能测试和逻辑功能测试。

输入输出特性测试:通过给定不同的输入信号,观察输出信号的变化情况。

测试输入输出特性可以确定电路输入输出的电平范围和电平变化关系,判断电路的输入、输出能力是否符合设计要求。

时序性能测试:通过给定不同的输入信号,并配合时钟信号,观察电路输出信号的时序性能。

测试时序性能可以判断电路的延时时间、时钟频率、时钟相位等时序参数是否满足设计要求,避免电路工作时出现时序冲突或时序偏差。

逻辑功能测试:通过给定不同的输入信号,观察电路输出信号的逻辑功能是否正确。

测试逻辑功能可以判断电路实现的逻辑运算是否符合设计要求,识别输入信号的各种组合情况,验证电路的逻辑表达式是否正确。

二、实验测试的方法1. 硬件测试方法硬件测试方法是通过专用的测试设备进行数字电路实验测试的方法。

常见的硬件测试设备包括逻辑分析仪、信号发生器、频谱仪等设备。

这些设备可以提供稳定的输入信号和高精度的输出信号,通过对电路输入输出信号的测量和分析,可以准确判断电路的工作状态和性能参数。

2. 软件仿真方法软件仿真方法是通过计算机模拟数字电路的工作状态和性能表现的方法。

常见的软件仿真工具包括Verilog、VHDL等。

通过在仿真工具中编写电路的描述代码,并给定不同的输入信号,可以模拟电路的工作过程,观察电路输出信号的变化情况,从而分析电路的工作状态和性能指标。

三、实验测试的步骤1. 确定测试目标:根据实验要求,明确测试的目标,例如测试输入输出特性、时序性能或逻辑功能等。

数字电路全部实验

数字电路全部实验

数字电子技术实验报告实验一门电路逻辑功能及测试 (1)实验二数据选择器与应用 (4)实验三触发器及其应用 (8)实验四计数器及其应用 (11)实验五数码管显示控制电路设计 (17)实验六交通信号控制电路 (19)实验七汽车尾灯电路设计 (25)班级:08030801学号:2008301787 2008301949姓名:纪敏于潇实验一 门电路逻辑功能及测试一、实验目的:1.加深了解TTL 逻辑门电路的参数意义。

2.掌握各种TTL 门电路的逻辑功能。

3.掌握验证逻辑门电路功能的方法。

4.掌握空闲输入端的处理方法。

二、实验设备:THD —4数字电路实验箱,数字双踪示波器,函数信号发射器, 74LS00二输入端四与非门,导线若干。

三、实验步骤及内容: 1.测试门电路逻辑功能。

选用双四输入与非门74LS00一只,按图接线,将输入电平按表置位,测输出电平用与非门实现与逻辑、或逻辑和异或逻辑。

用74LS00实现与逻辑。

用74LS00实现或逻辑。

用74LS00实现异或逻辑。

2.按实验要求画出逻辑图,记录实验结果。

3.实验数据与结果将74LS00二输入端输入信号分别设为信号A 、B用74LS00实现与逻辑 1A B A B =∙ 逻辑电路如下:12374LS00AN45674LS00ANA BA 端输入TTL 门信号,B 端输入高电平,输出波形如下:A 端输入TTL 门信号,B 端输入低电平,输出波形如下:1、 用74LS00实现或逻辑11A B A B A B +=∙=∙∙∙逻辑电路如下12374LS00AN45674LS00AN910874LS00ANcU1A BA 端输入TTL 门信号,B 端输入高电平,输出波形如下:A 端输入TTL 门信号,B 端输入低电平,输出波形如下:2、 用74LS00实现异或逻辑 A B AB BA AB BA ABB ABA ⊕=+=∙=∙逻辑电路如下:A 端输入TTL 门信号,B 端输入高电平,输出波形如下:A 端输入TTL 门信号,B 端输入低电平,输出波形如下:实验二数据选择器及其应用一、实验目的1.通过实验的方法学习数据选择器的电路结构和特点。

数字电路实验报告 实验5

数字电路实验报告 实验5

实验五移存器功能测试及应用一、实验目的1、熟悉移位寄存器(移存器)的电路结构和工作原理。

2、掌握D触发器74HC(LS)74及集成移位寄存器74HC(LS)194的逻辑功能和使用方法。

二、实验设备和器件1、数字逻辑电路实验板1块2、74HC(LS)74(双D触发器)2片3、74HC(LS)194(4位双向通用移位寄存器)2片三、实验原理移位寄存器是具有移位功能的寄存器,其中所存的代码能够在移位脉冲的作用下依次左移或右移。

既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。

移位寄存器存取信息的方式分为:串入串出、串入并出、并入串出、并入并出四种形式。

实验用器件管脚介绍:1、74HC(LS)74(双D触发器)管脚如下图所示。

2、74HC(LS)194(4位双向通用移位寄存器)管脚如下图所示。

四、实验内容与步骤1、利用两块74HC(LS)74(四个D触发器)构成一个单向的移位寄存器(基本命题)参照用两块74HC(LS)74(四个D触发器)构成一个单向移位寄存器的实验电路图连接电路,Q输出依次接LED指示灯,加电后在移位输入端加入不同信号观察LED指示灯变化。

1.1电路图1.2实验结果LED灯依次变亮,每次间隔一个CP。

2、测试74HC(LS)194的功能(基本命题)例如,Q输出依次接LED指示灯,改变S1、S0的值配合其它输入观察LED的变化。

2.1电路图2.2实验结果:置数:LED显示状态与置数端相同。

左移:LED从下往上(QD到QA)依次变亮,每次间隔一个CP右移:LED从上往下(QA到QD)依次变亮,每次间隔一个CP3、用两片74HC(LS)194做出模16的扭环计数器(扩展命题)将两片的Q输出依次都接到LED指示灯上,加电并加CP观察LED的变化。

现象一般为八盏灯先依次变暗再依次变亮如此循环。

3.1电路图3.2计数器拓展当进行M=2n 偶数计数时,可采用扭环型,D1=Q n ̅̅̅̅,将Q n 和高电平与非后反馈至第一片的输入端。

数字电路设计实训实验报告

数字电路设计实训实验报告

一、实验目的1. 熟悉数字电路的基本组成和基本逻辑门电路的功能。

2. 掌握组合逻辑电路的设计方法,包括逻辑表达式化简、逻辑电路设计等。

3. 提高动手实践能力,培养独立思考和解决问题的能力。

4. 理解数字电路在实际应用中的重要性。

二、实验原理数字电路是一种用数字信号表示和处理信息的电路,其基本组成单元是逻辑门电路。

逻辑门电路有与门、或门、非门、异或门等,它们通过输入信号的逻辑运算,输出相应的逻辑结果。

组合逻辑电路是由逻辑门电路组成的,其输出仅与当前输入信号有关,与电路的过去状态无关。

本实验将设计一个简单的组合逻辑电路,实现特定功能。

三、实验仪器与设备1. 数字电路实验箱2. 逻辑门电路(如与非门、或非门、异或门等)3. 逻辑电平测试仪4. 线路板5. 电源四、实验内容1. 组合逻辑电路设计(1)设计一个三人表决电路三人表决电路的输入信号为三个人的投票结果,输出信号为最终的表决结果。

根据题意,当至少有两人的投票结果相同时,输出为“通过”;否则,输出为“不通过”。

(2)设计一个4选1数据选择器4选1数据选择器有4个数据输入端、2个选择输入端和1个输出端。

根据选择输入端的不同,将4个数据输入端中的一个输出到输出端。

2. 组合逻辑电路搭建与测试(1)搭建三人表决电路根据电路设计,将三个与门、一个或门和一个异或门连接起来,构成三人表决电路。

(2)搭建4选1数据选择器根据电路设计,将四个或非门、一个与非门和一个与门连接起来,构成4选1数据选择器。

(3)测试电路使用逻辑电平测试仪,测试搭建好的电路在不同输入信号下的输出结果,验证电路的正确性。

3. 实验结果与分析(1)三人表决电路测试结果当输入信号为(1,0,0)、(0,1,0)、(0,0,1)时,输出为“通过”;当输入信号为(1,1,0)、(0,1,1)、(1,0,1)时,输出为“不通过”。

测试结果符合设计要求。

(2)4选1数据选择器测试结果当选择输入端为(0,0)时,输出为输入端A的信号;当选择输入端为(0,1)时,输出为输入端B的信号;当选择输入端为(1,0)时,输出为输入端C的信号;当选择输入端为(1,1)时,输出为输入端D的信号。

数字电路实验

数字电路实验

实验一基本门电路(验证型)一、实验目的(1)熟悉常用门电路的逻辑功能;(2)学会利用门电路构成简单的逻辑电路。

二、实验器材数字电路实验箱 1台;74LS00、74LS02、74LS86各一块三、实验内容及步骤1、TTL与非门逻辑功能测试(1)将四2输入与非门74LS00插入数字电路实验箱面板的IC插座上,任选其中一与非门。

输入端分别输入不同的逻辑电平(由逻辑开关控制),输出端接至LED“电平显示”输入端。

观察LED亮灭,并记录对应的逻辑状态。

按图1-1接线,检查无误方可通电。

图1-1表1-1 74LS00逻辑功能表2、TTL或非门、异或门逻辑功能测试分别选取四2输入或非门74LS02、四2输入异或门74LS86中的任一门电路,测试其逻辑功能,功能表自拟。

3、若要实现Y=A′, 74LS00、74LS02、74LS86将如何连接,分别画出其实验连线图,并验证其逻辑功能。

4、用四2输入与非门74LS00实现与或门Y=AB+CD的功能。

画出实验连线图,并验证其逻辑功能。

四、思考题1.TTL与非门输入端悬空相当于输入什么电平?2.如何处理各种门电路的多余输入端?附:集成电路引出端功能图实验二组合逻辑电路(设计型)一、实验目的熟悉简单组合电路的设计和分析过程。

二、实验器材数字电路实验箱 1台,74LS00 三块,74LS02、74LS04、74LS08各一块三、实验内容及步骤1、设计一个能比较一位二进制A与 B大小的比较电路,用X1、X2、X3分别表示三种状态:A>B时,X1=1;A<B时X2=1;A=B时X3=1。

(用74LS04、74LS08和74LS02实现)要求:(1)列出真值表;(2)写出函数逻辑表达式;(3) 画出逻辑电路图,并画出实验连线图;(4)验证电路设计的正确性。

2、测量组合电路的逻辑关系:(1)图3-2电路用3块74LS00组成。

按逻辑图接好实验电路,输入端A、B、C 分别接“逻辑电平”,输出端D、J接LED“电平显示”;图3-2 表3-2(2)按表3-2要求,将测得的输出状态和LED显示分别填入表内;(3)根据测得的逻辑电路真值表,写出电路的逻辑函数式,判断该电路的功能。

《数字电路》实验报告

《数字电路》实验报告

《数字电路》实验报告项目一逻辑状态测试笔的制作一、项目描述本项目制作的逻辑状态测试笔,由集成门电路芯片74HC00、发光二极管、电阻等元器件组成,项目相关知识点有:基本逻辑运算、基本门电路、集成逻辑门电路等;技能训练有:集成逻辑二、项目要求用集成门电路74HC00制作简易逻辑状态测试笔。

要求测试逻辑高电平时,红色发光二极管亮,测试逻辑低电平时绿色发光二极管亮。

三、原理框图四、主要部分的实现方案当测试探针A测得高电平时,VD1导通,三级管V发射级输出高电平,经G1反相后,输出低电平,发光二级管LED1导通发红光。

又因VD2截止,相当于G1输入端开路,呈高电平,输出低电平,G3输出高电平,绿色发光二级管LED2截止而不发光。

五、实验过程中遇到的问题及解决方法(1)LED灯不能亮:检查硬件电路有无接错;LED有无接反;LED有无烧坏。

(2)不能产生中断或中断效果:检查硬件电路有无接错;程序中有无中断入口或中断子程序。

(3)输入电压没有反应:数据原理图有没有连接正确,检查显示部分电路有无接错;4011逻辑门的输入端有无浮空。

六、心得体会第一次做的数字逻辑试验是逻辑状态测试笔,那时什么都还不太了解,听老师讲解完了之后也还不知道从何下手,看到前面的人都起先着手做了,心里很焦急可就是毫无头绪。

老师说要复制一些文件协助我们做试验(例如:试验报告模板、试验操作步骤、引脚等与试验有关的文件),还让我们先画原理图。

这时,关于试验要做什么心里才有了一个模糊的框架。

看到别人在拷贝文件自己又没有U盘只好等着借别人的用,当然在等的时候我也画完了逻辑测试笔的实操图。

后面几次都没有过,但最后真的发觉试验的次数多了,娴熟了,知道自己要做的是什么,明确了目标,了解了方向,其实也没有想象中那么困难。

七、元器件一逻辑状态测试笔电路八、附实物图项目二多数表决器电路设计与制作一、项目描述本项目是以组合逻辑电路的设计方法,用基本门电路的组合来完成具有多数表决功能的电路。

数字电路实验

数字电路实验

数字电路实验数字电路实验是电子工程相关专业的一门重要实践课程,旨在帮助学生掌握数字电路设计与实验的基本原理、方法和技能。

通过实验,学生可以加深对数字电路理论知识的理解,提升实践能力和创新思维,为将来从事电子工程领域的研究和实践奠定坚实的基础。

一、实验目的数字电路实验的目的是培养学生的实验操作技能,提高学生的动手实践能力,掌握数字电路设计和测试的方法。

通过实际操作,学生可以了解数字电路的基本原理、功能及其实验现象,加深对数字电路的理论知识的理解。

二、实验器材数字电路实验需要以下器材和设备:1. 实验箱:用于组装和连接数字电路实验电路。

2. 示波器:用于观察和测量电路中的信号波形。

3. 信号发生器:用于产生各种测试信号。

4. 计数器:用于计数和测量电路中的脉冲频率。

5. 多用途通用测试仪:用于电路测试和故障诊断。

三、实验内容数字电路实验的内容主要包括以下几个方面:1. 数字逻辑门电路实验:包括与门、或门、非门、与非门、异或门等的实验。

2. 组合逻辑电路实验:包括编码器、解码器、复用器、译码器等的实验。

3. 时序逻辑电路实验:包括时钟、触发器、时序逻辑门、计数器、寄存器等的实验。

4. 数字电路综合实验:通过综合实验,学生需自主设计数字电路,实践数字电路设计的基本方法和技巧。

四、实验步骤1. 根据实验内容和要求,选择适当的实验器材和设备。

2. 设计和搭建数字电路实验电路,注意连接的准确性和稳定性。

3. 使用示波器和信号发生器对电路进行测试和调试,观察和测量信号波形和频率。

4. 记录实验过程中的数据和现象,并进行数据分析和处理。

5. 总结实验结果,撰写实验报告,包括实验目的、原理、电路图、实验步骤、数据分析和结论等内容。

五、实验注意事项1. 实验前需充分了解实验原理和电路设计,做好实验准备工作。

2. 实验操作过程中要注意安全,遵守实验室的各项规定。

3. 实验过程中需认真记录数据和现象,保证实验结果的准确性和可靠性。

数字电路实验报告-实验一[总结]

数字电路实验报告-实验一[总结]

实验一数字电路实验基础一、实验目的⑴掌握实验设备的使用和操作⑵掌握数字电路实验的一般程序⑶了解数字集成电路的基本知识二、预习要求复习数字集成电路相关知识及与非门、或非门相关知识三、实验器材⑴直流稳压电源、数字逻辑电路实验箱、万用表⑵74LS00、74LS02、74LS48四、实验内容和步骤1、实验数字集成电路的分类及特点目前,常用的中、小规模数字集成电路主要有两类。

一类是双极型的,另一类是单极型的。

各类当中又有许多不同的产品系列。

⑴双极型双极型数字集成电路以TTL电路为主,品种丰富,一般以74(民用)和54(军用)为前缀,是数字集成电路的参考标准。

其中包含的系列主要有:▪标准系列——主要产品,速度和功耗处于中等水平▪LS系列——主要产品,功耗比标准系列低▪S系列——高速型TTL、功耗大、品种少▪ALS系列——快速、低功耗、品种少▪AS系列——S系列的改进型⑵单极型单极型数字集成电路以CMOS电路为主,主要有4000/4500系列、40H系列、HC系列和HCT系列。

其显著的特点之一是静态功耗非常低,其它方面的表现也相当突出,但速度不如TTL集成电路快。

TTL产品和CMOS产品的应用都很广泛,具体产品的性能指标可以查阅TTL、CMOS集成电路各自的产品数据手册。

在本实验课程中,我们主要选用TTL数字集成电路来进行实验。

2、TTL集成电路使用注意事项⑴外形及引脚TTL集成电路的外形封装与引脚分配多种多样,如附录中所示的芯片封装形式为双列直插式(DIP)。

芯片外形封装上有一处豁口标志,在辨认引脚分配时,芯片正面(有芯片型号的一面)面对自己,将此豁口标志朝向左手侧,则芯片下方左起的第一个引脚为芯片的1号引脚,其余引脚按序号沿芯片逆时针分布。

⑵电源每片集成电路芯片均需要供电方能正常使用其逻辑功能,供电电源为+5V单电源。

电源正端(+5V)接芯片的VCC引脚,电源负端(0V)接芯片的GND引脚,两者不允许接反,否则会损坏集成电路芯片。

数字电路实验报告

数字电路实验报告

数字电路实验报告实验目的本实验的目的是通过对数字电路的实际操作,加深对数字电路原理和实验操作的理解。

通过实验,理论联系实际,加深学生对数字电路设计和实现的认识和理解。

实验内容本次实验的实验内容主要包括以下几个方面:1.数码管显示电路实验2.时序电路实验3.组合电路实验实验仪器和器材本次实验所使用的仪器和器材包括:•真空发光数字数码管•通用数字逻辑芯片•实验箱•数字电路设计软件•示波器数码管显示电路实验在数码管显示电路实验中,我们将使用真空发光数字数码管和逻辑芯片来实现数字数码管的显示功能。

具体的实验步骤如下:1.按照实验箱上的电路图,将逻辑芯片及其它所需器件正确连接。

2.通过数字电路设计软件,编写和下载逻辑芯片的程序。

3.观察数码管的显示效果,检查是否符合预期要求。

时序电路实验时序电路是数字电路中非常重要的一部分,通过时序电路可以实现各种各样的功能。

在时序电路实验中,我们将通过设计一个简单的计时器电路来学习时序电路的设计和实现。

具体的实验步骤如下:1.在实验箱上按照电路图连接逻辑芯片及其它所需器件。

2.通过数字电路设计软件,编写和下载逻辑芯片的程序。

3.通过示波器观察时序电路的波形,检查是否符合设计要求。

组合电路实验组合电路是由多个逻辑门组合而成的电路,可以实现各种逻辑功能。

在组合电路实验中,我们将使用逻辑芯片和其他器件,设计并实现一个简单的闹钟电路。

具体的实验步骤如下:1.在实验箱上按照电路图连接逻辑芯片及其它所需器件。

2.通过数字电路设计软件,编写和下载逻辑芯片的程序。

3.测试闹钟电路的功能和稳定性,检查是否符合设计要求。

实验结果与分析通过以上的实验,我们成功地实现了数码管显示、时序电路和组合电路的设计和实现。

实验结果表明,在正确连接逻辑芯片和其他器件,并编写正确的程序的情况下,我们可以实现各种各样的数字电路功能。

通过实验过程中的观察和测试,我们也发现了一些问题和改进的空间。

例如,在时序电路实验中,我们发现时序电路的波形不够稳定,可能需要进一步优化。

数字电路实验报告实验

数字电路实验报告实验

数字电路实验报告实验一、引言数字电路是计算机科学与工程学科的基础,它涵盖了数字信号的产生、传输、处理和存储等方面。

通过数字电路实验,我们可以深入了解数字电路的原理和设计,掌握数字电路的基本知识和实验技巧。

本报告旨在总结和分析我所进行的数字电路实验。

二、实验目的本次实验的目的是通过搭建和测试电路,验证数字电路的基本原理,掌握数字电路实验中常用的实验仪器和操作方法。

具体实验目的如下:1. 组装和测试基础门电路,包括与门、或门、非门等。

2. 理解和实践加法器电路,掌握准确的运算方法和设计技巧。

3. 探究时序电路的工作原理,深入了解时钟信号和触发器的应用。

三、实验装置和材料1. 模块化数字实验仪器套装2. 实验台3. 数字电路芯片(例如与门、或门、非门、加法器、触发器等)4. 连接线、电源、示波器等。

四、实验步骤及结果1. 实验一:组装和测试基础门电路在实验台上搭建与门、或门、非门电路,并连接电源。

通过连接线输入不同的信号,测试输出的结果是否与预期一致。

记录实验步骤和观察结果。

2. 实验二:实践加法器电路将加法器电路搭建在实验台上,并输入两个二进制数字,通过加法器电路计算它们的和。

验证求和结果是否正确。

记录实验步骤和观察结果。

3. 实验三:探究时序电路的工作原理将时序电路搭建在实验台上,并连接时钟信号和触发器。

观察触发器的状态变化,并记录不同时钟信号下的观察结果。

分析观察结果,总结时序电路的工作原理。

五、实验结果与分析1. 实验一的结果与分析:通过测试与门、或门、非门电路的输入和输出,我们可以观察到输出是否与预期一致。

若输出与预期一致,则说明基础门电路连接正确,电路工作正常;若输出与预期不一致,则需要检查电路连接是否错误,或者芯片损坏。

通过实验一,我们可以掌握基础门电路的搭建和测试方法。

2. 实验二的结果与分析:通过实践加法器电路,我们可以输入两个二进制数字,并观察加法器电路的运算结果。

如果加法器电路能正确计算出输入数字的和,则说明加法器电路工作正常。

数字电路实验基础

数字电路实验基础

数字电路实验基础数字电路是现代电子技术的重要组成部分,通过运用一系列逻辑门和触发器等基本数字元件,能够完成数字信号的处理和控制。

数字电路实验是培养学生的实际动手能力和对数字电路原理的理解的重要环节。

本文将介绍数字电路实验的基础知识和实验过程。

一、实验目的数字电路实验的目的是通过实际动手操作,让学生掌握数字电路的基本理论知识,培养学生的实际应用能力和创新思维,提高学生解决问题的能力。

二、实验原理1. 二进制系统数字电路采用二进制系统进行计算和控制。

二进制系统使用两个数码0和1表示数值,是一种离散的数学方法。

在实验中,学生需掌握二进制数的加减乘除运算,以及二进制数与十进制数之间的相互转换。

2. 逻辑门逻辑门是数字电路的基本组成元件,根据输入信号的不同,会产生特定的输出信号。

常见的逻辑门有与门、或门、非门、与非门等。

实验中,学生需要熟悉各种逻辑门的真值表和逻辑关系,能够正确地连接逻辑门,并观察输出信号的变化。

3. 组合逻辑电路组合逻辑电路是由逻辑门组合而成的电路,其输出信号仅取决于当前输入信号的组合。

在实验中,学生需要根据给定的逻辑表达式或真值表,搭建相应的组合逻辑电路,并验证电路的正确性。

4. 时序逻辑电路时序逻辑电路是由触发器和组合逻辑电路组成的,其输出信号不仅取决于当前输入信号的组合,还受到前一时刻的状态影响。

在实验中,学生需要学习各种类型的触发器的工作原理,能够正确地使用触发器搭建时序逻辑电路。

三、实验步骤1. 硬件准备在进行数字电路实验前,需要准备实验箱、电源、逻辑门和触发器等实验器材。

确保实验器材的正常工作状态和连接正确。

2. 实验设计根据实验要求,设计数字电路的逻辑表达式或真值表。

绘制电路原理图,确定所需逻辑门和触发器的种类和数量。

3. 搭建电路根据电路原理图,依次连接逻辑门和触发器。

注意连接电路时的引脚和极性,确保电路的正确连接。

4. 电路验证给定输入信号,观察输出信号的变化。

与预期的输出进行对比,验证电路的正确性。

数电项目实验报告(3篇)

数电项目实验报告(3篇)

第1篇一、实验目的1. 理解数字电路的基本概念和组成原理。

2. 掌握常用数字电路的分析方法。

3. 培养动手能力和实验技能。

4. 提高对数字电路应用的认识。

二、实验器材1. 数字电路实验箱2. 数字信号发生器3. 示波器4. 短路线5. 电阻、电容等元器件6. 连接线三、实验原理数字电路是利用数字信号进行信息处理的电路,主要包括逻辑门、触发器、计数器、寄存器等基本单元。

本实验通过搭建简单的数字电路,验证其功能,并学习数字电路的分析方法。

四、实验内容及步骤1. 逻辑门实验(1)搭建与门、或门、非门等基本逻辑门电路。

(2)使用数字信号发生器产生不同逻辑电平的信号,通过示波器观察输出波形。

(3)分析输出波形,验证逻辑门电路的正确性。

2. 触发器实验(1)搭建D触发器、JK触发器、T触发器等基本触发器电路。

(2)使用数字信号发生器产生时钟信号,通过示波器观察触发器的输出波形。

(3)分析输出波形,验证触发器电路的正确性。

3. 计数器实验(1)搭建异步计数器、同步计数器等基本计数器电路。

(2)使用数字信号发生器产生时钟信号,通过示波器观察计数器的输出波形。

(3)分析输出波形,验证计数器电路的正确性。

4. 寄存器实验(1)搭建移位寄存器、同步寄存器等基本寄存器电路。

(2)使用数字信号发生器产生时钟信号和输入信号,通过示波器观察寄存器的输出波形。

(3)分析输出波形,验证寄存器电路的正确性。

五、实验结果与分析1. 逻辑门实验通过实验,验证了与门、或门、非门等基本逻辑门电路的正确性。

实验结果表明,当输入信号满足逻辑关系时,输出信号符合预期。

2. 触发器实验通过实验,验证了D触发器、JK触发器、T触发器等基本触发器电路的正确性。

实验结果表明,触发器电路能够根据输入信号和时钟信号产生稳定的输出波形。

3. 计数器实验通过实验,验证了异步计数器、同步计数器等基本计数器电路的正确性。

实验结果表明,计数器电路能够根据输入时钟信号进行计数,并输出相应的输出波形。

数字电路实验报告_北邮

数字电路实验报告_北邮

一、实验目的本次实验旨在通过实践操作,加深对数字电路基本原理和设计方法的理解,掌握数字电路实验的基本步骤和实验方法。

通过本次实验,培养学生的动手能力、实验技能和团队合作精神。

二、实验内容1. 实验一:TTL输入与非门74LS00逻辑功能分析(1)实验原理TTL输入与非门74LS00是一种常用的数字逻辑门,具有高抗干扰性和低功耗的特点。

本实验通过对74LS00的逻辑功能进行分析,了解其工作原理和性能指标。

(2)实验步骤① 使用实验箱和实验器材搭建74LS00与非门的实验电路。

② 通过实验箱提供的逻辑开关和指示灯,验证74LS00与非门的逻辑功能。

③ 分析实验结果,总结74LS00与非门的工作原理。

2. 实验二:数字钟设计(1)实验原理数字钟是一种典型的数字电路应用,由组合逻辑电路和时序电路组成。

本实验通过设计一个24小时数字钟,使学生掌握数字电路的基本设计方法。

(2)实验步骤① 分析数字钟的构成,包括分频器电路、时间计数器电路、振荡器电路和数字时钟的计数显示电路。

② 设计分频器电路,实现1Hz的输出信号。

③ 设计时间计数器电路,实现时、分、秒的计数。

④ 设计振荡器电路,产生稳定的时钟信号。

⑤ 设计数字时钟的计数显示电路,实现时、分、秒的显示。

⑥ 组装实验电路,测试数字钟的功能。

3. 实验三:全加器设计(1)实验原理全加器是一种数字电路,用于实现二进制数的加法运算。

本实验通过设计全加器,使学生掌握全加器的工作原理和设计方法。

(2)实验步骤① 分析全加器的逻辑功能,确定输入和输出关系。

② 使用实验箱和实验器材搭建全加器的实验电路。

③ 通过实验箱提供的逻辑开关和指示灯,验证全加器的逻辑功能。

④ 分析实验结果,总结全加器的工作原理。

三、实验结果与分析1. 实验一:TTL输入与非门74LS00逻辑功能分析实验结果表明,74LS00与非门的逻辑功能符合预期,具有良好的抗干扰性和低功耗特点。

2. 实验二:数字钟设计实验结果表明,设计的数字钟能够实现24小时计时,时、分、秒的显示准确,满足实验要求。

数字电路实验报告

数字电路实验报告

数字电路实验报告摘要:本实验旨在通过设计和实现数字电路,加深对数字电路原理的理解,并掌握电路设计和实验的基本方法。

本实验主要包括逻辑门电路、计数器电路和状态机电路的设计与实现。

通过实验,我们成功验证了数字电路的基本原理和功能。

引言:数字电路是现代电子技术的基础,广泛应用于计算机、通信、嵌入式系统等领域。

数字电路实验是电子工程专业的重要实践环节,通过实验可以加深对数字电路原理的理解,培养学生的动手实践能力和问题解决能力。

一、逻辑门电路设计与实现逻辑门电路是数字电路的基本组成部分,本实验通过设计和实现与、或、非、异或等逻辑门电路,加深对逻辑门的理解。

1.1 与门电路设计与实现与门是将两个输入信号进行逻辑与运算的电路,输出信号为两个输入信号的逻辑与。

根据与门的真值表,我们设计了与门电路,并使用逻辑门集成电路进行实现。

1.2 或门电路设计与实现或门是将两个输入信号进行逻辑或运算的电路,输出信号为两个输入信号的逻辑或。

根据或门的真值表,我们设计了或门电路,并使用逻辑门集成电路进行实现。

1.3 非门电路设计与实现非门是将输入信号进行逻辑非运算的电路,输出信号为输入信号的逻辑非。

根据非门的真值表,我们设计了非门电路,并使用逻辑门集成电路进行实现。

1.4 异或门电路设计与实现异或门是将两个输入信号进行异或运算的电路,输出信号为两个输入信号的异或。

根据异或门的真值表,我们设计了异或门电路,并使用逻辑门集成电路进行实现。

二、计数器电路设计与实现计数器电路是数字电路中常用的电路,本实验通过设计和实现二进制计数器和BCD计数器,加深对计数器电路的理解。

2.1 二进制计数器电路设计与实现二进制计数器是一种能够进行二进制计数的电路,根据计数器的位数,可以实现不同范围的计数。

我们设计了4位二进制计数器电路,并使用触发器和逻辑门集成电路进行实现。

2.2 BCD计数器电路设计与实现BCD计数器是一种能够进行BCD码计数的电路,BCD码是二进制编码的十进制表示形式。

数电综合实验报告(3篇)

数电综合实验报告(3篇)

第1篇一、实验目的1. 巩固和加深对数字电路基本原理和电路分析方法的理解。

2. 掌握数字电路仿真工具的使用,提高设计能力和问题解决能力。

3. 通过综合实验,培养团队合作精神和实践操作能力。

二、实验内容本次实验主要分为以下几个部分:1. 组合逻辑电路设计:设计一个4位二进制加法器,并使用仿真软件进行验证。

2. 时序逻辑电路设计:设计一个4位计数器,并使用仿真软件进行验证。

3. 数字电路综合应用:设计一个数字时钟,包括秒、分、时显示,并使用仿真软件进行验证。

三、实验步骤1. 组合逻辑电路设计:(1)根据题目要求,设计一个4位二进制加法器。

(2)使用Verilog HDL语言编写代码,实现4位二进制加法器。

(3)使用ModelSim软件对加法器进行仿真,验证其功能。

2. 时序逻辑电路设计:(1)根据题目要求,设计一个4位计数器。

(2)使用Verilog HDL语言编写代码,实现4位计数器。

(3)使用ModelSim软件对计数器进行仿真,验证其功能。

3. 数字电路综合应用:(1)根据题目要求,设计一个数字时钟,包括秒、分、时显示。

(2)使用Verilog HDL语言编写代码,实现数字时钟功能。

(3)使用ModelSim软件对数字时钟进行仿真,验证其功能。

四、实验结果与分析1. 组合逻辑电路设计:通过仿真验证,所设计的4位二进制加法器能够正确实现4位二进制加法运算。

2. 时序逻辑电路设计:通过仿真验证,所设计的4位计数器能够正确实现4位计数功能。

3. 数字电路综合应用:通过仿真验证,所设计的数字时钟能够正确实现秒、分、时显示功能。

五、实验心得1. 通过本次实验,加深了对数字电路基本原理和电路分析方法的理解。

2. 掌握了数字电路仿真工具的使用,提高了设计能力和问题解决能力。

3. 培养了团队合作精神和实践操作能力。

六、实验改进建议1. 在设计组合逻辑电路时,可以考虑使用更优的电路结构,以降低功耗。

2. 在设计时序逻辑电路时,可以尝试使用不同的时序电路结构,以实现更复杂的逻辑功能。

数字电路实验

数字电路实验

数字电路实验实验目的本实验旨在通过实际操作,加深对数字电路原理的理解并巩固相关知识,提高学生的动手能力和解决问题的能力。

实验设备与材料•逻辑门芯片•示波器•数字电路实验箱•多用途测试仪实验内容1.实验一:数字逻辑门的基本操作–使用真值表法验证与门、或门、非门、与非门的逻辑功能。

–使用数字电路实验箱上的逻辑门芯片,接线实现与门、或门、非门、与非门的功能,并通过示波器验证。

–记录实验过程和实验结果,并对结果进行分析和讨论。

2.实验二:二进制加法器的设计与实现–使用逻辑门芯片,设计并实现一个二进制加法器。

–验证二进制加法器的功能,记录实验过程和实验结果,并分析可能出现的问题。

–对比全加器和半加器的功能和实现方式,并进行思考和讨论。

3.实验三:多路选择器的设计与实现–使用逻辑门芯片,设计并实现一个多路选择器。

–验证多路选择器的功能,记录实验过程和实验结果。

–探讨多路选择器的应用场景,并思考其在电路设计中的作用。

4.实验四:时序电路的设计与实现–了解时序电路的原理和基本概念。

–使用逻辑门芯片,设计并实现一个简单的时序电路。

–验证时序电路的功能,记录实验过程和实验结果,并进行分析和总结。

实验步骤1.实验一:数字逻辑门的基本操作–根据真值表,通过逻辑门芯片进行电路的设计和实现。

–使用示波器对逻辑门的输出进行观察,记录实验结果。

–思考并讨论逻辑门的实现原理和应用场景。

2.实验二:二进制加法器的设计与实现–熟悉二进制加法器的原理和设计方法。

–使用逻辑门芯片,设计并实现一个4位二进制加法器。

–验证加法器的功能,记录实验结果,并分析可能出现的问题。

–比较全加器和半加器的功能和实现方式,思考其在电路设计中的应用。

3.实验三:多路选择器的设计与实现–了解多路选择器的原理和应用场景。

–使用逻辑门芯片,设计并实现一个4位多路选择器。

–验证选择器的功能,记录实验结果,并思考其在电路设计中的作用。

4.实验四:时序电路的设计与实现–学习时序电路的基本概念和实现方法。

数字系统电路实验报告(3篇)

数字系统电路实验报告(3篇)

第1篇一、实验目的1. 理解数字系统电路的基本原理和组成。

2. 掌握数字电路的基本实验方法和步骤。

3. 通过实验加深对数字电路知识的理解和应用。

4. 培养学生的动手能力和团队合作精神。

二、实验原理数字系统电路是由数字逻辑电路构成的,它按照一定的逻辑关系对输入信号进行处理,产生相应的输出信号。

数字系统电路主要包括逻辑门电路、触发器、计数器、寄存器等基本单元电路。

三、实验仪器与设备1. 数字电路实验箱2. 数字万用表3. 示波器4. 逻辑分析仪5. 编程器四、实验内容1. 逻辑门电路实验(1)实验目的:熟悉TTL、CMOS逻辑门电路的逻辑功能和测试方法。

(2)实验步骤:1)搭建TTL与非门电路,测试其逻辑功能;2)搭建CMOS与非门电路,测试其逻辑功能;3)测试TTL与门、或门、非门等基本逻辑门电路的逻辑功能。

2. 触发器实验(1)实验目的:掌握触发器的逻辑功能、工作原理和应用。

(2)实验步骤:1)搭建D触发器电路,测试其逻辑功能;2)搭建JK触发器电路,测试其逻辑功能;3)搭建计数器电路,实现计数功能。

3. 计数器实验(1)实验目的:掌握计数器的逻辑功能、工作原理和应用。

(2)实验步骤:1)搭建同步计数器电路,实现加法计数功能;2)搭建异步计数器电路,实现加法计数功能;3)搭建计数器电路,实现定时功能。

4. 寄存器实验(1)实验目的:掌握寄存器的逻辑功能、工作原理和应用。

(2)实验步骤:1)搭建4位并行加法器电路,实现加法运算功能;2)搭建4位并行乘法器电路,实现乘法运算功能;3)搭建移位寄存器电路,实现数据移位功能。

五、实验结果与分析1. 逻辑门电路实验通过搭建TTL与非门电路和CMOS与非门电路,测试了它们的逻辑功能,验证了实验原理的正确性。

2. 触发器实验通过搭建D触发器和JK触发器电路,测试了它们的逻辑功能,实现了计数器电路,验证了实验原理的正确性。

3. 计数器实验通过搭建同步计数器和异步计数器电路,实现了加法计数和定时功能,验证了实验原理的正确性。

数字电路实验的实验报告(3篇)

数字电路实验的实验报告(3篇)

第1篇一、实验目的1. 理解和掌握数字电路的基本原理和组成。

2. 熟悉数字电路实验设备和仪器的基本操作。

3. 培养实际动手能力和解决问题的能力。

4. 提高对数字电路设计和调试的实践能力。

二、实验器材1. 数字电路实验箱一台2. 74LS00若干3. 74LS74若干4. 74LS138若干5. 74LS20若干6. 74LS32若干7. 电阻、电容、二极管等元器件若干8. 万用表、示波器等实验仪器三、实验内容1. 基本门电路实验(1)验证与非门、或非门、异或门等基本逻辑门的功能。

(2)设计简单的组合逻辑电路,如全加器、译码器等。

2. 触发器实验(1)验证D触发器、JK触发器、T触发器等基本触发器的功能。

(2)设计简单的时序逻辑电路,如计数器、分频器等。

3. 组合逻辑电路实验(1)设计一个简单的组合逻辑电路,如4位二进制加法器。

(2)分析电路的输入输出关系,验证电路的正确性。

4. 时序逻辑电路实验(1)设计一个简单的时序逻辑电路,如3位二进制计数器。

(2)分析电路的输入输出关系,验证电路的正确性。

5. 数字电路仿真实验(1)利用Multisim等仿真软件,设计并仿真上述实验电路。

(2)对比实际实验结果和仿真结果,分析误差原因。

四、实验步骤1. 实验前准备(1)熟悉实验内容和要求。

(2)了解实验器材的性能和操作方法。

(3)准备好实验报告所需的表格和图纸。

2. 基本门电路实验(1)搭建与非门、或非门、异或门等基本逻辑电路。

(2)使用万用表测试电路的输入输出关系,验证电路的功能。

(3)记录实验数据,分析实验结果。

3. 触发器实验(1)搭建D触发器、JK触发器、T触发器等基本触发电路。

(2)使用示波器观察触发器的输出波形,验证电路的功能。

(3)记录实验数据,分析实验结果。

4. 组合逻辑电路实验(1)设计4位二进制加法器电路。

(2)搭建电路,使用万用表测试电路的输入输出关系,验证电路的正确性。

(3)记录实验数据,分析实验结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验注意事项
正确、细心使用集成块 合理布局和正确连线 严禁在加电源状态下插拔集成块和连接电 路 使用电源时,应保证电源在电压档,如果 在恒流档,应立刻断电 电压源引脚从“+”“-”接出,接入实验箱上的 “+”“-”引脚上,不从实验箱上的“GND”接 出。
三.实验任务与步骤
(一)测试双四选一数据选择器74LS153的功能
思考
(三) 用双四选一数据选择器74LS153实现八选一 数据器
设计方法(提示)
C C ①第三地址输入端用控制端G, 1G , 2G ②用与非门代替非门
1 2 C 当 C 0 , 1 , G 0 有效, G 1 无效,Y Y 当 C 1, 0 ,1G 1 无效,2G 0 有效, Y Y C
2.将74LS112的两个JK触发器分别接成触发器,并按图连接,用 1KHZ方波作CP,观察CP、 、 波形,说明它们有何关系。 方法
将集成电路74LS112插入实验箱中集成电路插座上,按图连接好电 路,将CP、 、 分别接双踪示波器,时钟信号CP接实验箱上的连 续时钟脉冲(1KHZ),观察CP、 、 波形,分析它们之间的关系。
1
2
③ Y Y Y
1
2
((Y1 Y2 )) ((Y1 ) (Y2 ))
画出连线图,并根据连线图将74LS153插入实验箱中集 成电路插座上,并连接好电路。
(四) 十-四线编码器74LS147功能验证
方法 按照连线图接实验电路:将集成电路74LS147插入实验箱中集成电 路插座上,选择其中任一个数据选择器,按图连接好电路,编码输 入端( )的数字信号由实验箱中的数据开关提供, 低电平有效。输出端(D、C、B、A)经过反向后接实验箱中的发 光二极管。利用发光二极管的亮和不亮来指示输出端(Y)的逻辑 状态(亮代表“1”、不亮代表“0”),测试结果比较编码器 74LS147的功能是否一致。
实验注意事项
正确、细心使用集成块 合理布局和正确连线 严禁在加电源状态下插拔集成块和连接电 路 使用电源时,应保证电源在电压档,如果 在恒流档,应立刻断电 电压源引脚从“+”“-”接出,接入实验箱上的 “+”“-”引脚上,不从实验箱上的“GND”接 出。
二.实验器材
数字电路实验箱 1台 数字万用表 1块 稳压电源 1台 示波器 1台 信号发生器 1台 74LS00/CD4011(4-2输入与非门) 1块 7SLS20/CD4012(2-4输入与非门) 1块
实验注意事项
正确、细心使用集成块 合理布局和正确连线 严禁在加电源状态下插拔集成块和连接电 路 使用电源时,应保证电源在电压档,如果 在恒流档,应立刻断电 电压源引脚从“+”“-”接出,接入实验箱上的 “+”“-”引脚上,不从实验箱上的“GND”接 出。
三.实验任务与步骤
(一) 验证基本SR触发器的功能
方法
将集成电路74LS00插入实验箱中集成电路插座上,选择 其中任一个与非门,按图连接好电路,用示波器观察波形。
(二)74LS20与非门的功能测试
静态测试
方法
将集成电路74LS20插入实验箱中集成电路插座上,选择其中任一 个与非门,按图(PPT)连接好电路,输入端(A、B、C、D)的 数字信号由实验箱中的数据开关提供,输出端(Y)接实验箱中 的发光二极管,利用发光二极管的亮和不亮来指示输出端(Y) 的逻辑状态(亮代表“1”、不亮代表“0”),测试结果比较 74LS20与非门的功能是否一致。
方法 将集成电路74LS00插入实验箱中集 成电路插座上,按图连接好电路, 用与非门组成一个基本SR触发器。 电路如下图所示将测试结果填入表 中。
(二) D触发器
1. 验证D触发器的功能 方法 将集成电路CD4013插入实验箱中集成电路插座上,按图连接好电 路,使CD4013上的Sd,Rd接开关,输出端( , )接实验箱中的 发光二极管。利用发光二极管的亮和不亮来指示输出端( , ) 的逻辑状态(亮代表“1”、不亮代表“0”),用实验箱上的单脉冲 作CP,改变D的状态,验证D触发器的功能。
③ 加电检查: =+5V时,用万 用表检查各电源线、地线通否。
④ 用数字万用表DC 20V档,拨动开关,按下表测试, 并利用发光二极管的亮和不亮来指示输出端(Y)的 逻辑状态(亮代表“1”、不亮代表“0”),测试结果 比较74LS00与非门的功能是否一致。
2. 动态测试
给逻辑门电路输入端加上一连续时钟信号,用示波 器观察输入波形与输出波形之间的关系。
完成74LS147功能表 :
实验三 触发器
一.实验目的
掌握基本RS、D触发器的功能及应用
二.实验器材
数字电路实验箱 数字万用表 稳压电源 双上升沿D触发器CD4013 双上升沿JK触发器74LS112 74LS00/CD4011(4-2输入与非门) 1台 1块 1台 1块 1块 1块
实验二 中规模组合逻辑电路的应用
一.实验目的
熟悉编码器、数据选择器的功能及应用;
进一步熟悉数字电路实验方法。
二.实验器材
数字电路实验箱 数字万用表 稳压电源 74LS147(10线-4线优先编码器) 7SLS153(双四选一数据选择器) 74LS00/CD4011(4-2输入与非门) 1台 1块 1台 1台 1块 1块
数字电路实验
实验一:组合逻辑电路的设计与应用 实验二:中规模组合逻辑电路的应用 实验三:触发器 实验四:振荡器 实验五:计数器 实验六:多位计数器
实验一:组合逻辑电路的设计与应用
一.实验目的
掌握数字电路实验的基本方法 掌握门电路的基本用法 掌握组合逻辑电路的设计方法及功能验证方法 掌握数字实验箱的使用方法 了解IC的使用常识
思考
(三)设计三人无弃权表决电路
题意:三人A、B、C为某一提案进行表决,赞成为“1”, 反 对为“0”,多数人赞成则提案通过,用F=“1”表示, 否则提案不通过,用F=“0”表示,用74LS00/CD4011, 74LS20/CD4012实现。
设计方法(提示) ① 设计电路(用于非门设计):
② 连线图:根据逻辑电路图画出连线图,根据连线图选用集成 芯片,将芯片插入实验箱中集成电路插座上,并连接好电路。
(三) JK触发器
1. 验证JK触发器的功能
方法 将集成电路74LS112插入实验箱中集成电路插座上,按图连接好电 Q 路,使74LS112上的Sd,Rd接开关,输出端( Q , )接实验箱 中的发光二极管。利用发光二极管的亮和不亮来指示输出端 Q ( Q , )的逻辑状态(亮代表“1”、不亮代表“0”),用实验 箱上的单脉冲作CP,改变J、K的状态,验证JK触发器的功能。
数据选择器逻辑函数式:
方法 按照连线图接实验电路:将集成电路74LS153插入实验箱中集成电 路插座上,选择其中任一个数据选择器,按图(PPT)连接好电路, 地址输入端(A、B)和数据输入端( )的数字信号由实 验箱中的数据开关提供,输出端(Y)接实验箱中的发光二极管。 利用发光二极管的亮和不亮来指示输出端(Y)的逻辑状态(亮代 表“1”、不亮代表“0”),测试结果比较74LS153数据选择器的功 能是否一致。
2.将CD4013的两个触发器分别接成触发器,并按图连接,用 1KHZ方波作CP,观察CP、 、 波形,说明它们有何关系。
方法
将集成电路CD4013插入实验箱中集成电路插座上,按图连接好电 路,将CP、 、 分别接双踪示波器,时钟信号CP接实验箱上的连 续时钟脉冲(1KHZ),观察CP、 、 波形,分析它们之间的关系。
③ 静态检查:不加外加电源,检查电源线、地线、输入线和输 出线连接是否正确。
④加电检查: =+5V时,利用发光二极管验证真值表。
四.实验报告
内容: 实验目的、器材、任务 电路设计 ① 设计过程:真值表、函数式、逻辑电路图 ② 连线图 实验方法与步骤 实验数据、波形、现象
实验报告内容要全面,过程、分析、结论要清楚,作 图要认真、目的要明确。每组写一份,三天之内交齐。
数字实验箱的使用方法
数码显示 管及引脚 连续脉冲 单脉冲 高低电平 及引脚 IC插 槽及 引脚 发光二极 管及引脚
电容
电阻
数码显示管
IC使用常识
型号:IC的型号标识在集成芯片的上面
使用方法:将IC凹槽向左,将其引脚对准 实验箱上的引脚平稳插入,在取IC时,应 将芯片平稳的拔出,尽量避免引脚损门的功能测试
1. 静态测试
方法
① 按照连线图接实验电路:将集成电路74LS00插入实 验箱中集成电路插座上,选择其中任一个与非门,按 图连接好电路,输入端(A、B)的数字信号由实验箱 中的数据开关提供,输出端(Y)接实验箱中的发光二 极管。 ② 静态检查:不加电,用万用 表检查各电源线、地线通否。
思考
(二) 用双四选一数据选择器74LS153实现全加器
设计方法(提示) ① 设计电路(用于非门设计):
② 连线图:将74LS153插入实验箱中集成电路插座上,并连接好 电路。
③ 静态检查:不加外加电源,检查各电源线、地线、输入线和输 出线是否连接正确。
④加电检查: =+5V时,利用发光二极管验证真值表。
相关文档
最新文档