11 稳恒磁场基本性质习题

合集下载

11稳恒电流和稳恒磁场习题解答讲解

11稳恒电流和稳恒磁场习题解答讲解

第十一章 稳恒电流和稳恒磁场一 选择题1. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(如图)产生的磁感应强度B 的大小为( )A. l I μπ420B. lIμπ20 C .lIμπ20 D. 0 解:设线圈四个端点为ABCD ,则AB 、AD 线段在A 点产生的磁感应强度为零,BC 、CD 在A 点产生的磁感应强度由)cos (cos π4210θθμ-=dIB ,可得 lIl IB BC π82)2πcos 4π(cosπ400μμ=-=,方向垂直纸面向里lI l I B CD π82)2πcos 4π(cos π400μμ=-=,方向垂直纸面向里合磁感应强度 lIB B B CD BC π420μ=+=所以选(A )2. 如图所示,有两根载有相同电流的无限长直导线,分别通过x 1=1、x 2=3的点,且平行于y 轴,则磁感应强度B 等于零的地方是:( )A. x =2的直线上B. 在x >2的区域C. 在x <1的区域D. 不在x 、y 平面上 解:本题选(A )3. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?( )A. Ⅰ区域B. Ⅱ区域 C .Ⅲ区域D .Ⅳ区域E .最大不止一个解:本题选(B )选择题2图Ⅰ Ⅱ Ⅲ Ⅳ 选择题3图选择题1图4. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知:( )A. ∮L B ·d l =0,且环路上任意一点B =0B. ∮L B ·d l =0,且环路上任意一点B ≠0C. ∮L B ·d l ≠0,且环路上任意一点B ≠0D. ∮L B ·d l ≠0,且环路上任意一点B =常量解:本题选(B )5. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(r <R )的磁感应强度为B i ,圆柱体外(r >R )的磁感应强度为B e ,则有:( )A. B t 、B e 均与r 成正比B. B i 、B e 均与r 成反比C. B i 与r 成反比,B e 与r 成正比D. B i 与r 成正比,B e 与r 成反比解:导体横截面上的电流密度2πR IJ =,以圆柱体轴线为圆心,半径为r的同心圆作为安培环路,当r <R ,20ππ2r J r B i ⋅=⋅μ,20π2R IrB i μ=r <R ,I r B e ⋅=⋅0π2μ, rIB e π20μ=所以选(D )6. 有三个质量相同的质点a 、b 、c ,带有等量的正电荷,它们从相同的高度自由下落,在下落过程中带电质点b 、c 分别进入如图所示的匀强电场与匀强磁场中,设它们落到同一水平面的动能分别为E a 、E b 、E c ,则( )A. E a <E b =E cB. E a =E b =E cC. E b >E a =E cD. E b >E c >E a解:由于洛伦兹力不做功,当它们落到同一水平面上时,对a 、c 只有重力做功, 则E a =E c ,在此过程中,对b 不仅有重力做功,电场力也要做正功,所以E b >E a =E c所以选(C )7. 图为四个带电粒子在O 点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片,磁场方向垂直纸面向外,四个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的粒子的轨迹是:( )A. OaB. ObC. Oc D . Od解:根据B F ⨯=v q ,从图示位置出发,带负选择题7图c dba B O• B× × × × × × Ea bc 选择题6图 选择题4图电粒子要向下偏转,所以只有Oc 、Od 满足条件,又带电粒子偏转半径Bqm R v=,22k 22qB m E R =∴,质量相同、带电量也相等的粒子,动能大的偏转半径大,所以选Oc 轨迹所以选(C )8. 如图,一矩形样品,放在一均匀磁场中,当样品中的电流I 沿X 轴正向流过时,实验测得样品A 、A '两侧的电势差V A -V A '>0,设此样品的载流子带负电荷,则磁场方向为:( )A . 沿X 轴正方向B .沿X 轴负方向C .沿Z 轴正方向D .沿Z 轴负方向 解:本题选(C )9. 长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将:( )A. 绕I 2旋转B. 向左运动C. 向右运动D. 向上运动E. 不动 解:圆形电流左半圆和右半圆受到长直电流安培力的方向均向右,所以圆形电流将向右运动所以选(C )二 填空题1. 成直角的无限长直导线,流有电流I =10A ,在直角决定的平面内,距两段导线的距离都是a =20cm 处的磁感应强度B = 。

稳恒磁场练习题答案

稳恒磁场练习题答案

1.求圆心处磁感应强度的大小及方向。

04B R=方向垂直纸面向里2.求圆心处磁场08IB Rμ=方向垂直纸面向里3.求圆心处磁场024I IB R Rμμπ=+方向垂直纸面向里4.求圆心处磁场0082IIB RRμμπ=+方向垂直纸面向里5.求圆心处磁场(1226I B R μππ=−+,方向垂直纸面向里 6.一无限长载流直螺线管通有电流I ,单位长度上螺线管匝数为n ,则该螺线管内部磁场磁感应强度的大小为B = 0nI μ。

7.如图所示,三个互相正交的载流圆环,带有电流强度I ,半径均为R ,则它们公共中心处O 点的磁感应强度大小为B =02IR。

8.一通电的圆环,通过的电流为I,半径为R,则圆心处的磁感应强度大小为02IRμ,线圈的磁矩大小为 2I R π 。

9.一无限长载流直导线,弯成如图所示的四分之一圆,圆心为O ,半径为R ,则在O 点的磁感应强度的大小为 0082IIB RRμμπ=+。

10.一个正方形回路和一个圆形回路,正方形的边长等于圆的直径,两者通过相等的电流,则正方形和圆形回路中心产生的磁感应强度大小之比为11.如图所示流经闭合导线中的电流强度为I ,圆弧半径分别为1R 和2R ,圆心为O ,则圆心001244IIR R μμ−。

12.一载有电流强度为I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等。

设2R r =,则两螺线管内部的磁感应强度的大小比值为:RrB B =1:1 。

13. 在同一平面上有三根等距离放置的长通电导线,如图所示,导线1、2、3分别载有1A 、2A 、3A 的电流,它们所受的安培力分别为1F 、2F 、3F ,则12F F = 7/8 ;13F F = 7/15 ;23F F = 8/15 。

(0174F d μπ=,0284F d μπ=,03154F dμπ=;故1278F F =,13715F F =,23815F F =) 14. 如图所示,长直导线中通有稳恒电流1I ,在其旁边有一导线段ab ,长为L ,距长直导线距离为d ,当它通有稳恒电流2I 时,该导线ab 所受磁力大小为012ln 2I I d Ld μπ+ 。

大学物理习题稳恒磁场

大学物理习题稳恒磁场

稳恒磁场一、选择题1. 一圆电流在其环绕的平面内各点的磁感应强度B 【 】 (A) 方向相同, 大小相等; (B) 方向不同,大小不等; (C) 方向相同, 大小不等; (D) 方向不同,大小相等。

2. 电流由长直导线流入一电阻均匀分布的金属矩形框架,再从长直导线流出,设图中321O ,O ,O 处的磁感应强度为B B B 123,,,则 【 】(A)B B B 123==; (B) 0B 0B B 321≠== ;(C) 0B ,0B ,0B 321=≠= ; (D) 0B ,0B ,0B 321≠≠=3. 所讨论的空间处在稳恒磁场中,对于安培环路定律的理解,正确的是 【 】(A) 若⎰=⋅L0l d B ,则必定L 上B 处处为零(B) 若⎰=⋅L0l d B, 则必定L 不包围电流(C) 若⎰=⋅L0l d B, 则L 所包围电流的代数和为零(D) 回路L 上各点的B 仅与所包围的电流有关。

4. 在匀强磁场中,有两个平面线圈,其面积21A 2A =, 通有电流21I 2I =, 它们所受的最大磁力矩之比M M 12/等于 【 】 (A) 1 (B) 2(C) 4(D) 1/45. 由N 匝细导线绕成的平面正三角形线圈,边长为a , 通有电流I , 置于均匀外磁场B中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为: 【 】(2)选择题(A) 2/IB Na 32,(B)4/IB Na 32, (C) 60sin IB Na 32,(D) 06. 一带电粒子以速度v 垂直射入匀强磁场 B 中,它的运动轨迹是半径为R 的圆, 若要半径变为2R ,磁场B 应变为: 【 】 B 22)D (B 21)C (B 2)B (B 2)A ( 7. 图中所示是从云室中拍摄的正电子和负电子的轨迹照片,均匀磁场垂直纸面向里,由两条轨迹可以判断【 】(A) a 是正电子,动能大; (B) a 是正电子, 动能小; (C) a 是负电子,动能大; (D) a 是负电子,动能小。

大学物理稳恒磁场理论及习题

大学物理稳恒磁场理论及习题

结果:
1.
F
v,
B组



面.
2. F 大小正比于v, q0,sin.
q0沿磁场方向运动, F 0.
q0 垂直磁场方 向运动, F Fmax .
NIZQ 第4页
大学物理学 恒定磁场
在垂直磁场方向改变速率v,改变点电荷 电量q0 .
结论: 场中同一点, Fmax/q0v有确定值. 场中不同点, Fmax/q0v量值不同.
大学物理学 恒定磁场
从毕-萨定律导出运动电荷的磁场
S: 电流元横截面积
n: 单位体积带电粒子数
q: 每个粒子带电量
v: 沿电流方向匀速运动
电流元 Idl产生的磁场:
大学物理学 恒定磁场
一.磁场 磁感应强度
• 磁性起源于电荷的运动 磁铁的磁性: 磁性: 能吸引铁、钴、镍等物质的性质.
磁极: 磁性最强的区域, 分磁北.
磁力: 磁极间存在相互作用, 同号相斥,
异号相吸.
问题: 磁现象产生的原因是什么?
司南勺
北宋沈括发明 “指南针(罗盘
1.在任何磁场中每一条磁感线都
是环绕电流的无头无尾的闭合线, 条形磁铁周围的磁感线 即没有起点也没有终点,而且这些
闭合线都和闭合电路互相套连.
2.在任何磁场中,每一条闭合的磁
感线的方向与该闭合磁感线所包围
的电流流向服从右手螺旋法则.
直线电流的磁感线
NIZQ 第6页
大学物理学 恒定磁场
二.毕澳-萨伐尔定律
r a
sin
B
l
dB
2 1
0I

a
sin 2
sin 2
a2
sin d

稳恒磁场练习题(选择填空)

稳恒磁场练习题(选择填空)

A. IBPm , M 0
B. BPm , M 0
I
C. IBPm , M BPm
D.
BPm I
,M
BPm
11.在磁感应强度为B 均匀磁场中作一半径为r
半与球B夹面角S,为S边,则线通所过在半平球面面法S线的方磁向通单量位为矢量 n
A. r 2B
B. 2 r 2B
S
C. r 2B sin D. r 2B cos
n
B
12、已知:磁感应强度
B
Bi
求: 通过各面的磁通量。
Y
上 下 后 0
b
vv
a
1 B S1 B ac S1
c
B
vv
0 X
2 B S2 B ac
S2
Z
13、 S 是以圆周 L 为周界的任意曲面, 求通过 S 的磁通量。
S R2 B
3 2
R
S0 30
L
S
B
14.下列说法正确的是 ( )
一个同心圆形闭合回路L,则由安培环路定理
可知
(A)
B
d
l
0
,且环路上任意一点B = 0.
I
L O
(B)
L
B
d
l
0
,且环路上任意一点B≠0.
L
(C) B d l 0 ,且环路上任意一点B≠0.
(D)
L B
dl 0
,且环路上任意一点B =常量.
L
解: I 0, B 0
B
16、取一闭合积分回路 L ,使三根载流导线穿过它所围成的面,
而 的从 积Ad分.端L流0BI出 d l,等则于磁B.感13应0强I 度沿图中闭合1路2I0b径a L

大学物理稳恒磁场习题及答案

大学物理稳恒磁场习题及答案

衡水学院理工科专业《大学物理B 》稳恒磁场习题解答 【1 】一.填空题(每空1分)1.电流密度矢量的界说式为:dIj n dS ⊥=,单位是:安培每平方米(A/m2). 2.真空中有一载有稳恒电流I 的细线圈,则经由过程包抄该线圈的关闭曲面S 的磁通量=0 .若经由过程S 面上某面元d S 的元磁通为d,而线圈中的电流增长为2I 时,经由过程统一面元的元磁通为d ',则d ∶d '=1:2 .3.一曲折的载流导线在统一平面内,外形如图1(O 点是半径为R1和R2的两个半圆弧的配合圆心,电流自无限远来到无限远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=.4.一磁场的磁感强度为k c j b i a B++= (SI),则经由过程一半径为R,启齿向z 轴正偏向的半球壳概况的磁通量的大小为πR2cWb. 5.如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情形下,等于: 对环路a :d B ⋅⎰=____μ0I__;对环路b :d B ⋅⎰=___0____; 对环路c :d B ⋅⎰=__2μ0I__.6.两个带电粒子,以雷同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,活动轨迹半径之比是_____1∶2_____. 二.单项选择题(每小题2分)( B )1.平均磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S,则经由过程S 面的磁通量的大小为( C )2.有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中间产生的磁感强度的大小之比B1 / B2为(D )3.如图3所示,电流从a 点分两路经由过程对称的圆环形分路,会合于b 点.若ca.bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 偏向垂直环形分路地点平面且指向纸内B. 偏向垂直环形分路地点平面且指向纸外C .偏向在环形分路地点平面内,且指向aD .为零( D )4.在真空中有一根半径为R 的半圆形细导线流过的电流为I,则圆心处的磁感强度为 A.R 140πμ B. R120πμ C .0D .R 140μ ( C )5.如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度绕AC 轴扭转时,在中间O 点产生的磁感强度大小为B1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴扭转时,在O 点产生的磁感强度的大小为B2,则B1与B2间的关系为A. B1= B2B. B1= 2B2C .B1=21B2D .B1= B2 /4O IR 1 R 2图1b⊗ ⊙ cI I c a图2c I db a图3A CqqqqO图4(B )6.有一半径为R 的单匝圆线圈,通以电流I,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中间的磁感强度和线圈的磁矩分离是本来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4.(D) 2倍和1/2. 三.断定题(每小题1分,请在括号里打上√或×)( × )1.电源的电动势是将负电荷从电源的负极经由过程电源内部移到电源正极时,非静电力作的功. ( √ )2.磁通量m SB dS φ=⋅⎰的单位为韦伯.( × )3.电流产生的磁场和磁铁产生的磁场性质是有区此外. ( × )4.电动势用正.负来暗示偏向,它是矢量.( √ )5.磁场是一种特别形态的物资,具有能量.动量和电磁质量等物资的根本属性. ( × )6.知足0m SB dS φ=⋅=⎰的面积上的磁感应强度都为零.四.简答题(每小题5分)1.在统一磁感应线上,各点B 的数值是否都相等?为何不把感化于活动电荷的磁力偏向界说为磁感应强度B的偏向?答:在统一磁感应线上,各点B 数值一般不相等.(2分)因为磁场感化于活动电荷的磁力偏向不但与磁感应强度B 的偏向有关,并且与电荷速度偏向有关,即磁力偏向其实不是独一由磁场决议的,所以不把磁力偏向界说为B 的偏向.(3分)2.写出法拉第电磁感应定律的数学表达式,解释该表达式的物理意义. 答:法拉第电磁感应定律的数学表达式r lS BE dl dS t∂⋅=-⋅∂⎰⎰(2分) 物理意义:(1)感生电场是由变更的磁场激发的;(1分)(2)感生电场r E 与Bt∂∂组成左手螺旋关系;(1分)(3)右侧的积分面积S 为左侧积分路径L 包抄的面积.(1分)五.盘算题(每题10分,写出公式.代入数值.盘算成果.)1.如图5所示,AB.CD 为长直导线,BC 为圆心在O 点的一段圆弧形导线,其半径为R.若通以电流I,求O 点的磁感应强度. 解:如图所示,O 点磁场由AB .C B.CD 三部分电流产生.个中AB 产生01=B(1分)CD 产生RIB 1202μ=,(2分)偏向垂直向里(1分)CD 段产生)231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,(2分)偏向⊥向里(1分)∴)6231(203210ππμ+-=++=R I B B B B ,(2分)偏向⊥向里.(1分) 2.如图6所示.半径为R 的平均带电圆盘,面电荷密度为σ.当盘以角速度ω绕个中间轴OO '扭转时,求盘心O 点的B 值.解法一:当带电盘绕O 轴迁移转变时,电荷在活动,因而产生磁场.可将圆盘算作很多齐心圆环的组合,而每一个带电圆环迁移转变时相当图5于一圆电流.以O 为圆心,r 为半径,宽为dr 的圆环,此环上电量rdr ds dq πσσ2⋅==(2分)此环迁移转变时,其等效电流rdr dq dI ωσπω=⋅=2(3分) 此电流在环心O 处产生的磁感应强度大小2200drrdIdB ωσμμ==(2分)其偏向沿轴线,是以全部圆盘在盘心O 处产生的磁感应强度大小是R dr dBB Rωσμωσμ0002121==⎰⎰(3分) 解法二:依据活动电荷的磁场公式304r rv q B ⨯=πμ,(2分)求解,在圆盘上取一半径为r,宽为dr 的圆环,电量rdr dq πσ2=,ωr v =(2分)dr rdr r r dq r dB 22440020σωμπσπωμπωμ=⋅==(3分)偏向垂直于盘面向上,同样RqRdr dB B Rπωμωσμσωμ2220000====⎰⎰(3分) 3.图7所示,在一长直载流导线旁有一长为L 导线ab,其上载电流分离为I1和I2,a 端到直导线距离为d 求当导线ab 与长直导线垂直,求ab 受力.解:取如图8所示坐标系直导线在距其为x 处,产生的磁场xI B πμ210=(2分) 其偏向垂直低面向里,电流之I2dx 受安培力大小为dx xI I Bdx I df πμ22102==(3分) df 偏向垂直向上,且各电流之受力偏向雷同,(2分)故,ab 受力为012012ln22d L LdI I I I d Lf df dx x dμμππ++===⎰⎰(3分) 4.一长直导线通有电流120A I =,旁边放一导线ab,个中通有电流210A I =,且两者共面,如图8所示.求导线ab 所受感化力对O 点的力矩.解:如图9所示,在ab 上取r d ,它受力ab F ⊥d 向上,(2分)大小为rI rI F πμ2d d 102=(2分) F d 对O 点力矩F r M⨯=d (2分)图6I 1I2dL图7Md 偏向垂直纸面向外,大小为r I I F r M d 2d d 210πμ==(2分) ⎰⎰-⨯===ba bar II M M 6210106.3d 2d πμm N ⋅(2分)5.两平行长直导线相距d=40cm,每根导线载有I1=I2=20A 如图10所示.求: ⑴两导线地点平面内与该两导线等距的一点A 处的磁感应强度; ⑵经由过程图中斜线所示面积的磁通量.(r1=r3=10cm,l=25cm)解: (1)图中的A 点的磁场122222O O A I I B d d μμππ=+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()512124010O O OI I I I T d d dμμμπππ-=+=+=⨯(4分) (2)在正方形中距中间x 处,取一窄条ds ldx =,则经由过程ds 的磁通量m d B ldx φ=()1222O O I I ldxx d z μμππ⎛⎫=+ ⎪ ⎪-⎝⎭ 122O l I I dx x d x μπ⎛⎫=+ ⎪-⎝⎭(3分)31122d r O m m r l I I d dx x d x μφφπ-⎛⎫==+ ⎪-⎝⎭⎰⎰311213ln ln 2O l d r d r I I r r μπ⎛⎫--=+ ⎪⎝⎭ ()121ln 2O l d n I I r μπ⎛⎫-=+ ⎪⎝⎭6111ln 2.210O l d r I wb r μπ--==⨯(3分) 6.已知磁感应强度B=2.0Wb ·m -2的平均磁场, 偏向沿X 轴正偏向,如图11所示,试求:(1) 经由过程abcd 面的磁通量; (2) 经由过程图中befc 面的磁通量; (3)经由过程图中aefd 面的磁通量. 解:(1)经由过程abcd 面的磁通量mabcd abcd B S φ= 2.00.40.3=⨯⨯ 0.24wb =(4分)(2)经由过程ebfc 面的磁通量,因为B 线擦过此面 故0mbdfc φ=(3分)(3)经由过程aefd 面的磁通量图110.24 maefd mabcd wbφφ==(3分)。

第11章_稳恒电流磁场习题解答.

第11章_稳恒电流磁场习题解答.

11-11 根据安培环路定理⎰B dl =μ0∑I ,求得磁感应强度为:⎧μ0Ir(r ≤R 2⎪⎪2πR方向垂直纸面向里,取矩形法线方向为垂直纸面向里 B =⎨⎪μ0I (r >R ⎪⎩2πrφ=⎰B dS =R⎰2πRμ0Ir2Rdr +2⎰Rμ0I 2πrdr =μ0I 4π+μ0I 2πln 211-12 把圆盘割成许多圆环,其中对单个小圆环,设它的半径为r ,宽为dr ,带dq =σ2πrdr电为dq ,则,∴dI =dq dt=σωrdr dm =πσωr dr3则整个圆盘的磁矩为m =πk ωr 55⎰R 0dm =⎰R 0πσωr dr =3⎰R 0πk ωr dr =4πk ωr 55垂直纸面向外,所以M =B 平行于纸面且垂直于B 向上11-13 根据霍尔效应V =R H =IB b =1IB qn b 1-1.6⨯10-19200⨯1.528⨯7.4⨯101⨯10-3=-2.53⨯10(V-5电场强度E =V a =2.53⨯102.0⨯10-5-2=1.27⨯10(N . C-3-111-14U A 'A =-U AA '=-6.65⨯10(V-3IB bqU A 'A所以这块导体是n 型,又U A 'A =R H IB b=1IB qn b203, ∴n =,带入数据,得n =2.82⨯10(m11-15:由安培力公式可知,当两条导线电流方向相同时,两导线相互吸引,如下图,导线2对导线1单位长度的引力的大小为:f 12=μ0I 1I 22πr=μ0I 22πa,导线3对导线1单位长度的引力f 13=μ0I 22πa,引力f 13和f 12正好在等边三角形的两条边上,它们之间的夹角为600,而且在数值上大小相等,所以合力的大小为f 1=f 13cos 30+f 12cos 30=μ0I 2πacos 30=3.46⨯100-4N /cm 方向如图11-16. 在线圈的上下两段弧da 和bc 上,因长直电流I 1产生的磁场与和电流I 2方向平行,所以圆弧da 和bc 受力为零。

11 稳恒磁场的基本性质习题答案

11 稳恒磁场的基本性质习题答案

稳恒磁场的基本性质习题答案1. 由B v q F⨯=可得;2. 由于⎰=⋅0s d B,圆盘的磁通量:22B R s d B π=圆盘⎰⋅ ,所以任意曲面S 的磁通量为: 22BR s d B S π-⋅⎰= ;3. 由0B nI μ=可得;4. 无限长直载流导线在空间某点产生的磁感应强度B 的大小为:rIB πμ20=; 5. 由长直导线在空间产生的磁感应强度为rIB πμ20=,而x 1=1、x 2=3到x =2的距离相等,即产生的磁感应强度大小相等,但方向刚好相反,所以0=∑ii B;6. 由安培环路定理d 0i0liB l Iμ⋅==∑⎰可得;7. 由安培环路定理d 0i li B l I μ⋅=∑⎰可得,⎪⎪⎩⎪⎪⎨⎧><=Rr rIRr R Ir B πμπμ22020;8. 由安培环路定理d 0iliB l Iμ⋅=∑⎰可得;二、填空题1. B v ⊥; B v // 由B v q F⨯=可以判断;2. k F 14108-⨯= 由B v q F ⨯=可以计算得到;3.8:2π由1012a IB μ=2020222)145c o s 45(cos 2/44a Ia I B πμπμ=︒-︒⋅= 由于 21B B = 所以 8:2:21π=a a4. RihB πμ20=。

先把狭缝补全,并假设其电流密度与圆筒的一样,由整个圆筒得对称性得,0=B再假设在狭缝处有一反向电流,其电流密度为i -,则狭缝在管轴线上的RihB πμ20= 5. 0由A 、C 两端的电压相等:221122112211θθI I l I l I R I R I U AC =⇒=⇒==r I rI B πθμμ42110101==rI r I B πθμμ42220202== 所以021=-B B 6. T 41025.1-⨯a ev T e t q I π2===T aev a I B 42001025.142-⨯===πμμ 7. Wb 6102.2-⨯由对称性得:Wb r rr Il dr l r I s d B r r r 612100102.2ln 22222211-+⨯=+⋅=⋅⋅=⋅=⎰⎰πμπμφ 8. 1:1r I B πμ20= 2ln 220201πμπμφIldr l r I s d B a a=⋅⋅=⋅=⎰⎰2ln 2204202πμπμφIldr l r I s d B a a=⋅⋅=⋅=⎰⎰ 所以1:1:21=φφ三、计算题1.解: 2210cos o 1=⨯==BS m φ(wb)090cos o 2==BS m φ (wb)2222145cos o 3=⨯==BS m φ (wb)2. 解:1234o B B B B B =+++电流1、3由于对称性在O 点产生的磁感应强度的矢量和为0,即 031=+B B得 130B B -=电流2、4在O 产生的磁感应强度方向相同,都指向电流3,aIa IB B B πμπμ0024222/2222=⋅==+ 所以0123422IB B B B B B aπ=+-+==方向指向电流3,即指向右下角。

大学物理稳恒磁场习题及答案之欧阳理创编

大学物理稳恒磁场习题及答案之欧阳理创编

衡水学院理工科专业《大学物理B 》稳恒磁场习题解答时间:2021.03.05创作:欧阳理一、填空题(每空1分)1、电流密度矢量的定义式为:dIj n dS ⊥=,单位是:安培每平方米(A/m2)。

2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量=0 .若通过S 面上某面元d S 的元磁通为d,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d',则d ∶d'=1:2 。

3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R1和R2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。

4、一磁场的磁感强度为k c j b i a B++= (SI),则通过一半径为R ,开口向z轴正方向的半球壳表面的磁通量的大小为πR2cWb 。

5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :d B l ⋅⎰=____μ0I__; 对环路b :d B l ⋅⎰=___0____; 对环路c :d B l ⋅⎰=__2μ0I__。

6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。

二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 A. 2r2BB.r2BC. 0D.无法确定的量O I R 1 R 2 图1 b ⊗ ⊙c I I c a图2( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B1 / B2为A. 0.90B. 1.00C. 1.11D.1.22(D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )4、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为A.R 140πμ B. R 120πμ C .0D .R140μ ( C )5、如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B2,则B1与B2间的关系为A. B1= B2B. B1= 2B2C .B1= 21B2D .B1= B2 /4(B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的(A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4.(D) 2倍和1/2.三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。

稳恒磁场习题

稳恒磁场习题

稳恒磁场复习题一 判断题1 一带电粒子作匀速直线运动通过某区域,所以该区域的磁场为零。

2 一闭合回路中有两条通有大小相同、方向相反电流的两条导线,则闭合回路上各点的磁感应强度为零。

3 一对相同带电量和相同质量的正、负电子同时在同一点入射一均匀磁场,已知他们的速度非别为2v 和v ,都和磁场垂直,若只考虑磁场作用,则他们同时回到出发点。

4 若闭合曲线上各点的H 为零,则该曲线所包围的传导电流的代数和为零二选择题1 如图所示电流分布,O 点的磁感应强度为 ( )(A)0022I I R R μμπ+; (B) 0024I IR Rμμπ+; (C) 004I I R R μμπ+; (D) 0I R μπ. 2 如图所示电流分布,O 点的磁感应强度为 ( )(A)0022I I R R μμπ+; (B) 002I I R R μμπ-; (C) 0022I IR Rμμπ-; (D) 0I R μπ. 3 一条无限长直导线在一处弯折为半径为R 的圆弧,如图。

已知导线电流强度为I ,圆心O 处的磁感应强度为(A)08IRμ; (B) 04I R μ; (C) 02I R μ; (D) 0.4 两根长直导线沿半径方向连接到粗细均匀的铁环上的A 、B 两点,并与很远处的电源相连,两段弧AB 的长度和电流分别为L 1、L 2和I 1、I 2,则圆环中心的磁感应强度为(A)01124I L R μπ; (B) 02224I L R μπ; (C) 022*******I L I LR Rμμππ+; (D) 0. 5、关于稳恒电流磁场的磁场强度H,下列几种说法中哪个是正确的 ( )(A) H仅与传导电流有关.(B) 若闭合曲线内没有包围传导电流,则曲线上各点的H必为零. (C) 若闭合曲线上各点H均为零,则该曲线所包围传导电流的代数和为零.(D) 以闭合曲线L为边缘的任意曲面的H通量均相等.6、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为a ,则通过半球面S 的磁通量(取弯面向外为正)为(A) SB (B) 2SB (C) -SBsina (D) -SBcosa7、六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?(A) Ⅰ区域. (B) Ⅱ区域.(C) Ⅲ区域. (D) Ⅳ区域.8 边长为L 的一个导线方框上同有电流I ,则此框中心的磁感应强度( ) (A)与L 无关. (B) 正比于L 2.(C) 与L 成反比. (D) 与I 2有关域.9 无限长通电流扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片最近边缘为b 处的P 点的磁感应强度B 的大小为( ) (A) ()02Ia b μπ+; (B)0ln()2I a ba b μπ+; (C) 0ln()2I a b b aμπ+; (D)()02/2I a b μπ+.三 填空题1 三根直载流导线A 、B 和C 平行地放置于同一平面内,分别载有恒定电流I 、2I 和3I 。

11稳恒电流和稳恒磁场习题解答

11稳恒电流和稳恒磁场习题解答

第十一章稳恒电流和稳恒磁场一选择题 1.两根截面大小相同的直铁丝和直铜丝串联后接入一直流电路,铁丝和铜 丝内的电流密度和电场强度分别为£和Z ,场,贝U :()川・ Ji-Jif R P E I B.C.D. J1-J29解:直铁丝和直铜丝串联,所以两者电流强度相等/,=/,,由/=JJJ dS, 两者截面积相等,则丿产丿2,因为J=yE,又沧<加,则所以选(D ) 2.如图所示的电路中,兄为可变电阻,当兄为何值时兄将有最大功率消耗:九 18Q B. 6Q C ・ 4Q D ・ 12Q 12心----------------------- 912 +心际_ 200心6 + /?at> 12 + 3/?y% =普二 二:件,求晋=0,可得当R L =4Q 时将有最大功率消耗°所以选(C )3. 边长为[的正方形线圈中通有电流7,此线圈在兔点(见图)产生的磁感 应强度万的大小为()A. 如B.虬471/2兀/ C .穽D. 0nl解:设线圈四个端点为ABCD,则AB 、AD 线段在A 点 产生的磁感应强度为零,BC. CD 在A 点产生的磁感应强度 由 B =(cos q - cos &),可得 B HC =纠(cos£ - cos £) = ,4TU / ■ 4兀/ 42 8TT /垂直纸面向里解:选择题2图方向B CD = (cos-cos '方向垂直纸面向里 4兀/ 4 2 8R / 合磁感应强度 B = B BC + B CD =兰孕所以选(A)4. 如图所示,有两根载有相同电流的无限长直导线,分别通过 時1、审3 的点,且平行于y 轴,则磁感应强度〃等于零的 地方是:()A. A =2的直线上B. 在x>2的区域C. 在XI 的区域D. 不在x 、y 平面上 解:本题选(A) 5.图中,六根无限长导线互相绝缘,通过电流均为7, 区域I 、II 、m 、iv 均为相等的正方形,哪一个区域指向 纸内的磁通量最大( )A. I 区域 B . n 区域 c. in 区域 D. IV 区域E.最大不止一个解;本题选(B)6. 如图,在一圆形电流2•所在的平面内,选取一个同心圆形闭合回路厶则 由安培环路定理可知:()A. 佔 2=0,且环路上任意一点毕0B. f 阈2=0,且环路上任意一点狞0C. 4阈_?工0,且环路上任意一点砌0D. §阚』H0,且环路上任意一点丛常量 解:本题选(B) 7.无限长直圆柱体,半径为/?,沿轴向均匀流有电流,设圆柱体内(X0 的磁感应强度为8,圆柱体外(r>Q 的磁感应强度为3,则有:()A. B*、3均与z •成正比B. 3、B ■均与r 成反比C.民与z •成反比,3与r 成正比D.民与z •成正比,B ・与r成反比解:导体横截面上的电流密度八汾,以圆柱体轴线为圆心,半径为,II12 3 X选择题4图的同心圆作为安培环路,当"垃—"宀B 台r<A B e 2nr = //0 -1 , B e =-2nr所以选(D )&有三个质量相同的质点敗b. 6带有等量的 正电荷,它们从相同的高度自由下落,在下落过程中 带电质点b 、C 分别进入如图所示的匀强电场与匀强磁 场中,设它们落到同一水平面的动能分别为E ・、Eb 、 B C 9 则()解:由于洛伦兹力不做功,当它们落到同一水平面上时,对尔c 只有重力 做功,则EFE “在此过程中,对b 不仅有重力做功,电场力也要做正功,所以所以选(C )9. 图为四个带电粒子在0点沿相同方向垂直于磁力线射入均匀磁场后的偏 转轨迹的照片,磁场方向垂直纸面向外,四个粒子的质量相等,电童大小也相等, 则其中动能最大的带负电的粒子的轨迹是:()A. OaB. ObC. OcD ・ Od解:根据FrfVxB,从图示位置出发,带负 °电粒子要向下偏转,所以只有&、阳满足条件, 又带电粒子偏转半径R 罟,・・.R —出二 质选择题9图BqB 2C /2量相同.带电量也相等的粒子,动能大的偏转半径大,所以选先轨迹 所以选(C )10. 如图,一矩形样品,放在一均匀磁场中,当样 品中的电流2■沿X 轴正向流过时,实验测得样品人A 两侧的电势差%以>0,设此样品的载流子带负电荷, 则磁场方向为:()A. 沿*轴正方向B. 沿/轴负方向㊉abcX XX XX XE BEKEF E CEVE F E U选择题8图 选择题io 图C. 沿z 轴正方向D. 沿Z 轴负方向 解:本题选(C)11. 长直电流厶与圆形电流Z 共面,并与其一直径相重合如图(但两者间 绝缘),设长直电流不动,则圆形电流将:()A. 绕Z,旋转B. 向左运动C. 向右运动D. 向上运动E. 不动解:圆形电流左半圆和右半圆受到长直电流安培力的 方向均向右,所以圆形电流将向右运动所以选(C) 二填空题1.成直角的无限长直导线,流有电流U10A,在直角决定的平面内,距两段导线的距离都是-=20cm 处的磁感应强度 ________ o ( o=4nX10 T N/A a )解:两根导线在a 点产生的磁感应强度大小相等,方向相同B 、= B 、= (cos q — cos OJ) =- +1)=4兀厂 "4nr 22图中,将一根无限长载流导线在一平面内弯成如图所示的形状,并通以电流7,贝0圆心0点的磁感应强度戌的值为_______________________________________解:圆心处的磁感应强度是由半圆弧 产生的,根据毕奥一萨伐尔定律B =如怦如4TT c r 4“3磁感应强度为B^ai^ck (T),则通过一半径为凡 开口向Z 正方向的半球壳表面的磁通量的大小为_________ W boB = 2B\ =(V2 + 2)“屛4nr(Q + 2)“屛8TC ?-解:在Z方向上的磁感应强度3= c,则在半球壳表面上的磁通量<p.= 3c Wb4.同轴电缆,其尺寸如图所示,它的内外两导体中的电流均为几且在横截面上均匀分布,但二者电流的流向正相反,则:(1)在X兄处磁感应强度大小氏为_______o (2)在r>/&处磁感应强度大小为________________________o解:内筒的电流密度j =厶,由安培环路定理B 2n r = //0 jzr r2当虫丘时,B2nr 2尿当r>尼时,内外电流强度之和为零,所以& =0■ -■填空题4图“u"5.将半径为R的无限长导体薄壁管(厚度忽略)沿轴向抽去一宽度为h(*<*)的无限长狭缝后,再沿轴向均匀地流有电流,其面电流密度为,(如图),则管轴线上磁感应强度的大小是____________ O解:轴线上磁感应强度可看成是完整的无限长圆筒电流和狭缝处与圆筒电流密度相等但方向相反的无限长线电流产生的磁场的合成。

大学物理学下册答案解析第11章

大学物理学下册答案解析第11章

第11章 稳恒磁场习 题一 选择题11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ](A )10B =,20B =(B )10B =,02IB lπ=(C)01IB lπ=,20B =(D)01I B l π=,02IB lπ= 答案:C解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4IB dμθθπ=-,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计算01IB lπ=,20B =。

故正确答案为(C )。

11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ]习题11-1图习题11-2图(A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O处的磁感应强度大小为0/2B I R =。

11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ](A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=⋅=。

故正确答案为(C )。

11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ何变化?[ ](A )Φ增大,B 也增大 (B )Φ不变,B 也不变 (C )Φ增大,B 不变 (D )Φ不变,B 增大I习题11-4图习题11-3图答案:D解析:根据磁场的高斯定理0SBdS Φ==⎰,通过闭合曲面S 的磁感应强度始终为0,保持不变。

稳恒电流的磁场(习题答案)

稳恒电流的磁场(习题答案)

稳恒电流的磁场一、判断题3、设想用一电流元作为检测磁场的工具,若沿某一方向,给定的电流元l d I0放在空间任意一点都不受力,则该空间不存在磁场。

×4、对于横截面为正方形的长螺线管,其内部的磁感应强度仍可用nI 0μ表示。

√5、安培环路定理反映了磁场的有旋性。

×6、对于长度为L 的载流导线来说,可以直接用安培定理求得空间各点的B。

×7、当霍耳系数不同的导体中通以相同的电流,并处在相同的磁场中,导体受到的安培力是相同的。

×8、载流导体静止在磁场中于在磁场运动所受到的安培力是相同的。

√9、安培环路定理Il d B C 0μ=∙⎰中的磁感应强度只是由闭合环路内的电流激发的。

×10、在没有电流的空间区域里,如果磁感应线是一些平行直线,则该空间区域里的磁场一定均匀。

√二、选择题1、把一电流元依次放置在无限长的栽流直导线附近的两点A 和B ,如果A 点和B 点到导线的距离相等,电流元所受到的磁力大小(A )一定相等 (B )一定不相等(C )不一定相等 (D )A 、B 、C 都不正确 C2、半径为R 的圆电流在其环绕的圆内产生的磁场分布是: (A )均匀的 (B )中心处比边缘处强 (C )边缘处比中心处强 (D )距中心1/2处最强。

C3、在均匀磁场中放置两个面积相等而且通有相同电流的线圈,一个是三角形,另一个是矩形,则两者所受到的(A )磁力相等,最大磁力矩相等 (B )磁力不相等,最大磁力矩相等 (C )磁力相等,最大磁力矩不相等 (D )磁力不相等,最大磁力矩不相等 A4、一长方形的通电闭合导线回路,电流强度为I ,其四条边分别为ab 、bc 、cd 、da 如图所示,设4321B B B B 及、、分别是以上各边中电流单独产生的磁场的磁感应强度,下列各式中正确的是:LI()()121101111234000C C C A B dl I B B dl C B B dl D B BB B dl Iμμ⋅=⋅=+⋅=+++⋅=⎰⎰⎰⎰()()()()A5、两个载流回路,电流分别为121I I I 设电流和单独产生的磁场为1B,电流2I 单独产生的磁场为2B ,下列各式中正确的是:(A )()21012C B dl I I μ⋅=+⎰(B )1202C B dl I μ⋅=⎰(C )()()112012C B B dlI I μ+⋅=+⎰(D )()()212012C B B dlI I μ+⋅=+⎰ D 6、半径为R 的均匀导体球壳,内部沿球的直线方向有一载流直导线,电线I 从A 流向B 后,再沿球面返回A 点,如图所示下述说法中正确的是:(A )在AB 线上的磁感应强度0=B(B )球外的磁感应强度0=B(C )只是在AB 线上球内的部分感应强度0=B(D )只是在球心上的感应强度0=BA7、如图所示,在载流螺线管的外面环绕闭合路径一周积分ld B L ∙⎰等于(A )0 (B )nI 0μ(C )20nIμ (D )I 0μD8、一电量为q 的点电荷在均匀磁场中运动,下列说法正确的是 (A )只要速度大小相同,所受的洛伦兹力就相同。

稳恒磁场练习题及答案

稳恒磁场练习题及答案

稳恒磁场练习题及答案一、 选择题1、在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。

问哪个区域中有些点的磁感应强度可能为零 ( D ) (A )仅在象限1 (B )仅在象限2(C )仅在象限1、3 (D )仅在象限2、42、关于洛仑兹力,下列说法错误的是:( D ) (A )带电粒子在磁场中运动,不一定受洛仑兹力 (B )洛仑兹力不做功(C )洛仑兹力只改变粒子运动方向(D )当磁场方向与粒子运动方向一致时,洛仑兹力对粒子作正功 3、一电量为q 的粒子在匀强磁场中运动,下面哪种说法是正确的:( B ) (A )只要速度大小相同,粒子所受的洛仑兹力就相同(B )在速度不变的前提下,若电荷电量q 变为-q ,则粒子受力方向相反,数值不变 (C )粒子进入磁场后,其动量和动能都不改变(D )洛仑兹力与速度方向垂直,所以带电粒子运动的轨迹一定是圆4、由磁场的高斯定理可知 (D )(A )穿入闭合曲面的磁感应线条数必然多于穿出的磁感应线条数; (B )穿入闭合曲面的磁感应线条数必然少于穿出的磁感应线条数; (C )一根磁感应线可以始于闭合曲面外,终止在闭合曲面内; (D )一根磁感应线可以完全处于闭合曲面内。

5、对于某一回路L ,安培环路积分等于零,则可以断定(D )(A) 回路L 内一定有电流。

(B) 回路L 内可能有电流,且代数和不为零。

(C) 回路L 内一定无电流。

(D) 回路L 内可能有电流,但代数和为零。

6、电流I 1穿过一回路L ,而电流I 2则在回路的外面,于是有 ( C )(A) L 上各点的磁感应强度及积分⎰⋅Ll d B都只与I 1有关。

(B) L 上各点的磁感应强度B 只与I 1有关,积分⎰⋅Ll d B与I 1、I 2有关。

(C) L 上各点的磁感应强度B 与I 1、I 2有关,积分⎰⋅L l d B只与I 1有关。

(D) L 上各点的磁感应强度B 及积分⎰⋅Ll d B都与I 1、I 2有关。

大学物理试卷答案稳恒磁场

大学物理试卷答案稳恒磁场

M O P
K
第五题图
二、填空题
7、图中所示的一无限长直圆筒,沿圆周方向上的面电流密 度单位垂直长度上流过的电流为i,则圆筒内部的磁感强度的 大小为B =_____ _0 i__,方向___沿__轴__线__方__向_朝__右_.
iHale Waihona Puke 8、有一同轴电缆,其尺寸如图所示,它的内外两导体中的电 流均为I,且在横截面上均匀分布,但二者电流的流向正相反,则
解:取x轴向右,那么有
B1
2[R12
(0bR12Ix1)2]3/2沿x轴正方向
I1 R1
I2
OP x
B2
2[R22
0R22I2
(bx)2]3/2
沿x轴负方向
2b
BB1B2
0 2
[
0R12I1
[R12 (bx)2]3/2
0R22I2
]
[R22 (bx)2]3/2
若B > 0,则 B方向为沿x轴正方向.若B < 0,B 则
R2 x
的方向为沿x轴负方向.
13、螺绕环中心长L= 10 cm,环上均匀密绕线圈N = 200匝,
线圈中通有电流I = 0.1 A.管内充满相对磁导率 的磁介质.求管内磁场强度和磁感强度的大小.
= 4r 200
解: H n IN/lI200 A/m
BH0rH1.06 T
14、一铁环中心线周长L = 30 cm,横截面S = 1.0 cm2,环上 紧密地绕有N = 300 匝线圈.当导线中电流I = 32 mA 时,通 过环截面的磁通量 = 2.0×10-5 Wb.试求铁芯的磁化率 Xm .
6、用细导线均匀密绕成长为L、半径为a L>> a、总匝数为N 的螺线管,管内充满相对磁导率为 的r 均匀磁介质.若线圈中 载有稳恒电流I,则管中任意一点的 . D

大物稳恒磁场习题

大物稳恒磁场习题

= 4×10-5×1×0.5
= 2×10-5 Wb
(2) Φ ´= B . S = BS cos 300
= 4×10-5×1×
3 2
= 3.46×10-5 Wb
Φ ´´= 3.46×10-5 Wb
11-2 设一均匀磁场沿x 轴正方向,其磁 感应强度值B =1 Wb/m2。求:在下列情况 下,穿过面积为2m2的平面的磁通量。
=1×2×
2 2
= 1.41Wb z
y n
450 x
11-3 一边长为l =0.15m 的立方体如图 放置,有一均匀磁场B = (6i +3j +1.5k) T 通过立方体所在区域,计算
(1)通过立方体上阴影面积的磁通量; (2)通过立方体六面的总通量。
y B
ol
lx
z
l
已知:l =0.15m B = ( 6i +3j +1.5k ) T
求:Φ
y
解:(1) B = ( 6i +3j +1.5k )
B
S = l 2 i = 0.15 2 i Φ =B.S
o
l lx
z
l
=( 6i +3j +1.5k ). ( 0.15 2 i )
= 0.135Wb
(2) Φ ´= 0
11-4 两根长直导线互相平行地放置在 真空中,如图所示,其中通以同向的电流 I1 = I2 =10A 。试求:P点的磁感应强度。 已知 PI1 =PI2 =0.5m ,PI1垂直于PI2。
2πl
×4m
R 0I
=
8
π
2
2
l
I
P1 (b)
11-12 A和B为两个正交放置的圆形线 圈,其圆心相重合。A线圈半径 RA=0.2m, NA=10匝,通有电流 IA =10A。B线圈半径 为RB=0.1m, NB= 20匝。通有电流IB =5A。 求两线圈公共中心处的磁感应强度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稳恒磁场的基本性质习题
班级 姓名 学号 成绩
学习要求:掌握磁感应强度的概念,理解毕奥—萨伐尔定律,能计算简单问题中的磁感应强度;掌握稳恒磁场的规律,理解磁场高斯定理和安培环路定理,能用安培环路定理计算磁感应强度。

一、选择题
1.室温下,铜导线内自由电子数密度为n = × 1028 个/米3,电流密度的大小J = 2×106安/米
2,则电子定向漂移速率为:
(A) ×10-4米/秒. (B) ×10-2米/秒. (C) ×102米/秒. (D) ×105米/秒. 2.关于磁场中某点磁感应强度的方向和大小,下列说法中正确的是【 】 (A) 磁感应强度的方向与运动电荷的受力方向平行 (B) 磁感应强度的方向与运动电荷的受力方向垂直 (C) 磁感应强度的大小与运动电荷的电量成反比

(D) 磁感应强度的大小与运动电荷的速度成反比
3.在磁感应强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单
位矢量n 与B 的夹角为,如图1所示. 则通过半球面S 的磁通量为【 】
(A)
r 2B (B) 2r 2B (C) r 2B sin (D)
r 2B cos
4.用相同细导线分别均匀密绕成两个单位长度匝数相等的半径为R 和r 的长直螺线管(R =2r ),螺线管长度远大于半径.今让两螺线管载有电流均为I ,则两螺线管中的磁感强度大小B R 和B r 应满足【 】
(A) B R = 2B r (B) B R = B r (C) 2B R = B r (D) B R = 4B r
5.如图2所示,有两根载有相同电流的无限长直导线,分别通过x 1=1、x 2=3的点,且平行于Y 轴,则磁感应强度等于零的地方是【 】
(A)在x =2的直线上 (B)在x >2的区域 (C)在x <1的区域 (D)不在OXY 平面上 6.电流I 1穿过一回路l ,而电流I 2 则在回路的外面,于是有 (A) l 上各点的B 及积分l B d ⋅⎰
l
都只与I 1 有关.
(B) l 上各点的B 只与I 1 有关,积分l B d ⋅⎰
l
与I 1 、I 2有关.
.
(C) l 上各点的B 与I 1 、I 2有关,积分l B d ⋅⎰
l
与I 2无关.
(D) l 上各点的B 及积分l B d ⋅⎰
l
都与I 1、 I 2有关.
7.无限长直圆柱体,半径为R ,沿轴向均匀流有电流. 设圆柱体内(r < R )的磁感强度为B 1,圆柱体外(r >R )的磁感强度为B 2,则有【 】
(A) B 1、B 2均与r 成正比 (B) B 1、B 2均与r 成反比 (C) B 1与r 成正比, B 2与r 成反比 (D) B 1与r 成反比, B 2与r 成正比
8.在图3(a )、(b )中各有一半径相同的圆形回路L 1和L 2,圆周内有电流I 1和I 2,其分布相同,且均在真空中,但在图(b )中,L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则【 】
(A)
⎰⋅1
d L l B =⎰⋅2
d L l B , 21
P P B B
= (B)
⎰⋅1
d L l B ⎰⋅2
d L l B , 21
P P B B
=
(C) ⎰⋅1
d L l B =⎰⋅2
d L l B , 2
1
P P B B
≠ (D) ⎰⋅1
d L l B ⎰⋅2
d L l B , 21
P P B B

二、填空题
1.电源电动势的定义为 ;其数学表达式为: 。

电动势的方向是在电源内部 的方向
2.在磁场中某点处的磁感应强度0.400.20(T)B i j =-,一电子以速度
660.5010 1.010(m/s)v i j =⨯+⨯通过该点,则作用于该电子上的磁场力F =
3.半径为a 1的载流圆形线圈与边长为a 2的方形载流线圈,通有相同的电流,若两线圈中心O 1和O 2的磁感应强度相同,则半径与边长之比a 1:a 2 =
4.将半径为R 的无限长导体薄壁管(厚度忽略)沿轴向割去一宽度为h (h <<R )的无限长狭缝后,在沿轴向均匀地流有电流,其面电流密度为i (如图4所示),则管轴线上磁感应强度的大小B =
/
5.两根导线沿半径方向被引到铁环上A 、C 两点,电流方向如图5所示。

环中心O 处的磁
感应强度B =
6.氢原子处在基态(正常状态)时,它的电子可看作是沿半径为a =×10-8cm 的轨道做匀速圆周运动,速率为×103cm/s ,那么轨道中心磁感应强度的大小B =
7.两平行直导线相距d =40cm ,每根导线载有电流I 1=I 2=20A 。

则通过图6中斜线面积的磁通量m φ= (设r 1=r 3=10cm ,l =25cm )
图4 图5 图6 图7
S
\
n
(b )
(a )
P 1
L 1
I 1 I 2
P 2
L 2
/
I 3 图1
图2
图3
8.如图7,在无限长直载流导线的右侧有面积为S 1和S 2两个矩形回路。

两个回路与长直载流导线在同一平面,且矩形回路的一边与长直载流导线平行,则通过面积为S 1的矩形回路的磁通量与通过面积为S 2的矩形回路的磁通量之比为_ _
三、计算题
1.已知空间各处的磁感应强度B
都沿x 轴正方向,而且磁场是均匀的,B =1T 。

求下列三种
情形中,穿过一面积为
2m 2的平面的磁通量。

(1)平面与
yz 平面平行;(2)平面与xz 平面平行;
(3)平面与y 轴平行,又与x 轴成45°角。

>
2.四条相互平行的载流长直导线中的电流均为I ,如图示放置。

正方形的边长为a ,则正方形中心O 处的磁感应强度。

#
3.一塑料圆盘,半径为R ,电荷q 均匀地分布于表面,圆盘绕通过圆心垂直盘面的轴转动,角速度为ω。

求圆盘中心处的磁感应强度。

]
4.在一半径R 的无限长半圆筒形金属薄片中,沿长度方向有电流I 通过,且横截面上电流分布均匀。

试求圆柱轴线任一点的磁感应强度。

5.如图所示,将一导线由内向外密绕成内半径为R 1 ,外半径为R 2 的圆形平面线圈,共有
N 匝,设电流为I ,求此圆形平面载流线圈在中心O 处产生的磁感应强度的大小。

$
6.(1)用安培环路定律求半径为a 电流为I 的无限长直均匀载流导线在空间任意一点(该点距轴线为r )激发的磁场.(2)如图所示,两条平行的半径为a 的无限长直载流导线A 、B 相距为d ,电流为
I . 点P 1、P 2、P 3分别距电流A 的中心轴线为x 1、x 2、x 3,,它们与电流A 、B 的轴线共面,求P 1、P 2、
P 3各点处的磁感应强度的大小和方向.
~
7.有两无限大平行载流平面,它们的电流密度大小分别为1j 和2j ,如图所示,求:(1)两载流平面之间的磁感应强度;(2)两平面之外的磁感应强度。

相关文档
最新文档