第12章配位平衡

合集下载

溶液中的化学平衡-配位平衡

溶液中的化学平衡-配位平衡
工业废水处理
工业废水中的重金属离子常通过配位反应进行沉 淀或吸附,从而达到净化废水的目的。
环境化学中的配位平衡问题
土壤污染修复
土壤中的重金属离子与有机配体发生配位反应,影响重金属的迁移 和生物有效性,从而影响土壤污染修复效果。
水质监测与净化
水体中的重金属离子、有机污染物等可通过配位反应进行转化和去 除,确保水质安全。
02
在化学分析中,可以利用配位平衡常数来计算溶液中各组分的浓度。
03
在生物学中,配位平衡常数可以用来描述生物体内的金属离子与蛋白 质、酶等生物大分子之间的相互作用。
04
在环境科学中,配位平衡常数可以用来研究重金属离子在土壤、水等 环境介质中的迁移转化行为。
04
配位平衡在化学反应中的作 用
配位反应的速率影响
由能变化等参数,从而预测反应结果。
05
实际应用中的配位平衡问题
工业生产中的配位平衡问题
1 2 3
金属冶炼
在金属冶炼过程中,配位平衡对于控制金属离子 的溶解度和稳定性至关重要,直接影响金属的提 取率和纯度。
化学品的合成与分离
许多化学品的合成和分离涉及到配位平衡,如利 用配位反应合成有机金属化合物、分离稀有元素 等。
03
配位平衡的计算与表示方法
配位平衡的计算
配位平衡是溶液中一种重要的化学平衡, 主要涉及配位体和中心离子之间的相互 作用。
配位平衡的计算通常需要使用平衡常数,如 稳定常数和不稳定常数,来描述配位体和中 心离子之间的结合和解离程度。
平衡常数的值取决于温度、压力和 溶液的组成,可以通过实验测定或 计算得出。
形成配合物的条件
金属离子和配位体需要在一定的条件下形成配合物,如温度、压 力、浓度等。

配位化合物稳定常数

配位化合物稳定常数

[
Ag
(
NH 3 )2 ] [NH 3 ]2
[Cl
]
[ [
Ag Ag
] ]
[ Ag ( NH 3 )2 [ NH 3 ]2[ Ag
] ]
[
Ag
][Cl
]
K稳 K SP
带入数值K稳=1.1*107和KSP=1.7*10-10,K=1.87*10-3
∴x=2.5
欲使0.10mmol的AgI完全溶解生成Ag(NH3)2+,最少需要 1.0cm3氨水的浓度是多少? 改用1.0cm3KCN溶液时,浓度为多少?
(Cu2 / Cu) 0.0592V lg{c(Cu2 )} 2
(Cu2 / Cu) 0.0592Vlg
2
Kf
1 (Cu(NH3)24 )
0.3394V
0.0592V 2
lg
1 2.30×1012
0.0265V
Cu(NH3)24 (aq) 2e Cu(s) 4NH3(aq)
当 c (NH3) c(Cu(NH3)24 ) 1.0mol L1 时 ,
K稳值意义
比较同类型配离子的稳定常数,可以判 断这些配离子的相对稳定程度。
P386,表12-1
例如 [Ag(CN)2] -
[Ag(S2O3)2]3[Ag(NH3)2]+
稳定性顺序为:
K稳为1021.1, K稳为1013.46 K稳为107.05,
[Ag(CN)2] - > [Ag(S2O3)2]3- > [Ag(NH3)2]+
第十二章 配位化合物 §12. 1 配位化合物的稳定常数
12.1.1 稳定常数与不稳定常数
[Cu(NH3)4]2+

第4、12章 配合物及配位平衡

第4、12章 配合物及配位平衡

M(AABBCC)的异构体
配位化合物的立体异构 C C
M
D C A
m
C C 四面体配合物的一对异构体的空间相互关系如图: A A
C D B
B C B
M
B A A 左图将一对异构体的一个配体(D)的位置固定(向上), A B B M A A C M B D D C MM B M C M M M BC A M 三 反的 对 C C 顺 B AA 映异 列 , 一 另 三 个B B 体 具 有 相C 式 有螺 旋B排构 体 M 个 是 反 时 针 配 A A A C A M B C CC CB C A C A C BB 方向,另一个为顺时针方向。 B A B A AA C 固定一个配体(D)后 A C CB B 在空间不能 互为镜像的关系A 四面体的这对异构体又如同左右手一样在空间不能 MM M 另三个配体具有相反的 M AA 三反式 B 完全重合 三顺式 A 一反二顺式 B 螺旋(顺反时针)的排列 C C 重合。一个是左手体另一个则为右手体,它们互为镜像 A B B 4个配体不同的四面体配合物具有手性 B M(AABBCC)有5种几何异构体 B 关系(右图),称为对映体。这类异构称为对映异构,又 叫手性异构。 的 对 映 体 以 上 下 取 向 的 轴 旋 转 180度 左图右边 上 后 , 去 和 左 边 的 对 映 体 叠 合 ,就 可 六配位配合物的异构现象很复杂。 发 现 它 们 是 不可能叠合的
配位化合物的立体异构
K2[PtCl4]加氨水得棕黄色配合物,组成为
Cl [PtCl2(NH3)2],有极性,水中溶解度0.26g/100g; NH3 Pt Cl Cl NH3 Pt Pt NH3 将其用氯化氢处理或热至 250℃,转变为浅黄色, Cl Cl NH3 NH3 H3N Cl

第12章 配位平衡(使用)

第12章 配位平衡(使用)

解:
H4Y
3Y H H (1) (2)
θ K a,3 θ K a,4
H 3 Y H 2 Y 2 H H 2 Y HY3 H HY3 Y 4 H (1) (2) 得: H 2 Y 2 4 2H Y c(H 2 Y 2 )
θ 7 H 解: Kf (Ag(NH3 )2 ) 1.6710 很大,可假设溶于 NH3 · 2O后

全部生成了 Ag(NH3 ) 2
Ag 反应前 c /mol L1 0.010 反应后 c /mol L1 平 衡 c /mol L1 0 x
2NH3 0.030

Ag(NH3 ) 2 0 0.010 0.010 x
14
14
例4: Cd(NH3)42+ + 2 OH- = Cd(OH)2 + 4 NH3
K
K不稳 K sp (Cd (OH )2 )
6.4 10
8
例5: Cu(NH3)42+ + 4 H+ = Cu2+ + 4 NH4+
K
K不稳
4 Ka
1.971024
15
15
2.配位平衡与沉淀溶解平衡
0.030 0.020 0.010 2 x
0.010 x K fθ 1.67 107 x (0.010 2 x ) 2 0.010 x 0.010 0.010 2 x 0.010 0.010 1.67 107 x 6.0 106 x 0.0102 c( Ag ) 6.0 106 mol L1 c( NH3 ) c (Ag(NH3 ) 0.010mol L1 2

配位平衡及其影响因素

配位平衡及其影响因素
休息
2019/4/13
3
7.2.1配位平衡与平衡常数
配离子的稳定性:
7.2.1配位平衡与平衡常数
如[Cu(NH3)4]2+的第一级形成平衡: Cu2+ + NH3 ⇌ [Cu(NH3)]2+ [Cu(NH3)2+] K 稳1 = =104.27 [Cu2+] [NH3] 再如[Cu(NH3)4]2+的第四级形成平衡: [Cu(NH3)3]2+ + NH3 ⇌ [Cu(NH3)4]2+ [Cu(NH3)42+] 2.18 K 稳4 = =10 [Cu(NH3)32+] [NH3] 另2级形成常数分别为:K 稳2 = 103.55;K

休息
2019/4/13
11
7.2.1配位平衡与平衡常数
配离子转化,通常是稳定性小的向稳定性大的 转化.转化的完全程度可用转化反应常数衡量. 如:[Ag(NH3)2]+ + 2CN- ⇌ [Ag(CN)2]- + 2NH3 K =

[Ag(CN)2-][NH3]2 [Ag+]

[Ag(NH3)2+][CN-]2 [Ag+] = K 稳([Ag(CN)2]-)/K 稳([Ag(NH3)2]+)

[NH3] = [Ag(NH3)2+]≈0.010 mol· L-1
休息
2019/4/13
10
7.2.1配位平衡与平衡常数
(2)判断两种配离子间转化的可能性: 例2:在含有NH3和CN-的溶液中加入Ag+,可能会形 成[Ag(NH3)2]+和[Ag(CN)2]-. 试问哪种配离子先 形成? 若在[Ag(NH3)2]+溶液中加入KCN,问否能 发生配离子的转化? 解: 由附录可查得: [Ag(NH3)2]+ K 稳 = 107.40 [Ag(CN)2]- K 稳 = 1021.1 同型配离子,一般是稳定性大的配离子先形成. 故[Ag(CN)2]-会先形成.

无机化学第二章答案

无机化学第二章答案

无机化学第二章答案【篇一:大学无机化学第二章(原子结构)试题及答案】txt>本章总目标:1:了解核外电子运动的特殊性,会看波函数和电子云的图形2:能够运用轨道填充顺序图,按照核外电子排布原理,写出若干元素的电子构型。

3:掌握各类元素电子构型的特征4:了解电离势,电负性等概念的意义和它们与原子结构的关系。

各小节目标:第一节:近代原子结构理论的确立学会讨论氢原子的玻尔行星模型e?第二节:微观粒子运动的特殊性1:掌握微观粒子具有波粒二象性(??2:学习运用不确定原理(?x??p?第三节:核外电子运动状态的描述1:初步理解量子力学对核外电子运动状态的描述方法——处于定态的核外电子在核外空间的概率密度分布(即电子云)。

2:掌握描述核外电子的运动状态——能层、能级、轨道和自旋以及4个量子数。

3:掌握核外电子可能状态数的推算。

第四节:核外电子的排布1:了解影响轨道能量的因素及多电子原子的能级图。

2;掌握核外电子排布的三个原则:1能量最低原则——多电子原子在基态时,核外电子尽可能分布到能量最低○的院子轨道。

2pauli原则——在同一原子中没有四个量子数完全相同的电子,或者说是在○同一个原子中没有运动状态完全相同的电子。

3hund原则——电子分布到能量简并的原子轨道时,优先以自旋相同的方式○hh)。

?pmv13.6ev。

n2h)。

2?m分别占据不同的轨道。

3:学会利用电子排布的三原则进行第五节:元素周期表认识元素的周期、元素的族和元素的分区,会看元素周期表。

第六节:元素基本性质的周期性掌握元素基本性质的四个概念及周期性变化1从左向右,随着核电荷的增加,原子核对外层电子的吸引1:原子半径——○2随着核外电子数的增加,电子间的相互斥力力也增加,使原子半径逐渐减小;○也增强,使得原子半径增加。

但是,由于增加的电子不足以完全屏蔽增加的核电荷,因此从左向右有效核电荷逐渐增加,原子半径逐渐减小。

2:电离能——从左向右随着核电荷数的增多和原子半径的减小,原子核对外层电子的引力增大,电离能呈递增趋势。

无机化学12章答案

无机化学12章答案

第十二章 配位平衡12-1 在1L 6 mol ·L -1的NH 3水中加入0.01 mol 固体CuSO 4,溶解后加入0.01 mol 固体NaOH ,铜氨络离子能否被破坏?(K 稳[Cu(NH 3)42+]=2.09×1013,K SP [Cu(OH)2]=2.2×10-20) 解:CuSO 4在过量的氨水溶液中几乎完全形成[Cu(NH 3)4]2+,则[Cu(NH 3)4]2+ === Cu 2+ + 4NH 3平衡时: 0.01-x x (6-0.04)+4x1342431009.2)496.5()01.0(])([⨯=+⋅-=+x x x NH Cu K 稳 11910792.3--⋅⨯=L mol x ])([108.3)01.0(10792.3]][[22321922OH Cu K OH Cu sp <⨯=⨯⨯=---+铜氨络离子不能被破坏。

12-2 在少量N H 4S C N 和少量Fe 3+同存于溶液中达到平衡时,加入NH 4F 使[F -]=[SCN -]= 1 mol ·L -1,问此时溶液中[FeF 63-]和 [Fe(SCN)3]浓度比为多少?(K 稳[Fe(SCN)3]=2.0×103,K 稳[FeF 63-]= 1×1016)解: ---+=+SCN FeF F SCN Fe 3][6])([363123163633663336105102101)]([][])([][]][)([]][[⨯=⨯⨯====-----SCN Fe K FeF K SCN Fe FeF F SCN Fe SCN FeF K 稳稳12-3 在理论上,欲使1×10-5 mol 的AgI 溶于1 cm 3氨水,氨水的最低浓度应达到多少?事实上是否可能达到这种浓度?(K 稳[Ag(NH 3)2+]=1.12×107,K SP [AgI]=9.3×10-17)解: -++=+I NH Ag NH AgI ])([2233起始浓度 a 0 0达到平衡时 a-2x x x (全部溶解时:101.0-⋅=L mol x )此反应的平衡常数:9177231004.1103.91012.1)(})({--+⨯=⨯⨯⨯=⨯=AgI Ksp NH Ag K K 稳 因此: 9221004.1]2[(-⨯=-=x a x K 1310-⋅=L mol a 事实上不可能达到这种浓度。

无机化学练习题(含答案)第12章配位平衡

无机化学练习题(含答案)第12章配位平衡

第12章配位平衡12-1:在1L 6mol/L 的NH3水中加入0.01 mol固体CuSO4,溶解后加入0.01mol 固体NaOH,铜氨络离子能否被破坏?(K稳SCN [Cu(NH3)42+]=2.09×1013,K SP[Cu(OH)2]=2.2×10-20)12-2当少量NH4SCN和少量Fe3+ 同存于溶液中达到平衡时,加入NH4F使[F- ]=[SCN-]=1mol/L-1,问此时溶液中[FeF63- ]和[Fe(SCN)3]浓度比为多少?(K稳Fe[SCN]3=2.0×103,K稳[FeF6]=1×1016)解:5×101212-3:在理论上,欲使1×10-5mol的AgI溶于1cm3氨水,氨水的最低浓度应达到多少?事实上是否可能达到这种浓度?(K稳[Ag(NH3)2+]=1.12×107;Ksp(AgI)=9.3×10-17)解:3×102mol/L,实际上不可能达到。

12-4:通过配离子稳定常数和Zn2+/ Zn 和Au+/Au 的电极电势计算出Zn(CN)42-/Zn和Au(CN)2- /Au,说明提炼金的反应:Zn + 2 Au(CN)2- = Zn(CN)42-+ 2Au在热力学上是自发的。

12-5:为什么在水溶液中Co3+(aq) 离子是不稳定的,会被水还原而放出氧气,而3+氧化态的钴配合物,例如Co(NH3)63+,却能在水中稳定存在,不发生与水的氧化还原反应?通过标准电极电势作出解释。

(稳定常数:Co(NH3)62+ 1.38×105 ; Co(NH3)63+1.58×1035.标准电极电势:Co3+/Co2+1.808V,O2/H2O1.229V,O2/OH-0.401V;K b(NH3)=1.8×10-5)12-6:欲在1L水中溶解0.10molZn(OH)2,需加入多少克固体NaOH ?(Ksp[Zn(OH)2]=1.2×10-17;[Zn(OH)42-]=4.6×1017)解:13g12-7:在PH=10的溶液中需加入多少NaF才能阻止0.10mol/L 的Al3+溶液不发生Al(OH)3沉淀?(Ksp Al(OH)3=1.3×20-20; K稳(AlF63-)=6.9×1019)解:1.62mol/L12-8:测得Cu|Cu(NH3)42+ 1.00mol/L,NH31.00mol/L||H+1.00mol/L-1|H21bar, Pt的电动势为0.03V,试计算Cu(NH3)42+ 的稳定常数。

无机及分析化学教案第12章配位滴定法

无机及分析化学教案第12章配位滴定法

第十二章配位滴定法§12-1 概述配位滴定法是以配位反应为基础的滴定分析方法。

它是用配位剂作为标准溶液直接或间接滴定被测物质。

在滴定过程中通常需要选用适当的指示剂来指示滴定终点。

本章重点介绍以乙二胺四乙酸(EDTA)为滴定剂的配位滴定分析方法。

一、配位滴定剂(EDT A)大多数金属离子都能与多种配位剂形成稳定性不同的配合物,但不是所有的配位反应都能用于配位滴定。

能用于配位滴定的配位反应除必须满足滴定分析的基本条件外,还能生成稳定的、可溶于水的中心离子与配体比例恒定的配合物。

由多基配体与金属离子形成的具有螯合环结构的配合物称为螯合物。

螯合物稳定性高,螯合比恒定,能满足滴定分析的基本要求。

目前应用最多的滴定剂是乙二胺四乙酸等氨羧有机配位体,它们能与大多数的金属离子形成稳定的可溶的螯合物,能满足配位滴定的要求。

因此配位滴定法主要是指形成螯合物的配位滴定法。

乙二胺四乙酸简称EDTA,或EDTA酸,常用H4Y表示。

其结构式为:在水溶液中,乙二胺四乙酸两个羧基上的质子转移到氮原子上,形成双偶极离子:在酸度较高的溶液中,H4Y的两个羧基可再接受两个H+而形成H6Y2+,这样它就相当于一个六元酸,有六级离解平衡。

H4Y在水中的溶解度低(22 0C时每100ml水溶解0.02g),所以常用的是其二钠盐Na2H2Y·2H2O,(也称EDTA)作为滴定剂。

它在水溶液中的溶解度较大,22 0C时每100ml水可溶解11.2g,此时溶液的饱和浓度约为0.3mol·L-1,pH值约为4.4。

在水溶液中,EDTA有H6Y2+、H5Y+、H4Y、H3Y-、H2Y2-、HY3-、Y4-七种型体存在,但是在不同的酸度下,各种型体的浓度是不同的,他们的浓度分布与溶液pH的关系如图12-1所示。

由图可见,在pH<1的强酸性溶液中,EDTA主要以H6Y2+型体存在;在pH为2.67~6.16的溶液中,主要以H2Y2-型体存在;在pH>10.26的碱性溶液中,主要以Y4-型体存在。

配位化合物 - 陕西师范大学

配位化合物 - 陕西师范大学

第12章 配位平衡1.已知φø Co3+/ Co2+=1.84V, [Co(NH3)6]3+的PK稳=-35.15, [Co(NH3)6]2+的PK稳=-4.38.计算φø [Co(NH3)6]3+/ [Co(NH3)6]2+=?解:φø [Co(NH3)6]3+/ [Co(NH3)6]2+=φø (Co3+/ Co2+)+0.059lg[Co3+]/[Co2+]=φø Co3+/ Co2++0.059lgK稳[Co(NH3)6]2+/K稳[Co(NH3)6]3+ =0.02V2. 已知原电池 (-)Cd│Cd2+‖Ag+│Ag(+)1)写出电池反应.2)计算平衡常数K.3)若平衡时Cd2+离子浓度为0.1mol·L-1,Ag+离子浓度为多少?4)1molCd溶解,能产生电量若干?φø Ag+/Ag=0.7996V, φø Cd2+/Cd=-0.4030V解: 1). 电池反应2Ag++Cd=Cd2++2Ag2). lgK=nEø/0.0592=2×[0.7996-(-0.4030)]/0.0592=40.6284∴ K=4.25×1040 3).K=[Cd2+]/[Ag+]= 4.25×1040 [Ag+]=(0.1/4.25×10 ) =1.5×10-21mol·L-1 4).Q=nF=2×96487=192974 (C)3. 在含有2.5mol·L-1AgNO3和0.41 mol·L-1 NaCl溶液里,如果不使AgCl沉淀生成,溶液中最低的自由CN-离子浓度应是多少?K稳[Ag(CN)2]-=1.0×1021 , Ksp(AgCl)=1.56×10-10解:要不析出AgCl沉淀,则[Ag+]< Ksp/[Cl-]=1.56×10-10/0.41=3.8×10-10 mol·L-1设自由的CN-为x mol·L-1时方可使[Ag+]为3.8×10-10 mol·L-1Ag++ 2CN-= [Ag(CN)2]-平衡浓度:3.8×10-10 x 2.5-3.8×10-10得x=2.6×10-6 mol·L-14. 在500ml 1.5 mol·L-1的AgNO3溶液里,若不致因加入0.20mol的固体KBr而析出沉淀,则(1)至少需要加入多少摩尔固体Na2S2O3?(2)溶液中需保持的最低自由S2O32-浓度为多少?K稳[Ag(S2O3)2]3-=2.9×1013, Ksp(AgBr)=5.0×10-13解:(1)为不析出沉淀,则[Ag+]< Ksp/[Br-]=1.25×10-12 mol·L-1设每L中需加入Na2S2O3 x mol, 则Ag++ 2 S2O32-= Ag(S2O32-)23-最初浓度: 0 x-2×1.5 1.5平衡浓度: 1.25×10-12x-3+1.25×10-12 1.5-1.25×10-12K=1.5/1.25×10-12 (x-3)2=2.9×1013X=3.2mol所以500 mol中至少加入1.6mol Na2S2O3( 2) [S2O32-]平衡= x-3=0.2 mol·L-15. 在1L水中,加入1mol AgNO3和2 mol NH3H2O,计算溶液中各物质的浓度,再加入硝酸将会发生什么变化?当配离子消失99 %时,溶液pH为多少?K稳[Ag(NH3)2+]=107.2 Kb(NH3H2O)=1.8×10-5解:(1) Ag++ 2 NH3= Ag(NH3)2+最初浓度: 0 0 1平衡浓度x 2x 1-x=1107.2=1/x (2x)2得x = [Ag+]=2.5×10-3[NH3]=5.0×10-3 [Ag(NH3)2+]=1(2) Ag(NH3)2++ 2H+= Ag++2 NH4 +平衡浓度: 0.01 y 0.99 2×0.99K=[Ag+][ NH4 +]2/[Ag(NH3)2+][H+]2×[OH-]2/[OH-]2×[NH3]2/[NH3]2 =1/K稳×Kb2/Kw2=(1.8×10-5)2/107.2×(10-14)2=2.04×10-11所以 0.99×1.982/0.01×y2=2.04×10-11y=4.36×10-5 mol·L-1 所以pH=4.36。

无机化学 第12章 配位化学基础习题及全解答-

无机化学 第12章 配位化学基础习题及全解答-

第12章配位化学基础1 M为中心原子,a, b, d 为单齿配体。

下列各配合物中有顺反异构体的是(A)(A) Ma2bd(平面四方)(B) Ma3b (C) Ma2bd(四面体)(D) Ma2b(平面三角形)2 在下列配合物中,其中分裂能最大的是(A)(A) Rh(NH3)36+(B)Ni(NH3)36+(C) Co(NH3)36+(D) Fe(NH3)36+3 在八面体强场中,晶体场稳定化能最大的中心离子d 电子数为(B)(A) 9 ,(B) 6 , (C)5 , (D)34 化合物[Co(NH3)4Cl2]Br 的名称是溴化二氯•四氨合钴(III);化合物[Cr(NH3)(CN)(en)2]SO4的名称是硫酸氰•氨•二乙二胺合铬(III)。

5 四硫氰·二氨合铬(Ⅲ)酸铵的化学式是 NH4[Cr(SCN)4(NH3)2] ;二氯·草酸根·乙二胺合铁(Ⅲ)离子的化学式是[Fe Cl2(C2O4)en]-4。

6. 下列物质的有什么几何异构体,画出几何图形(1)[Co(NH3)4Cl2]+(2)[Co(NO2)3(NH3)3]答:(1)顺、反异构(图略),(2)经式、面式异构(图略)。

7.根据磁矩,判断下列配合物中心离子的杂化方式,几何构型,并指出它们属于何类配合物(内/外轨型。

(1)[Cd (NH3)4]2+ μm=0 ;(2)[Ni(CN)4]2-μm=0 ;(3)[Co(NH3)6]3+μm=0 ;(4)[FeF6]3-μm=5.9μB;答:8判断下列配离子属何类配离子9 配合物K3[Fe(CN)5(CO)]中配离子的电荷应为 -3 —,配离子的空间构型为 八面体 ,配位原子为 C (碳) ,中心离子的配位数为 6 ,d 电子在t 2g 和e g 轨道上的排布方式为 t 2g 6e g 0—,中心离子所采取的杂化轨道方式为 d 2sp 3,该配合物属 反 磁性分子。

第12章 配位化合物-2012.12.3

第12章  配位化合物-2012.12.3
但令化学家迷惑不解的是 : 既然简单化合物 中的原子都已满足了各自的化合价 , 是什么驱动 力促使它们之间形成新的一类化合物? 由于人们
不了解成键作用的本质, 故将其称之为“复杂化
合物” 。
获1913年诺贝尔化学奖
1893 年 苏 黎 世 大 学 维 尔
纳(Werner A)教授对这类
化合物本性提出了天才
书写时,内界用方括号框住,是配合物 1.总体来说配合物是由配位单元(内界)和 的核心部分,方括号以外的部分为外界 与内界带相反电荷的外界两大部分组成。
H3N
Cu
NH3
SO4
NH3
H3N
内界(正/负电荷) 外界(负/正电荷)
它们之间靠什么作 用形成配合物呢?
正负电荷的 离子键 静电引力
内界和外界通过离子键结合。
[Co Cl2 (NH3)3 (H2O) ] Cl
[PtCl2(NH3)2]
H2O、NH3、CO、CN-、X-
顺铂
Pt
卡铂
顺铂是全球广泛应用的三大抗肿瘤药物之一,顺 铂在生物体中的靶分子为脱氧核糖核酸 (DNA),
能破坏遗传信息的复制和转录,抑制癌细胞的分
裂。
常见多齿配体举例:
• 乙二胺(en),NH2 CH2CH2NH2
二齿配体
1,10-二氮菲,双齿
N N
2, 2’-联吡啶,双齿
N N
•卟啉 四齿配体
•乙二胺四乙酸 EDTA 六齿配体
(1)重金属解毒剂:依地酸二钠钙
EDTA二钠盐的钙配合物
Pb2+
(2) 防止血液凝固 EDTA与Ca2+形成配合物减少血浆中的Ca2+
Ca2+ Ca2+ Ca2+

章配位平衡

章配位平衡

Ag(CN)2[Ag +]
· [Ag +]
+ 2NH3
= K稳 [Ag(CN)2- ] K稳 [Ag(NH3)2+]
= 5.8×1013
K很大,故反应向右进行。
同类型的配离子,Kf小的可转化为Kf大 的配合物。
例 向血红色的[Fe(NCS)2] + 配离子溶液中,加入 足量的氟化钠溶液,血红色溶液变浅。计算该反
例2: 0.1 gAgBr固体能否完全溶解于100mL 的
1 mol·L -1氨水溶液中?
Kf=1.6×107
Ksp=7.7×10-13
解:设1L 1 mol·L -1氨水可溶解xmolAgBr, 则
AgBr(s) + 2NH3 = Ag(NH3)2+ + Br-
平衡浓度/ mol·L -1
1-2x
数(常用β表示)等于逐级稳定常数的乘积。 累积稳定常数:β=∏K
例如 [Cu(NH3)4]2+的生成分四级进行 β1=K1 β2 = K 1× K 2 β3= K 1× K 2 ×K3 β4 = K 1× K 2 × K 3 × K 4 = K稳
12-1-3 K稳的应用
1. 比较配合物稳定性 (1) 对于相同类型,K稳越大,1.01016/ 2.2103
=4.5 1012 K很大,故反应向右进行。
3.计算配离子溶液中有关离子的浓度
例:在1mL0.04mol•L-1AgNO3溶液中,加入
1mL 2 mol•L-1 NH3, 求平衡时溶液中的[Ag]+=?
解: Ag+ + 2NH3
Ag(NH3)2+
起始浓度 0.02 1
12-1-2 配离子的逐级形成常数 配离子是分步形成,配离子有逐级形成常

第四章和第十二章 配位化合物-S

第四章和第十二章  配位化合物-S

5 命名
(1)内界与外界
¬ [配离子]+
简单负离子
某化某 某酸某
[Ag(NH3)2]Cl 氯化二氨合银(Ⅰ)
¬ [配离子]+ 复杂负离子
[Cu(NH3) 4]SO4 硫酸四氨合铜(Ⅱ) ¬正离子[配离子] 某酸某 K4[Fe(CN)6 ] 六氰合铁(Ⅱ)酸钾 (2)内界之间
第四章
配位化合物 外界
§4.1 配位化合物的基本概念 内界
配位化合物
§4.1 配位化合物的基本概念
如NH3、H2O和Cl-、Br-、I-、CN-等
配位原子:在配位体中直接与
中心原子结合的原子。 配合物中含有π键的烯烃、炔 烃、芳香烃等分子也可作为配体。
按照配位原子种类的不同,可把配体分为以下几种
第四章
配位化合物
§4.1 配位化合物的基本概念
含氮配体 如NH3 、NO(亚硝基)、NO2-(硝基)等。 含氧配体 如H2O、OH- (羟基) 、 CO32-、ONO-(亚 硝酸根) 等。 含碳配体 如 CN-、 CO(羰基) 等。 含硫配体 如S²-、SCN-(硫氰酸根) 等。 含磷配体 如 PH3 (膦) 、 PX3等。 卤素配体 如 F-、Cl-、 Br-、I-等。
s区 d区
VIII
p区 f区
Na Mg 钠 镁 IIIB IVB VB VIB VIIB K Ca Sc 钾 钙 钪 Rb Sr 铷 锶 Y 钇 Ti 钛 V 钒
Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 铬 锰 铁 钴 镍 铜 锌 镓 锗 砷 硒 溴 Sn 锡 Pb 铅
第四章
配位化合物
§4.2 配合物的异构现象和立体异构
第四章
配位化合物

第12章 配位化合物与配位平衡

第12章 配位化合物与配位平衡

O
N
C
CH3NH2 甲胺
N
阴离子 F- Cl- Br- I- OH- CN- NO2配体 氟 氯 溴 碘 羟基 氰 硝基
配位原子 F Cl Br I O
C
N
阴离子 配体
ONO-
SCN-
亚硝酸根 硫氰酸根
NCS异硫氰酸根
配位原子
O
S
N
分子式
O
O
CC
-O O-
常见多齿配体 名称
草酸根
乙二胺
N N N N
外轨型配合物:由外轨配键形成的配合物
单电子数多
Co(CN)63-
3d
d2sp3
内轨配键:由次外层(n-1)d与最外层ns、
np轨道杂化所形成的配位键 内轨型配合物:由内轨配键形成的配合物
单电子数少
b. 影响内轨型和外轨型的因素
(i) 中心离子的电子构型
离子的电子 形成配合物类型 构型
d10
外轨型
[Cu(NH3)4]2+ 四氨合铜(Ⅱ)离子 [Co(NH3)6]3+ 六氨合钴(Ⅲ)离子 [CrCl2(H2O)4]+ 二氯·四水合铬(Ⅲ)离子
2. 配位体命名原则 不同配体之间用“”隔
(1) 先阴离子,后中性开分子
[PtCl5(NH3)] 五氯·(一)氨合铂(Ⅳ)离子
(2) 先无 机配体,后有 机配体
② 中心离子的价层轨道首先杂化, 杂化类型决定于 a.中心离子的价层电子构型 b.配位数 c.配位体的配位能力
③ 中心离子的价层空轨道与配体的含孤对电子的 轨道重叠,成键形成配合物。
即M L
④中心离子的杂化类型决定配合物的空间构型。
2. 中心离子的杂化轨道

配位化合物稳定常数

配位化合物稳定常数
思考:已知 Cu(NH3)24 (aq) Cl(aq) e CuCl(s) 4NH3(aq)
借助Kf (Cu(NH3)24 ),Ksp(CuCl)及 (Cu2/Cu), 如何求得 (Cu(NH3)24 /CuCl)?
AgCl是固
AgCl的浓度体为!0.10mmol / 1.0cm3 = 0.10 mol·dm-3
解(1) 始:
AgCl + 2NH3 = Ag(NH3)2+ + Cl-
0.10mol xmol/L 0
0
平衡时
x-0.2 0.10 0.10
(0.1×0.1)/( x-0.2) 2 = K
这里K=?
K
[Ag(NH3)2 ]
/
Ag
[Ag ]/
Ag

0.059lg n
1 [Ag ]
K稳=[[AAgg(]N[NH3H)23]]2
[Ag
]

[Ag(NH3)2] K稳[NH3]2

0.799 0.059lg [Ag]
[Ag(NH3)2 ] / Ag
1
1
0.7990.059lg1/ K稳

-0.43
-0.31
-0.58
这里也类似于我们学习过的衍生电对已知 øAgI/Ag和 øAg+/Ag,这里也可理解为由于形成配合物,离子浓
度下降,不再是标准的1mol/L,所以必须用Nernst方 程修正。
已知 , K , ,求

A /g Ag稳 [A, g 3 )2 ] (NH [Ag 3 )2 ] ( /N Ag H
2
Kf
1 (Cu(NH3)24 )
Байду номын сангаас

第十一章_配位平衡12 [兼容模式]

第十一章_配位平衡12 [兼容模式]

Co3+ + 3en
[Co(en)3]3+
K
f
1.0 1048
能否直接用 Kf判断[Co(en)3]3+比[CoY]-稳定?
尽管[Co(en)3]3+的 Kf值比[CoY]-大,但由于
它们分属两种配位比的配合物,因此不能直
接用
K
f
数据比较,而应通过计算得出结论。
类似S和
K
sp
的比较(chapter
9)
请注意配位比(n形成体:n配位体)和配位数的 区别!
设两种配位离子浓度均为0.1molL-1,且在溶液中只 考虑存在解离后的产物(中心离子和配体)。
比较配离子的稳定性大小,就是看溶液中游离的形 成体(中心原子/离子)的浓度,低者配离子稳定。
Co3+ + Y4-
[CoY]-
K
f

[CoY] [Co3 ][Y4 ]
设[Co3+]= x, [Y4-]= x, x 很小
1
x2 x2
1.01036 0.1 x 0.1
x=3.210-19
[Co3+]1 = 3.210-19 molL-1
Co3+ + 3en
[Co(en)3]3+
设[Co3+]= x, [en]= 3x, x很小
0.0001
4.9 1022

Ko sp,CuS
所以,有CuS沉淀生成!
例5:在0.10mol·L-1的[Ag(NH3)2]Cl溶液中,各种组分 浓度大小的关系是 (A) [NH3] > [Cl-] > [Ag(NH3)2+ ] > [Ag+ ] (B) [Cl-] > [Ag(NH3)2+] > [Ag+] > [NH3] (C) [Cl-] > [Ag(NH3)2+] > [NH3] > [Ag+] (D) [NH3] > [Cl-] > [Ag+] > [Ag(NH3)2+]

_《基础化学》(第三版)电子教案[4页]

_《基础化学》(第三版)电子教案[4页]
上页 下页 返回 帮助
基础化学(第三版)
机化合物。 电子教案内容可根据需要进行增减调整,既为使
用该教材的广大教师备课和进行多媒体教学提供了便 利,又为学生自学提供了参考。
电子教案由王宝仁组织制作。制作过程中得到大 连理工大学出版社支持与帮助,在此表示诚挚谢意。
由于制作时间和编者水平所限,教案中不妥和错 误之处在所难免,敬请读者批评指正,以便修改。
基础化学(第三版)
前言
本电子教案供王宝仁 王英健主编的“十二五” 职业教育国家规划教材修订版《基础化学》(第三 版)一书配套使用。
电子内容紧扣教材,主要包括气体、溶液及相 平衡,化学热力学基础,化学反应速率和化学平衡, 酸碱平衡与酸碱滴定法,沉淀溶解平衡与沉淀滴定 法,物质结构基础知识,氧化还原平衡与氧化还原 滴定法,配位平衡和配位滴定法,脂肪烃,环烃和 杂环化合物,卤烃和含氧有机化合物、含氮有
基础化学 (第三版)
电子教案
主编: 王宝仁
大连理工大学出版社
第1章 气体、溶液与相平衡 第2章 化学热力学基础 第3章 化学反应速率和化学平衡 第4章 酸碱平衡与酸碱滴定法 第5章 沉淀溶解平衡与沉淀滴定法 第6章 物质结构基础知识 第7章 氧化还原平衡与氧化还原滴定法 第8章 配位平衡和配位滴定法 第9章 脂肪烃 第10章 环烃和杂环化合物 第11章 卤烃和含氧有机化合物 第12章 含氮有机化合物
编者E-mail联系地址:wbr8886@ 王宝仁
2017年9月
上页 下页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12章配位平衡
12-1:在1L 6mol/L 的NH3水中加入0.01 mol固体CuSO4,溶解后加入0.01mol固体NaOH,铜氨络离子能否被破坏?(K稳SCN [Cu(NH3)42+]=2.09×1013,K SP[Cu(OH)2]=2.2×10-20)12-2当少量NH4SCN和少量Fe3+ 同存于溶液中达到平衡时,加入NH4F使[F- ]=[SCN-]=1mol/L-1,问此时溶液中[FeF63- ]和[Fe(SCN)3]浓度比为多少?(K稳Fe[SCN]3=2.0×103,K稳[FeF6]=1×1016)
解:5×1012
12-3:在理论上,欲使1×10-5mol的AgI溶于1cm3氨水,氨水的最低浓度应达到多少?事实上是否可能达到这种浓度?(K稳[Ag(NH3)2+]=1.12×107;Ksp(AgI)=9.3×10-17)
解:3×102mol/L,实际上不可能达到。

12-4:通过配离子稳定常数和Zn2+/ Zn 和Au+/Au 的电极电势计算出Zn(CN)42-/Zn和Au(CN)2- /Au,说明提炼金的反应:Zn + 2 Au(CN)2- = Zn(CN)42-+ 2Au在热力学上是自发的。

12-5:为什么在水溶液中Co3+(aq) 离子是不稳定的,会被水还原而放出氧气,而3+氧化态的钴配合物,例如Co(NH3)63+,却能在水中稳定存在,不发生与水的氧化还原反应?通过标准电极电势作出解释。

(稳定常数:Co(NH3)62+ 1.38×105 ; Co(NH3)63+1.58×1035.标准电极电势:Co3+/Co2+1.808V,O2/H2O1.229V,O2/OH-0.401V;K b(NH3)=1.8×10-5)
12-6:欲在1L水中溶解0.10molZn(OH)2,需加入多少克固体NaOH ?(Ksp[Zn(OH)2]=1.2×10-17;[Zn(OH)42-]=4.6×1017)
解:13g
12-7:在PH=10的溶液中需加入多少NaF才能阻止0.10mol/L 的Al3+溶液不发生Al(OH)3沉淀?(Ksp Al(OH)3=1.3×20-20; K稳(AlF63-)=6.9×1019)
解:1.62mol/L
12-8:测得Cu|Cu(NH3)42+ 1.00mol/L,NH31.00mol/L||H+1.00mol/L-1|H21bar, Pt的电动势为0.03V,试计算Cu(NH3)42+ 的稳定常数。

解:3.49×1012
12-9:硫代硫酸钠是银剂摄影术的定影液,其功能是溶解未经曝光分解的AgBr。

试计算,1.5L1.0mol/L-1的Na2S2O3溶液最多能溶解多少克AgBr?{K稳[Ag(S2O3)23-]=2.8×1013; Ksp(AgBr)=5.0×10-13}
解:1.2×102g
12-10:定性地解释以下现象:
(1)铜粉和浓氨水的混合物可用来测定空气中的含氧量。

(2)向Hg(NO3)2 滴加KI,反过来,向KI 滴加Hg(NO3)2 ,滴入一滴时,都能见很快消失的红色沉淀,分别写出沉淀消失的反应。

(3)用乙醇还原K2Cr2O7 和硫酸的混合溶液得到的含Cr3+的溶液的颜色是深暗蓝紫色的,放置蒸发水分后能结晶出KCr(SO4).12H2O 紫色八面体晶体,若为加快蒸发水分,将该溶液加热,溶液颜色变为绿色,冷却后不再产生紫色的铬钒晶体。

(4)Fe(CN6)3-的颜色比Fe(CN6)4-的颜色深。

(5)金能溶于王水,也能溶于浓硝酸与氢溴酸的混酸。

(6)向浓氨水鼓入空气可溶解铜粉(湿法炼铜)。

(7)用粗盐酸与锌反应制取氢气时,可观察到溶液的颜色由黄转为无色。

(8)少量AgCl 沉淀可溶于浓盐酸,但加水稀释溶液又变浑浊。

(9)向废定影液加入Na2S 会得到黑色沉淀(沉淀经煅烧可以金属银的方式回收银)。

(10)CuSO4固体可溶于浓盐酸得到黄色溶液或溶于浓氢溴酸得到深褐色溶液,但遇氢
碘酸却现象大不相同,会析出大量碘。

(11)电镀黄铜(Cu -Zn合金)或银以氰化物溶液为电镀液得到的镀层最牢固,电镀液的其他配方都不及,长期以来人们为寻找替代有毒的氰化物电镀液伤透脑筋,你认为寻找替代物的方向是什么?
(12)有两种组成为Co(NH3)5Cl(SO4)的钴(Ⅲ)配合物,只分别与AgNO3和BaCl2 发生沉淀反应,这是为什么?
(13)Cu(NH3)42+呈深蓝色而Cu(NH3)42+却几乎无色。

(14)Pb2+溶液中逐滴添加Cl-,当[Cl-] ≈0.3mol.L-1 时,溶液中的铅()总浓度降至极限,随后随加入的浓度增大而增大。

(15)Fe3+ 遇SCN-呈血红色的条件是溶液必须呈弱酸性,不能呈弱碱性,而且溶液中不应有显著量F-或PO43- 等离子存在,也不能存在Sn2+等还原性金属离子或H2O2等还原剂。

解:(1)2Cu+O2+2H2O+8NH3=2Cu(NH3)42++4OH-
(2) HgI+;HgI3_
(3) [Cr(H2O)6]3+;[CrSO4(H2O)4]+
(5) AuI4-
(6) Cu(NH3)42-
(7) FeCl4-→Fe2+
(8) AgCl→AgCl2-→AgCl
(9) Ag2S
(10) CuCl3-;CuBr3-;CuI+I2
(11) 寻找氧化还原惰性的有机配体
(14)同离子效应→络合效应
(15)Fe(OH)3;FeF63-;Fe(PO4)23-;Fe2+;SCN-→CO2+N2+SO42-。

相关文档
最新文档