棱柱、棱锥、棱台的概念和性质
1.1.2棱柱、棱锥和棱台的结构特征(2)
![1.1.2棱柱、棱锥和棱台的结构特征(2)](https://img.taocdn.com/s3/m/01c843c489eb172ded63b7e3.png)
4.棱锥的分类: .棱锥的分类: (1)按底面多边形的边数分为三棱锥、 )按底面多边形的边数分为三棱锥、 四棱锥、五棱锥等, 四棱锥、五棱锥等,其中三棱锥又叫四面 体!
三棱锥 四面体) (四面体)
四棱锥
五棱锥
(2)正棱锥:如果棱锥的底面是正多边 )正棱锥:如果棱锥的底面是正多边 并且水平放置, 它的顶点又在过正 顶点又在过 形,并且水平放置, 它的顶点又在过正 多边形中心的铅垂线上 多边形中心的铅垂线上,则这个棱锥叫做 S 正棱锥! 正棱锥
已知正四棱锥V- 例2. 已知正四棱锥 -ABCD,底面面积为 , 16,一条侧棱长为 ,计算它的高和斜高。 ,一条侧棱长为2,计算它的高和斜高。 为正四棱锥V- 解:设VO为正四棱锥 - 为正四棱锥 ABCD的高,作OM⊥BC于 的高, 的高 ⊥ 于 中点, 点M,则M为BC中点, , 为 中点 连接OM、OB,则 、 , 连接 VO⊥OM,VO⊥OB. ⊥ , ⊥
在Rt△VOM中,由勾股定理得 △ 中
VM = 62 + 22 = 2 10
即正四棱锥的高为6,斜高为 2 10 即正四棱锥的高为 ,
练习题: 练习题:
1.能保证棱锥是正棱锥的一个条件是 . ( C ) (A)底面为正多边形 ) (B)各侧棱都相等 ) (C)各侧面与底面都是全等的正三角形 ) (D)各侧面都是等腰三角形 )
2.过正方体三个顶点的截面截得一个正 . 三棱锥,若正方体棱长为 a,则截得的正 三棱锥, , 三棱锥的高为
3 a 3
。
3.正四面体棱长为 a,M,N为其两条相 . , , 为其两条相 对棱的中点, 对棱的中点,则MN的长是 的长是
2 a 2
。
4.若正棱锥的底面边长与侧棱长相等, .若正棱锥的底面边长与侧棱长相等, 则该棱锥一定不是( 则该棱锥一定不是( D ) A) B) (A)三棱锥 (B)四棱锥 (C)五棱锥 (D)六棱锥 ) )
棱柱棱台棱锥知识点总结
![棱柱棱台棱锥知识点总结](https://img.taocdn.com/s3/m/76f4a656fe00bed5b9f3f90f76c66137ee064f2a.png)
棱柱棱台棱锥知识点总结一、棱柱的定义和性质1. 棱柱的定义:棱柱是一个多边形和一个平行于它的平面所围成的几何图形。
2. 棱柱的特征:(1)棱柱的底面是一个多边形,顶面与底面平行,并且顶面的每个点和底面的对应点之间的连线都垂直于底面。
(2)如果底面是正多边形,棱柱就称为正棱柱;如果底面是不规则多边形,棱柱就称为斜棱柱。
(3)棱柱的高等于顶面到底面的距离,底面的面积乘以高就是棱柱的体积。
二、棱台的定义和性质1. 棱台的定义:棱台是由平行多边形和连通它们的矩形棱所围成的空间图形。
2. 棱台的特征:(1)如果底面和顶面都是正多边形,且它们的对边平行,那么这个棱台称为正棱台;如果底面和顶面是正多边形,但它们不一定平行,那么这个棱台称为斜棱台。
(2)棱台的体积等于底面积与高的乘积,而斜棱台的体积还需要乘以一个高与底面中较大边的比值。
三、棱锥的定义和性质1. 棱锥的定义:棱锥是由一个多边形和以它为底的三棱锥棱所围成的几何图形。
2. 棱锥的特征:(1)如果底面是正多边形,棱锥称为正棱锥;如果底面不是正多边形,那么棱锥就称为斜棱锥。
(2)棱锥的体积等于底面积与高的乘积,并除以3。
(3)棱锥的侧棱的延长线与底面平面的交点称为顶点。
四、棱柱、棱台、棱锥的计算公式1. 棱柱的体积公式:V=Sh,其中V表示棱柱的体积,S表示底面的面积,h表示高。
2. 棱台的体积公式:V=(S1+S2+√S1S2)h/3,其中V表示棱台的体积,S1和S2表示底面和顶面的面积,h表示高。
3. 棱锥的体积公式:V=Sh/3,其中V表示棱锥的体积,S表示底面的面积,h表示高。
以上就是关于棱柱、棱台、棱锥的知识点总结,希望对你有所帮助。
如果还有其他问题,欢迎继续提问。
棱柱、棱锥、棱台
![棱柱、棱锥、棱台](https://img.taocdn.com/s3/m/f5b0737527284b73f24250a4.png)
回顾与总结:
•
• •
(1)本节课认识了棱柱、棱锥、棱台 和研究它们的性质。 (2)掌握用基本图形去解决有关问题 的方法,提高应用有关知识解决实际问 题的能力; (3)树立将空间问题转化成平面问题 的转化思想。
第8页 练习 3
思考:有一个面是多边形其余各 面是三角形,这个多面体是棱锥 吗?
(三)棱台的概念
思考:用一个平行于棱锥底面的平 面去截棱锥,得到两个怎么样的几 何体? 一个仍然是棱锥,另一个是 什么? 另一个称之为棱台
(truncated pyramid)
棱台是棱锥被平行于底面的一个平 面所截后,截面和底面之间的部分.
1. 平移起止位置的两个面叫做棱柱的 底面(base)。 2. 多边形的边平移所形成的面叫做棱 柱的侧面(latera侧棱。 4.侧面与底的公共顶点叫做棱柱 的顶点。
顶点 侧棱 侧面
底面
4.棱柱的分类:按底面的边数分为:
棱柱的底面可以是三角形、四边形、 五边形、…… 把这样的棱柱分别叫做三棱柱、四棱 柱、五棱柱、……
棱台的性质:上下底面平行,且对应边 成比例。
只有这样,才保证各侧棱交于一点。
提问:如图的几何体是不 是棱台?为什么?
答:不是。因为棱台是用一个 平行于棱锥底面的平面去截棱 锥得到的,所以棱台的各侧棱 延长后必须交于一点。
例1:画一个六棱柱和一个五棱锥。 六棱柱的画法
E’
F’ D’ C’ B’
第一步:画下底面
(二)棱锥的概念
方头方脑
思考:看下面两个图形有何 尖头窄脸 变化? 棱锥
底面、侧面、侧棱 有哪些变化?
上底:多边形 底面: 下底:多边形 侧面: 平行四边形 侧棱: 互相平行
缩为一点 多边形 三角形 交于一点
1.1.2棱柱、棱锥和棱台的结构特征
![1.1.2棱柱、棱锥和棱台的结构特征](https://img.taocdn.com/s3/m/669b5fd928ea81c758f57829.png)
例5.如图所示,在透明塑料支撑的长方体 ABCD A 1B 1C1D 1 容器中灌进一些水,将固定容器底面一边BC置于地面上, 再将容器,随着倾斜程度的不同,以下命题:①水的形状 成棱柱形;②水面EFGH的面积不变;③ A1D1 始终与水面 EFGH平行,其中正确命题的序号是 。
A'
C'
D B A
C
Bqr6401@
四、应用举例
普 通 高 中 课 程 标 准
Liangxiangzhongxue
例4.已知正四棱锥V-ABCD,底面面积为16,一条侧
棱长为 2 11 ,计算它的高和斜高。 V
D O A
Bqr6401@
C B M
四、应用举例
普 通 高 中 课 程 标 准
Bqr6401@
七、布置作业
普 通 高 中 课 程 标 准
Liangxiangzhongxue课本第5页,练习B Nhomakorabea 弹性作业:
课本:第
页,
页,我夯基,我达标
优化设计,同步测控,第
Bqr6401@
普 通 高 中 课 程 标 准
Liangxiangzhongxue
下课
Bqr6401@
棱锥的符号表示:棱锥 S ABCD
S
侧 棱
顶点:由棱柱的一个 底面收缩而成.
侧面
高
A
D B
C 底面
Bqr6401@
三、概念形成
普 通 高 中 课 程 标 准
Liangxiangzhongxue
概念:棱锥的分类
按底面多边形边数分为三棱锥、四棱锥、五棱锥,…… 如果底面是正多边形,且它的顶点在过底面中心且与 底面垂直的直线上,这样的棱锥叫做正棱锥。 S
高二数学棱柱、棱锥和棱台知识精讲
![高二数学棱柱、棱锥和棱台知识精讲](https://img.taocdn.com/s3/m/7d16dafeda38376baf1faead.png)
高二数学棱柱、棱锥和棱台【本讲主要内容】棱柱、棱锥和棱台棱柱的概念及性质、棱锥的概念及性质和棱台的概念及性质【知识掌握】 【知识点精析】1. 棱柱的有关概念和性质。
(1)棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。
(2)棱柱的几个概念。
这里,两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面;两个面的公共边叫做棱柱的棱,其中两个侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点,不在同一个面内的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高。
(3)棱柱的表示方法:棱柱用表示底面各顶点的字母来表示,如三棱柱ABC A B C -111(4)棱柱的分类。
棱柱按底面边数可以分为三棱柱、四棱柱、五棱柱…… 按侧面与地面是否垂直,棱柱又可以分为直棱柱和斜棱柱。
底面是正多边形的直棱柱叫做正棱柱。
正棱柱是特殊的直棱柱。
(5)棱柱的性质: ①侧棱都相等;②侧面都是平行四边形;③两个底面与平行于底面的截面是全等的多边形;④过不相邻的两条侧棱的截面是平行四边形。
平行六面体:底面是平行四边形的四棱柱; 直平行六面体:侧棱与底面垂直的平行六面体; 长方体:底面是矩形的直平行六面体; 正方体:棱长都相等的长方体叫做正方体。
四棱柱与特殊的平行六面体有如下关系:{正方体}⊂{正四棱柱}⊂{长方体}⊂{直平行六面体}⊂{平行六面体}⊂{四棱柱} 长方体的性质:长方体的一条对角线的长的平方等于一个顶点上三条棱长的平方和。
2. 棱锥的有关概念。
(1)棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。
(2)棱锥的几个概念。
这个多边形叫做棱锥的底面,其余各面叫做棱锥的侧面,相邻侧面的公共边叫做棱锥的侧棱,各侧面的公共顶点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高。
(3)棱锥的表示方法:棱锥用表示顶点和底面各顶点,或者底面一条对角线端点的字母来表示,如棱锥S -ABCDE ,或者棱锥S -AC 。
棱柱、棱锥、棱台的概念和性质
![棱柱、棱锥、棱台的概念和性质](https://img.taocdn.com/s3/m/cbeca4fde009581b6bd9ebc6.png)
2.棱锥的元素
A B
类比棱柱,给棱锥各元素命名 顶点
C
S
底面
A
由棱柱的一个 底面收缩而成 底面CBFra bibliotekA B
C
侧面
侧面
侧棱 相邻两侧面 的公共边
侧棱 相邻两侧面 的公共边
3.棱锥的性 质
观察下列棱锥,归纳它们的底面和侧面各有什么特征?
在同一个棱锥中的各个侧面三角形有什么共同特征?
棱锥的性质: ①底面是多边形(如三角形、四边形、五边形等)
E D A B C A1 C1 E1 D1
B1
5.右图中的几何体
是不是棱台?为什
么?
6.多面体至少有几个面?这个多面体是怎样
的几何体?
5 个. 7.棱柱的面至少有_____
回顾反思
线段 平行四边形
平面多边形 棱柱
三角形
棱锥
梯形
棱台
几何体
侧棱
图形
底面
两个底面是全等 的多边形且对应 边互相平行相等
1
1
1
}
}
所以△MNP≌△ABC (SSS)
过不相邻的两条侧棱的截面是平行四边形
已知:四棱柱ABCD-A1 B1 C1 D1 求证:截面AA1 C1 C是平行四边形 证明:四棱柱ABCD-A1 B1 C1 D1 D AA1∥ = C1 C A 截面AA1 C1 C 是平行四边形 D1
A1 B1
C
B
应用三垂线定理
教 学 参 考 ——一题多解
M 是底 例1 已知正三棱柱ABC A B C 的各棱长都为1,
1
面上 BC 边的中点,N 是侧棱 CC 上的点,且CN CC, 4 求证:AB MN 。 C 的中点G, 由 解2:直角坐标法 。 取 Bⅱ ^ BC, 已知条件和正三棱柱的性质,得 AM Z A' 如图建立坐标系。则 1 1 3 1 ¢ B' C' M (0, 0, 0, ), N (0, , ), A(, 0, 0), B (0, - ,1), G 2 4 2 2
棱柱、棱锥、棱台的结构特征
![棱柱、棱锥、棱台的结构特征](https://img.taocdn.com/s3/m/4cadd216bdd126fff705cc1755270722192e5907.png)
A
B
侧面与底面的公共顶点. 底面
C顶 点
棱柱的结构特征
棱柱的分类 1、按侧棱与底面是否垂直可分为: 1) 侧棱不垂直于底的棱柱叫做斜棱柱。
2)侧棱垂直于底的棱柱叫做直棱柱。
3) 底面是正多边形的直棱柱叫做正棱 柱。
2、按底面的边数分为:
棱柱的底面可以是三角形、四边形、 五边形、……
把这样的棱柱分别叫做三棱柱、四棱 柱、五棱柱、……
长方体:侧面和底面都是矩形的棱柱. 正方体:侧面和底面都是正方形的棱柱.
1.1 棱柱、棱锥、棱台的结构特征
棱柱 棱锥 棱台
棱锥结构特征
有一个面是多
边形,其余各面都
是有一个公共顶点
的三角形。
侧棱
A
顶点 S
侧面
D
C
底面
B
棱锥的结构特征
1.棱锥的概念:
一般地,有一个面是 多边形,其余各面都是 有一个公共顶点的三角 形,由这些面所围成的 几何体叫做棱锥.
四棱锥
五棱锥
棱柱 棱锥 棱台
棱台结构特征
用一个平行于棱
D’
锥底面的平面去截棱
D
锥,底面与截面之间 A’
的部分是棱台.
A
C’
B’
C
B
棱台的结构特征
1.棱台的概念:
棱台的底面:
原棱锥的底面和截
面分别叫做棱台的下底
面和上底面。
侧
棱
上底面
侧 面
下底面 顶 点
棱台的结构特征
1.棱台的概念:
用一个平行于棱锥底 面的平面去截棱锥,底 面与截面之间的部分, 这样的多面体叫做棱台.
图形
相关 概念
面:围成多面体的各个
棱柱、棱锥和棱台
![棱柱、棱锥和棱台](https://img.taocdn.com/s3/m/6a539c7daf1ffc4ffe47ac87.png)
棱柱、棱锥和棱台知识点一 棱柱思考以下几何体是有什么共同特点,是怎样形成的?(1) (2) (3) (4)1、概念:一般地,由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱.2、元素:底面:平移起止位置的两个面叫做棱柱的底面.侧面:多边形的边平移所形成的面叫做棱柱的侧面.侧棱:相邻两侧面的公共边叫做棱柱的侧棱.3、性质:(1)两个底面是全等的多边形,且对应边互相平行 (2)侧面都是平行四边形.(3)所有侧棱平行且相等。
不具以上条件的多面体便不是棱柱,如图:4、表示:图(1)三棱柱'''C B A ABC -;图(4)六棱柱''''''F E D C B A ABCDEF -5、分类:(1)按底面的边数分:底面是三角形、四边形、五边形……的棱柱称为三棱柱、四棱柱、五棱柱……。
即底面是几边形就为几棱柱.(2)按侧面是否与底面垂直分:不垂直的叫做斜棱柱,垂直的叫做直棱柱。
底面是正多边形的直棱柱叫做正棱柱。
例如正方体就是正四棱柱。
(3)特殊棱柱侧棱与底面不垂直的棱柱叫做 ,侧棱与底面垂直的棱柱叫做 。
底面是正多边形的直棱柱叫做 。
底面是平行四边形的棱柱叫做 ,侧棱与底面垂直的平行六面体叫做 底面是矩形的直平行六面体是 ,棱长都相等的长方体是 。
例1、下列命题中不正确的是( B )A .直棱柱的侧棱就是直棱柱的高B .有一个侧面是矩形的棱柱是直棱柱C .直棱柱的侧面是矩形D .有一条侧棱垂直于底面的棱柱是直棱柱例2、设有三个命题(1)底面是平行四边形的四棱柱是平行六面体(2)底面是矩形的平行六面体是长方体 (3)直四棱柱是直平行六面体 以上命题中正确的有 (1)例3、长方体交与同一顶点的三条棱长分别为3,4,5,求长方体的对角线的长。
例4、在棱柱中( )A 只有两个面平行B 所有的棱都相等C 所有的面都是平行四边行D 两底面平行,且各侧棱也平行例5、判断下列说法是否正确(1)棱柱的各个侧面都是平行四边形。
空间图形(棱柱,棱锥,棱台)
![空间图形(棱柱,棱锥,棱台)](https://img.taocdn.com/s3/m/d0ff02cc7e21af45b207a859.png)
三. 正棱柱、正棱锥、正棱台
侧棱垂直于底面的棱柱叫做直棱柱.直棱柱的 特征为侧面是矩形,侧棱等于高.
直棱柱
如果直棱柱的底 面是矩形,就是 长方体
如果长方体的 所有棱的长都 相等,就是正 方体
正棱柱: 底面是正多边形的直棱柱
正棱锥: 底面是正多边形且顶点到底面的垂 足是底面的中心的棱锥
正棱台: 由正棱锥截得的棱台
S下
S上S下
l
(适用于一般棱锥)
斜高l
l : 斜高 h : 高 p : 底面周长
直棱柱、正棱锥和正棱台的面积和体积公式
名称
直棱柱
正棱锥
正棱台
侧面积
S侧 =lp
全面积 S全= lp+2 S底
V= S底h
体积
(适用于一般 棱
柱)
S侧 =12 lp
S侧
1
=2
l(
p上+p下
)
S全
=
1 2
lp+S底
1
V= 3 S底 h
一. 一般棱柱,棱锥,棱台的定义
图1
图2
图3
棱柱:由一个平面多边形平移形成的空间几何体叫 做棱柱
棱锥:当棱柱的上面收缩为一点时,可得到棱锥; 棱台:用一个平行于底面的平面去截棱锥,底面和 平行截面间的部分叫做棱台.
二. 棱柱、棱锥和棱台的基本性质
名 称
棱柱
棱锥
棱台
上底面
图
侧棱
顶点
侧棱
上底面
侧棱
高
解:上底面积S上=64,下底面积S下=144,
V=
1 3
h
(
S上
S下
S上S下
)=1 (6 64+144+ 3
课件7:§1.1 第1课时 棱柱、棱锥、棱台的结构特征
![课件7:§1.1 第1课时 棱柱、棱锥、棱台的结构特征](https://img.taocdn.com/s3/m/0ad1a27a5627a5e9856a561252d380eb629423b3.png)
解:将三棱锥沿侧棱VA剪开,并将其侧面展开平铺在一个平面上, 如图,线段AA1的长为所求△AEF周长的最小值.
∴AA1=4 2, ∴△AEF 周长的最小值为 4 2.
∵∠AVB=∠A1VC=∠BVC=30°,∴∠AVA1=90°. 又VA=VA1=4,
反思感悟 本题是多面体表面上两点间的最短距离问题,常常要归
特征的关键.因此,在涉及多面体的结构特征问题时,先看是否满足
定义,再看它们是否具备各自的性质:侧面、底面形状、侧棱、棱之
间的关系等.判断时要充分发挥空间想象能力,必要时可借助于几何 模型.
变式训练1下列说法正确的有
(填序号).
①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧
面都有一个公共点;③棱台的侧面有的是平行四边形,有的是梯形;
图形及表示:
如图棱柱可记作:棱柱ABCDEF-A'B'C'D'E'F'
三、棱锥的结构特征 问题思考
1.观察下列多面体,有什么共同特点?
提示:(1)有一个面是多边形;(2)其余各面都是有一个
公共顶点的三角形.
2.关于棱锥的定义、分类、图形及表示 定义:有一个面是多边形,其余各面都是 有一个公共定点 的 三角形,由这些面所围成的多面体叫做棱锥 相关概念:底面(底):多边形面;侧面:有 公共顶点 的各个 三角形面;侧棱:相邻侧面的 公共边 ;顶点:各侧面的公共顶 点分类:①依据:底面多边形的边数;②举例:三棱锥(底面是三角形)、 四棱锥(底面是四边形)……
是一个四棱柱;④⑤都正确,如图.故填①③④⑤.
答案:①③④⑤
防范措施 在解答关于空间几何体概念的判断题时,要注意紧
扣定义,切忌只凭图形主观臆断.同时立体几何问题中也要注意分
总结棱锥棱柱棱台
![总结棱锥棱柱棱台](https://img.taocdn.com/s3/m/075d27f85ebfc77da26925c52cc58bd6318693a2.png)
总结棱锥棱柱棱台1.介绍棱锥、棱柱和棱台是几何学中的常见立体图形,也是三维空间中具有特定特征和性质的几何体。
本文将对棱锥、棱柱和棱台进行简要的介绍,并总结它们的特征和性质。
2.棱锥棱锥是一种以一个多边形为底面,其余各边都连接到一个共同的点的几何体。
根据底面的形状,棱锥可以分为正棱锥和斜棱锥。
2.1 正棱锥正棱锥的底面是一个正多边形,且棱和顶点都位于正多边形所在的平面上。
正棱锥的侧面都是三角形,且棱相等。
2.2 斜棱锥斜棱锥的底面是一个普通多边形或者不规则多边形,且棱和顶点不在同一个平面上。
斜棱锥的侧面可以是三角形、四边形或更多边形,棱的长度可以不相等。
3.棱柱棱柱是一种以一个多边形为底面,其余各边都垂直于底面的几何体。
根据底面的形状,棱柱可以分为正棱柱和斜棱柱。
3.1 正棱柱正棱柱的底面是一个正多边形,且底面和顶面平行。
正棱柱的侧面都是矩形,且棱相等。
3.2 斜棱柱斜棱柱的底面是一个普通多边形或不规则多边形,底面和顶面不平行。
斜棱柱的侧面可以是矩形、平行四边形或更多边形,棱的长度可以不相等。
4.棱台棱台是一种由两个平行多边形和连接两个多边形相邻顶点的侧面组成的几何体。
棱台的顶面和底面平行,且侧面是由两个相同或不同的多边形所组成。
根据底面的形状和侧面的形状以及多边形之间的关系,棱台可以分为正棱台、斜棱台、直棱台和斜直棱台等多种类型。
4.1 正棱台正棱台的顶面和底面是相同的正多边形,侧面是由直线与多边形形成的三角形,且棱相等。
4.2 斜棱台斜棱台的顶面和底面是不相等的普通多边形,侧面可以是三角形、四边形或更多边形,棱的长度可以不相等。
4.3 直棱台直棱台的侧面都是矩形,其余性质与斜棱台相似。
4.4 斜直棱台斜直棱台的侧面可以是矩形、平行四边形或更多边形,棱的长度可以不相等。
5. 总结棱锥、棱柱和棱台是几何学中的重要概念和几何体。
通过对它们的分类和特征的总结,我们可以更好地理解它们的性质和特点。
了解这些特征和性质对于解决与这些几何体相关的问题和计算体积、表面积等都有很大的帮助。
高一数学人教A版必修二课件:1.1.1.1 棱柱、棱锥、棱台的结构特征
![高一数学人教A版必修二课件:1.1.1.1 棱柱、棱锥、棱台的结构特征](https://img.taocdn.com/s3/m/824d27bc19e8b8f67d1cb926.png)
解:所截两部分分别是四棱柱和三棱柱.几何体ABCD-
一二三
知识精要 思考探究 典题例解 迁移应用
三、简单几何体的表面展开与折叠问题 1.绘制展开图
(1)绘制多面体的表面展开图要结合多面体的几何特征,发 挥空间想象能力或者是亲手制作多面体模型.
(2)在解题过程中,常常给多面体的顶点标上字母,先把多面 体的底面画出来,然后依次画出各侧面,便可得到其表面展开
图
示
底面:两个互相平行的面
及
侧面:底面以外的其余各面
相
侧棱:相邻侧面的公共边
关
顶点:侧面与底面的公共顶
概
点
念
记 法
棱柱 ABCDEF-A'B'C'D'E'F'
分 类
按底面多边形的边数分为三棱柱、四棱柱…
目标导航 预习导引
12
(2)棱锥的结构特征:
定 有一个面是多边形,其余各面都是有一个公共顶
义 点的三角形,由这些面所围成的多面体叫做棱锥
紧扣概念解题 在解答关于空间几何体概念的判断题时,要注意紧扣定义 判断,这就要求熟悉各种空间几何体的概念的内涵和外延,切 忌只凭图形主观臆断,如本例若意识不到棱台各侧棱延长后
交于一点则会致错.
多个梯形相连.
一二三
知识精要 思考探究 典题例解 迁移应用
【例3】 (1)请画出如图所示的几何体的表面展开图.
(2)根据下面所给的平面图形,画出立体图形.
一二三
知识精要 思考探究 典题例解 迁移应用
思路分析:由题意首先弄清几何体的侧面各是什么形状,然 后再通过空间想象或动手实践进行展开或折叠. 解:(1)展开图如图所示
A1B1C1平行于平面ABC,
棱柱、棱锥、棱台
![棱柱、棱锥、棱台](https://img.taocdn.com/s3/m/0a973917b52acfc789ebc96d.png)
一.多面体及相关概念
1.多面体:多面体是由若干个平面多边
形所围成的几何体,如下图中的几何体 都是多面体.
(1)围成多面体的各个多边形 叫做多面体的面; (2)相邻两个面的公共边叫做 多面体的棱; (3)棱和棱的公共点叫做多 面体的顶点; 棱 (4)连接不在同一个面上的 两个顶点的线段叫做多面体的 对角线;
1、棱台的概念:用一个平行于棱锥底面 的平面去截棱锥,底面和截面之间的部分 叫做棱台。
A1 D1 B1 C1
上底面(截面) 侧面 侧棱 下底面 顶点
2、由三棱锥、四棱锥、五棱锥…截得的棱台, 分别叫做 三棱台,四棱台,五棱台… 3、棱台的表示法: 棱台用表示上、下底面各顶点的字母来表示 如右图,棱台ABCD-A1B1C1D1 。 D
一切物体都占据着空间的一部分,如果只考虑物体的 形状和大小,而不考虑其它因素,那么这个空间部分叫 做空间几何体。
构成空间几何体的基本元素是什么?
点: 无大小 表示:A、B、C… 线: 无粗细、无限延伸 表示:a、b、c…或AB、BC… 面: 无厚度、无限延展
、、 表示:
…
点、线、面之间有什么关系? 点动成线 线动成面 面动成体
C
Байду номын сангаас
2. 一个锥体被平行于底面的平面所截,若截面面积是 底面面积的四分之一,则锥体被截面截得的一个小棱 锥与原棱锥体积之比为( ) (A)1 : 4 (B) 1 : 3 (C) 1 : 8 (D) 1 : 7
C
结论 平行于棱锥底面的截面面积和底面面积之比 等于截得的棱锥高和原棱锥高的平方比(相 似比的平方)
√
√
几种四棱柱(六面体)的关系:
底面是 平行四边形 侧棱与底面 垂直
人教B版高中数学必修2-1.1教学课件-棱柱、棱锥和棱台的结构特征
![人教B版高中数学必修2-1.1教学课件-棱柱、棱锥和棱台的结构特征](https://img.taocdn.com/s3/m/ad881b31763231126edb117a.png)
1.侧棱:
E 每条侧棱的长都相等
A M
B
O C
D 2.侧面: 都是全等的等腰三角形
3.斜高:
(等腰三角形底边上的高):
都相等
*斜高是正棱锥的专利
基础练习
1.下列判断错误的是( C ) A 棱锥的各个侧面都是三角形 B 三棱锥的面有四个,它是面数最少的
棱锥。 C 棱锥的顶点在底面上的射影在底面多
边形内 D 棱锥的侧棱中至多有一条与底面垂直 2.A={棱锥},B={正棱锥},C={正三棱锥},
特别强调:
• 正四棱柱: • 底面为正方形,不是菱形。 • 思考:
• 下面的说法是否正确 • 底面边长相等的直四棱柱一定是正四棱柱。
棱锥的实例
方头方脑
尖头窄脸
底面、侧面、侧棱 有哪些变化?
棱锥
底面:上底:多边形 下底:多边形
缩为一点 多边形
侧面:平行四边形
三角形
侧棱:互相平行
交于一点
请仔细观察下列几何体,说说它们的共同特点.
M B
S
E O
C
几个重要的直角三角形 1.RtSBO:由高、侧棱和 侧棱在底面的射影组成 2.RtSMO:由高、斜高和 斜高在底面的射影组成 3.RtOMB:由底面中心O 与底边中点M连线,与半条 底边MB,还有中心与底面 顶点连线组成 4.RtSMB:由斜高、侧棱、 半条底边组成
的 四
行六面体棱柱 Nhomakorabea正方体:棱长都相等的长方体
几种六面体的关系:
底面变为 平行四边形
侧棱与底面 垂直
四棱柱
平行六面体
直平行六面体
底面是 矩形
长方体
底面为 正方形
侧棱与底面 边长相等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 3 1 ¢ \ MN = (0, , ); AB = ( , - ,1) 2 4 2 2
A N
AB ¢? MN = 0-
3 ?0 2
1 1 1 (- ) + ? 1 2 2 4
B
M
Y
C
X
1 1 + = 0 4 4
AB MN .
总结:
本节课主要学习了棱柱的定义及棱柱的有关性 质: 1.棱柱定义:棱柱的底面、侧面、侧棱、顶点、 对角线、高。
分析: 右图:AA1⊥AB且A A1与底面不垂直时, 棱柱为斜棱柱。 左图:
A1 B1 C1
两个相邻侧面与底面 垂直时,它们的交线 也与底面垂直。
A B
C
2. 斜棱柱、直棱柱和正棱柱的底面、 侧面各有什么特点?
1). 斜棱柱、直棱柱的底面为任意多边形。 正棱柱的底面为正多边形。
2). 斜棱柱的侧面为平行四边形。直棱柱 的侧面为矩 形。正棱柱的各个侧面为全 等的矩形。
答:不一定是.如右图所示,不是棱柱.
问题1:有两个面互相平行,其余各面都是 平行四边形的几何体是棱柱吗? 答:不一定是. 如右图所示,不是棱柱.
棱柱的表示法; 1 .用平行的两底面多边形的字母表示棱柱,如: 棱柱ABCDE- A1B1C1D1E1 2 .用表示一条对角线端点的两个字母表示,如: 棱柱A C1
2
a 2a 2 + b 2
骣 2÷ ÷ ?ç 0, ç ÷ ç ÷ ç 2 桫
D
AC1 D1 C 形
骣 p p÷ ç , ÷ ç ç 桫 4 2÷
A
B
教 学 参 考 ——一题多解
M 是底 例1 已知正三棱柱ABC A B C 的各棱长都为1,
面上 BC 边的中点,N 是侧棱 CC 上的点,且CN CC, 4 求证:AB MN 。 解1:纯几何法1 。联结AM、B¢ M, 由 已知条件和正三棱柱的性质,知 A'
②侧面是 三角形
思考题:
有一个公共顶点的 能否类比棱柱的表示法与分类给出棱锥的表示法 与分类?
1.棱台的定义
观察下图,如何将棱锥变换成下方 的几何体?
棱 锥
棱 台
1.棱台的定义
棱锥被平行于底面的一个平面所截后,截面和底面之间 的部分叫做棱台(truncated pyramid).
2.棱台的元素
E D A B C A1 C1 E1 D1
B1
5.右图中的几何体
是不是棱台?为什
么?
6.多面体至少有几个面?这个多面体是怎样
的几何体?
5 个. 7.棱柱的面至少有_____
回顾反思
线段 平行四边形
平面多边形 棱柱
三角形
棱锥
梯形
棱台
几何体
侧棱
图形
底面
两个底面是全等 的多边形且对应 边互相平行相等
多面体、棱柱与它的性质
北流高中李东儒
多面体、棱柱与它的性质
多面体:由若干个平面多边形围成的几何体
称为多面体。
围成多面体的各个多边形称为多面体的面,两个 面的公共边叫做多面体的棱,若干个面的公共顶点叫 做多面体的顶点。
面
棱
顶点
多面体的对角线——连结不在同一面上的 两个顶点的线段
C1
3、棱柱的性质
棱柱的性质; 1. 侧棱都相等,侧面是平行四边形; 2. 两个底面与平行于底面的截面是全 等的多边形; 3. 过不相邻的两条侧棱的截面是平行 四边形。
4. 正四棱柱中,求A C1与DC所成角的取 值范围。 C1 D1 设AB = a, CC1 = b
A1 B1
则 cos ? AC1 D 1 = 1 骣 b÷ 2+ ç ÷ ç ç 桫 a÷
· · · H’ A’ · · · · · · · · · · · 平行的面
E’ D’ H’ H’ C’ H’ H’ B’ H’ H’ H’ H’ H’ 两个互相 叫做棱柱 的底面 E H
底面
A H
· 底面 ·H · H· H · · ·· · · · · · ·
H H H H H B C D
问题1:有两个面互相平行,其余各面都是 四边形的几何体是棱柱吗?
数学运用
练一练:以三角形ABC为底面画一个三棱柱.
C
A B
C C
A B
C
A
A
B
B
课堂练习
1.判断:有一个面是多边形,其余各面都是三角形的几何 体是棱锥. (× ) 2.如图,四棱柱的六个面都是平行四边形,这个四棱柱可以 由哪个平面图形按怎样的方向平移得到? 3.将下列几何体按结构特征分类填空 ①集装箱 ②魔方 ③金字塔 ④三棱镜 ⑤一个四棱锥形的建筑物被台风刮走了一个顶, 剩下的上底面与地面平行 (1)棱柱结构特征的有: ① (2)棱锥结构特征的有: ③ (3)棱台结构特征的有: ⑤ ② ④
应用三垂线定理
教 学 参 考 ——一题多解
M 是底 例1 已知正三棱柱ABC A B C 的各棱长都为1,
1
面上 BC 边的中点,N 是侧棱 CC 上的点,且CN CC, 4 求证:AB MN 。 C 的中点G, 由 解2:直角坐标法 。 取 Bⅱ ^ BC, 已知条件和正三棱柱的性质,得 AM Z A' 如图建立坐标系。则 1 1 3 1 ¢ B' C' M (0, 0, 0, ), N (0, , ), A(, 0, 0), B (0, - ,1), G 2 4 2 2
②画侧棱——从四边形的每一个顶点 画平行且相等的线段
D A B
C
③画下底面——顺次连结这些线段的 另一个端点
注意:被挡住的线要画成虚线.
数学运用
(2)画一个三棱台
S
A B
A B
①画一个三棱锥
C C
②在侧棱上任取一点,从这点开始, 顺次在各个侧面内画出与底面 对应边平行的线段
③将多余的线段擦去
2 ). 两个底面与平行于底面的截面是全等的多边 形;
3. )过不相邻的两条侧棱的截面是平行四边形。
埃及卡夫拉王金字塔
墨西哥太阳金字塔
1.棱锥的定义
观察下图,如何将棱柱变换成下方的几何体?
1.棱锥的定义
观察下图,如何将棱柱变换成下方的几何体?
当棱柱的一个底面收缩为一个点时,得到的几何体 叫做棱锥(pyramid).
3、棱柱的性质
棱柱的性质; 1. 侧棱都相等,侧面是平行四边形; 2. 两个底面与平行于底面的截面是全 等的多边形; 3. 过不相邻的两条侧棱的截面是平行 四边形。
总结:
本节课主要学习了棱柱的定义及棱柱的有关性 质: 1.棱柱定义:棱柱的底面、侧面、侧棱、顶点、 对角线、高。
2.棱柱的性质; 1.) 侧棱都相等,侧面是平行四边形;
侧面
平行四边形
侧棱
互相平行 且相等
棱柱
侧面 底面 侧棱
棱锥
侧面 底面
一底面是多边形, 有一个公共顶 交于一点 另一底面缩为一点 点的三角形
棱台
上底面 侧棱 侧面 下底面
上下底面平行, 两多边形相似。
侧面是梯形
侧棱交 于一点
练一练
三 5 面数最少的棱柱是 棱柱。它有 个面,其中 个底面、 个侧面,它有 条棱,其中 条侧棱 2 3 9 ,它有 个顶点, 条对角线 6 3 0
(1)侧棱不垂直于底 面的棱柱叫做斜棱柱 (2)侧棱垂直于底 面的棱柱叫直棱柱
特别地:底面是正多边形的直棱柱叫做正棱柱
3.棱柱集合、斜棱柱集合、直棱柱集合、 正棱柱集合之间存在怎样的包含关系?
棱柱集合 直棱柱集合 斜棱柱 集合 正棱柱 集合
1. 有一个侧面是矩形的棱柱是不是直棱柱? 有两个相邻侧面是矩形的棱柱呢?为什么?
C A C1 B
A1
B1
N(N是正整数)棱柱有 N+2 个面,其中 2 个底面、 N 个侧面,有 条棱,其中 3N 条侧棱,有 个顶点, N 条对角线 2N
N(N-3)
3).侧棱都相等,侧面是平行四边形
已知:三棱柱ABC-A1 B1 C1 求证:AA1 =B B1 = C C1 ,侧面AB B1 A1 是 平行四边形 证明:底面ABC ∥底面A1 B1 C1 底面ABC ∩平面ABB1A1=AB C 底面A1B1C1∩平面 A B ABB1A1=A1B1 AB ∥ A1 B1 C1 AA1 ∥ B1 B
}
}
A1
B1
侧面AB B1 A1 是平行四边形
两个底面与平行于底面的截面是全等的 多边形 已知:三棱柱ABC-A B C ,
A M
A1
平面MNP∥底面ABC,且交三 条侧棱于M、N、P C 求证: △MNP≌△ABC 证明: 平面MNP ∥底面ABC P 平面MNP∩平面AB B1 A1 C1 N =MN MN∥AB 平面ABC ∩平面AB B1 A1AMNB =AB B1 A A1 ∥B1 B AB=MN 同理:BC=NP,AC=MP
2.棱锥的元素
A B
类比棱柱,给棱锥各元素命名 顶点
C
S
底面
A
由棱柱的一个 底面收缩而成 底面
C
B
A B
C
侧面
侧面
侧棱 相邻两侧面 的公共边
侧棱 相邻两侧面 的公共边
3.棱锥的性 质
观察下列棱锥,归纳它们的底面和侧面各有什么特征?
在同一个棱锥中的各个侧面三角形有什么共同特征?
棱锥的性质: ①底面是多边形(如三角形、四边形、五边形等)
(1)凸多面体:
把多面体的任何一个面伸展为平面,如果所有其他 各面都在这个平面的同侧,这样的多面体叫做凸多 面体。 V
C
α
相对于多面体的任一个面α,其 余各面都在α的同一侧的多面体