非线性方程与方程组的数值解法
5-非线性方程组的数值解法及最优化方法

非线性方程组的数值解法
不动点迭代法:根据非线性方程求根的迭代法,将方程组改 写为如下等价方程组
xi i x1, x2,, xn , i 1,2,, n
构造迭代公式
xik 1 i x1k , x2k ,, xnk , i 1,2,, n
非线性方程组的数值解法
若对任意A Cmn 都有一个实数 A 与之对应,且满足:
(1)非负性:当 A O 时, A 0 ;当A O 时,A 0;
(2)齐次性:对任何 C ,A A ;
(3)三角不等式:对任意 A, B C nn ,都有A B A B ;
(4)相容性:对任意A, B C nn ,都有 AB A B ,
…
…
18
(0.2325670051,0.0564515197)
19
(0.2325670051,0.0564515197)
max
1 i 2
xik
xik
1
0.2250 0.0546679688 0.0138638640 0.0032704648 0.0008430541 0.0001985303 0.0000519694 0.0000122370 0.0000032485 0.0000007649
10-9
非线性方程组的数值解法
练习题:用牛顿迭代法求解方程组
取 X 0 1.6,1.2T
xx1122
x22 x22
4 1
结果:1.5811,1.2247
非线性方程组的数值解法
应用经过海底一次反射到达水听器阵的特征声线传播时间, 来反演海底参数。假设水中和沉积层声速都是恒定的,海底 沉积层上界面水平,下界面倾斜。特征声线由水中声源出发 折射进入沉积层,经过沉积层的下界面反射后,再折射进入 水中,由水中水听器阵接收。特征声线的传播时间为声线在 水中和沉积层中的传播时间之和。 三维坐标关系如图所示:
实验五(线性方程组的数值解法和非线性方程求解)

1大学数学实验 实验报告 | 2014/4/5一、 实验目的1、学习用Matlab 软件数值求解线性代数方程组,对迭代法的收敛性和解的稳定性作初步分析;2、通过实例学习用线性代数方程组解决简化问题。
二、 实验内容项目一:种群的繁殖与稳定收获:种群的数量因繁殖而增加,因自然死亡而减少,对于人工饲养的种群(比如家畜)而言,为了保证稳定的收获,各个年龄的种群数量应维持不变。
种群因雌性个体的繁殖而改变,为方便起见以下种群数量均指其中的雌性。
种群年龄记作k=1,2,…,n ,当年年龄k 的种群数量记作x k ,繁殖率记作b k (每个雌性个体1年的繁殖的数量),自然存活率记作s k (s k =1−d k ,d k 为1年的死亡率),收获量记作ℎk ,则来年年龄k 的种群数量x ̌k 应该为x ̌k =∑b k n k=1x k , x ̌k+1=s k x k −ℎk , (k=1,2,…,n -1)。
要求各个年龄的种群数量每年维持不变就是要求使得x ̌k =x k , (k=1,2,…,n -1).(1) 如果b k , s k 已知,给定收获量ℎk ,建立求各个年龄的稳定种群数量x k 的模型(用矩阵、向量表示).(2) 设n =5,b 1=b 2=b 5=0,b 3=5,b 4=3,s 1=s 4=0.4,s 2=s 3=0.6,如要求ℎ1~ℎ5为500,400,200,100,100,求x 1~x 5.(3) 要使ℎ1~ℎ5均为500,如何达到?问题分析:该问题属于简单的种群数量增长模型,在一定的条件(存活率,繁殖率等)下为使各年龄阶段的种群数量保持不变,各个年龄段的种群数量将会满足一定的要求,只要找到种群数量与各个参量之间的关系,建立起种群数量恒定的方程就可以求解出各年龄阶段的种群数量。
模型建立:根据题目中的信息,令x ̌k =x k ,得到方程组如下:{x ̌1=∑b k nk=1x k =x 1x ̌k+1=s k x k −ℎk =x k+1整理得到:{−x 1∑b k nk=1x k =0−x k+1+s k x k =ℎk2 大学数学实验 实验报告 | 2014/4/52写成系数矩阵的形式如下:A =[b 1−1b 2b 3s 1−100s 2−1…b n−1b n0000⋮⋱⋮000000000⋯00−10s n−1−1]令h =[0, ℎ1,ℎ2,ℎ3,…,ℎn−2,ℎn−1]Tx =[x n , x n−1,…,x 1]T则方程组化为矩阵形式:Ax =h ,即为所求模型。
数学方法解决非线性方程组

数学方法解决非线性方程组非线性方程组在科学、工程和数学领域中具有重要的应用价值。
解决非线性方程组是一个复杂的任务,而数学方法为我们提供了一种有效的途径。
本文将介绍一些常用的数学方法,以解决非线性方程组的问题。
1. 牛顿法牛顿法是一种常用的数值解法,用于求解非线性方程组。
它基于泰勒级数的思想,通过迭代逼近方程组的根。
具体步骤如下:首先,选择一个初始点作为近似解。
然后,根据函数的导数来计算方程组在该点的切线,找到切线与坐标轴的交点。
将该交点作为新的近似解,继续迭代,直到满足收敛条件。
牛顿法具有快速收敛的特点,但在某些情况下可能会陷入局部极小值点。
2. 雅可比迭代法雅可比迭代法也是一种常见的数值解法。
它将非线性方程组转化为线性方程组的形式,然后通过迭代来逼近解。
具体步骤如下:首先,将非线性方程组表示为矩阵形式,其中包含未知数的系数矩阵和常数向量。
然后,将方程组进行变换,使得未知数的系数矩阵变为对角矩阵。
接下来,选择一个初始解向量,并通过迭代计算新的解向量,直到满足收敛条件。
雅可比迭代法适用于大规模的非线性方程组求解,但收敛速度较慢。
3. 高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的改进版本。
它在每次迭代中使用新的解向量来更新未知数的值,从而加快收敛速度。
具体步骤如下:首先,选择一个初始解向量。
然后,通过迭代计算新的解向量,直到满足收敛条件。
高斯-赛德尔迭代法相对于雅可比迭代法而言,可以更快地收敛到解。
它在求解非线性方程组时具有较好的效果。
4. 弦截法弦截法是一种近似求解非线性方程组的方法。
它通过线段的截断来逼近方程组的根。
具体步骤如下:首先,选择一个初始的线段,其中包含方程组的两个近似解。
然后,通过截取线段上的新点,构造新的线段。
重复这个过程,直到满足收敛条件。
弦截法是一种迭代方法,它可以在不需要计算导数的情况下逼近方程组的根。
但是,它的收敛速度比牛顿法和雅可比迭代法要慢。
总结:数学方法提供了一种有效的途径来解决非线性方程组的问题。
Ch7 非线性方程与方程组的数值解法(2)

4 / 19
几何意义 Aitken 加速:
y y = g(x)
一般地有:
( x K 1 x K )2 ˆ xK xK xK 2 xK 1 xK 2
y=x
15 / 19
例 再求x 3 x 1 0在1.5附近的根x * .
解:依次用牛顿法 0 1.5,x0 0.6,简化牛顿法 0 0.6, x x 牛顿下山法 1,折半, 1 / 32,计算结果如下:
k 0 1 2 3 4 xk 1.5 1.34783 1.32520 1.32472 xk 0.6 17.9 发散 xk 0.6 1.140625 1.36181 1.32628 1.32472 f(xk) -1.384 -0.656643 0.1866 0.00667 0.0000086
x0 , x1 g ( x0 ), x 2 g ( x1 ), ˆ x 0 , x3 g ( x 2 ), ˆ x1 , x 4 g ( x3 ), ......
P(x1, x2) P(x0, x1)
ˆ x K 比x K 收敛得略快。
Steffensen 加速:
x x1 x* x2 x0
2 / 19
2 x1
2 x1x * x * x2 x0 x2 x * x0 x * x * ,
2 2
x1 x * x0 x * x2 x * x1 x *
2 2 2 x2 x0 x1 x2 x0 2 x0 x1 x0 x2 x0 x1 x* x0 x2 2 x1 x0 x2 2 x1 x0
数值分析--第7章非线性方程与方程组的数值解法

k
y.
(2.4) 时序列 {xk }
收敛到
x
*.
25
再证明估计式(2.5),由(2.4)有
xk1 xk (xk )(xk1) L xk xk1 .
反复递推得
xk
1 2 k 1
0.005,
只需 k 6 ,即只要二分6次,便能达到预定的精度.
11
计算结果如表7-2.
表7 2
k
ak
0 1.0
bk
xk
1.5
1.25
1 1.25
1.375
2
1.375 1.3125
3 1.3125
1.3438
4
1.3438 1.3281
5
1.3281 1.3203
6 0.3203
对于 x *的某个近似值 x0,在曲线 y (x)上可确定 一点 P0,它以 x0为横坐标,而纵坐标则等于(x0 ) x1.
过 P0 引平行 x轴的直线,设此直线交直线 y x于点 Q1, 然后过 Q1再作平行于 y轴的直线,与曲线 y (x) 的交点
17
记作 P1,则点 P1 的横坐标为 x1 ,纵坐标则等于 (x1) x2.
(2.(2)2.5)
证明 设 x*[a, b] 是 (x)在 [a, b]上的唯一不动点, 由条件,可知 {xk }[a, b],再由(2.4)得
xk x* (xk1)(x*)
L xk1 x* Lk x0 x*.
因(x0)
L(y1),故L当x
f (x) 0
(1.1)
其中 x R, f (x) C[a, b], [a, b]也可以是无穷区间.
非线性方程组数值解法课件

目 录
• 非线性方程组概述 • 迭代法求解非线性方程组 • 牛顿法求解非线性方程组 • 拟牛顿法求解非线性方程组 • 非线性方程组数值解法的应用
01
非线性方程组概述
非线性方程组的定义与分类
定义
非线性方程组是由多个非线性方 程组成的数学模型,描述了多个 变量之间的关系。
在工程问题中的应用
航空航天工程
土木工程
非线性方程组数值解法用于设计和优 化飞行器、卫星和火箭的结构和性能。
在建筑设计、桥梁和高层建筑的结构 分析中,非线性方程组数值解法用于 模拟结构的承载能力和稳定性。
机械工程
在机械设计中,非线性方程组数值解 法用于分析复杂机械系统的动力学特 性和稳定性。
在金融问题中的应用
拟牛顿法的收敛性分析主要基于Hessian 矩阵的条件数和近似矩阵的误差界。在适 当的条件下,拟牛顿法能够保证全局收敛 性和局部超线性收敛性。
拟牛顿法的实现
总结词
拟牛顿法的具体实现可以通过不同的算法实 现,如DFP算法和BFGS算法等。
详细描述
DFP算法(Davidon-Fletcher-Powell)和 BFGS算法(Broyden-Fletcher-GoldfarbShanno)是两种常见的拟牛顿算法。它们 的主要区别在于近似矩阵的更新方式。DFP 算法采用三对角化方法更新近似矩阵,而 BFGS算法采用迭代更新的方式。在实际应 用中,BFGS算法通常比DFP算法更受欢迎, 因为它在大多数情况下都能提供更好的收敛 效果。
05
非线性方程组数值解法的 应用
在物理问题中的应用
量子力学方程
非线性方程组数值解法在 量子力学中用于描述微观 粒子的行为和相互作用。
非线性方程与方程组数值解法

2.2 二分法
表2-2 计算结果
k
0 1 2 3 4 5 6 7
ak
1 1 1.25 1.25 1.3125 1.3125 1.3125 1.3203
bk
2 1.5 1.5 1.375 1.375 1.3438 1.3281 1.3281
xk
1.5 1.25 1.375 1.3125 1.3438 1.3281 1.3203 1.3242
ab ;否则,回 2
5.2 二分法
说明:
x*
(ⅰ)上述计算步骤(2)和(3)每执行一次就把新的区间分成两份,根的范围也 缩小一半. 如果第 k 次二分后得到的区间记 为 [ak , bk ],根的近似值记为 xk ,则 ba (a b ) 有 bk ak k , xk k k ,那么当时 k , bk ak 0,这说明如果二分过 2 2 程无限继续下去,这些区间必将收敛于一点,即为所求根. (ⅱ) 第
3
2 f ( x ) 3 x 1 0, x [1, 2] 解 已知 f (1) 1 0, f (2) 5 0 且 ,
则方程
f ( x) x 3 x 1 0
在区间
(1, 2)
内只有一个实根.
当 k 1 , x1
bk ak 102 ,继续二分;
2.1 引言
通常隔离区间的确定方法为 (1)作 y f ( x) 的草图, 由 y f ( x)与横轴交点的大致位置来确定; 或 者将 f1 ( x) f 2 ( x) 改写成 f ( x) 0 , 根据 y f1 ( x) 和 y f 2 ( x) 交点横坐标来确定
根的隔离区间.
当 k 2 , x2
非线性方程(组)的数值解法——牛顿法、弦切法

需要求导数!
9
简化的Newton法
简化的 Newton 法
基本思想:用 f’(x0) 替代所有的 f’(xk)
xk 1
f ( xk ) xk f '( x0 )
线性收敛
10
Newton下山法
Newton下山法
基本思想:要求每一步迭代满足下降条件
f x k 1 f x k
非线性方程组的数值解法牛顿法弦切法非线性方程组数值解法非线性方程数值解法非线性方程的数值解法非线性方程组迭代解法非线性方程组的解法非线性方程组解法微分方程数值解法常微分方程的数值解法微分方程数值解法pdf
计算方法
第七章
非线性方程(组)的数值解法
—— Newton 法 —— 弦截法、抛物线法
1
本讲内容
13
举例
例:求 x4 - 4x2 + 4=0 的二重根 x* 2 (1) 普通 Newton 法
x2 2 1 ( x ) x 4x
(2) 改进的 Newton 法 x2 2 2 ( x) x
2x
(3) 用 Newton 法解 (x) = 0
x ( x 2 2) 3 ( x) x x2 2
f [ xk , xk 1 , xk 2 ]( x xk )( x xk1 )
xk 1 xk
2 f ( xk )
2 4 f ( xk ) f [ xk , xk 1 , xk 2 ]
f [ xk , xk1 ] f [ xk , xk1 , xk2 ]( xk xk1 )
f ( x) ( x) x f '( x )
1 '( x*) 1 m
非线性方程(组)的解法

lnim(bn
an )
lim
n
2n1
(b
a)
0
lim
n
an
lim
n
bn
x
取
x
cn
1 2
(an
bn
)为
x 的近似解。
7
二分法
迭代终止准则
an - bn
即
x - cn
bn an 2
2
8
2.2一般迭代法
2.2.1 迭代法及收敛性
对于 f (x) 0 有时可以写成 x (x) 形式 如: x3 x 1 0 x 3 x 1
12
例题
例2.2.1 试用迭代法求方程 f (x) x3 x 1 0
在区间(1,2)内的实根。 解:由 x 3 x 1建立迭代关系
xk1 3 xk 1 k=0,1,2,3…… 计算结果如下:
13
例题
精确到小数点后五位
x 1.32472 1 105
2
14
例题 但如果由x x3 1建立迭代公式
xk1 xk3 1 k 1,2,...
仍取 x0 1.5,则有 x1 2.375 ,x2 12.39 显 然结果越来越大,{xk }是发散序列
15
2.3 Newton迭代法
设x*是方程f (x) = 0的根, 又x0 为x* 附近的一个值,
将f (x) 在x0 附近做泰勒展式:
f (x)
二分法
用二分法(将区间对平分)求解。
令
a1
a, b1
b, c1
1 2
(a1
b1 )
若 f (a1) f (c1) 0,则[a1, c1] 为有根区间,否 则 [c1,b1]为有根区间
数值分析第七章 非线性方程与方程组的数值解法0607)

一、二分法
3. 二分法的一个例题
例2 求x3 x 1 0在[1.0,1.5]内的一个实根,准确到
小数点后2位.
k ak
bk
xk
f(xk)符号
0 1.0
1.5
1.25
−
1 1.25
1.375
+
2
1.375 1.3125
−
3 1.3125
1.3438
+
4
1.3438 1.3281
+
5
1.3281 1.3203
续,并且
(x*) (x*) ( p1) (x*) 0, ( p) (x*) 0,
只要相邻两次 计算结果的偏
|
xk
x* |
Lk 1 L
|
x1
x0
|
.
(2.5)
差足够小即可
保证近似值xk 具有足够精度
|
xk
x* |
1 1 L
|
xk 1
xk
|
.
(2.6)
二、不动点迭代法
3. 存在性与收敛性
• 局部收敛性
- 定义1 设(x)有不动点x*,若对任意x0∈{ x*
的某个邻域R},迭代公式(2.2)产生的序列 {xk}∈R,且收敛到x*,则称迭代法(2.2)局部 收敛.
2). 存在正数L<1,使对任意x,y∈[a, b]都有
| (x) ( y) | L | x y |;
则(x)在[a, b]上存在唯一的不动点x*.
二、不动点迭代法
3. 存在性与收敛性
• 全局收敛的充分条件
- 定理2 设(x) 满足定理1中两条件,则对任意
x0∈[a, b],迭代法收敛,并有误差估计式
(完整版)数值分析重点公式

第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根;定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x ll x x x lαα+-≤---≤--定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的 ()()()0,1,,1,()0j P j P ϕαϕα==-≠L (Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈;③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <;则Newton 迭代法收敛于根α。
6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:P =7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r ,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。
数值分析 李庆扬 第7章 非线性方程与方程组的数值解法

x x3 1
时,在区间
1,2
有:
x 3 x 2 1
不满足定理的条件,无法保证迭代收敛。
a , b
上)
(2) 存在正常数 L 1 ,使对任意
x , y a , b 都有
x y L x y
(迭代函数的增量小于自变量的增量) 则
14
x 在 a , b
上存在唯一的不动点 x 。
2017年1月4日
*
《数值分析》 黄龙主讲
证明:先证不动点存在性。 若
x , y a , b 有
x y x y L x y , a , b
因此,可将上述定理 1 和定理 2 中的条件(2)改为:
x L 1
21
2017年1月4日
《数值分析》 黄龙主讲
例如:
(2) 存在正常数 L 1 ,使对任意
x y L x y
则对任意 由
x0 a , b :
xk 1 xk 得到的迭代序列 xk
收敛到
x 的不动点 x*
,并有误差估计
k L x k x* x1 x0 1 L
17
2017年1月4日
*
最终取值: x
误差:取有根区间
ak , bk 的中点 (
ak bk xk 作为近似根,则: 2 b ak b a x* x k k k 1 2 2
特点:算法简单,可保证收敛,但收敛太慢。用于求近似解。
8
2017年1月4日
《数值分析》 黄龙主讲
P214例2 求方程 f x x 3 x 1 0 在区间 1.0 ,1.5 内的一个实根, 要求准确到小数点后的第二位。
线性方程组的数值解法与非线性方程求解

淮海工学院实验报告书
课程名称:数学实验
实验名称:线性方程组的数值解法与非线性方程求解班级数学091
姓名:耿萍学号:090911107
日期:2012.4.27 地点数学实验室
指导教师:曹卫平成绩:
数理科学系
-259.49
x3 =
13467.74
7580.65
5564.52
3951.61
1870.97
从x1可以看出,第5年龄段:x5=140.5>100=h5 ,说明收获量h5可以达到100。
从x2可以看出,x5为-259.49,但种群数量不可能为负数,在本题所给条件下,无法使h1~h5均为500。
从x3可以看出,x5=1870>500=h5,说明收获量h5可达到500,从而h1~h5均可达到500。
(3)
1)由题目已知条件,假设第i月月初待还贷款为,贷款月利率为r,则可列出:
=150000 =*(1+r)-1000 …=1000/r+(-1000/r)
2) 记第一家银行月利率为s,第二家银行年利率为t,则:
=4500/s+(-4500/r)。
非线性偏微分方程数值解法

非线性偏微分方程数值解法非线性偏微分方程是研究自然界中许多现象的重要数学模型,其解析解往往难以获得。
因此,数值解法成为解决非线性偏微分方程问题的一种有效手段。
本文将介绍几种常用的非线性偏微分方程的数值解法。
一、有限差分法有限差分法是求解偏微分方程的一种常见数值方法。
其核心思想是将求解区域离散化为有限个网格点,并利用中心差分公式来近似替代微分运算。
对于非线性偏微分方程,可以采用迭代的方法进行求解。
具体步骤如下:1. 将求解区域离散化为有限个网格点,确定网格的步长。
2. 利用中心差分公式将偏微分方程离散化为差分方程。
3. 将差分方程转化为非线性代数方程组,采用迭代方法求解。
二、有限元法有限元法是求解偏微分方程的一种重要数值方法。
其核心思想是将求解区域划分为无重叠的小单元,通过在每个单元内构造适当的试探函数和加权函数,将问题转化为求解代数方程组。
对于非线性偏微分方程,可以采用Newton-Raphson迭代方法进行求解。
具体步骤如下:1. 将求解区域进行网格剖分,确定单元的形状和大小。
2. 构造试探函数和加权函数,并利用加权残差法将偏微分方程离散化为代数方程组。
3. 对于非线性方程组,采用Newton-Raphson迭代方法求解。
三、有限体积法有限体积法是求解偏微分方程的一种常用数值方法。
其核心思想是将求解区域划分为有限个体积单元,通过对单元内偏微分方程进行积分,将方程转化为守恒形式。
对于非线性偏微分方程,可以采用显式或隐式方法进行求解。
具体步骤如下:1. 将求解区域进行网格剖分,确定体积单元的大小和形状。
2. 对体积单元内的偏微分方程进行积分,建立守恒形式的方程。
3. 将方程离散化为代数方程组,采用显式或隐式方法进行时间步进求解。
四、谱方法谱方法是求解偏微分方程的一种高效数值方法。
其核心思想是采用特定的基函数展开待求解的函数,通过选取合适的基函数,可以有效地提高求解效率。
对于非线性偏微分方程,可以采用谱方法进行求解。