重复测量设计资料的方差分析SPSS操作
重复测量数据方差分析在SPSS16_0软件中的实现
统计与决策2011年第1期(总第325期)组别1…G受试对象12…N…12…N123…P重复观测次数x ijk表1重复测量数据基本格式基金项目:湖南省教育厅教研教改资助项目(湘教通2010243号),湖南商学院教研教改项目(校教字201025号)作者简介:李灿(1972-),女,湖南益阳人,博士研究生,副教授,研究方向:多元统计分析、市场调查。
重复测量数据方差分析在SPSS16.0软件中的实现李灿1,2(1.湖南商学院信息学院统计系,长沙410205;2.中南财经政法大学信息学院统计系,武汉430060)摘要:文章首先对重复测量数据的格式、特点与方差分析的前提条件及基本原理进行了介绍;然后利用市场调查中的一个案例,详细介绍了利用SPSS16.0软件对重复测量数据进行方差分析的具体过程,以及对结果的解释和运用。
关键词:重复测量;重复测量数据;方差分析;SPSS16.0中图分类号:C81文献标识码:A文章编号:1002-6487(2011)01-0034-03重复测量(Repeated Measure)是指对同一观察对象的某项观测指标在不同时间点上进行多次测量,用于分析观察指标在不同时间上的变化规律。
通过重复测量,可以对获得同一观察对象的某项观测指标进行多次测量的数据,即为重复测量数据。
如经济研究领域中的市场动态的研究;心理研究中观察不同时间段个体的心理调适能力;教育研究中观察不同学期学生成绩的变化等等。
由于同一受试对象在不同时点的观测值之间往往彼此不独立,存在某种程度的相关,因此对重复测量数据如果采取普通的方差分析,不能满足普通的方差分析方法所要求的独立、正态、等方差的前提条件,使得其分析方法有别于一般的统计分析方法。
在实际工作中,重复测量数据常被误作以下情形处理:一种情形是用配伍组设计资料的方差分析(two-way ANOVA )来处理,这样会导致扩大第一类错误的严重后果;另一种情形是只做单独效应分析,其后果是损失了主效应和交互效应分析的宝贵信息。
【生物数学】SPSS进行重复测量的多因素方差分析
SPSS进行重复测量的多因素方差分析1、概述重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。
在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。
重复测量数据在科学研究中十分常见。
分析前要对重复测量数据之间是否存在相关性进行球形检验。
如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。
在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。
球形条件不满足时常有两种方法可供选择:(1)采用MANOVA(多变量方差分析方法);(2)对重复测量ANOVA检验结果中与时间有关的F值的自由度进行调整。
2、问题新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征[11]。
血管内皮生长因子(vascularendothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。
而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。
将收治的诊断胎粪吸入综合症的新生儿共42名。
将患儿随机分为肺表面活性物质治疗组16(PS组)和常规治疗组(对照组),每组各21例。
PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。
PS组患儿给予牛肺表面活性剂PS 70mg/kg治疗。
SPSS:单因素重复测量方差分析(史上最详细教程)
SPSS:单因素重复测量方差分析(史上最详细教程)一、问题与数据研究者招募了10名研究对象,研究对象进行了6个月的锻炼干预。
CRP浓度共测量了3次:干预前的CRP浓度——crp_pre;干预中(3个月)——crp_mid;干预后(6个月)——crp_post。
这三个时间点代表了受试者内因素“时间”的三个水平,因变量是CRP的浓度,单位是mg/L。
部分数据如下:二、对问题的分析使用One-way Repeated Measures Anova进行分析时,需要考虑6个假设。
对研究设计的假设:假设1:因变量唯一,且为连续变量;假设2:受试者内因素(Within-Subject Factor)有3个或以上的水平。
注:在重复测量的方差分析模型中,对同一个体相同变量的不同次观测结果被视为一组,用于区分重复测量次数的变量被称为受试者内因素,受试者内因素实际上是自变量。
对数据的假设:假设3:受试者内因素的各个水平,因变量没有极端异常值;假设4:受试者内因素的各个水平,因变量需服从近似正态分布;假设5:对于受试者内因素的各个水平组合而言,因变量的方差协方差矩阵相等,也称为球形假设。
三、思维导图(点击图片可查看大图) 四、对假设的判断在分析时,如何考虑和处理这5个假设呢?由于假设1-2都是对研究设计的假设,需要研究者根据研究设计进行判断,所以我们主要对数据的假设3-5进行检验。
(一) 检验假设3和假设4的SPSS操作1. 在主菜单点击Analyze > Descriptive Statistics > Explore...,如下图:2. 出现Explore对话框,将crp_pre、crp_mid和crp_post选入Dependent List,点击Plots;3. 出现下图Plots对话框;4. 在Boxplots下选择Dependents together,去掉Descriptive下Stem-和-leaf,选择Normality plots with tests,点击Continue;5. 回到Explore主对话框,在Display下方选择Plots,点击OK。
4_SPSS多因素、重复测量资料的方差分析报告
2019/9/26
Page12
SPSS统计软件操作
随机区组设计资料的方差分析
练习4 为了研究克拉霉素的抑菌效果,某实验室对28个短小芽孢
杆菌平板依据菌株的来源不同分成了7个区组,每组4个平 板用随机的方式分配给标准药物高剂量组(SH)、标准 药物低剂量组(SL),以及克拉霉素高剂量组(TH)、 克拉霉素低剂量组(TL)。给予不同的处理后,观察抑菌 圈的直径。数据见“kelameisu.sav”。 试对该资料进行分析。
分别于平衡期(0周)、服药后的8周、16周、24周测定肥胖患者 的体重,数据见“重复测量1.xls”
2019/9/26
Page25
SPSS统计软件操作
重复测量资料的方差分析
例2 临床上为指导脑梗患者的治疗和预后,某研究人员对不同
类型脑梗患者酸性磷脂(AP)在不同时间点的变化,进行了 如下观察:随机选取三种不同类型的脑梗(TIA、脑血栓形 成、腔隙性脑梗塞)患者各8例,分别于脑梗发生的第24小 时、48小时、72小时、7天分别采血,测量血中AP的值见 数据“重复测量2.xls”
例:提取蛋白质成分的研究 中,蛋白质的提取量和温度 (高,中,低),试剂浓度 (0.1,0.2,0.3)及PH值 (6,8,12)的有关
三因素的各个水平相结合, 共形成3×3×3=27种处理组
PH值 温度
PH=6 高 中 低
PH=8 高 中 低
PH=12 高 中 低
试剂浓度 0.1 0.2 0.3
2019/9/26
Page27
SPSS统计软件操作
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
知识回顾 Knowledge Review
SPSS重复测量的多因素方差分析报告
1、概述重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。
在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。
重复测量数据在科学研究中十分常见。
分析前要对重复测量数据之间是否存在相关性进行球形检验。
如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。
在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。
球形条件不满足时常有两种方法可供选择:(1)采用MANOVA(多变量方差分析方法);(2)对重复测量ANOVA检验结果中与时间有关的F值的自由度进行调整。
2、问题新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征。
血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。
而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。
将收治的诊断胎粪吸入综合症的新生儿共42名。
将患儿随机分为肺表面活性物质治疗组(PS组)和常规治疗组(对照组),每组各21例。
PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。
PS组患儿给予牛肺表面活性剂PS 70mg/kg治疗。
采集PS 组及对照组患儿0小时,治疗后24小时和72小时静脉血2ml,离心并提取上清液后保存备用并记录血清中VEGF的含量变化情况。
spss16.0重复测量数据分析步骤(原创)
应用SPSS16.0进行重复测量数据分析原始数据:Spss变量设置:导入数据:1.通过球形检验(Mauchly’s Test of Sphericity) 的结果判断重复测量数据之间是否存在相关性:Analyze→General Lineal Model→Repeated MeasuresWithin- subject factor name 框: 改为t “定义重复测量的变量名为t”Number of levels 框: 键入4: add “重复测量的次数为4 次”DefineWithin- subject variables 框: t1-t4 “t1-t4 代表4次测量结果”Between subject factor 框: groupModel:选中Custom “自定义模型”Within- subject Model 框: t “分析4次重复测量间有无趋 势”Between subject Model 框: group “只分析主效应” ContinueOK输出结果:Mauchly's Test of Sphericity bMeasure:MEASURE_1Epsilon a WithinSubjects Effect Mauchly's WApprox.Chi-Square df Sig.Greenhouse-Geisser Huynh-Feldt Lower-boundt .386 14.977 5.011.611.761 .333如果该检验P> 0. 05, 说明重复测量数据之间实际上不存在相关性, 数据符合Huynh-Feldt条件, 可按单因素方差分析方法来处理; 如果P < 0. 05, 说明重复测量数据之间存在相关性, 不可按单因素方差分析方法处理。
实际应用中的重复测量设计资料以后者多见, 应使用重复测量的方差分析模型。
球形检验的结果P< 0. 05, 说明4次重复测量的数据间存在高度的相关性, 宜用多元方差分析进行检验.Tests of Within-Subjects EffectsMeasure:MEASURE_1SourceType III Sum ofSquares df Mean Square F Sig. Sphericity Assumed 15607.63635202.54565.910 .000 Greenhouse-Geisser 15607.636 1.8328517.62265.910 .000 Huynh-Feldt 15607.636 2.2846832.46865.910 .000tLower-bound 15607.636 1.00015607.63665.910 .000Sphericity Assumed 3408.3116568.0527.197 .000 t * zbGreenhouse-Geisser 3408.311 3.665930.0167.197 .000Huynh-Feldt 3408.311 4.569746.0197.197 .000 Lower-bound 3408.311 2.0001704.1557.197 .005 Sphericity Assumed 4025.6185178.934Greenhouse-Geisser 4025.61831.151129.230Huynh-Feldt 4025.61838.834103.663Error(t)Lower-bound 4025.61817.000236.801此处t 和t* group 的P 值均< 0. 01, 时间因素以及时间因素和分组的交互作用有统计学意义, 说明测量指标有随时间变化的趋势并且时间因素的作用随着分组的不同而不同。
SPSS学习笔记之——重复测量的多因素方差分析说课讲解
S P S S学习笔记之——重复测量的多因素方差分析SPSS学习笔记之——重复测量的多因素方差分析1、概述重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。
在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。
重复测量数据在科学研究中十分常见。
分析前要对重复测量数据之间是否存在相关性进行球形检验。
如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。
在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。
球形条件不满足时常有两种方法可供选择:(1)采用MANOVA(多变量方差分析方法);(2)对重复测量ANOVA检验结果中与时间有关的F值的自由度进行调整。
2、问题新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征[11]。
血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。
而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。
将收治的诊断胎粪吸入综合症的新生儿共42名。
将患儿随机分为肺表面活性物质治疗组(PS组)和常规治疗组(对照组),每组各21例。
PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。
重复测量设计资料的方差分析SPSS操作
重复测量设计资料的方差分析SPSS操作重复测量方差分析的基本概述:被试对象在接受不同处理后,对同一因变量(测试指标)在不同时点上进行多次测量所得的资料,称为重复测量资料。
这里的重复并不是单一的反复,而是在多个时点上的测量。
这种资料的特点是其定量观测指标的数值会随着时间的变化而发生动态变化,并且各时点上的数值是不满足相互独立的假设的。
因此不能用方差分析的方法直接进行处理。
如果在期初、期中、期末分别测量学生的电脑能力,则这是单变量重复测量问题。
如果分别在三个时期测量学生的电脑和数学成绩,则是多变量重复测量的问题。
重复测量资料的方差分析需满足的前提条件:1、一般方差分析的正态性和方差齐性检验。
2、协方差矩阵的球形对称性或者复合对称性;需要进行球形检验,检验对称性。
原假设:协方差满足球形对称。
当拒绝球形假设时,结果中还有其他表可以检验,见例题中的分析。
被试对象处理测量时间1 2 3 4…………m1 1 ………………………………………….2 1 ………………………………………….. ………………………………………………………………………………………………………….N1 1 …………………………………………..N1+1 2 …………………………………………. …………………………………………………………………………………………………………N2 2 …………………………………………………….例:为研究新减肥药和现有减肥药的效果是否不同,以及肥胖者在服药后不同时间体重的变化情况,将40名体重指标BMIF27的肥胖者随机分为两组,一组用新药,另一组用现有减肥药;坚持服药6个月,期间禁止使用任何影响体重的药物,而且被试对象行为、饮食、运动与服药前平衡期保持一致;分别测得0周、8周、16周、24周的体重资料;试对其进行方差分析。
Spss数据格式片段如下:1、正态性和方差齐性检验对4个不同时点上的体重变量进行检验使用科莫格洛夫—斯米诺夫检验只要16周第二种处理不显著,其他都显著不为0.可认为正态性假设基本成立。
高等教育:方差分析(重复测量资料spss实现)
方差分析(2)重复测量设计A 方法:重复测量的方差分析A 目的:推断处理、时间、处理X 时间对 试验对象的试验指标的作用对象,共ng 个,g^1A 时间因素分m 个水平(m 个时点),每个对象有m 个时点上的测量值,共gnm 个,mM2A 特例:g=1,单组重复测量资料m=2,前后重复测量资料A 处理因素分gn 个试验实验操作方法A重复测量数据的两因素多水平设计,两因素包括一个干预因素(A因素)和测量时间因素(B 因素);厂多水平指干预(A因素)有g(A2)个水平,测量时间(B因素)有m (>2)个水平(测量时间点)。
A随机化分组采用完全随机设计的分组方式,将歹个观察对象随机分配到g个处理组中o>数据收集在加个时间点上进行, 每一个观察对象在完全相同的时间点上重复进行□次测量。
表12-2数据的统计学分析问题A计算前后测量数据的差值,上述数据即可转化为完全随机设计(两组)的资料形式。
A—般情况下,针对前后测量数据差值的成组亡检验方法是可取的,但应注意其应用条件,即方差齐性的问题。
例题:P271•将手术要求基本相同的15名患者随即分3 组,分别采用A、B、C三种麻醉诱导方法。
在T°、T I、T2、T3、T4五个时像测量患者收缩压数据如下:S 12-16不同麻醉诱导时相患者的收缩压(mmHg)对象间巧1 •建立假设1 > HO:j i・HI:[• •a=0.05 •卜选择统计方法:= 订•正态性处理因素的各处理水平的样本个体之间是相互i 1独立的随机样本,其总体均数服从正态分布1 3・方差齐性相互比较的各处理水平的总体方差相等,即i I具有方差齐同;I1 3.各时间点组成的协方差阵具有球形性特征。
:I Ii I ! *计算统计量(由计算机完成)! :•结论:按照a=0.05/0.01的检验水准,拒绝/尚不能拒绝' 〕H0,……差异有/无统计学意义(统计学结论),| i I重复测量设计资料的统计分析方法A更于重复测量数据(临床上常称纵向监测数据), 去质上每个受试对象的观察结果是多次重复测量簧果的连线,统计分析的目的是比较这些连线变化趋势的特征。
重复测量方差分析
重复测量方差分析1.理论重复测量:指对同一批研究对象先后施加不同的实验(或在不同的场合)进行测量。
重复测量方差分析:研究在不同的实验或(不同场合)之间是否有差异,或条件和处理间交互项是否有差异。
变量应满足:因变量为连续型随机变量,因素为分类变量。
正态性:不同条件下的个体取自相互独立的随机样本,其总体需满足近似正态分布。
方差齐性:不同条件下的总体方差相等。
满足球形假设:因变量的方差-协方差矩阵满足球形交互项项两两比较结果需要借助语法。
图1交互项两两比较语法2.重复测量方差分析操作步骤操作步骤第一步:首先将数据导入spss中并进行赋值,后点击分析、一般线性模型、重复测量。
图2重复测量方差分析操作步骤第一步操作步骤第二步:进入图中对话框后首先定义主体因子名及实验次数点击添加,后添加测量名称(先在测量名称框中输入名称、后点击添加)点击定义。
图3定义因子操作步骤第三步:定义完成后进入图中对话框后、先将对应的变量放入对应的变量框中,点击事后比较将因子框内的因子放入事后比较框中,勾选假定等方差(LSD)、不假定等方差(塔姆黑尼),点击继续。
图4事后比较勾选操作步骤第四步:点击选项将因子框中的因子放入平均值框中,勾选描述统计、齐性检验,点击继续、确定。
图5选项勾选然后重复测量方差分析的主体间因子、描述统计、等同性检验、主体内效应检验、主体因子事后比较结果就出来了。
图6描述统计结果图7主体内效应操作步骤第一步:点击分析、一般线性模型、重复测量。
图8操作步骤第一步第二步:点击定义。
图9点击定义第三步:进入图中对话框后,点击粘贴。
图10点击粘贴第四步:进入语法编辑窗:在红色框内放入对应的语法(可参考图中语法进行编辑),后选中语法点击红色框内的绿色箭头。
图11语法编写5.交互项结果然后重复测量方差分析的主体因子和因子交互项的主体内因子、主体间因子、描述统计、博克斯等同性酱油结果就出来了。
图12描述统计主体内效应检验、主体内对比检验、误差方差的莱文等同性检验。
SPSS进行重复测量的多因素方差分析
SPSS进行重复测量的多因素方差分析1、概述重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。
在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。
重复测量数据在科学研究中十分常见。
分析前要对重复测量数据之间是否存在相关性进行球形检验。
如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。
在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。
球形条件不满足时常有两种方法可供选择:(1)采用MANOV A(多变量方差分析方法);(2)对重复测量ANOV A检验结果中与时间有关的F值的自由度进行调整。
2、问题新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征[11]。
血管内皮生长因子(vascularendothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。
而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。
将收治的诊断胎粪吸入综合症的新生儿共42名。
将患儿随机分为肺表面活性物质治疗组(PS 组)和常规治疗组(对照组),每组各21例。
PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。
PS组患儿给予牛肺表面活性剂PS 70mg/kg治疗。
SPSS重复测量方差分析的应用
企业销售策略改进计划中SPSS重复测量方差分析的应用1 相关背景在研究中,我们经常需要对同一个观察对象进行多次观测,这样得到的数据称为重复测量资料;而对于重复测量资料进行方差分析就需要采用重复测量方差分析。
重复测量方差分析与前述的方差分析最大的差别在于,它可以考察测量指标是否会随着测量次数的增加而变化,以及是否会受时间的影响。
2 问题概述某食品公司计划改进一种食品的销售策略,提出了两种方案,并随机选择了3个销售区市场,每个市场有4个网点,并将其随机分配至两个组,施行不同的销售策略,为期2个月。
表2.1为所调查网点的实施策略前1个月和实施策略的2个月的销售量(单位:千克)。
通过分析说明哪种方案更加有效。
表2.1 各网点销售量统计表市场标号网点方案销售量1 销售量2 销售量31 1 1 70 83 781 2 1 48 54 581 32 34 60 681 42 56 65 792 5 1 36 45 68………………3 11 2 83 87 963 12 2 57 78 893 数据特点在用SPSS进行分析之前,我们把数据录入到SPSS中。
容易发现本数据中有6个变量,分别为市场编号、网点、方案和3个销售量,且把所有变量定义为数值型。
录入相关数据,录入完成后,数据如图3.1所示。
图3.1 各网点销售统计量统计数据4 分析过程先将以上数据做一下保存,然后展开分析,步骤如下:1)进入SPSS 22,打开相关数据文件,选择“分析”—“一般线性模型”—“重复测量”命令,弹出如图4.1所示的对话框。
图4.1 “重复测量定义因子”对话框2)定义重复测量因子。
在“被试内因子名称”中输入“月份”,在“级别数”处键入“3”,然后单击“添加”;在“测量名称”中输入“销售量”,单击“添加”;单击“定义”,弹出如图4.2所示对话框。
图4.2 “重复测量”对话框3)定义内部变量。
在图4.2所示对话框左侧的列表中,选择“销售量1”、“销售量2”和“销售量3”并单击按钮使之进入“主体内部变量”列表框;选择“市场编号”和“方案”并单击按钮使之进入“因子列表”列表框;4)设置完毕,单击“确定”按钮,等待输出结果。
SPSS学习笔记之——重复测量的多因素方差分析
SPSS学习笔记之——重复测量的多因素方差分析1、概述重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。
在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。
重复测量数据在科学研究中十分常见。
分析前要对重复测量数据之间是否存在相关性进行球形检验。
如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。
在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。
球形条件不满足时常有两种方法可供选择:(1)采用MANOVA(多变量方差分析方法);(2)对重复测量ANOVA检验结果中与时间有关的F值的自由度进行调整。
2、问题新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征[11]。
血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。
而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。
将收治的诊断胎粪吸入综合症的新生儿共42名。
将患儿随机分为肺表面活性物质治疗组(PS组)和常规治疗组(对照组),每组各21例。
PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。
PS组患儿给予牛肺表面活性剂PS 70mg/kg治疗。
单因素重复测量方差分析-SPSS教程
单因素重复测量方差分析-SPSS教程一、问题与数据研究者想知道锻炼对心率(Heart Rate,HR)的影响,招募了10名研究对象,并进行了6个月的锻炼干预。
HR共测量了3次,干预前的HR:HR_1,干预中(3个月):HR_2和干预后(6个月):HR_3。
部分数据如图1。
图1 部分数据二、对问题分析对于单因素重复测量的数据,可以使用One-way Repeated Measures Anova 进行分析,但需要考虑6个假设。
假设1:因变量唯一,且为连续变量;假设2:研究对象内因素(本例为干预的不同时间)有3个或以上的水平;假设3:研究对象内因素的各个水平中,因变量没有明显异常值;假设4:研究对象内因素的各个水平中,因变量需服从近似正态分布;假设5:对于研究对象内因素的各个水平组合而言,因变量的方差协方差矩阵相等,也称满足球形假设。
假设1、假设2与研究设计有关,本研究数据满足。
那么应该如何检验假设3、假设4和假设5,并进行单因素重复测量方差分析呢?三、SPSS操作3.1 检验假设3:研究对象内因素各个水平中,因变量没有明显异常值如果研究对象内因素某个水平中的某些因变量取值和其它值相比特别大或者特别小,则称之为异常值。
异常值会影响该水平的均数和标准差,因此会对最终的统计检验结果产生影响。
对于小样本研究,异常值的影响尤其显著,必须检查每组各个水平内是否存在明显异常值。
在主界面点击Analyze→Descriptive Statistics→Explore,把HR_1、HR_2和HR_3选入Dependent List框中。
如图2。
图2 Explore点击Plots,出现Explore: Plots对话框。
在Boxplots模块内选择Dependents together,在Descriptive模块内取消选择Stem-and-leaf,在下方勾选Normality plots with tests(执行Shapiro-Wilk's检验)。
SPSS多因素方差分析(一般线性模型):重复测量
SPSS多因素⽅差分析(⼀般线性模型):重复测量⼀、GLM重复测量(分析-⼀般线性模型-重复度量)1、概念:“GLM 重复测量”过程在对每个主体或个案多次执⾏相同的测量时提供⽅差分析。
如果指定了主体间因⼦,这些因⼦会将总体划分成组。
通过使⽤此⼀般线性模型过程您可以检验关于主体间因⼦和主体内因⼦的效应的原假设。
可以调查因⼦之间的交互以及单个因⼦的效应。
另外,还可以包含常数协变量的效应以及协变量与主体间因⼦的交互。
在双重多变量重复测量设计中,因变量表⽰主体内因⼦不同⽔平的多个变量的测量。
例如,您可能在三个不同的时间对每个主体同时测量了脉搏和呼吸。
“GLM 重复测量”过程提供了对重复测量数据的单变量和多变量分析。
平衡与⾮平衡模型均可进⾏检验。
如果模型中的每个单元包含相同的个案数,则设计是平衡的。
在多变量模型中,模型中的效应引起的平⽅和以及误差平⽅和以矩阵形式表⽰,⽽不是以单变量分析中的标量形式表⽰。
这些矩阵称为SSCP(平⽅和与叉积)矩阵。
除了检验假设,“GLM 重复测量”过程还⽣成参数估计。
常⽤的先验对⽐可⽤于对主体间因⼦执⾏假设检验。
另外,在整体的F 检验已显⽰显著性之后,可以使⽤两两⽐较检验评估指定均值之间的差值。
估计边际均值为模型中的单元提供了预测均值估计值,且这些均值的轮廓图(交互图)允许您轻松对其中⼀些关系进⾏可视化。
残差、预测值、Cook 距离以及杠杆值可以另存为数据⽂件中检查假设的新变量。
另外还提供残差SSCP 矩阵(残差的平⽅和与叉积的⽅形矩阵)、残差协⽅差矩阵(残差SSCP 矩阵除以残差的⾃由度)和残差相关矩阵(残差协⽅差矩阵的标准化形式)。
WLS 权重允许您指定⼀个变量,⽤来针对加权最⼩平⽅(WLS) 分析为观察值赋予不同权重,这样也许可以补偿测量的不同精确度。
2、⽰例。
根据学⽣的焦虑程度检验的得分将⼗⼆个学⽣分配到⾼或低焦虑程度组。
焦虑等级被认为是主体间因⼦,因为它会将主体划分成组。
重复测量设计资料的方差分析SPSS操作
重复测量设计资料的方差分析SPSS操作
1、环境准备
1.1.首先在安装SPSS统计软件,在进行数据分析时,打开SPSS统计
软件,创建新文档,完成环境准备。
2、数据载入
2.1.将重复测量数据载入SPSS,可以通过文件菜单打开。
2.2.载入数据时,需要指定变量的类型,如字符型、数值型等。
3、变量转换
3.1.在方差分析中,重复测量设计需要把成对数据转换成单个观察值,以便进行分析。
3.2.将重复测量变量用SPSS的“变量转换”功能进行变换,变换类
型可以选择“算术变换”。
3.3.在变换过程中,需要指定新变量的表达式,如取均值、差值等,
以计算新变量的值。
4、数据检验
4.1.在得到变量后,需要对数据进行检验,以检验数据的有效性、完
整性和准确性。
4.2.可以使用SPSS的“数据检验”功能,检查变量是否正确转换,
此外,也可以使用“数据缺失标记”、“偏度-峰度检验”等功能,以检
查变量的数据情况。
5、方差分析
5.1.方差分析是重复测量设计中的主要统计分析方法,可以用来检验两个或多个样本之间的差异。
5.2.在SPSS中,可以使用“多因素方差分析”功能,设置因变量和自变量,进行分析。
5.3.在运行分析时。
重复测量设计资料的方差分析SPSS操作
Measure: MEASURE_1
Source FA C TO R1
FACTOR1 * GROUP
Erro r(F AC TO R 1)
Sphericity Assumed Greenhouse-Geisser Huyn h-Fe ld t Lo we r-bou nd Sphericity Assumed Greenhouse-Geisser Huyn h-Fe ld t Lo we r-bou nd Sphericity Assumed Greenhouse-Geisser Huyn h-Fe ld t Lo we r-bou nd
111
123
131
B
10
118
114
116
123
133
C
11
131
119
118
135
129
C
12
129
128
121
148
132
C
13
123
123
120
143
136
C
14
123
121
116
145
126
C
15
125
124
118
142
130
(二)分析步骤 1.建立数据文件 本例需建立6个变量: 诱导方法group:数值型,变量值定义:A=1; B=2; C=3 5个时相测量结果:诱导前收缩压T0 ;时相1收缩压T1 ;时相2收缩压T2 ; 时相3收缩压T3 ;时相4收缩压 T4 ;上述5个变量均为数值型,直接输入测量 数值。建立数据文件“例7-6.sav”如图7-23所示。
图7-23 数据文件“例7-6.sav”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重复测量设计资料的方差分析SPSS操作
重复测量方差分析的基本概述:被试对象在接受不同处理后,对同一因变量(测试指标)在不同时点上进行多次测量所得的资料,称为重复测量资料。
这里的重复并不是单一的反复,而是在多个时点上的测量。
这种资料的特点是其定量观测指标的数值会随着时间的变化而发生动态变化,并且各时点上的数值是不满足相互独立的假设的。
因此不能用方差分析的方法直接进行处理。
如果在期初、期中、期末分别测量学生的电脑能力,则这是单变量重复测量问题。
如果分别在三个时期测量学生的电脑和数学成绩,则是多变量重复测量的问题。
重复测量资料的方差分析需满足的前提条件:
1、一般方差分析的正态性和方差齐性检验。
2、协方差矩阵的球形对称性或者复合对称性;需要进行球形检验,检验对
称性。
原假设:协方差满足球形对称。
当拒绝球形假设时,结果中还有
其他表可以检验,见例题中的分析。
被试对象处理测量时间1 2 3 4…………m
1 1 ………………………………………….
2 1 ………………………………………….. ………………………………………………………………………………………………………….
N1 1 …………………………………………..
N1+1 2 …………………………………………. …………………………………………………………………………………………………………
N2 2 ……………………………………………
……….
例:为研究新减肥药和现有减肥药的效果是否不同,以及肥胖者在服药后不同时间体重的变化情况,将40名体重指标BMIF27的肥胖者随机分为两组,一组用新药,另一组用现有减肥药;坚持服药6个月,期间禁止使用任何影响体重的药物,而且被试对象行为、饮食、运动与服药前平衡期保持一致;分别测得0
周、8周、16周、24周的体重资料;试对其进行方差分析。
Spss数据格式片段如下:
1、正态性和方差齐性检验
对4个不同时点上的体重变量进行检验
使用科莫格洛夫—斯米诺夫检验只要16周第二种处理不显著,其他都显著不为0.可认为正态性假设基本成立。
方差齐性检验的levene统计量一致认为方差齐性成立。
2、球形检验和方差分析
Analyze→GLM→repeated measures
注意:上图需定义的是内因子时间,而非主体间因子剂型。
因为要考虑药品和时间的交互效应,所以在模型中选择一下。
3、结果:
球形检验结果表明,在以下分析中,要么采用多元方差分析结果(multivariate tests),要么采用校正自由的F检验。
方差分析结果如下:
Multivariate tests
上面的multivariate tests能否被用来解释方差分析的结果取决于球形检验的结果,由于球形检验的结果拒绝了球形对称的原假设,因此,可以用multivariate tests来解释本例的方差分析。
从上表中看出:四种检验方法下,时间因素对体重的影响有显著意义,说明不同时间点测试的体重至少在两个时点上是不同的;交互作用对体重影响不显著。
Test of within subjects effects
此表为组内效应检验,由于前面球形检验不接受球形对称的原假设,所以第一种sphericity assumed 方法不能用,需要用下面三种检验方法,分别是green house huynh feldt以及lower bound;
所以在球形检验不成立时,需要看Multivariate tests或者Test of within subjects effects两个表来看分析结果。
主体间效应检验即组间效应检验表;此表检验不同剂型间的效果有无差异,从表中看出,剂型的检验P值0.897>0.05,所以接受组间(不同剂型间)的效果是无差别的,即不同剂型的减肥结果没有显著性差异。
主体内对比检验(组内对比检验),即对不同剂型内部重复测量的变化趋势进行检验,检验观测值随时间变化的趋势,检验的是系数是否为0,原假设:系数为0. 从表中看到,线性和二次曲线趋势的系数不为0.
在repeated measure对话框中点击plots按钮,将时间变量移动到horizontal Axis中,单击ADD,可以得到趋势图。
四次测量的趋势图。