紫外可见吸收光谱PPT幻灯片

合集下载

高分子材料研究方法--紫外可见吸收光谱 ppt课件

高分子材料研究方法--紫外可见吸收光谱  ppt课件

ppt课件
16
常用的是π→π*跃迁和n→π*,这两种跃迁都 需要分子中有不饱和基团提供π轨道。
n→π*跃迁与π→π*跃迁的比较如下:
π→π*
n→π*
吸收峰波长 与组成双键的
有关
原子种类基本无关
吸收强度 强吸收 104~105 弱吸收 <102
极性溶剂 向长波方向移动 向短波方向移动
ppt课件
O:
例:H C
H ppt课件
10
分子轨道有σ、σ*、π、 π*、n 能量高低σ<π<n<π*<σ*
σ* π*
n → σ* π→π* n→π*跃迁
n
π

σ→σ*

σ
ppt课件
11
主要有四种跃迁类型 跃迁所需能量为:
σ→σ* n→σ* π→π* n→π*
分子中电子的能级和跃迁
2
ppt课件
不同波长的光
ppt课件
L 4
A
图3-1 紫外可见吸收光谱示意图
末端吸收
最强峰
肩 峰
次强峰 峰谷
max
ppt课件
min

5
A
分析吸收曲线 可以看到:
1.同一浓度的 待测溶液对不 同波长的光有 不同的吸光度;
max
min

2. 对于同一待测溶液,浓度愈大,吸光度也愈大;
3. 对于同一物质,不论浓度大小如何,最大吸收峰所对应 的波长(最大吸收波长 λmax) 不变。并且曲线的形状也 完全相同。
CH3Br λmax=204nm
ppt课件
14
(3)π→π*跃迁
π电子跃迁到反键π* 轨道所产生的跃迁,这类跃迁 所需能量比σ→σ*跃迁小,若无共轭,与n→σ*跃迁 差不多。200nm左右

紫外-可见吸收光谱-ppt

紫外-可见吸收光谱-ppt
生色团 烯 炔 羧基 酰胺基 羰基 偶氮基 硝基 亚硝基 硝酸酯 溶剂 正庚烷 正庚烷 乙醇 水 正己烷 乙醇 异辛酯 乙醚
二氧杂环己烷
/nm 177 178 204 214 186 339,665 280 300,665 270
max
13000 10000 41 60 1000 150000 22 100 12
(2)空间阻碍使共轭体系破坏,max蓝移, max减小。
表 表4.5 2-4 - 及 ’ - 位有取代基的二苯乙烯化合物的紫外光谱 R H H CH 3 CH 3 C2H5 R’ H CH 3 CH 3 C2H5 C2H5 max 294 272 243.5 240 237.5
max
9
2.2 紫外-可见光谱的产生
通常由最高占有分子轨道中的一个电子在吸收适当波长的 辐射能量后,跃迁到最低未占有分子轨道,产生紫外-可见吸 收光谱。
在电子跃迁过程中吸收光的频率(υ )取决于分子的能级差:
式中:h——普朗克常数,6.626×10-34J· s; c—— 光速,2.9979×10nm· s-1;
2.n→σ *跃迁
实现这类跃迁所需要的能量较高,其吸收光谱在远紫外区和近紫外区, 杂原子如氧、氮、硫及卤素等均含有不成键n电子。含杂原子的化合物可以 产 生 n→σ * 跃 迁 。 如 甲 醇 ( 汽 态 )λ max=183nm , ε =150 ; 三 甲 胺 ( 汽 态)λ max=227nm,ε =900;碘甲烷(己烷中) λ max=258nm,ε =380。
8
(三)吸收池 用于盛放分析试样,一般有石英和玻璃材料两 种。石英池适用于可见光区及紫外光区,玻璃吸收池只能用于 可见光区。为减少光的损失,吸收池的光学面必须完全垂直于 光束方向。 (四)检测器 检测信号、测量单色光透过溶液后光强度变化。 常用的检测器有光电池、光电管和光电倍增管等。硒光电 池对光的敏感范围为300~800nm,能产生可直接推动检流计的 光电流,但由于容易出现疲劳效应而只能用于低档的分光光度 计中;光电管在紫外-可见分光光度计上应用较为广泛;光电倍 增管是检测微弱光最常用的光电元件,它的 灵敏度比一般的光电管要高200倍,对光谱的精细结构有较好的 分辨能力。 (五)信号指示系统 放大信号并以适当方式指示或记录下来。 常用的信号指示装置有直读检流计、电位调节指零装置以 及数字显示或自动记录装置等。

紫外可见吸收光谱分析课件PPT

紫外可见吸收光谱分析课件PPT
紫外可见吸收光谱分析课件
目录
• 引言 • 基础知识 • 紫外可见吸收光谱分析原理 • 实验技术 • 应用实例 • 展望与未来发展
01
引言
课程目标
掌握紫外可见吸收光谱的基本原理和应用 学会使用紫外可见分光光度计进行实验操作 了解光谱分析在各个领域的应用和前景
课程大纲
第一章紫外可见Βιβλιοθήκη 收光谱的基本原理化学计量学
紫外可见吸收光谱在化学计量学中用于多元校正和模型构建,提高分析的准确 性和可靠性。
在生物学研究中的应用
生物分子相互作用
利用紫外可见吸收光谱可以研究生物分子之间的相互作用和结合 方式。
蛋白质结构分析
通过对蛋白质的紫外光谱进行分析,可以推断蛋白质的二级结构。
生物活性物质检测
紫外可见吸收光谱用于检测生物活性物质,如维生素、氨基酸等。
定量分析
通过测量物质在特定波长下的吸光度,可以计算 物质的浓度或含量。
吸收光谱的应用
01
有机化合物的鉴定
02
金属离子的测定
03
生物大分子的研究
通过比较已知化合物的吸收光谱, 可以鉴定未知有机化合物的结构。
通过测量金属离子在特定波长下 的吸光度,可以测定金属离子的 浓度。
通过分析生物大分子在紫外可见 区的吸收光谱,可以研究其结构 和功能。
第二章
紫外可见分光光度计的原理及使用方法
第三章
实验操作及数据分析
第四章
光谱分析的应用及前景
02
基础知识
光的性质
01
02
03
光的波动性
光是一种电磁波,具有波 动性质,包括振幅、频率 和波长等特征。
光的粒子性
光同时具有粒子性质,光 子是光的能量单位,可以 与物质发生相互作用。

常见有机化合物的紫外可见吸收光谱ppt课件

常见有机化合物的紫外可见吸收光谱ppt课件

火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
溶液的颜色与光吸收的关系
完全吸收
光谱示意 复合光 表观现象示意
完全透过
吸收黄色光
物质呈现颜色与吸收光波长的关系见下表。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
第一节 基本原理
一、光的基本特性 1.光的波动性 光是一种电磁波,电磁波可以用周期T(s)、
频率‫( ע‬Hz)、波长λ(nm)和波数σ(cm-1) 等参数描述。它们之间的关系为: =1/T=c/λ‫ע‬ /c‫ע‬σ=1/λ=
互作用。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
4.偏离朗伯一比尔定律的原因
定量分析时,通常液层 厚度是相同的,按照比尔 定律,浓度与吸光度之间 的关系应该是一条通过直 角坐标原点的直线。但在 实际工作中,往往会偏离 线性而发生弯曲。
透光度T (透射比)Transmittance
定义透光度:
T It I0
T 取值为0.0 ~ 1.0 全部吸收 ~~~~ 全部透射
吸光度A (Absorbance)
定义吸光度 :
A 取值为 0.0 ~∞
二者关系为:
A lg I 0 It
全部透射~~~全部吸收
A = lg(1/T) = -lgT

课件紫外可见吸收光谱(共83张PPT)

课件紫外可见吸收光谱(共83张PPT)

T I I0
I 为透射光的强度
I0 为入射光的强度
A lgI0
lgT
I
1760年朗伯(Lambert)阐明了光的吸收程度和吸收层厚度的 关系,即 A∝b
1852年比耳(Beer)又提出了光的吸收程度和吸收物浓度之间 也具有类似的关系,即 A∝ c
二者的结合称为朗伯-比尔定律,其数学表达式为:
AlgTkbc
Abc
摩尔吸光系数ε的讨论:
(1)吸收物质在一定波长和溶剂条件下的特征常数; (2)不随浓度c和光程长度b的改变而改变。在温度和波长等条件一定时 ,ε仅与吸收物质本身的性质有关,与待测物浓度无关;
(3)同一吸收物质在不同波长下的ε值是不同的。在最大吸收波长λmax 处的摩尔吸光系数,常以εmax表示。εmax表明了该吸收物质最大限度的
➢ 含有杂原子的不饱和化合物可以发生n→p*跃迁, 如含有羰基、硝基、亚硝基等
➢ n→p*跃迁所产生的吸收带称为R带
常用概念
➢ 发色团(或生色团):具有π电子的不饱和基团,即 可在紫外-可见光区产生吸收的官能团。如C=C、 C≡C、 C=O、-NO2等
➢ 助色团:有一些含有n电子的基团(如-OH、-NH2、OR、-SH、-Cl、-Br、-I等),它们本身没有生色功能
第二节
紫外-可见分光 光度计
UV-Vis spectrometer
一、基本组成
二、分光光度计的 类型
一、基本组成
1. 光源
➢ 要求:提供能量,激发被测物质分子使之产生价电子的跃迁, 从而产生电子光谱;在整个紫外光区或可见光谱区可以发射连续光 谱;具有足够的辐射强度、较好的稳定性、较长的使用寿命。
2. 有机化合物的紫外可见吸收光谱

紫外吸收光谱分析UVPPT课件

紫外吸收光谱分析UVPPT课件
21
当取代基上具有的非键电子的基团与苯环的π电子体系共轭相 连时,无论取代基具有吸电子作用还是供电子作用,都将在不同 程度上引起苯的E2带和B带的红移。
当引入的基团为助色基团时,取代基对吸收带的影响大小与 取代基的推电子能力有关。推电子能力越强,影响越大。顺序为 -O->-NH2>-OCH3>-OH>-Br>-Cl>CH3
2.3.1 概述
紫外-可见吸收光谱(Ultraviolet and Visible Spectroscopy, UV-VIS)统称为电 子光谱。
紫外-可见吸收光谱法是利用某些物质的分子吸 收200~800nm光谱区的辐射来进行分析测定的 方法。这种分子吸收光谱产生于价电子和分子轨道 上的电子在电子能级间的跃迁,广泛用于有机和无 机物质的定性和定量测定。
图2.23 紫外—可见吸收曲线
3
2.3.2 紫外吸收光谱的基本原理
1 电子跃迁类型
(1)σ→σ* 跃迁 指处于成键轨道上的σ电子吸收
光子后被激发跃迁到σ*反键轨道
(2)n→σ* 跃迁 指分子中处于非键轨道上的n电
子吸收能量后向σ*反键轨道的跃迁
(3)π→π* 跃迁 指不饱和键中的π电子吸收光波
能量后跃迁到π*反键轨道。
9
iii B—带 B带(取自德文:benzenoid band, 苯型谱带)。它
是芳香族化合物的特征吸收带。是苯环振动及π→π*
重叠引起的。在230~270nm之间出现精细结构吸收, 又称苯的多重吸收,如图2.20。 iv E-带 E带(取自德文:ethylenic band,乙烯型谱带)。 它也是芳香族化合物的特征吸收之一(图2.25)。E带 可分为E1及E2两个吸收带,二者可以分别看成是苯环
对位—OCH3取代 +25
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CH3Br
2020/4/1
λmax=204nm
(3)π→π*跃迁
• π电子跃迁到反键π* 轨道所产生的跃迁,这类跃 迁所需能量比σ→σ*跃迁小,若无共轭,与n→σ* 跃迁差不多。200nm左右
• 吸收强度大,在104~105范围内,强吸收
• 若有共轭体系,波长向长波方向移动,相当于 200~700 nm
• 未共用电子对n电子跃迁到反键σ* 轨道所产生的 跃 迁 , 这 类 跃 迁 所 需 能 量 比 σ→σ* 跃 迁 小 , 200nm左右(150~250nm)
• 吸收概率较小,在102~103范围内,中吸收
含有未共用电子对的杂原 子(N、O、S、X)的饱和
化合物发生n→σ* 跃迁;
含-NH2 、-OH、-X 例:CH3OH λmax=184nm
• 含不饱和键的化合物发生π→π*跃迁
C=O , C=C, C≡C
2020/4/1
(4) n→π*跃迁
• n电子跃迁到反键π* 轨道所产生的跃迁,这类 跃迁所需能量较小,吸收峰在200~400 nm左 右
• 吸收强度小,<102,弱吸收 • 含杂原子的双键不饱和有机化合物
C=S O=N- -N=N例:丙酮 λmax=280 nm
——向短波方向移动叫蓝移
例:
λmax=254nm
=230
2020/4/1
-OH λmax=270nm
=1250
吸收带—吸收峰在吸收光谱上的波带位置
(1)R 吸收带: n→π*跃迁 特点:a 跃迁所需能量较小,吸收峰位于
200~400nm b 吸收强度弱, <102 (2)K 吸收带: 共轭双键中π→π*跃迁 特点:a 跃迁所需能量较R带大,吸收峰 位
特点:灵敏度高、准确度高、选择性好、操作方便 、分析速度快、应用范围广。
2020/4/1
§ 3-2 紫外可见吸收光谱法 一、紫外可见吸收光谱的基本原理
(一)紫外可见吸收光谱 由紫外可见分光光度计获得
光源——单色器——吸收池——检测器——显示器
ΔE电 = h 光 (200—800 nm)
激发态 基态
向长波方向移动 向短波方向移
2020/4/1
2、 常用术语
发色团——含不饱和键基团,有π键
• 含有不饱和键,能吸收紫外可见光,产生 n→π* 或π→π*跃迁的基团称为发色团
助色团——含杂原子的饱和基团
• 一些本身在紫外和可见光区无吸收,但能使生色团 吸收峰红移,吸收强度增大的基团称为助色团
长移与短移 ——向长波方向移动叫红移
A
末端吸收
最强峰
肩 峰
次强峰 峰谷
2020/4/1
max
min
A
分析吸收曲线 可以看到:
1.同一浓度的 待测溶液对不 同波长的光有 不同的吸光度;
max
min
2. 对于同一待测溶液,浓度愈大,吸光度也愈大; 3. 对于同一物质,不论浓度大小如何,最大吸收峰
所对应的波长(最大吸收波长 λmax) 不变.并且 曲线的形状也完全相同。
• n→π*跃迁比π→π*跃迁所需能量小,吸收波长 长
2020/4/1
• 常用的是π→π*跃迁和n→π*,这两种跃迁 都需要分子中有不饱和基团提供π轨道。
• n→π*跃迁与π→π*跃迁的比较如下:
吸收峰波长
吸收强度 极性溶剂

π→π*
n→π*
与组成双键的
有关
原子种类基本无关
强吸收 104~105
弱吸收 <102
2020/4/1
(二)紫外可见光谱的特征
A
1. 吸收峰的形状及所在位置
——定性、定结构的依据
2. 吸收峰的强度——定量的依据
A = lgI0 / I= CL :摩尔吸收系数
单位:L.cm -1 . mol-1
单色光 I0
I
L
2020/4/1
的物理意义及计算
• 在数值上等于1mol/L的吸光物质在1cm光程中 的吸光度, = A/CL,与入射光波长、溶液的性 质及温度有关
2020/4/1
吸收曲线
将不同波长的光透过某一固定浓度和 厚度的待测溶液,测量每一波长下待测溶 液对光的吸收程度(即吸光度),然后以 波长为横坐标,以吸光度为纵坐标作图, 可得一曲线。这曲线描述了物质对不同波 长的吸收能力,称吸收曲线或吸收光谱。
2020/4/1
不同波长的光L图3-1外可见吸收光谱示意图¨O :
例:
HC
H
2020/4/1
分子轨道有σ、σ*、π、 π*、n 能量高低σ<π<n<π*<σ*
能 量
2020/4/1
n → σ* π→π* σ→σ*
σ* π*
n→π*跃迁
n π
σ
• 主要有四种跃迁类型 跃迁所需能量为:
σ→σ* n→σ* π→π* n→π*
2020/4/1
分子中电子的能级和跃迁
2020/4/1
二、 紫外可见吸收光谱与分子结构的关系
(一 ) 有机化合物的紫外可见吸收光谱
1. 电子跃迁类型
• 紫外可见吸收光谱是由分子中价电子能级跃 迁产生的——这种吸收光谱取决于价电子的性质
1. 电子类型
形成单键的σ电子
C-H、C-C
形成双键的π电子
C=C、C=O
未成对的孤对电子n 电子 C=¨O:
2020/4/1
2020/4/1
2020/4/1
§ 3-1 概述
定义:紫外可见吸收光谱: 利用物质的分子或离子 对紫外和可见光的吸收所产生的紫外可见光谱及 吸收程度对物质的组成、含量和结构进行分析、 测定、推断的分析方法。
应用:应用广泛——不仅可进行定量分析,还可利 用吸收峰的特性进行定性分析和简单的结构分析 ,还可测定一些平衡常数、配合物配位比等。可 用于无机化合物和有机化合物的分析,对于常量 、微量、多组分都可测定。
(1) σ→σ* 跃迁
• 成键σ电子跃迁到反键σ*轨道所产生的跃迁
• σ→σ*跃迁所需能量很大,相当于远紫外的辐射能 ,<200nm
饱和烃只能发生σ→σ*跃迁
例: CH4
λmax=125nm
C2H6 λmax=135nm
常用饱和烃类化合物作紫外可 见吸收光谱分析的溶剂
2020/4/1
(2) n→σ* 跃迁
(1) ——吸光物质在特定波长和溶剂中的一个特
征常数 ,定性的主要依据
(2) 值愈大,方法的灵敏度愈高
> 104
强吸收
= 103~104
较强吸收
= 102~103
中吸收
2020/4/1
< 102
弱吸收
• 文献报道:紫外可见光谱的两个重要特征 max,
• 例:λmaxEt = 279 nm ( 5012 lg =3.7)
相关文档
最新文档