《光学教程》姚启钧原著 第三章 几何光学的基本原理

合集下载

几何光学的基本原理32光学教程第四版姚启钧高等教育出版社

几何光学的基本原理32光学教程第四版姚启钧高等教育出版社

入射角,光在这种情况下的反射, 叫作内反射.
内反射时,折射角随着入射角的增大而增大,当折
射角等于900 时,对应的入射角为 i c .
. 点光源
n
ic
全内反射
n
9
由折射定律:
nsi9 n0 0nsiin c
i c 称作临界角.
ic
arcsinn. n
当入射角大于等于i 时c ,全部光能量都反回
反射光线的反向延长线相交于 P点, P就是P点的虚像。
P' P与P关于镜面对称,由此可见,平面镜是最简单的, 不改变光束的单心性,并能成理想的像的系统。
3.2.2 光在平面界面上的折射,光束单心性的破坏
光线在折射率不同的两个透明介质的平面分界面上反 射时,单心光束仍保持为单心光束;但折射时,除平 行光束折射后仍为平行光束外,单心光束将被破坏。
P'
A1
x A2 n 2
n1
P2
P y2
n2 n1
y2(1nn1222)x22
P1
y
3
因此,P点的坐标为:
x' y(nn1222 1)tg3i1
y'ynn12[1(nn1222 1)tg2i1]23
如果光束是单心的,只要作出任意两条光线的交
点,就能确定所有其他光线都将通过这个交点。
n 2 i n '2 i A n ( i2 i'2 ) A(n1)A

(n1)A 可见,当A很小时,偏向角只 与n和顶角A有关。
26
27
P
y
B2
n2 x
n1
6
只要光束的波面元不是严格的球面,都具有这种
特性,称为像散。

(完整版)《光学教程》(姚启钧)课后习题解答

(完整版)《光学教程》(姚启钧)课后习题解答
反射光线经玻璃板后也要平移 ,所成像的像距为
放入玻璃板后像移量为:
凹面镜向物移动 之后,物距为 ( )
相对 点距离
10、欲使由无穷远发出的近轴光线通过透明球体并成像在右半球面的顶点处,问这透明球体的折射率应为多少?
解:
由球面折射成像公式:
解得:
11、有一折射率为 、半径为 的玻璃球,物体在距球表面 处,求:⑴物所成的像到球心之间的距离;⑵像的横向放大率。
则在玻璃片单位长度内看到的干涉条纹数目为:
即每 内10条。
10、在上题装置中,沿垂直于玻璃表面的方向看去,看到相邻两条暗纹间距为 。已知玻璃片长 ,纸厚 ,求光波的波长。
解:
当光垂直入射时,等厚干涉的光程差公式:
可得:相邻亮纹所对应的厚度差:
由几何关系: ,即
11、波长为 的可见光正射在一块厚度为 ,折射率为 的薄玻璃片上,试问从玻璃片反射的光中哪些波长的光最强。

5、(略)
6、高 的物体距凹面镜顶点 ,凹面镜的焦距是 ,求像的位置及高度,(并作光路图)
解:
由球面成像公式:
代入数值
得:
由公式:
7、一个 高的物体放在球面镜前 处成 高的虚像。求⑴此镜的曲率半径;⑵此镜是凸面镜还是凹面镜?
解:⑴
, 虚像

得:
⑵由公式
(为凸面镜)
8、某观察者通过一块薄玻璃板去看在凸面镜中他自己的像。他移动着玻璃板,使得在玻璃板中与在凸面镜中所看到的他眼睛的像重合在一起。若凸面镜的焦距为 ,眼睛距凸面镜顶点的距离为 ,问玻璃板距观察者眼睛的距离为多少?
解:⑴
⑵由光程差公式
⑶中央点强度:
P点光强为:
3、把折射率为 的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。已知光波长为

光学教程第四版 姚启钧著 讲义第三章.3

光学教程第四版 姚启钧著 讲义第三章.3
12
Chap.3 Basic Principles of Geometrical Optics
一. 光的平面反射成像
School of Science Honghe University
一个平面镜是最简单的光学系统
平面反射镜是一个最简单的理想光学系 统,它不改变光束的单心性,能成完善的像。 所成的像与原物大小相同,而物和像以平面 镜为对称。
2
2
此即为光线在芯料-涂层界面发生全反射时,入 射角应满足的条件。
21
Chap.3 Basic Principles of Geometrical Optics
School of Science Honghe University
讨论:
① 如果入射角 i 的上限用u0表示,则有:
n0 sin u0 n1 n2
② 当i1=0,即当P所发出的光束几乎垂直于界 面时,有 x =0 , y = y1 = y2 = y n2 n1 。
18
Chap.3 Basic Principles of Geometrical Optics
School of Science Honghe University
这表明 y 近似地与入射角 i1 无关,则折射 光束是近似单心的,y 称为像视深度,y 为物 的实际深度。 如果:n1 > n2,那么 y < y ,即像点P 位于 物点 P 的上方,视深度减小。 (渔民叉鱼) 如果:n1 < n2, 那么 y > y ,即像点P 位于 物点 P 的下方,视深度增大。
(平行光束折射时仍为平行光束 )
School of Science Honghe University
ox两种介质的分界面P (0, y ) ox两种介质的分界面P (0, y ) A ( x ,0), A ( x ,0), P (0, y ), P (0, y ).P ( x, y) A ( x ,0), A ( x ,0), P (0, y ), P (0, y ).P ( x, y) n n y n(1 ) x y n n y (1 ) x n y n n y n y n(1 n ) x n y n y (1 ) x n n n n n x y ( 1)tg i x y ( n)tg i 1 n

《光学教程》姚启钧原著-第三章-几何光学的基本原理

《光学教程》姚启钧原著-第三章-几何光学的基本原理

第三章
3.4 光连续在几个球面界面上的折射
子系统1
子系统m
子系统N


y1 y
y’N y’
一、共轴光具组
1、光轴 (optical axis) ---- 光学系统的对称轴 各球面的球心位于同一条直线上 连接各球心的直线为光轴
共轴光具组
实际成像系统通常由多个折射球面级联构成
r
n
n’
F
F’
O
C
像方焦点F’:与光轴上无穷远处物点对应的像点 像方焦距f’:与像方焦点对应的像距 像方焦平面:过F’点垂直于光轴的平面
像方焦距:
四、球面折射对光束单心性的破坏
物方焦点F : 与光轴上无穷远处像点对应的物点 物方焦距f :与物方焦点对应的物距。 物方焦平面:过F点垂直于光轴的平面。
1
1’
O
二、几何光学的基本实验定律
1
1’
O
2
(3)光的折射定律
二、几何光学的基本实验定律
(4)光的独立传播定律和光路可逆原理
二、几何光学的基本实验定律
适用条件: R远大于光波长λ (否则,用衍射光学)
二、几何光学的基本实验定律
三、 费马原理
(一)、概念 光程:
B
A
低损耗
玻璃 几千dB/km
石英光纤 0.2 dB/km
2) 信带宽、容量大、速度快
3) 电气绝缘性能好 无感应 无串话
5) 资源丰富 价格低
4) 重量轻 耐火 耐腐蚀 可用在许多恶劣环境下
折射棱镜
四、棱镜
四、棱镜
五脊棱镜
直角棱镜
使像转过900
反射棱镜
: 借助光在棱镜中的全反射,改变光进行的方向.

2023年大学_光学教程第三版(姚启钧著)课后题答案下载

2023年大学_光学教程第三版(姚启钧著)课后题答案下载

2023年光学教程第三版(姚启钧著)课后题答案下载2023年光学教程第三版(姚启钧著)课后题答案下载本教程以物理光学和应用光学为主体内容。

第1章到第3章为应用光学部分,介绍了几何光学基础知识和光在光学系统中的传播和成像特性,注意介绍了激光系统和红外系统;第4~8章为物理光学部分,讨论了光在各向同性介质、各向异性介质中的传播规律,光的干涉、衍射、偏振特性及光与物质的相互作用,并结合介绍了DWDM、双光子吸收、Raman放大、光学孤子等相关领域的应用和进展。

第9章则专门介绍航天光学遥感、自适应光学、红外与微光成像、瞬态光学、光学信息处理、微光学、单片光电集成等光学新技术。

光学教程第三版(姚启钧著):内容简介绪论0.1 光学的研究内容和方法0.2 光学发展简史第1章光的干涉1.1 波动的独立性、叠加性和相干性1.2 由单色波叠加所形成的干涉图样1.3 分波面双光束干涉1.4 干涉条纹的可见度光波的时间相干性和空间相干性 1.5 菲涅耳公式1.6 分振幅薄膜干涉(一)——等倾干涉1.7 分振幅薄膜干涉(二)——等厚干涉视窗与链接昆虫翅膀上的彩色1.8 迈克耳孙干涉仪1.9 法布里一珀罗干涉仪多光束干涉1.10 光的干涉应用举例牛顿环视窗与链接增透膜与高反射膜附录1.1 振动叠加的三种计算方法附录1.2 简谐波的表达式复振幅附录1.3 菲涅耳公式的推导附录1.4 额外光程差附录1.5 有关法布里一珀罗干涉仪的(1-38)式的推导附录1.6 有同一相位差的多光束叠加习题第2章光的衍射2.1 惠更斯一菲涅耳原理2.2 菲涅耳半波带菲涅耳衍射视窗与链接透镜与波带片的比较2.3 夫琅禾费单缝衍射2.4 夫琅禾费圆孔衍射2.5 平面衍射光栅视窗与链接光碟是一种反射光栅2.6 晶体对X射线的'衍射视窗与链接与X射线衍射有关的诺贝尔奖附录2.1 夫琅禾费单缝衍射公式的推导附录2.2 夫琅禾费圆孔衍射公式的推导附录2.3 平面光栅衍射公式的推导习题第3章几何光学的基本原理3.1 几个基本概念和定律费马原理3.2 光在平面界面上的反射和折射光导纤维视窗与链接光导纤维及其应用3.3 光在球面上的反射和折射3.4 光连续在几个球面界面上的折射虚物的概念 3.5 薄透镜3.6 近轴物近轴光线成像的条件3.7 共轴理想光具组的基点和基面视窗与链接集成光学简介附录3.1 图3-6中P1和JP1点坐标的计算附录3.2 棱镜最小偏向角的计算附录3.3 近轴物在球面反射时物像之间光程的计算附录3.4 空气中的厚透镜物像公式的推导习题第4章光学仪器的基本原理4.1 人的眼睛4.2 助视仪器的放大本领4.3 目镜4.4 显微镜的放大本领4.5 望远镜的放大本领视窗与链接太空实验室——哈勃太空望远镜4.6 光阑光瞳4.7 光度学概要——光能量的传播视窗与链接三原色原理4.8 物镜的聚光本领视窗与链接数码相机4.9 像差概述视窗与链接现代投影装置4.10 助视仪器的像分辨本领视窗与链接扫描隧显微镜4.11 分光仪器的色分辨本领习题第5章光的偏振5.1 自然光与偏振光5.2 线偏振光与部分偏振光视窗与链接人造偏振片与立体电影 5.3 光通过单轴晶体时的双折射现象 5.4 光在晶体中的波面5.5 光在晶体中的传播方向5.6 偏振器件5.7 椭圆偏振光和圆偏振光5.8 偏振态的实验检验5.9 偏振光的干涉5.10 场致双折射现象及其应用视窗与链接液晶的电光效应及其应用5.11 旋光效应5.12 偏振态的矩阵表述琼斯矢量和琼斯矩阵附录5.1 从沃拉斯顿棱镜出射的两束线偏振光夹角公式(5-15)的推导习题第6章光的吸收、散射和色散6.1 电偶极辐射对反射和折射现象的解释6.2 光的吸收6.3 光的散射视窗与链接光的散射与环境污染监测6.4 光的色散6.5 色散的经典理论习题第7章光的量子性7.1 光速“米”的定义视窗与链接光频梳7.2 经典辐射定律7.3 普朗克辐射公式视窗与链接诺贝尔物理学奖7.4 光电效应7.5 爱因斯坦的量子解释视窗与链接双激光束光捕获7.6 康普顿效应7.7 德布罗意波7.8 波粒二象性附录7.1 从普朗克公式推导斯忒藩一玻耳兹曼定律附录7.2 从普朗克公式推导维恩位移定律习题第8章现代光学基础8.1 光与物质相互作用8.2 激光原理8.3 激光的特性8.4 激光器的种类视窗与链接激光产生106T强磁场8.5 非线性光学8.6 信息存储技术8.7 激光在生物学中的应用视窗与链接王淦昌与惯性的束核聚变习题主要参考书目基本物理常量表光学教程第三版(姚启钧著):目录点击此处下载光学教程第三版(姚启钧著)课后题答案。

光学教程第四版姚启钧课后题答案

光学教程第四版姚启钧课后题答案

目录第一章光的干涉 (3)第二章光的衍射 (15)第三章几何光学的基本原理 (27)第四章光学仪器的基本原理 (49)第五章光的偏振 (59)第六章光的吸收、散射和色散 (70)第七章光的量子性 (73)第一章光的干涉.波长为的绿光投射在间距d 为的双缝上,在距离处的光屏1nm 500cm 022.0cm 180上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为的红光投射到此双缝上,nm 700两个亮条纹之间的距离又为多少?算出这两种光第级亮纹位置的距离.2解:由条纹间距公式得λd r y y y j j 01=-=∆+cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ2.在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的距离为nm 640mm 4.0.试求:(1)光屏上第亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为cm 501,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.mm 1.0解:(1)由公式λdr y 0=∆得=λd r y 0=∆cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯由公式得(3)2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆=8536.042224cos18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp .把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所3在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m .解:未加玻璃片时,、到点的光程差,由公式可知为1S 2S P 2rϕπλ∆∆=Δr =215252r r λπλπ-=⨯⨯=现在发出的光束途中插入玻璃片时,点的光程差为1S P ()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4.波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=mm122I I =22122A A=12A A =()()122122/0.94270.941/A A V A A ∴===≈+5.波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。

光学教程》(姚启钧)课后习题解答

光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少算出这两种光第2级亮纹位置的距离。

解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少⑶求P 点的光强度和中央点的强度之比。

解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A = P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。

已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d 由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。

通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。

解:7050500100.1250.02r y cm d λ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。

解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干涉条纹间距公式6、在题 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。

《光学教程》[姚启钧]课后习题解答

《光学教程》[姚启钧]课后习题解答

《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少算出这两种光第2级亮纹位置的距离。

解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少⑶求P 点的光强度和中央点的强度之比。

解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅= ⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。

已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。

通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。

光学教程姚启钧课后习题解答

光学教程姚启钧课后习题解答

光学教程姚启钧课后习题解答Newly compiled on November 23, 2020《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少算出这两种光第2级亮纹位置的距离。

解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少⑶求P 点的光强度和中央点的强度之比。

解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式 ⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。

已知光波长为7610m -⨯ 解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。

通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。

解: 7050500100.1250.02r y cm d λ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。

几何光学的基本原理3.5[光学教程]第四版姚启钧高等教育出版社

几何光学的基本原理3.5[光学教程]第四版姚启钧高等教育出版社

A
B
F
P
P
o
(3)过A点做出射光线通过B’交主轴P’点,即为象点。
(1)作任意入射线过物方付焦点, 交透镜于A点。
(2)过A作出射线平行与付光轴 OB,交主轴于P’点,即为象点。
A
B
P
F
o
P
凹透镜主光轴上物点求象
(1)作任一入射线PA。
(2)作平行于PA的副光轴OB’ P ,B’为象方副焦点。 P F o (3)出射线过付焦点与主轴交 B 点P’即为象点。 B (1)作任一入射线PA延长到物 A 方焦平面,交于付焦点B,连接 OB为物方付光轴。 P P o F
凸透镜可分为:
凹透镜可分为:

双凸透镜
平凸透镜
弯凸透镜
双凹透镜 平凹透镜
弯凹透镜
4
主轴:连接透镜两球面曲率中心的直线,称为~。
主截面:包含主轴的任一平面,称为~。 透镜的厚度:透镜两表面在其主轴上的间隔,即 两球面顶点之间的距离,称为~。 薄透镜:若透镜的厚度与球面的曲率半径相 比可忽略,称其为~。
可得
s2 ' 2cm
即P经L2成像于L2左侧2厘米P2处,与F2重合。
14
如图

L1

P2 '
L2

L3
o

P' 1
F1 ' F2P
P3 '
对L3来说,P2为物,其物距为s3=-2+(-10)=-12cm
r3 8cm
1 1 2 由球面镜成像公式: s3 ' s3 r3
可得
P

F
O

F'

《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)课后习题解答 - 百度文库《光学教程》(姚启钧)习题解答第一章光的干涉1 、波长为的绿光投射在间距为的双缝上,在距离处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长为的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2 级亮纹位置的距离。

解:改用两种光第二级亮纹位置的距离为:2 、在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的距离为,试求:⑴光屏上第 1 亮条纹和中央亮纹之间的距离;⑵若 P 点离中央亮纹为问两束光在 P 点的相位差是多少?⑶求 P 点的光强度和中央点的强度之比。

解:⑴⑵由光程差公式⑶中央点强度:P 点光强为:3 、把折射率为的玻璃片插入杨氏实验的一束光路中,光屏上原来第 5 级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。

已知光波长为解:,设玻璃片的厚度为由玻璃片引起的附加光程差为:4 、波长为的单色平行光射在间距为的双缝上。

通过其中一个缝的能量为另一个的倍,在离狭缝的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。

解:由干涉条纹可见度定义:由题意,设,即代入上式得5 、波长为的光源与菲涅耳双镜的相交棱之间距离为,棱到光屏间的距离为,若所得干涉条纹中相邻亮条纹的间隔为,求双镜平面之间的夹角。

解:由菲涅耳双镜干涉条纹间距公式6 、在题 1.6 图所示的劳埃德镜实验中,光源 S 到观察屏的距离为,到劳埃德镜面的垂直距离为。

劳埃德镜长,置于光源和屏之间的中央。

⑴若光波波长,问条纹间距是多少?⑵确定屏上可以看见条纹的区域大小,此区域内共有几条条纹?(提示:产生干涉的区域 P 1 P 2 可由图中的几何关系求得)解:由图示可知:①②在观察屏上可以看见条纹的区域为 P 1 P 2 间即,离屏中央上方的范围内可看见条纹。

7 、试求能产生红光()的二级反射干涉条纹的肥皂膜厚度。

已知肥皂膜折射率为,且平行光与法向成 30 0 角入射。

光学教程课后习题解答

光学教程课后习题解答

《光学教程》(姚启钧)课后习题解答(总47页)-本页仅作为预览文档封面,使用时请删除本页-《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少算出这两种光第2级亮纹位置的距离。

解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少⑶求P 点的光强度和中央点的强度之比。

解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅= ⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭012(10.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。

已知光波长为7610m -⨯ 解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。

光学教程习题解

光学教程习题解

光学教程习题解————————————————————————————————作者:————————————————————————————————日期:[《光学教程》(姚启钧)]习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。

解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。

解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅=⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭0122(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。

已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。

《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)习题解答之吉白夕凡创作第一章光的干与1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干与条纹,求两个亮条纹之间的距离.若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离. 解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比. 解:⑴7050640100.080.04r y cm dλ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片拔出杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变成中央亮条纹,试求拔出的玻璃片的厚度.已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干与图样,求干与条纹间距和条纹的可见度. 解: 7050500100.1250.02r y cm dλ-∆==⨯⨯= 由干与条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干与条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ.解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干与条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到不雅察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm .劳埃德镜长40cm ,置于光源和屏之间的中央.⑴若光波波长500nm λ=,问条纹间距是多少?⑵确定屏上可以看见条纹的区域大小,此区域内共有几条条纹?(提示:产生干与的区域P1P2可由图中的几何关系求得)解:由图示可知:7050050010,40.4, 1.5150nm cm d mm cm r m cm λ-==⨯====①70150500100.018750.190.4r y cm mm d λ-∆==⨯⨯== ②在不雅察屏上可以看见条纹的区域为P1P2间即21 3.45 1.16 2.29P P mm =-=,离屏中央1.16mm 上方的2.29mm 规模内可看见条纹.7、试求能产生红光(700nm λ=)的二级反射干与条纹的番笕膜厚度.已知番笕膜折射率为1.33,且平行光与法向成300角入射. 解:2700, 1.33nm n λ==由等倾干与的光程差公式:22λδ=8、透镜概略通常镀一层如MgF2( 1.38n =)一类的透明物质薄膜,目的是利用干与来降低玻璃概略的反射.为了使透镜在可见光谱的中心波长(550nm )处产生极小的反射,则镀层必须有多厚? 解: 1.38n =物质薄膜厚度使膜上下概略反射光产生干与相消,光在介质上下概略反射时均存在半波损失.P 2 P 1 P 0由光程差公式:9、在两块玻璃片之间一边放一条厚纸,另一边相互压紧,玻璃片l 长10cm ,纸厚为0.05mm ,从600的反射角进行不雅察,问在玻璃片单位长度内看到的干与条纹数目是多少?设单色光源波长为500nm 解:02cos602o n hδ=+相邻亮条纹的高度差为:605005001012cos60212oh nm mm n λ-∆===⨯⨯⨯可看见总条纹数60.0510050010H N h -===∆⨯ 则在玻璃片单位长度内看到的干与条纹数目为: 即每cm 内10条.10、在上题装置中,沿垂直于玻璃概略的标的目的看去,看到相邻两条暗纹间距为1.4mm .已知玻璃片长17.9cm ,纸厚0.036mm ,求光波的波长. 解:当光垂直入射时,等厚干与的光程差公式: 可得:相邻亮纹所对应的厚度差:2h nλ∆=由几何关系:h H l l∆=∆,即lh H l∆∆=11、波长为400760nm 的可见光正射在一块厚度为61.210m -⨯,折射率为1.5的薄玻璃片上,试问从玻璃片反射的光中哪些波长的光最强.解:61.210, 1.5h m n -=⨯=由光正入射的等倾干与光程差公式:22nh λδ=-使反射光最强的光波满:足22nh j λδλ=-=12、迈克耳逊干与仪的反射镜M2移动0.25mm 时,看到条纹移过的数目为909个,设光为垂直入射,求所用光源的波长.解:光垂直入射情况下的等厚干与的光程差公式:22nh h δ== 移动一级厚度的改动量为:2h λ∆=13、迈克耳逊干与仪的平面镜的面积为244cm ⨯,不雅察到该镜上有20个条纹,当入射光的波长为589nm 时,两镜面之间的夹角为多少?解:由光垂直入射情况下的等厚干与的光程差公式: 22nh h δ==相邻级亮条纹的高度差:2h λ∆=由1M 和2M '组成的空气尖劈的两边高度差为:M 1M 21M2M '14、调节一台迈克耳逊干与仪,使其用波长为500nm 的扩展光源照明时会出现同心圆环条纹.若要使圆环中心处相继出现1000条圆环条纹,则必须将移动一臂多远的距离?若中心是亮的,试计算第一暗环的角半径.(提示:圆环是等倾干与图样,计算第一暗环角半径时可利用21sin ,cos 12θθθθ≈≈-的关系.) 解:500nm λ=出现同心圆环条纹,即干与为等倾干与 对中心 2h δ=15、用单色光不雅察牛顿环,测得某一亮环的直径为3mm ,在它外边第5个亮环的直径为4.6mm ,所用平凸透镜的凸面曲率半径为1.03m ,求此单色光的波长.解:由牛顿环的亮环的半径公式:r = 以上两式相减得:16、在反射光中不雅察某单色光所形成的牛顿环,其第2级亮环与第3级亮环间距为1mm ,求第19和20级亮环之间的距离. 解:牛顿环的反射光中所见亮环的半径为:即:2r =则:)2019320.160.40.4r r r r r mm ∆=-==-== 第2章光的衍射1、单色平面光照射到一小圆孔上,将其波面分红半波带.求第k 个带的半径.若极点到不雅察点的距离0r 为1m ,单色光波长为450nm ,求此时第一半波带的半径. 解:由公式对平面平行光照射时,波面为平面,即:R →∞2、平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改动大小.问:⑴小孔半径应满足什么条件时,才干使得此小孔右侧轴线上距小孔中心4m 的P 点的光强辨别得到极大值和极小值;⑵P 点最亮时,小孔直径应为多大?设此光的波长为500nm .解:⑴04400r m cm ==当k 为奇数时,P 点为极大值 当C 数时,P 点为极小值⑵由()112P k A a a =±,k 为奇,取“+”;k 为偶,取“-” 当1k =,即仅露出一个半波带时,P 点最亮.10.141,(1)H R cm k ==,0.282D cm =3、波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径辨别为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I·S1R m =与没有光阑时的光强0I 之比. 解:即从透光圆环所透过的半波带为:2,3,4 设1234a a a a a ==== 没有光阑时光强之比:2204112I a I a ==⎛⎫ ⎪⎝⎭4、波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏,试问:⑴屏上正对圆孔中心的P 点是亮点还是暗点?⑵要使P 点酿成与⑴相反的情况,至少要把屏辨别向前或向后移动多少? 解:由公式对平面平行光照射时,波面为平面,即:R →∞2290 2.7623632.8101H R k r λ-⎛⎫ ⎪⎝⎭===⨯⨯, 即P 点为亮点.则 0113k r R⎛⎫=⨯+ ⎪⎝⎭, 注:0,r R 取m 作单位向右移,使得2k =,03 1.5, 1.510.52r m r m '==∆=-=向左移,使得4k =,030.75,10.750.254r m r m '==∆=-=5、一波带片由五个半波带组成.第一半波带为半径1r 的不透明圆盘,第二半波带是半径1r 和2r 的透明圆环,第三半波带是2r 至3r 的不透明圆环,第四半波带是3r 至4r 的透明圆环,第五半波带是4r 至无穷大的不透明区域.已知1234:::r r r r =,用波长500nm 的平行单色光照明,最亮的像点在距波带片1m 的轴上,试求:⑴1r ;⑵像点的光强;⑶光强极大值出现在哪些位置上. 解:由1234:::r r r r =带片具有透镜成像的作用,2HkR f k λ'=波⑵2242,4A a a a I a =+==无光阑时,2201124I a a ⎛⎫== ⎪⎝⎭即:016I I =,0I 为入射光的强度.⑶由于波带片还有11,35f f ''…等多个焦点存在,即光强极大值在轴上11,35m m …6、波长为λ的点光源经波带片成一个像点,该波带片有100个透明奇数半波带(1,3,5,…,199).另外100个不透明偶数半波带.比较用波带片和换上同样焦距和口径的透镜时该像点的强度比0:I I . 解:由波带片成像时,像点的强度为:由透镜成像时,像点的强度为: 即014I I = 7、平面光的波长为480nm ,垂直照射到宽度为0.4mm 的狭缝上,会聚透镜的焦距为60cm .辨别计算当缝的两边到P 点的相位差为/2π和/6π时,P 点离焦点的距离.解:对沿θ标的目的的衍射光,缝的两边光的光程差为:sin b δθ=相位差为:22sin b ππϕδθλλ∆==对使2πϕ∆=的P 点对使6πϕ∆=的P`点8、白光形成的单缝衍射图样中,其中某一波长的第三个次最大值与波长为600nm 的光波的第二个次最大值重合,求该光波的波长. 解:对θ方位,600nm λ=的第二个次最大位 对 λ'的第三个次最大位 即:5722bbλλ'⨯=⨯9、波长为546.1nm 的平行光垂直地射在1mm 宽的缝上,若将焦距为100cm 的透镜紧贴于缝的后面,并使光聚焦到屏上,问衍射图样的中央到⑴第一最小值;⑵第一最大值;⑶第三最小值的距离辨别为多少?解:⑴第一最小值的方位角1θ为:1sin 1b θλ=⋅⑵第一最大值的方位角1θ'为: ⑶第3最小值的方位角3θ为:3sin 3bλθ=⋅10、钠光通过宽0.2mm 的狭缝后,投射到与缝相距300cm 的照相底片上.所得的第一最小值与第二最小值间的距离为0.885cm ,问钠光的波长为多少?若改用X 射线(0.1nm λ=)做此实验,问底片上这两个最小值之间的距离是多少? 解:单缝衍射花样最小值位置对应的方位θ满足: 则 11sin 1bλθθ≈=⋅11、以纵坐标暗示强度,横坐标暗示屏上的位置,粗略地画出三缝的夫琅禾费衍射(包含缝与缝之间的干与)图样.设缝宽为b ,相邻缝间的距离为d ,3d b =.注意缺级问题.12、一束平行白光垂直入射在每毫米50条刻痕的光栅上,问第一级光谱的末端和第二光谱的始端的衍射角θ之差为多少?(设可见光中最短的紫光波长为400nm ,最长的红光波长为760nm ) 解:每毫米50条刻痕的光栅,即10.0250d mm mm == 第一级光谱的末端对应的衍射方位角1θ末为第二级光谱的始端对应的衍射方位角2θ始为13、用可见光(760400nm )照射光栅时,一级光谱和二级光谱是否重叠?二级和三级怎样?若重叠,则重叠规模是多少?解:光谱线对应的方位角θ:sin kdλθθ≈=即第一级光谱与第二级光谱无重叠 即第二级光谱与第三级光谱有重叠 由2152015203,506.73nm nm d dλθλ==⨯==末 即第三级光谱的400506.7nm 的光谱与第二级光谱重叠. 14、用波长为589nm 的单色光照射一衍射光栅,其光谱的中央最大值和第二十级主最大值之间的衍射角为01510',求该光栅1cm 内的缝数是多少?解:第20级主最大值的衍射角由光栅方程决定 解得20.4510d cm -=⨯15、用每毫米内有400条刻痕的平面透射光栅不雅察波长为589nm 的钠光谱.试问:⑴光垂直入射时,最多功效能不雅察到几级光谱?⑵光以030角入射时,最多能不雅察到几级光谱?解:61,58910400d mm mm λ-==⨯⑴光垂直入射时,由光栅方程:sin d j θλ= 即能看到4级光谱⑵光以30o 角入射16、白光垂直照射到一个每毫米250条刻痕的平面透射光栅上,试问在衍射角为030处会出现哪些波长的光?其颜色如何? 解:1250d mm =在30o 的衍射角标的目的出现的光,应满足光栅方程:sin 30o d j λ=17、用波长为624nm 的单色光照射一光栅,已知该光栅的缝宽b 为0.012mm ,不透明部分的宽度a 为0.029mm ,缝数N 为310条.求:⑴单缝衍射图样的中央角宽度;⑵单缝衍射图样中央宽度内能看到多少级光谱?⑶谱线的半宽度为多少? 解:0.012,0.029b mm a mm ==⑴6062410220.1040.012rad b λθ-⨯∆==⨯= ⑵j 级光谱对应的衍射角θ为:即在单缝图样中央宽度内能看到()2317⨯+=条(级)光谱 ⑶由多缝干与最小值位置决定公式:sin j Ndλθ'=⋅第3章几何光学的基来源根底理1、证明反射定律合适费马原理 证明:设A 点坐标为()10,y ,B 点坐标为()22,x y 入射点C 的坐标为(),0x光程ACB为:∆=令2sin sin 0x x d i i dx -∆'=-=-=即:sin sin i i '=*2、按照费马原理可以导出近轴光线条件下,从物点收回并会聚到像点的所有光线的光程都相等.由此导出薄透镜的物像公式. 3、眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d 为30cm .求物体PQ 的像P`Q`与物体PQ 之间的距离2d 为多少?解:由图:()121211tan tan sin sin 1sin BB d i d i d i i d i n ⎛⎫'=-≈-=- ⎪⎝⎭4、玻璃棱镜的折射角A 为060,对某一波长的光其折射率n 为1.6,计算:⑴最小偏向角;⑵此时的入射角;⑶能使光线从A 角两侧透过棱镜的最小入射角. 解:⑴ 由()()()1212112211i i i i i i i i i i A θ'''''=-+-=+-+=+- 当11i i '=时偏向角为最小,即有221302o i i A '=== ⑵15308o i '= 5、(略)6、高5cm 的物体距凹面镜顶点12cm ,凹面镜的焦距是10cm ,求像的位置及高度,(并作光路图) 解:由球面成像公式: 代入数值 1121220s +='-- 得:60s cm '=- 由公式:0y y ss '+=' 7、一个5cm 高的物体放在球面镜前10cm 处成1cm 高的虚像.求⑴此镜的曲率半径;⑵此镜是凸面镜还是凹面镜?解:⑴5,10y cm s cm ==-1y cm '=, 虚像0s '>由y s y s''=- 得:2s cm '=⑵由公式112s sr+=' 5r cm =(为凸面镜)8、某不雅察者通过一块薄玻璃板去看在凸面镜中他自己的像.他移动着玻璃板,使得在玻璃板中与在凸面镜中所看到的他眼睛的像重合在一起.若凸面镜的焦距为10cm ,眼睛距凸面镜顶点的距离为40cm ,问玻璃板距不雅察者眼睛的距离为多少?解:由题意,凸面镜焦距为10cm ,即2110r=玻璃板距不雅察者眼睛的距离为1242d PP cm '==9、物体位于凹面镜轴线上焦点之外,在焦点与凹面镜之间放一个与轴线垂直的两概略互相平行的玻璃板,其厚度为1d ,折射率为n .试证明:放入该玻璃板后使像移动的距离与把凹面镜向物体移动()11/d n n -的一段距离的效果相同.证明:设物点P 不动,由成像公式112s s r+=' 由题3可知:11110PP d d n ⎛⎫==-> ⎪⎝⎭入射到镜面上的光线可视为从1P 收回的,即加入玻璃板后的物距为s d +反射光线经玻璃板后也要平移d ,所成像的像距为11s s d '''=- 放入玻璃板后像移量为:()()()1122r s d rss s s d s d r s r +''''∆=-=--+-- 凹面镜向物移动d 之后,物距为s d + (0,0s d <>)2s '相对o 点距离()()222r s d s s d d s d r+'''=-=-+-10、欲使由无穷远收回的近轴光线通过透明球体并成像在右半球面的顶点处,问这透明球体的折射率应为多少? 解:由球面折射成像公式:n n n ns sr''--='解得: 2n '=11、有一折射率为1.5、半径为4cm 的玻璃球,物体在距球概略6cm 处,求:⑴物所成的像到球心之间的距离;⑵像的横向缩小率. 解:⑴P 由球面1o 成像为P ',P '由2o 球面成像P ''211s cm '=,P ''在2o 的右侧,离球心的距离11415cm += ⑵球面1o 成像1111y s y s n β''==⋅ (利用P194:y s n y s n ''=⋅') 球面2o 成像12、一个折射率为1.53、直径为20cm 的玻璃球内有两个小气泡.看上去一个恰好在球心,另一个从最近的标的目的看去,好像在概略与球心连线的中点,求两气泡的实际位置. 解:设气泡1P 经球面1o 成像于球心,由球面折射成像公式:n n n ns s r''--=' 110s cm =-, 即气泡1P 就在球心处另一个气泡2P2 6.05s cm =-, 即气泡2P 离球心10 6.05 3.95cm -=13、直径为1m 的球形鱼缸的中心处有一条小鱼,若玻璃缸壁的影响可忽略不计,求缸外不雅察者所看到的小鱼的表不雅位置和横向缩小率.解:由球面折射成像公式:n n n ns sr''--='解得 50s cm '=-,在原处14、玻璃棒一端成半球形,其曲率半径为2cm .将它水平地浸入折射率为1.33的水中,沿着棒的轴线离球面顶点8cm 处的水中有一物体,利用计算和作图法求像的位置及横向缩小率,并作光路图. 解:由球面折射成像公式:s s r-=' 15、有两块玻璃薄透镜的两概略均各为凸球面及凹球面,其曲率半径为10cm .一物点在主轴上距镜20cm 处,若物和镜均浸入水中,辨别用作图法和计算法求像点的位置.设玻璃的折射率为1.5,水的折射率为1.33.解:由薄透镜的物像公式:211212n n n n n n s s r r ---=+' 对两概略均为凸球面的薄透镜: 对两概略均为凹球面的薄透镜:16、一凸透镜在空气的焦距为40cm ,在水中时焦距为136.8cm ,问此透镜的折射率为多少(水的折射率为1.33)?若将此透镜置于CS2中(CS2的折射率为1.62),其焦距又为多少?解:⑴ 薄透镜的像方焦距:21212n f n n n n r r '=⎛⎫--+ ⎪⎝⎭12n n = 时,()111211n f n n r r '=⎛⎫-- ⎪⎝⎭在空气中:()1121111f n r r '=⎛⎫-- ⎪⎝⎭在水中:()2121.33111.33f n r r '=⎛⎫-- ⎪⎝⎭两式相比:()()12 1.33401.331136.8n f f n -'=='- 解得 1.54n = ⑵12 1.62n n == 而:()11211111f n r r '-=⎛⎫- ⎪⎝⎭则:()1.6240 1.541437.41.54 1.62f cm '=⨯⨯-=--第4章 光学仪器的基来源根底理1、眼睛的机关简单地可用一折射球面来暗示,其曲率半径为5.55mm ,内部为折射率等于4/3的液体,外部是空气,其折射率近似地等于 1.试计算眼球的两个焦距.用肉眼不雅察月球时月球对眼的张角为01,问视网膜上月球的像有多大? 解:由球面折射成像公式:n n n ns sr''--='令43, 5.55 2.22413n s f r cm n n ''=-∞=⋅=⨯='--令1,5.5516.7413n s f r cm n n '=∞=-⋅=-⨯=-'--2、把人眼的晶状体看成距视网膜2cm 的一个简单透镜.有人能看清距离在100cm 到300cm 间的物体.试问:⑴此人看远点和近点时,眼y '睛透镜的焦距是多少?⑵为看清25cm 远的物体,需配戴怎样的眼镜?解:⑴对于远点:11300,2s cm s cm '=-= 由透镜成像公式:111111s s f -=''对于近点:2211121001.961f f cm-='-'=⑵对于25cm由两光具组互相接触0d =组合整体:110.030cm f -=''(近视度:300o ) 3、一照相机对准远物时,底片距物镜18cm ,当镜头拉至最大长度时,底片与物镜相距20cm ,求目的物在镜前的最近距离? 解:由题意:照相机对准远物时,底片距物镜18cm , 由透镜成像公式:111s sf -=''4、两星所成的视角为4',用望远镜物镜照相,所得两像点相距1mm ,问望远镜物镜的焦距是多少? 解: 3.14118060rad '=⨯5、一显微镜具有三个物镜和两个目镜.三个物镜的焦距辨别为16mm 、4mm 和1.9mm ,两个目镜的缩小本领辨别为5和10倍.设三个物镜造成的像都能落在像距为160cm 处,问这显微镜的最大和最小的缩小本领各为多少?解:由显微镜的缩小本领公式:其最大缩小本领: 其最小缩小本领:6、一显微镜物镜焦距为0.5cm ,目镜焦距为2cm ,两镜间距为22cm .不雅察者看到的像在无穷远处.试求物体到物镜的距离和显微镜的缩小本领.解:由透镜物像公式:111s s f -=''解得:0.51s cm =- 显微镜的缩小本领:1212252522255500.52s l M f f f f '=-⋅≈-⋅=-⨯=-'''' 7、(略)8、已知望远镜物镜的边沿即为有效光阑,试计算并作图求入光瞳和出射光瞳的位置. 9、 10、*13、焦距为20cm 的薄透镜,放在发光强度为15cd 的点光源之前30cm 处,在透镜后面80cm 处放一屏,在屏上得到明亮的圆斑.求不计透镜中光的吸收时,圆斑的中心照度.解:230S d Id Iφ=Ω= (S 为透镜的面积)P 点的像点P '的发光强度I '为:14、一长为5mm 的线状物体放在一照相机镜头前50cm 处,在底片上形成的像长为1mm .若底片后移1cm ,则像的弥散斑宽度为1mm .试求照相机镜头的F 数. 解:由y s y s''= 1550s '= 得10s cm '= 由透镜物像公式:111s s f -=''由图可见,100.11d =1d cm = F 数:508.336f d '== 15、某种玻璃在靠近钠光的黄色双谱线(其波长辨别为589nm 和589.6nm )邻近的色散率/dn d λ为1360cm --,求由此种玻璃制成的能分mm辩钠光双谱线的三棱镜,底边宽度应小于多少? 解:由色分辩本领:dnP d λδλλ==∆ 16、设计一块光栅,要求⑴使波长600nm 的第二级谱线的衍射角小于030,并能分辩其0.02nm 的波长差;⑵色散尽可能大;⑶第三级谱线缺级.求出其缝宽、缝数、光栅常数和总宽度.用这块光栅总共能看到600nm 的几条谱线? 解:由sin d j θλ= 由第三级缺级 由 P jN λλ==∆ 光栅的总宽度:315000 2.41036L Nd mm -==⨯⨯= 由sin 9024004600od j λ=== 能看到0,1,2±±,共5条谱线17、若要求显微镜能分辩相距0.000375mm 的两点,用波长为550nm 的可见光照明.试求:⑴此显微镜物镜的数值孔径;⑵若要求此两点缩小后的视角为2',则显微镜的缩小本领是多少?解:⑴由显微镜物镜的分辩极限定义⑵ 3.1418060387.70.000375250M ⨯==18、夜间自远处驶来汽车的两前灯相距1.5m .如将眼睛的瞳孔看成产生衍射的圆孔,试估量视力正常的人在多远处才干分辩出光源是两个灯.设眼睛瞳孔的直径为3mm ,设光源收回的光的波长λ为550nm .解: 1.5U L=当0.610U Rλθ==才干分辩出19、用孔径辨别为20cm 和160cm 的两种望远镜能否分辩清月球上直径为500m 的环形山?(月球与地面的距离为地球半径的60倍,面地球半径约为6370km .)设光源收回的光的波长λ为550nm . 解:63500 1.31060637010U rad -==⨯⨯⨯ 孔径20cm 望远镜:孔径160cm 望远镜:1U θ'<,即用孔径20cm 望远镜不克不及分辩清 1U θ''>,即用孔径160cm 望远镜能分辩清20、电子显微镜的孔径角028u =,电子束的波长为0.1nm ,试求它的最小分辩距离.若人眼能分辩在明视距离处相距26.710mm -⨯的两点,则此显微镜的缩小倍数是多少? 解: 3.144sin sin 4180o n u u u ⨯====第五章 光的偏振1、试确定下面两列光波 的偏振态.解:①()10cos cos 2x y E A e t kz e t kz πωω⎡⎤⎛⎫=-+-- ⎪⎢⎥⎝⎭⎣⎦有:222110x y E E A +=阐发()(),0000,2x y x y E At kz A E E t kz A E Aωπω=⎧⎪-=⎨=⎪⎩=⎧⎪-=⎨=⎪⎩为(左旋)圆偏振光②()20sin sin 2x y E A e t kz e t kz πωω⎡⎤⎛⎫=-+-- ⎪⎢⎥⎝⎭⎣⎦有:222110x y E E A +=阐发()()0,,002x y x y E t kz A E A E A t kz A E ωπω=⎧⎪-=-⎨=-⎪⎩=⎧⎪-=⎨=⎪⎩为(左旋)圆偏振光2、为了比较两个被自然光照射的概略的亮度,对其中一个概略直接进行不雅察,另一个概略通过两块偏振片来不雅察.两偏振片的透振标的目的的夹角为060.若不雅察到两概略的亮度相同.则两概略实际的亮度比是多少?已知光通过每一块偏振片后损失入射光能量的0010.解:由于被光照射的概略的亮度与其反射的光的光强成正比.设直接不雅察的概略对应的光强为1o I ,通过两偏振片不雅察的概略的光强为2o I通过第一块偏振片的光强为:通过第二块偏振片的光强为: 由1220.1o o I I I == 则:120.1ooI I = 3、两个尼科耳N1和N2的夹角为060,在它们之间放置另一个尼科耳N3,让平行的自然光通过这个系统.假设各尼科耳对很是光均无吸收,试问N3和N1的透振标的目的的夹角为何值时,通过系统的光强最大?设入射光强为0I ,求此时所能通过的最大光强. 解:令:20dI d α=得:()tan tan 60αα=- 4、在两个正义的理想偏听偏振片之间有一个偏振片以匀角速度ω绕光的传播标的目的旋转(见题5.4图),若入射的自然光强为0I ,试证明透射光强为()011cos 416I I t ω=- 证明:5、线偏振光入射到折射率为1.732的玻璃片上,入射角是060,入射光的电矢量与入射面成030角.求由分界面上反射的光强占入射光1N23N60强的百分比. 解:设入射线偏振光振幅为A ,则入射光强为20I A = 入射光平行份量为:1cos 30o P A A = 入射光垂直份量为:1sin 30o S A A = 由:21sin603sin i =得:230o i = 由:()()()()121112tan 6030tan 0tan tan 6030oPo P i i A A i i --'===++ 6、一线偏振光垂直入射到一方解石晶体上,它的振动面和主截面成030角.两束折射光通过在方解石后面的一个尼科耳棱镜,其主截面与入射光的振动标的目的成050角.计算两束透射光的相对强度.解:当光振动面与N 主截面在晶体主截面同侧: 当光振动面与N 主截面在晶体主截面两侧:7、线偏振光垂直入射到一块光轴平行于概略的方解石波片上,光的振动面和波片的主截面成030角.求:⑴透射出来的寻常光和很是光的相对强度为多少?⑵用钠光入时如要产生090的相位差,波片的厚度应为多少?(589nm λ=) 解:⑴1sin 302o o A A A ==214o I A = ⑵ 方解石对钠光 1.658 1.486o e n n ==由()2o e n n d πϕλ∆=-8、有一块平行石英片是沿平行于光轴标的目的切成一块黄光的14波片,问这块石英片应切成多厚?石英的01.552, 1.543,589e n n nm λ===.解:()2o e n n d πϕλ∆=-9、⑴线偏振光垂直入射到一个概略和光轴平行的波片,透射出来后,原来在波片中的寻常光及很是光产生了大小为π的相位差,问波片的厚度为多少?0 1.5442, 1.5533,500e n n nm λ===⑵问这块波片应怎样放置才干使透射出来的光是线偏振光,并且它的振动面和入射光的振动面成090的角? 解:⑴()()221o e n n d k πϕπλ∆=-=+⑵振动标的目的与晶体主截面成45o 角10、线偏振光垂直入射到一块概略平行于光轴的双折射波片,光振动面和波片光轴成025角,问波片中的寻常光和很是光透射出来后的相对强度如何? 解:cos 25o e A A =11、在两正交尼科耳棱镜N1和N2之间垂直拔出一块波片,发明N2后面有光射出,但当N2绕入射光向顺时针转过020后, N2的视场全暗,此时,把波片也绕入射光顺时针转过020,N2的视场又亮了,问:⑴这是什么性质的波片;⑵N2要转过多大角度才干使N2的视场以变成全暗.解:⑴由题意,当2N 绕入射光向顺时针转动20o 后,2N 后的视场全暗,说明A '与1N 夹角为20o .只有当波片为半波片时,才干使入射线偏振光出射后仍为线偏振光.⑵把波片也绕入射光顺时针转过020,2N 要转过040才干使2N 后的视场又变成全暗12、一束圆偏振光,⑴垂直入射1/4波片上,求透射光的偏振状态;⑵垂直入射到1/8波片上,求透射光的偏振状态.解:在xy 平面上,圆偏振光的电矢量为:()()cos sin x y E A t kz e A t kz e ωω=-±- +为左旋;-为右旋圆偏振光设在波片入射概略上为 ⑴波片为14波片时,2πϕ∆=即透射光为振动标的目的与晶片主截面成45o 角的线偏振光⑵波片为18波片时,4πϕ∆=即透射光为椭圆偏振光.13、试证明一束左旋圆偏振光和一束右旋圆偏振光,当它们的振幅相等时,合成的光是线偏振光. 解:左旋圆偏振光 右旋圆偏振光 即E 为线偏振光14、设一方解石波片沿平行光轴标的目的切出,其厚度为0.0343mm,放在两个正交的尼科耳棱镜间,平行光束经过第一尼科耳棱镜后,垂直地射到波片上,对于钠光(589.3nm )而言,晶体的折射率为1.658, 1.486o e n n ==.问通过第二尼科耳棱镜后,光束产生的干与是加强还是减弱?如果两个尼科耳棱镜的主截面是互相平行的,结果又如何? 解:①1N 与2N 正交时,即通过第二个尼科耳棱镜后,光束的干与是减弱的. ②1N 与2N 互相平行时,即通过第二个尼科耳棱镜后,光束的干与是加强的. 15、单色光通过一尼科耳镜N1,然后射到杨氏干与实验装置的两个细缝上,问:⑴尼科耳镜N1的主截面与图面应成怎样的角度才干使光屏上的干与图样中的暗条纹为最暗?⑵在上述情况下,在一个细缝前放置一半波片,并将这半波片绕着光线标的目的继续旋转,问在光屏上的干与图样有何改动?解:⑴尼科耳镜N1的主截面与图面应成90的角度时,光屏。

《光学教程》第五版姚启钧第三章光

《光学教程》第五版姚启钧第三章光

I
K级亮纹位置
条纹宽度
当k级亮纹与当k+1级亮纹连起来时,见不到条纹
相干长度—
相干长度
两列波能发生干涉的最大波程差叫相干长度。
S
S1
S2
c1
c2
b1
b2
a1
a2
·
P
S1
S2
S
c1
c2
b1
b2
a1
a2
P
·
波列长度就是相干长度
只有同一波列分成的 两部分,经过不同的路 程再相遇时,才能 发生干涉。
1
解:
2
I=I1+I2
3
由光强公式
4
总光强为: 由于1 和2的频率不同,它们之间不相干。
3.5菲涅耳公式
n1
n2
i1
i’1
i2
Ap1
Ap2
A’p1
As1
A’s1
As2
图中s,p的方向为规定的正方向
S,p,和光线传播方向构成右螺旋
3.5 菲涅耳公式
n1
n2
i1
i’1
i2
Ap1
Ap2
光波
能流密度:是指在单位时间内通过与波的传播方向垂直的 单位面积的能量。
01
光强度I(平均能流密度)正比于电场强度振幅A 的平方。
02
通常:
03
3.光 强
3.2 波动的叠加性和相干条件

球面波(点光源) 柱面波(柱形光源) 平面波(光源在无穷远或经过透镜)
平面波公式:
光矢量
O 点的振动:
o
s
n
r
k
r
k
l

《光学教程》(姚启钧)第三章 几何光学的基本原理

《光学教程》(姚启钧)第三章 几何光学的基本原理

3 全反射 光学纤维
(1) 全反射:只有反射而无折射的现象称为全折射。
i2
O
A1 i1 ic
A2
n A3 2
x
n1
P y
全反射条件 : ⑴ n1 n2
1
⑵ i1 ic
临界角
n2 n 0 s in 1 2 其中 : ic s in s in 90 n1 n1
三棱镜
三棱镜两折射面的夹角称三棱镜顶角A。 出射光与入射光之间的夹角称棱镜的偏向角。
A
(1)偏向角
n
1
偏向角 i1 i2 i i
' 1 ' 2 ' 1

' 2

nD
2
i2 i A i1 i A
i1
B

i
' 2
i2
E
C
i1'
(2)最小偏向角:
n=1.5
P -s1 O1 R s2’ s2 s1’ O2 P’
P1’
n=1.5
解:
-s1
O1
n' n n' n s' s r
(1). O1面:s1=-, r1=+R, n1=1, n1’=1.5
O2 P’ s2’ R s2 s1’
P1’
s1’ = 3R
O2面:s2=R, r2= -R, n2=1.5, n2’=1
1、光焦度:表征曲折光线的本领;
(3)

n n1 n n 2 r r2 1
(4)
透 1 2
透 0 透 0
正透镜或会聚透镜 负透镜或发散透镜

光学教程习题解答

光学教程习题解答

《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。

解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比.解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅= ⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。

已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30
三、全反射 光波导
cos(k x x + φx )
n2 n2 n1
0
exp[ β 2 x]
倏逝波, 倏逝波,表面波
exp[− β1 ( x − a ) ]
31
a
三、全反射 光波导
(一) 光波导 • 光波导:约束光波传输的媒介 光波导: • 介质光波导三要素: 介质光波导三要素: -“芯 / 包”结构 -凸形折射率分布,n1>n2 凸形折射率分布, -低传输损耗 • 光波导的分类: 光波导的分类: 薄膜波导(平板波导) -薄膜波导(平板波导) 矩形波导(条形波导, -矩形波导(条形波导,脊形波导 ) -圆柱波导(光纤) 圆柱波导(光纤)
36
三、全反射 光波导
1、光纤组成: 光纤组成:
纤芯 包层 涂覆层 护套层
2、光缆
外护层 强度元件 内护层 光纤 加强芯
37
三、全反射 光波导
3、光纤的材料 石英系材料,有机聚合物材料。 石英系材料,有机聚合物材料。 传光束) 4、光纤的应用 1) 输送能量 (传光束) 传像束) 2) 传送信息 (传像束) 优点: 6、光通信 优点: 1) 低损耗 几千dB/km 玻璃 几千dB/km 石英光纤 0.2 dB/km 信带宽、容量大、 2) 信带宽、容量大、速度快 3) 电气绝缘性能好 无感应 无串话 4) 重量轻 耐火 耐腐蚀 可用在许多恶劣环境下 5) 资源丰富 价格低
18
四、 单心光束 实像和虚像
3. 物和像 物点:入射到光学系统的单心光束 单心光束的顶点 (1)物点:入射到光学系统的单心光束的顶点 ① 实物点:发散的入射单心光束的顶点 实物点: ② 虚物点:会聚的入射单心光束延长线的顶点 虚物点:
19
四、 单心光束 实像和虚像
(2)像点:经光学系统出射后的单心光束的顶点 像点: 实像点: ① 实像点:会聚的出射单心光束的顶点 ② 虚像点:发散的出射单心光束的顶点 虚像点:
现代光学
第三章 几何光学的基本原理
1
第三章 几何光学的基本原理
3.1 3.2 3.3 3.4 3.5 3.6 3.7 几何光学基本概念和定律 费马原理 光在平面界面上的反射和折射 光学纤维 光在球面上的反射和折射 光连续在几个球面界面上的折射, 光连续在几个球面界面上的折射, 虚物的概念 薄透镜 近轴物点近轴光线成象的条件 理想光具组的基点和基面
2
第三章
3.1 几何光学基本概念和定律 费马原理
3
一、光线和波面
波面 光线 波面 光线
球面波
光束:光线的集合 光束:
平面波
4
二、几何光学的基本实验定律
(1)光在均匀介质中的直线传播定律
5
二、几何光学的基本实验定律
• 投影 投影(shadow) • 针孔成像 针孔成像(pinhole imaging)
二 、光束单心性的破坏
例:一束汇聚光束的顶点为P,若在其汇聚前先 一束汇聚光束的顶点为P 通过一块与光轴垂直的平行玻璃板(厚度为d 通过一块与光轴垂直的平行玻璃板(厚度为d, 折射率为n),问汇聚点向哪个方向移动 问汇聚点向哪个方向移动? 折射率为n),问汇聚点向哪个方向移动?移 动多少? 动多少?
38
四、棱镜
折射棱镜
39
四、棱镜
40
四、棱镜
: 借助光在棱镜中的全反射, 反射棱镜 借助光在棱镜中的全反射,改变光进行 的方向. 的方向
使像转 过900 直角棱镜 五脊棱镜
41
四、棱镜
900 450
组合三棱镜, 组合三棱镜 , 使像面旋转 1800
42
Z
Y
X
后反射直角棱镜
在激光谐振腔中可以代替高反射介质镜; 在激光谐振腔中可以代替高反射介质镜;
在高速公路上, 常用来作“无源路灯” 在高速公路上, 常用来作“无源路灯”.
43
第三章
3.3 光在球面上的反射和折射
44
一、符号法则
O-顶点 C-曲率中心 CO称主轴。 CO称主轴。 称主轴
符号规则
笛卡尔坐标规则。 笛卡尔坐标规则。
45
一、符号法则
i. 假设光线从左侧进入 ii. 线段量以顶点为参照点 左方负,右方正; 左方负,右方正;在光轴 上方为正,下方为负; 上方为正,下方为负; 角度量以介质分界面法线或光轴为基准, iii. 角度量以介质分界面法线或光轴为基准,按小于 的方向旋转,顺时针为正,逆时针为负; 90o的方向旋转,顺时针为正,逆时针为负; 所有量用绝对值表示----全正表示。 ----全正表示 iv. 所有量用绝对值表示----全正表示。
10
三、 费马原理
(一)、概念 )、概念 • 光程: ns ( = ct ) 光程:
B
• 费马原理: 费马原理: 光在指定的两点间传播, 光在指定的两点间传播, 实际的光程总是一个极值。 实际的光程总是一个极值。
A
值 极 值 极 值 恒 值 11 ∫ nds = 极 ( 小 、 大 、 定 )
B A
24
第三章
3.2 光在平面界面上的反射 和折射
25
一 、光在平面反射
(一)、理想光学系统 )、理想光学系统 使单心光束保持其单心性不变的光学系统。 1、使单心光束保持其单心性不变的光学系统。 理想光学系统是成像的必要条件。 2、理想光学系统是成像的必要条件。 )、光的平面反射成像 (二)、光的平面反射成像 PN=P’N
实像点确有光线通过, (3) 实像点确有光线通过,虚像点没有光线通过
22
四 单心光束 实像和虚像
5. 物空间和像空间
物空间(物方): 物空间(物方): 物所在的空间。 物所在的空间。 像空间(像方): 像空间(像方): 像所在的空间。 像所在的空间。
I A A’ II A’’
23
四 单心光束 实像和虚像
ADB<AD’B
符合反射定律, 由 A到 B点 ,符合反射定律 到 点 符合反射定律 13 其光程最小 其光程最小。
i1=i2
三、 费马原理
(3) 折射定律
A
A
h1
A’
i1
B’
O A’
C’’ B’ C’
O’
n1 n2
B
x
C
a
D
i2
B
h2
由 A到B,符合折射定律的 到 符合折射定律的 光线ACB的光程最小。 的光程最小。 光线 的光程最小
1 pp ' = d(1− ) n
D B A i1 E C
29
P l
P’
i2
三、全反射 光波导
光从光密( 光从光密(n1) ⇒光疏(n2)时, 光疏( i1 =ic →i2 =90°, n1 sinic =n2 90° sini —— 临界角 n
点光源
.
n2
ic = sin−1
2
n1
全反射
n1
ic
32
三、全反射 光波导
平板波导
n3 n1 n2
33
三、全反射 光波导
矩形波导
脊型波导
条形波导
34
三、全反射 光波导
(二)光纤
光学纤维
光进入光学纤维后, 光进入光学纤维后,多次 在内壁上发生全内反射, 在内壁上发生全内反射, 光从纤维的一端传向另 一端. 一端.
35
三、全反射 光波导
阶跃光学纤维的端面 证明
6
二、几何光学的基本实验定律
(2)光的反射定律
1
1’
O
7
二、几何光学的基本实验定律
(3)光的折射定律
1’
1
O
2
8
二、几何光学的基本实验定律
(4)光的独立传播定律和光路可逆原理
9
二、几何光学的基本实验定律
适用条件: R远大于光波长λ 适用条件: 远大于光波长λ 否则,用衍射光学) (否则,用衍射光学)
n2 x′ = y( 1 −1)tg3i1 2 n2
平面折射系统不是理想光学系统
n2 n1 2 2 y′ = y − ( ) tg i1 1 n1 n2
27
3 2
二 、光束单心性的破坏
(1)当i1=0,有x′=0,y′=y1=y2 =y⋅n2 ⁄n1。 , ′ , ′ ⋅ 。 折射光束近似单心, 称为像似深度。 折射光束近似单心,y ′ 称为像似深度。 像似深度减小。 若n1 > n2,则 y ′< y ,像似深度减小。 , 像似深度增大。 若n1 < n2,则y ′ > y ,像似深度增大。 , y y = tgi 越大,象散越严重。 ( 2) 1 i 越大,象散越严重。 n2 x′ = y( 1 −1 tg3i1 ) 2 n2 ·0 3 2 n2 n 2 2 1 y′ = y − ( ) tg i1 1 n n2 28 1
46
一、符号法则
图中各量的表示方法
图中只标记角度和线段的绝对值.标记点用大写字母, 图中只标记角度和线段的绝对值.标记点用大写字母, 标记角度和线段用小写字母. 标记角度和线段用小写字母.
n
−i
n′
n′
P'
y
P

−u
−s
φ
O
− i′CΒιβλιοθήκη u′rs′
− y′

47
二、球面反射对光束单心性的破坏
PO=-s P’O =-s’ CO=-r PA=l, AP’=l’ =
三、 费马原理
(二)由费马原理导出几何光学的实验定律 光程为极值的例子: (1) 光的直线传播定律 ) 均匀媒质中,两点间光程最短的路径是直线。 均匀媒质中,两点间光程最短的路径是直线。
相关文档
最新文档