分析方法中常用的分离和富集方法
分析化学中常用的分离和富集方法
分析化学中常用的分离和富集方法1.蒸馏法:蒸馏是根据溶液中各组分的沸点差异来进行分离的方法。
通过加热混合液体使其汽化,然后再冷凝收集汽化物,从而分离不同沸点的组分。
蒸馏法适用于溶液中的挥发性组分富集和纯化。
2.萃取法:萃取是利用两种或多种不相溶液体的亲和性差异将待分析的组分从混合体系中转移到单一溶剂中的分离方法。
常见的有液液萃取和固相萃取。
萃取法适用于挥发性差异较小的物质分离。
3.结晶法:结晶是根据物质在溶液中的溶解度差异来进行分离的方法。
通过逐渐降低溶解度使其中一种或几种溶质结晶出来,从而实现分离和富集。
结晶法适用于固体组分富集和纯化。
4.洗涤法:洗涤是通过溶解或稀释洗涤剂来将带有目标分子的样品与杂质分离的方法。
洗涤法适用于固态、液态和气态混合物中分离和富集。
5.离子交换法:离子交换是通过离子交换树脂的吸附作用来分离和富集组分的方法。
树脂上的离子可与溶液中的离子发生交换,从而实现目标组分的富集。
离子交换法适用于溶液中离子的分离和富集。
6.气相色谱法:气相色谱是一种利用气相色谱柱对待分析物进行分离的方法。
根据化合物在不同固定相上的吸附特性差异进行分离和富集。
气相色谱法适用于气态和挥发性物质的分离和富集。
7.液相色谱法:液相色谱是一种利用液相色谱柱对待分析物进行分离的方法。
根据待分析物在流动相和固定相之间的分配系数差异进行分离和富集。
液相色谱法适用于液态和溶液中的分离和富集。
8.电泳法:电泳是一种利用电场对待分析物进行分离和富集的方法。
根据待分析物在电场中的迁移速度差异来分离和富集。
电泳法适用于溶液中离子和带电粒子的分离和富集。
以上是常见的分离和富集方法,每一种方法在不同场合的适应性和分离效果各有差异。
在实际应用中,需要根据具体情况选择合适的方法。
不同的分析问题可能需要结合多种方法的优势来达到理想的分析结果。
第八章分析学中常用的分离和富集方法
第八章分析化学中常用的分离和富集方法在实际工作中,遇到的样品往往含有多种组分,进行测定时常常发生干扰,不仅影响结果的准确度,甚至无法测定,为了消除干扰,比较简单的方法是控制分析条件或加入掩蔽剂。
但很多情况仅此不够,必须把待测组分与干扰组分分离,有时为了测定试样中痕量组分,在进行分离的同时,也进行必要的浓缩和富集。
以保证分析结果的准确度。
对于常量组分的分离和痕量组分的富集,总的要求是分离要完全,即:待测组分的回收率要符合一定要求。
待测组分的回收率:对于常量组分 (>1%) : R T>99% ( 接近 100%)对于微量组分: R T>90%常见的分离方法: 1 .沉淀分离2 .萃取分离3 .离子交换分离4 .色谱分离5 .气浮分离6 .挥发和蒸馏分离第一节沉淀分离法沉淀分离是利用沉淀反应进行分离的方法。
根据难溶化合物的溶解度不同,利用沉淀反应进行分离,在试液中加入适当沉淀剂,使待测组分沉淀出来或将干扰组分沉淀除去。
从而达到分离的目的。
它主要有:无机沉淀剂沉淀分离法有机沉淀剂沉淀分离法共沉淀分离法。
( 还有均相沉淀法 )一、无机沉淀剂沉淀分离法无机沉淀剂沉淀分离法很多,形成沉淀的类型也很多,本书只对M (OH ) n ↓和硫化物沉淀简单介绍.例如: Fe(OH)3,,当 [时,刚析出沉淀时pH ≥ 2.18 ;沉淀完全时pH ≥ 3.51 。
因此,氢氧化物是否能沉淀完全,取决于溶液的酸度。
NaOH Fe(OH)3沉淀剂: NH3·H2O → Mg(OH)2WO3 xH2O 等ZnO 等 SiO2·xH2O两种离子是否能借M(OH)n↓ N(OH)n↓ ( 氢氧化物沉淀 ) 完全分离,取决于它们溶解度的相对大小表 8-1 是假定开始时=0.01mol/L ,残留浓度mol/L( 沉淀完全 ) 时,部分氢氧化物的 pH ( 由 KSP 计算出来的 ), 此数值仅供参考。
分析化学中常用的分离和富集方法
分析化学中常用的分离和富集方法分析化学作为一门研究物质组成和性质的科学,其中常用的分离和富集方法起着至关重要的作用。
分离和富集方法可以将需要分析的目标物质从复杂的混合物中分离出来,提高分析的灵敏度和准确度。
本文将介绍常用的分析化学分离和富集方法,包括溶剂萃取、固相萃取、薄层板法和气相色谱。
溶剂萃取是一种常见的分离和富集方法。
它基于物质在不同溶剂中的溶解度差异来实现分离。
常用的溶剂包括醚类、酯类和芳烃类。
溶剂萃取可以根据目标物质的亲水性或疏水性进行选择,有效地将目标物质从样品中富集。
例如,对于水样中的有机污染物分析,可以使用非极性的有机溶剂进行富集,如二氯甲烷、正己烷等。
溶剂萃取方法操作简便,成本较低,已广泛应用于环境监测和食品安全等领域。
固相萃取是一种利用固相吸附材料对目标物质进行富集的方法。
固相萃取通常以固相萃取柱或固相萃取膜的形式存在。
固相萃取材料多为具有特定化学性质的固体材料,如聚苯乙烯、聚二氟乙烯、硅胶等。
富集过程中,样品通过固相萃取材料,目标物质被吸附在固相上,其他杂质被去除,从而实现分离和富集。
固相萃取方法具有选择性好、灵敏度高的特点,广泛应用于环境、生物医药、食品和化学等行业的样品前处理中。
薄层板法是一种常用的分析化学分离技术,广泛应用于天然产物和化学成分分析中。
薄层板法利用了化学物质在不同极性固体支持物上的吸附和分配性质。
分离过程中,样品溶液在薄层板上扩展,不同成分因溶液中的分配系数不同而在薄层板上分离出来。
随后,可以通过显色剂、紫外灯或其他检测手段进行成分的定性分析或定量测定。
薄层板法操作简单、迅速,结果直观,已成为化学分析中不可或缺的手段之一。
气相色谱是一种基于物质在气相中分配系数的分离技术,被广泛应用于挥发性有机物的分析。
在气相色谱中,样品经过蒸发器的加热,被气体载气(如氮气或氦气)带入色谱柱进行分离。
色谱柱内填充有具有特定性质的固体或液体填料,目标物质通过填充物与载气发生相互作用,从而实现分离。
分析化学中的分离与富集方法
分析化学中的分离与富集方法
1.蒸馏法:根据不同物质的沸点差异进行分离和富集。
常用的蒸馏方
法有常压蒸馏、减压蒸馏、水蒸气蒸馏等。
2.萃取法:利用两种或多种溶剂相互不溶的特性,将目标物质从混合
物中转移到溶剂中,从而达到分离和富集的目的。
典型的例子有固-液萃
取和液-液萃取。
3.变温结晶法:根据不同物质溶解度随温度变化的规律,通过调节温
度使目标物质结晶,从而将其与其他组分分离。
4.气相色谱法:利用物质在固定相和流动相之间的分配系数差异,以
气态物质的流动为介质,将目标物质从混合物中分离并富集。
1.沉淀法:通过在混合物中加入沉淀剂,使得目标物质与沉淀剂反应
生成不溶性沉淀,从而分离富集目标物质。
这种方法常用于分离金属离子。
2.化学还原法:通过还原剂将目标物质转化为不溶性化合物,从而使
其与混合物分离。
例如,将有机污染物还原为不溶性沉淀。
3.化学萃取法:利用目标物质与萃取剂之间的化学反应进行分离。
例如,萃取剂选择性地与目标物质发生络合反应,形成可溶性络合物,从而
将其与其他组分分离。
4.吸附分离法:通过吸附剂对目标物质的选择性吸附将其从混合物中
分离。
主要有固相萃取、层析和磁性吸附等方法。
以上仅是分析化学中常用的一些分离与富集方法,实际应用中还有很
多其他方法,如超临界流体萃取、电分离、膜分离等。
在实际的分析过程
中,要根据混合物的性质和目标物质的特点选择合适的方法,并合理优化条件,以提高分离效果和分析结果的准确性。
分析化学中常用的分离和富集方法及小结
3. 其它无机沉淀剂
H2SO4,H3PO4,HF or NH4F,HCl
稀HCl:Ag Hg22+ Pb→白↓( Ⅰ组阳离子)
HCl
AgCl,Hg2Cl2,PbCl2
NH3
溶于热水
Ag(NH3)2+ Pb(OH)2 HgNH2Cl(白)+Hg(黑)
13
(白)
灰黑
无机沉淀剂: 易产生共沉淀, 选择性不高; 应首先沉淀微量组分.
UO22+,Al3+,Sn4+,Bi3+等。
21
无机共沉淀剂选择性差, 干扰下一步测定。
2、有机共沉淀剂(选择性高,应用广)
丹宁,辛可宁,动物胶等,可灼烧除去。
例1:分离微量H2WO4
HNO3介质中, H2WO4-辛可宁。
带负电胶粒,
不易凝聚
胶体凝聚
例2:分离微量cd
R h C B 2 4 d (IR)2 h CB 2 4 d I
氢氧化物:NaOH、NH3 硫化物:H2S 有机沉淀剂:H2C2O4,丁二酮肟
分
离子交换分离
阳离子交换树脂 阴离子交换树脂
气液分离:挥发和蒸馏 克氏定氮法,Cl2预氧化I-法
离
螯合物萃取
萃取分离 离子缔合物萃取
方 液液分离
法
膜分离
三元络合物萃取 支撑型液膜 乳状液型液膜
生物膜
气固分离——超临界流体萃取
离子)(氨水沉淀分离法中常加入大量NH4+盐,其作 用是什么?)
10
3 控制pH=5-6
① ZnO悬浊液法
高价离子Fe3+,Al3+,Cr3+,Th4+等定量↓ ቤተ መጻሕፍቲ ባይዱi2+,Co2+,Mn2+,Mg2+,Ca2+,Sr2+不↓
分析化学_分析化学中常用的分离和富集方法
分析化学_分析化学中常用的分离和富集方法分析化学是研究物质的组成、结构和性质的一门学科。
在分析化学中,为了检测和测定分析对象中微量或痕量的目标物质,常常需要使用分离和富集方法,以提高目标物质的检测灵敏度。
1.搅拌萃取:搅拌萃取是一种常见的分离和富集方法。
通过将样品与其中一种有机溶剂反复搅拌混合,使目标物质从水相转移到有机相中,从而实现分离和富集。
该方法适用于目标物质在水相和有机相之间有较大的分配系数差异的情况。
2.相间萃取:相间萃取是指根据目标物质在两相中的分配差异进行分离和富集的方法。
常见的相间萃取方法包括液液萃取、固相微萃取和液相萃取等。
相间萃取通常需要将样品与萃取剂反复摇匀并分离两相,以实现目标物质的富集。
3.固相萃取:固相萃取是指使用固定在固相萃取柱或固相萃取膜上的吸附剂来对目标物质进行分离和富集的方法。
固相萃取方法具有操作简单、富集效果好、适用范围广等优点,常用于分析化学中的前处理过程。
4.蒸馏:蒸馏是指通过加热使液体汽化,然后冷凝收集汽化液体的方法。
蒸馏可以实现液体的分离和富集,适用于目标物质在样品中的浓度较低且需高度富集的情况。
5.色谱分离:色谱分离是一种基于目标物质在不同相之间的分配差异进行分离的方法。
常用的色谱分离方法包括气相色谱、液相色谱、固相色谱等。
色谱分离方法具有分辨率高、重复性好、操作简便等优点,广泛应用于分析化学中。
6.气相萃取:气相萃取是指利用气相萃取装置将目标物质从固体、液体或气体中分离和富集的方法。
气相萃取主要通过溶剂的蒸发和再冷凝,将目标物质从样品中富集到溶剂中,然后通过蒸发或其他方法将溶剂去除,得到目标物质。
7.凝胶电泳:凝胶电泳是一种基于目标物质的电荷、大小或形状差异进行分离和富集的方法。
常见的凝胶电泳方法包括聚丙烯酰胺凝胶电泳、聚丙烯酰胺梯度凝胶电泳等。
凝胶电泳方法具有分辨率高、富集效果好等优点,适用于复杂样品的分析。
总之,分析化学中常用的分离和富集方法有搅拌萃取、相间萃取、固相萃取、蒸馏、色谱分离、气相萃取和凝胶电泳等。
分析化学中常用的分离富集方法
分析化学中常用的分离富集方法1.蒸馏法:蒸馏法是一种基于物质沸点差异的分离富集方法。
通过加热混合物,使成分具有不同沸点的组分分别转化为气态和液态,然后通过冷凝收集液态成分,从而实现分离。
蒸馏法广泛应用于分离液体的混合物,例如石油的分离和酒精的纯化。
2.萃取法:萃取法是一种基于物质在不同相中的分配系数差异的分离富集方法。
它通过萃取剂与混合物中其中一成分发生作用,将其从混合物中提取出来。
常用的萃取剂包括有机溶剂、水和金属络合剂等。
萃取法广泛应用于固体、液体或气体的分离富集,例如从矿石中提取金属离子、从天然产物中提取天然色素等。
3.结晶法:结晶法是一种基于物质在溶液中溶解度差异的分离富集方法。
通过逐渐降低溶液中的溶质浓度,使其超过饱和度,从而导致溶质结晶出来。
结晶法广泛应用于分离纯化固体物质,例如提取药物原料和脱盐。
4.吸附法:吸附法是一种基于物质在固体吸附剂表面吸附能力差异的分离富集方法。
通过将混合物与吸附剂接触,利用其表面活性或化学反应特性,将目标成分吸附在吸附剂上,然后通过洗脱、干燥等步骤分离目标成分。
常用的吸附剂包括硅胶、活性炭和分子筛等。
吸附法广泛应用于气体和溶液的分离富集,例如气体的净化和水处理。
5.色谱法:色谱法是一种基于物质在固相或液相载体上移动速度差异的分离富集方法。
它利用混合物成分在固定相和流动相之间相互作用的差异,通过在柱上或薄层上移动,分离各个组分。
常用的色谱法包括气相色谱法、液相色谱法和薄层色谱法等。
色谱法广泛应用于有机化合物和生物大分子的分离分析,例如对复杂的混合物进行定性和定量分析。
除了上述常用的分离富集方法,还有一些其他的方法如离子交换法、电泳法、过滤法等。
这些方法在不同的应用领域具有独特的优势和适用性。
分析化学中的分离富集方法是实现样品预处理、纯化和定性定量分析的基础,对于提高分析的准确性和灵敏度具有重要意义。
第十一章 分析化学中常用的分离和富集方法
二、痕量组分的共沉淀分离和富集
在重量分析中共沉淀现象是一种消极因素,在 分离方法中,却能利用共沉现象来分离和富集微量 组分。即加入某种离子同沉淀剂生成沉淀作为载体, 将痕量组分定量地沉淀下来,然后将沉淀分离,溶 解在少量溶剂中,以达到分离和富集的目的。 例如,海水中含UO22+的量为2~3ug· -1,不能 L 将铀直接测定和沉淀分离。但可在1 L海水中,调 pH为5~6,用AlPO4 共沉淀UO22+ ,过滤洗净后, 再将沉淀物用10mL盐酸溶解。如此,既将铀从海 水中分离出来,又将铀的浓度富集了近100倍。
实际分析方法:常常有一些干扰。通常采用 掩蔽方法消除干扰。在严重干扰的情况下,必须 采用分离方法,使干扰组分与待测组分分离。
采用分离方法的同时也能对待测组分进行富 集和浓缩。
对于常量组分的分离和痕量组分的富集,总 的要求是分离要完全,即:待测组分的回收率要 符合一定要求。
表示
分离效果通常以回收率( RA )和分离因数( SB/A )
三、挥发和蒸馏分离法
依据物质挥发性的差异进行的分离法称为蒸
馏分离法。可以用于分离干扰组分,也可以使被
测组分定量分出后再测定。该方法对无机物的分 离选择性较高。
例如可控制不同的馏出温度将SiF4 、GeCl4 、 AsH3 、AsCl3 、SbCl3 等从待测体系中馏出,定量 吸收之后,选用适宜的方法再进行测定。
QA RA 0 100% QA
式中,QA是分离出来待测组分A的质量, Q0A是试样中A 的总质量。 回收率当然越高越好,实际工作中待测组分难 免会有损失。分析化学中常用加标法测定回收率。对 回收率的要求视待测组分的大小而定,如表所示。 A ﹥1% 99.9% 0.01%~ 1% 99% ~0.01% 90%-95%
九章节定量分析中分离及富集方法
硅胶
表辛5可-6宁有机共沉淀钨剂酸
③ 有机共沉淀剂优点
●1 沉淀剂可以灼烧除去,不干扰以后的 测定;
●2 表面吸附小,选择性高; ●3 分子摩尔质量大,体积大,利于富集
痕量组分
(七)挥发和蒸馏分离法
1.定义:利用物质的挥发性差异进行分离的方 法。
2.作用:①干扰组分挥发除去; ②分出的被测组分进行再测定。
MoO42-,VO3-
(2)氨水—铵盐
氨水—铵盐组成的pH值为8-10的溶液,使高 价离子沉淀而与一、二价的金属离子分离;另 一方面Ag+,Cu2+,Co2+,Ni2+等离子因形成氨络离 子而留于溶液中。
用氨水 — 铵盐进行沉淀分离的情况
定量沉淀的离子
部分沉 留于溶液中的离子 淀的离 子
Hg2+,Be2+,Fe3+,Al3+,Cr3+, Mn2+,Fe2+ Ag(NH3)2+,Cu(NH3)42+,
9.1 概 述
一、分离与富集的意义
在实际的分析测试工作中,面对的试样都是较 为复杂的。或:1.试样中有其它组分与欲测组 分共存, 2.欲测组分含量太低。 (1)可能对欲测组分的测定有影响(干扰), 要采取措施进行处理如: ① 控制测定条件来消除干扰; ② 加入掩蔽剂消除干扰 ③ 采用分离的方法 (2)试样中欲测组分含量太低,需采取富集的方 法,以提高浓度。富集过程也是分离过程.
分离条件
应用
B
B(OCH3)3 酸性溶液中加甲醇 B的去除或测定
C
CO2
100℃通氧燃烧 C的测定
Si
SiF4
S
SO2
HF+H2SO4 300℃通氧燃烧
第11章分析化学中常用的分离和富集方法
2024/8/2
4
d 共沸蒸馏
例如无水乙醇的制备,水和乙醇形成共沸物((95%乙醇),b.p.=78.15℃ 加入苯形成另一共沸物(苯74%,乙醇18.5%,水7.5%) b.p.=65℃ 在65℃蒸馏, 除去水, 在68℃苯和乙醇形成共沸物(苯67.6%,乙醇32.4%) 在68℃蒸馏直到温度升高,在78.5℃能获得纯乙醇。
2024/8/2
14
如果用Vo (mL) 溶剂萃取含有mo (g) 溶质A的Vw (mL)试液, 一次萃取后,水相中剩余m1(g)的溶质A,进入有机相的溶 质A为(mo-m1) (g), 此时分配比为:
D=
cAo cAw
=
(mo-m1)/Vo m1/Vw
m1=mo[Vw/(DVo + Vw)] 萃取两次后,水相中剩余物质A为m2(g) m2=mo[Vw/(DVo + Vw)]2 …
磷酸盐沉淀
稀酸中,锆、铪、钍、铋;弱酸中, 铁、铝、铀(IV)、 铬(III)等
2024/8/2
8
有机沉淀剂
草酸: 沉淀Ca, Sr, Ba, RE, Th
铜铁试剂(N-亚硝基苯基羟铵): 强酸中沉淀Cu,Fe,Zr,Ti,Ce.Th,V,Nb,Ta等,微酸中沉 淀Al,Zn,Co,Mn,Be,Th,Ga,In,Tl等。主要用于1:9的硫 酸介质中沉淀Fe(III),Ti(IV),V(V)等与Al,Cr,Co,Ni分离
CH CH2
+
CH CH2
n
CH CH2 CHSO3HCH2 CH CH2 CH CH2 CH CH2
CH CH2
SO3H
CH
SO3H
n
高分子聚合物,具有网状结构,稳定性好。在网状结构
11分析化学中常用的分离和富集方法
2 蒸馏 将液体加热至沸腾,使液体变为蒸气,然后使蒸 气冷却再凝结为液体,这两个过程的联合操作称 为蒸馏。很明显,蒸馏可将易挥发和不易挥发的 物质分离开来,也可将沸点不同的液体混合物分 离开来。但液体混合物各组分的沸点必须相差很 大(至少30℃以上)才能得到较好的分离效果。
a 常压蒸馏
b 水蒸气蒸馏
一种分离方法的分离效果,是否符合定量分析的要 求,可通过回收率的大小来判断,例如,当分离物质 A时,回收率
回收率=
分离后所得待测组离过程中,回收率越大(最大接近于1)分离效果 越好。在一般情况下,对质量分数大于1%的组分,回 收率应大于99.9%;对质量分数为0.01% - 1%的组分, 回收率应大于99%;质量分数低于0.01%的痕量组分, 回收率为90% - 95%,有时更低一些也允许。
第11章分析化学中常用的分离富集方法
11.1 概述 11.2 气态分离法 11.3 沉淀与过滤分离 11.4 萃取分离法 11.5 离子交换分离法 11.6 色谱分离 11.7 电分离法 11.8 气浮分离法 11.9 膜分离
11.1 概述
分离 在实际分析工作中,遇到的样品往往含有多种组 分,进行测定时彼此发生干扰,不仅影响分析结 果的准确度,甚至无法进行测定。为了消除干扰, 比较简单的方法是控制分析条件或采用适当的掩 蔽剂。但是在许多情况下,仅仅控制分析条件或 加入掩蔽剂,不能消除干扰,还必须把被测元素 与干扰组分分离以后才能进行测定。所以定量分 离是分析化学的重要内容之一。
水蒸气蒸馏(Steam Distillation)是将水蒸气通入 不溶于水的有机物中或使有机物与水经过共沸而蒸出 的操作过程
c 减压和真空蒸馏 在大气压以下的蒸馏称为减压和真空蒸馏,用于分离易
第11章分析化学中常用的分离和富集方法
第11章分析化学中常用的分离和富集方法思考题1.在分析化学中,为什么要进行分离富集?分离时对常量和微量组分的回收率要求如何?答:在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。
换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用范围。
在一般情况下,对常量组分的回收率要求大于99。
9%,而对于微量组分的回收率要求大于99%。
样品组分含量越低,对回收率要求也降低。
2.常用哪些方法进行氢氧化物沉淀分离?举例说明.答:在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。
因此,采用控制溶液中酸度可使某些金属离子彼此分离。
在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。
常用的沉淀剂有:a 氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元素则生成氢氧化物胶状沉淀。
b 氨水法:采用NH4Cl—NH3缓冲溶液(pH8—9),可使高价金属离子与大部分一、二金属离子分离.c 有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基胺—HCl缓冲液,常用于Mn2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+,Fe3+,Ti(IV)等的分离。
d ZnO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。
1193.某矿样溶液含Fe3+,A13+,Ca2+,Mg2+,Mn2+,Cr3+,Cu2+和Zn2+等离子,加入NH4C1和氨水后,哪些离子以什么形式存在于溶液中?哪些离子以什么方式存在于沉淀中?分离是否完全?答:NH4Cl与NH3构成缓冲液,pH在8-9间,因此溶液中有Ca2+,Mg2+,,Cu(NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)3和Cr(OH)3和少量Mn(OH)2沉淀。
分析化学课件常用的分离和富集方法
膜分离
膜分离是一种利用不同物质在薄膜中的传输特性进行分离的方法。它具有操 作简便、能耗低等优点,被广泛应用于水处理和生物医药等领域。
总结
通过本课件的学习,你已经了解了分析化学中常用的分离和富集方法。这些 方法在实际应用中具有重要的意义,帮助我们更好地理解和解决化学问题。
分析化学课件常用的分离 和富集方法
在分析化学课程中,分离和富集方法是非常重要的。本课件将介绍几种常用 的分离和富集方法,帮助你更好地理解和应用这些技术。
蒸馏
蒸馏是一种通过利用不同组分的沸点差异来分离混合物的方法。它可以用于纯化液体样品,去除杂质,以及分离可 挥发性组分。
萃取
萃取是一种使用溶剂来从混合物中分离出目标物质的方法。该方法广泛应用 于有机合成、化学分析和环境监测等领域。
色谱分离
色谱分离是一种基于样品分子的物理化学特性差异进行分离的方法。它可以 用来分离和鉴定复杂混合物中的各种成分。
浓缩
浓缩是一种将稀溶液中的目标物质转化为较小体积的方法。它可以用于提高 目标物质的检测灵敏度和纯度。
萃取富集
萃取富集是一种将目标物质从大量样中富集到较小体积的方法。它常用于分析样品预处理和提取罕见成分。
常用的分离富集方法
05 电泳分离法
自由电泳
原理
利用带电粒子在电场中的迁移率不同而实现分离。
应用
用于分离蛋白质、核酸等生物大分子。
优点
操作简单,分辨率高。
缺点
时间长,对样品纯度要求高。
区带电泳
原理
在电场中,带电粒子在支持介质上移动时,受到电场力和阻力的作用, 最终会形成稳定的区带。
应用
常用于分离混合物中的组分,如蛋白质、多糖等。
常用的分离富集方法
目 录
• 沉淀分离法 • 萃取分离法 • 吸附分离法 • 色谱分离法 • 电泳分离法
01 沉淀分离法
盐析法
总结词
通过向溶液中加入适量的盐类,使目标物质因溶解度降低而析出的方法。
详细描述
盐析法是利用盐类物质降低溶液中目标物质的溶解度,使其从溶液中析出,从而实现分离富集的方法 。常用的盐析剂有硫酸铵、硫酸钠、氯化钠等。该方法操作简便,分离效果良好,但可能会引入杂质 离子。
优点
分离效果好,分辨率高。
缺点
操作复杂,对样品纯度要求高。
等电聚焦电泳
原理
利用等电点差异将不同蛋白质分离。
缺点
操作复杂,对缓冲液要求高。
应用
用于蛋白质的分离和纯化。
优点
分辨率高,可同时分离多种蛋白质。
THANKS FOR WATCHING
感谢您的观看
详细描述
柱色谱是将固体吸附剂或溶剂装填在柱管中,然后将样品加到柱子上,用合适的溶剂进 行洗脱,实现样品的分离。该方法具有分离效果好、可处理大量样品等优点,广泛应用
于各种领域。
气相色谱
总结词
气相色谱是一种高效的分离和富集方法,适 用于气体和挥发性液体的分析。
分析化学中常用的分离和富集方法
分析化学中常用的分离和富集方法要求:了解分析化学中常用的分离方法;理解萃取分离法的基本原理、萃取条件的选择及主要的萃取体系;掌握分配比、分配系数和萃取率的计算;掌握各种色谱法分离的机理。
了解一些新的分离富集方法。
一、概述在分析中对分离的要求是,干扰组分应减少到不再干扰被测组分的测定,被测组分在分离过程中损失要小到可以忽略不计。
后者常用回收率来衡量。
%100⨯=原来所含待测组分质量质量分离后待测的待测组分回收率回收率越高越好,不同体系对回收率的要求不一。
二、沉淀分离法沉淀分离法是一种经典的分离方法,它是利用沉淀反应有选择地沉淀某些离子,而其他离子则留在溶液中,从而达到分离的目的。
常用方法有:常量组分的沉淀分离(氢氧化物沉淀分离:氢氧化钠法、氨水法、有机碱法、ZnO 悬浊液法;硫化物沉淀分离;利用有机沉淀剂进行分离;其他无机沉淀剂),痕量组分共沉淀分离和富集(无机共沉淀剂;有机共沉淀剂)。
三、挥发和蒸馏分离法挥发和蒸馏分离法是利用物质的挥发性的差异进行分离的一种方法,可以用于除去干扰组分,也可以使被测组分定量分出后再测定。
在无机物中,具有挥发性的物质并不多,因此这种方法选择性较高。
四、液—液萃取分离法1.萃取分离的原理:利用与水不相混溶的有机溶剂同试液一起震荡,一些组分进入有机相,另一些留在水相中,达到分离富集的目的。
2. 分配比和分配系数3. 萃取百分比%100⨯=被萃取物质的总量的总量被萃取物质在有机相中E即%100/00000⨯+=+=V V D D V C V C V C E w ww[] [::]D organic w aterO O D w wA A A c K D K A c D ==分配系数分配比ww V DV V m m +⋅=001若用0V (mL )溶剂,萃取n 次,水相中剩余被萃取物为m n (g ),则DV DV V m m nw w n )]/([00+=,查表得出同量的萃取剂,分几次萃取的效率比一次萃取的效率高,但增加萃取次数会影响工作效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分离后待测组分的质量
回收率 =
100%
原有试样中待测组分的量
—— 待测组分的损失越小 —— 干扰组分分离完全
➢ 实验方法应简便、快速
2020/8/11
精品课件
3
2-1 沉淀分离法
无机沉淀剂 —— 氢氧化物、硫化物等沉淀剂
沉淀分离法
(常量组分) 有机沉淀剂 —— 草酸、铜试剂、铜铁试剂等
溶度积相差大,控制酸度可使金属离 子相互分离(常用于两性金属离子和 非两性金属离子的分离)
2020/8/11
精品课件
5
金属氢氧化物开始沉淀与完全沉淀的pH值
设金属离子的浓度为:0.01 mol L-1 氢氧化物 开始沉淀 沉淀完全
pH 值
pH 值
H2WO4
0
0
Sn(OH)4
0.5
1.3
TiO(OH)2
Cr3+、Sb(III)、Sb(V)
精品课件
8
硫化物沉淀分离法
控制酸度
控制[S2-]
➢ 常用于分离除去重金属(如Pb2+…… )
选择性差,共沉淀/继沉淀严重
➢ 利用硫代乙酰胺水解进行均相沉淀
在酸性溶液中:
CH3CSNH2+2H2O+H+===CH3COOH+H2S+NH4+ 在碱性溶液中:
2020/8/11CH3CSNH2+3OH-===C精H品3课C件OO-+S2-+NH3 +H2O
NaOH
pH=12
(1)主要用于两性元素与非两性元素分离
(2) Mg2+ 、Fe3+、稀土、Th(IV)、Zr(IV)、Hf(IV)、
Cu2+、Cd2+、Ag+、Hg2+、Bi3+、Co2+ 、Mn2+、Ni2+
NH3•H2O
NH4Cl 存在 pH=8-9
(1)使高价金属离子(如 Fe3+,A13+等)与大部分一、二 价金属离子分离 (2) Be2+ 、Al3+、Fe3+、Cr2+、稀土、Ti(IV)、Zr(IV)、
➢ 控制pH值选择合适的沉淀剂 ➢ 采用均匀沉淀法或在较热的浓溶液中沉淀,并且热
溶液洗涤消除共沉淀
➢ 加入掩蔽剂提高分离选择性
EDTA存在下各种氢氧化物沉淀剂可以沉淀的离子
沉淀剂 NaOH NH3•H2O 六次甲基四胺
2020/8/11
可以沉淀的离子
Mg2+、Fe3+
Be2+ 、Ti(IV)、Nb(IV)、Ta(IV)、Sn(IV)、Sb(III)、Sb(V)
0.5
2.0
Ge(OH)4
0.8
1.2
ZrO(OH)2
2.3
3.8
Fe(OH)3
2.2
3.5
Al(OH)3
4.1
5.4
Th(OH)4
4.5
Cr(OH)3
4.6
5.9
Be(OH)2
6.2
6.8
氢氧化物
Zn(OH)2 稀土氢氧化物 Pb(OH)2
Ag2O Fe(OH)2 Co(OH)2 Ni(OH)2 Cd(OH)2 Mn(OH)2 Mg(OH)2
2020/8/11
精.5
7.2 8.2 7.5 7.6 7.7 6.4 8.8 9.6
沉淀完 全 pH 值
8.5 -9.5 8.7 11.2 9.5 8.2 8.4 8.4 10.8 11.6
6
氢氧化物沉淀分离法中的常用试剂
沉淀剂
沉淀介质
适用性与沉淀的离子
共沉淀分离法 —— 富集痕量待测组分的同时进行分离
(痕量组分)
2020/8/11
精品课件
4
氢氧化物沉淀分离法
• 思考:Fe3+、Zn2+混合溶液,如何测其中的Fe3+含量? (设Fe3+和Zn2+的初始浓度均为 0.01 mol L-1)
K s p F e ( O H ) 3 3 . 5 1 0 3 8 ,K s p Z n ( O H ) 2 1 . 2 1 0 1 7
Hf(IV)、Th(IV)、Nb(IV)、Ta(IV)、Sn(IV)、
加入NH4Cl的作用:
部分沉淀:Fe2+、Mn2+ 、Mg2+ (pH=12-12.5)
✓ ✓
六 胺 机 苯控 大 吸胺 碱、次制量附(、 :甲 苯其溶的吡肼基它啶N液等四 有 、H)p4H+与 成 缓作为冲 其p为8溶 H共=-液轭9抗5-,酸 6衡的 构防离止((S12子n))M2T+,通、i( g➢过F(减IOVe加控) 3少+H、制 入、Z)值了B2r(沉i使3+氢IV金淀、)氧属、S和T离 b化h(减( 子I物II分IV少)、 )离对、ASC其bl(r(3O+它、 VH)A金)l33+的、 属S溶离n(解子IV)的、
氨性介质
Ag+、Pb2+、Cu2+、Cd2+、Hg2+、Bi3+、 Fe3+、Fe2+、Co2+、Zn2+、Ni2+ 、Mn2+、
Sn2+
2020/8/11
精品课件
10
其他无机沉淀剂分离法
沉淀剂 稀HCl
沉淀介质 稀HNO3
稀H2SO4
稀HNO3
HF或NH4F
H3PO4或 NaH2PO4或
Na2HPO4 或Na3PO4
弱酸介质 酸性介质 弱酸性介质
氨性介质
可以沉淀的离子 Ag+、Pb2+(溶解度较大)、
Hg2+、Ti(IV) Ca2+、Sr2+、Ba2+、Pb2+、
Ra2+ Ca2+、Sr2+、Th(IV)、稀土 Zr(IV)、Hf(IV)、Th(IV)、Bi3+
9
硫化物沉淀剂
沉淀剂
H2S Na2S (NH4)2S
沉淀介质
可以沉淀的离子
稀HCl介质 Ag+、Pb2+、Cu2+、Cd2+、Hg2+、Bi3+、 (0.2-0.5 mol L-1) As(III)、Sn(IV)、Sn2+、Sb(III)、Sb(V)
碱性介质 (pH>9)
Ag+、Pb2+、Cu2+、Cd2+、Bi3+、Fe3+、 Fe2+、Co2+、Zn2+、Ni2+、Mn2+、Sn2+
✓ Z法大nO量悬存蚀在液的酸 p电H性约解溶为质液6促进((了21))通微胶过溶体控碳沉制酸值淀盐使的或金氧 属凝离化聚子物,分:离可Mg获O, 得Ba含CO水3, 量Ca小CO,3,
2结020/构8/11紧密的沉淀
PbCO3精等品课件
7
问题与改善方法
选择性差,共沉淀严重
➢ 采用“小体积”沉淀法 如:在大量NaCl存在下,NaOH分离Al3+与Fe3+
第2章 分析化学中常用的分离富集方法
➢沉淀分离 ➢溶剂萃取分离 ➢色谱分离 ➢离子交换分离
精品课件
概述
为什么要对样品进行前处理?
➢基体组成复杂,干扰组分量 相对比较大 —— 分离
➢待测组分含量较低,而现有测
定方法的灵敏度又不够高
—— 富集或分离富集
2020/8/11
精品课件
2
概述
对分离富集的要求: