八年级数学上册同步练习题及答案

合集下载

人教版初中数学八年级上册同步练习全套(含答案解析)

人教版初中数学八年级上册同步练习全套(含答案解析)

人教版初中数学八年级上册同步练习全套《11.1.1 三角形的边》同步练习一、选择题(共15题)1、图中三角形的个数是()A、8个B、9个C、10个D、11个2、至少有两边相等的三角形是()A、等边三角形B、等腰三角形C、等腰直角三角形D、锐角三角形3、已知三角形的三边为4、5、x ,则不可能是()A、6B、5C、4D、14、以下三条线段为边,能组成三角形的是()A、1cm、2cm、3cmB、2cm、2cm、4cmC、3cm、4cm、5 cmD、4cm、8cm、2cm5、一个三角形的两边分别为5cm、11cm,那么第三边只能是()A、3cmB、4cmC、5cmD、7cm6、下列长度的各组线段中,不能组成三角形的是()A、1.5,2.5,3.5B、2,3,5C、6,8,10D、4,3,37、已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A、13cmB、6cmC、5cmD、4cm8、若三角形的三边长分别为3,4,x-1,则x的取值范围是( )A、0<x<8B、2<x<8C、0<x<6D、2<x<69、已知三角形的三边长分别为3、x、14,若x为正整数,则这样的三角形共有()A、2个B、3个C、5个D、7个10、小明与小王家相距5km,小王与小邓家相距2km,则小明与小邓家相距()A、3kmB、7kmC、3km或7kmD、不小于3km也不大于7km11、若三条线段的比是①1:4:6;②1:2:3,;③3:3:6;④6:6:10;⑤3:4:5;其中可构成三角形的有()A、1个B、2个C、3个D、4个12、若三角形三边长为整数,周长为11,且有一边长为4,则此三角形中最长的边是()A、7B、6C、5D、413、已知不等边三角形的两边长分别是2cm和9cm,如果第三边的长为整数,那么第三边的长为()A、8cmB、10cmC、8cm或10cmD、8cm或9cm14、△ABC的三边分别为a , b , c且(a+b-c)(a-c)=0,那么△ABC为()A、不等边三角形B、等边三角形C、等腰三角形D、锐角三角形15、如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为()A、6B、7C、8D、10二、填空题16、按照三个内角的大小,可以将三角形分为锐角三角形、________、________;按照有几条边相等,可以将三角形分为等边三角形、________、________.17、△ABC的三边分别为a , b , c.则同时有________,理由:________.18、等腰三角形的一边为6,另一边为12,则其周长为________.19、一个三角形的周长为81cm,三边长的比为2:3:4,则最长边比最短边长________cm.20、某村庄和小学分别位于两条交叉的大路边(如图).可是,每年冬天麦田弄不好就会走出一条小路来.你说小学生为什么会这样走呢?________.21、小华要从长度分别是5cm,6cm,11cm,16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是________.________ ________ 。

八年级数学人教版上册同步练习提公因式法(解析版)

八年级数学人教版上册同步练习提公因式法(解析版)

14.3.1提公因式法一、单选题1.在3257x x x k +++中,若有一个因式为(2)x +,则k 的值为( )A .2B .2-C .6D .6- 【答案】A【分析】根据因式分解的意义可设()()322572x x x k x x mx n +++=+++,再利用整式乘法计算()()22x x mx n +++后得()()32222x m x n m x n +++++,即可根据因式分解与整式乘法的关系求解.【详解】设()()322572x x x k x x mx n +++=+++, ∵()()22x x mx n +++ 322222x mx nx x mx n =+++++()()32222x m x n m x n =+++++3257x x x k =+++,∴25m ,27n m +=, 2k n =,解得3m =,1n =,2k =.故选:A .【点评】本题考查了因式分解的意义,掌握因式分解与整式乘法的关系是解题的关键.2.下列各式由左边到右边是因式分解且分解结果正确的是( )A .()3a 43a 12-=-B .()()24x 94x 34x 3-=+-C .()22x 4x 4x 2-+=-D .()3224a 6a 2a 2a 2a 3a ++=+ 【答案】C【分析】根据因式分解的意义求解即可.【详解】A 、()34312a a -=-是整式的乘法,故A 不符合题意;B 、()()2492323x x x -=+-,原式分解不正确,故B 不符合题意;C 、()22442x x x -+=-,分解正确,故C 符合题意;D 、()3224622231a a a a a a ++=++,原式分解不正确,故D 不符合题意;故选:C .【点评】本题考查了因式分解的意义,利用因式分解是把一个多项式转化成几个整式积的形式.3.下列从左到右是因式分解的是( ).A .(a +b )(a -b )=a 2-b 2B .(a +b )2 =a 2+2ab +b 2C .(x +2)(x -5)=x 2-3x +10D .x 2+2x -15=(x -3)(x +5) 【答案】D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、是整式的乘法,故B 错误;C 、是整式的乘法,故C 错误;D 、符合因式分解,故D 正确;故选:D .【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式,注意因式分解与整式乘法的区别.4.下列等式中,从左到右的变形正确的是( )A .()22242x x x ++=+B .()()2444x x x -=+-C .()222244x y x xy y +=++D .()()2x 2x 3x 6+-=-【答案】C【分析】分别对各选项进行变形,然后对照进行判断即可得到答案.【详解】A 、()22241+3x x x ++=+,原选项变形错误,故不符合题意;B 、()()2422x x x -=+-,原选项变形错误,故不符合题意;C 、()222244x y x xy y +=++,原选项变形正确,故符合题意;D 、2(2)(3)6x x x x +=---,原选项变形错误,故不符合题意;故选:C .【点评】此题主要考查了整式的乘法和因式分解,熟练掌握运算法则是解答此题的关键.5.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( ) A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解【答案】D 【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点评】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义. 6.下列各式由左边到右边的变形中,是分解因式的为( )A .2105525x x x x x -=⋅-B .()a x y ax ay +=+C .()22442x x x -+=-D .()()2163443x x x x x -+=-++ 【答案】C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义解答.【详解】A 、2105525x x x x x -=⋅-,不是分解因式;B 、()a x y ax ay +=+,不是分解因式;C 、()22442x x x -+=-,是分解因式;D 、()()2163443x x x x x -+=-++,不是分解因式; 故选:C .【点评】此题考查多项式的分解因式,熟记定义及分解因式后式子的特点是解题的关键.7.下列各式从左到右的变形中,属于分解因式的是( )A .a (m+n )=am+anB .10x 2﹣5x =5x (2x ﹣1)C .x 2﹣16+6x =(x+4)(x ﹣4)+6xD .a 2﹣b 2﹣c 2=(a ﹣b )(a+b )﹣c 2【答案】B【分析】根据分解因式的定义逐个判断即可.【详解】A .等式由左到右的变形属于整式乘法,不属于分解因式,故本选项不符合题意;B .等式由左到右的变形属于分解因式,故本选项符合题意;C .等式由左到右的变形不属于分解因式,故本选项不符合题意;D .等式由左到右的变形不属于分解因式,故本选项不符合题意;故选:B .【点评】此题考查了因式分解的定义.掌握其定义是解答此题的关键.8.(﹣2)2019+(﹣2)2020等于( )A .﹣22019B .﹣22020C .22019D .﹣2【答案】C【分析】直接提取公因式(−2)2019,进而计算得出答案.【详解】(−2)2019+(−2)2020=(−2)2019×(1−2)=22019.故选:C .【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.二、填空题目9.多项式39x -,29x -与269x x -+的公因式为______.【答案】3x -【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【详解】因为3x ﹣9=3(x ﹣3),x 2﹣9=(x +3)(x ﹣3),x 2﹣6x +9=(x ﹣3)2,所以多项式3x ﹣9,x 2﹣9与x 2﹣6x +9的公因式为(x ﹣3).故答案:3x -.【点评】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.10.已知22()()24x my x ny x xy y -+=+-,则22m n mn -的值为______.【答案】8.-【分析】由22()()24x my x ny x xy y -+=+-可得()222224,x n m xy mny x xy y +--=+-可得:2,4,n m mn -=-=-即2,4,m n mn -=-=再把22m n mn -分解因式,再整体代入求值即可.【详解】 22()()24x my x ny x xy y -+=+-,222224,x nxy mxy mny x xy y ∴+--=+-()222224,x n m xy mny x xy y ∴+--=+-2,4,n m mn ∴-=-=-2,4,m n mn ∴-=-=∴ ()22m n m n mn mn =--()428.=⨯-=-故答案为:8.-【点评】本题考查的是整式的乘法,多项式的恒等,因式分解的应用,掌握以上知识是解题的关键. 11.多项式22y y m ++因式分解后有一个因式是(1)y -,则m =_______.【答案】3-【分析】由于x 的多项式y 2+2y+m 分解因式后有一个因式是(y-1),所以当y=1时多项式的值为0,由此得到关于m 的方程,解方程即可求出m 的值.【详解】∵多项式y 2+2y+m 因式分解后有一个因式为(y-1),∵当y=1时多项式的值为0,即1+2+m=0,解得m=-3.故答案为:-3.【点评】本题考查了因式分解的意义,有公因式时,要先考虑提取公因式;注意运用整体代入法求解. 12.已知x 2-3x -1=0,则2x 3-3x 2-11x +1=________.【答案】4【分析】根据x 2-3x -1=0可得x 2-3x =1,再将所求代数式适当变形后分两次整体代入即可求得值.【详解】∵x 2-3x -1=0,∴x 2-3x =1,∴3223111x x x --+=223132611x x x x -+-+=()22233111x x x x x -+-+将x 2-3x =1代入原式=221113x x x +-+=23)13(x x -+将x 2-3x =1代入原式=314+=,故答案为:4.【点评】本题考查代数式求值,因式分解法的应用.解决此题的关键是掌握“降次”思想和整体思想.三、解答题13.仔细阅读下面例题:例题:已知二次三项式25x x m ++有一个因式是x +2,求另一个因式以及m 的值.解:设另一个因式px +n ,得25x x m ++=(x +2)(px +n ),对比等式左右两边x 的二次项系数,可知p =1,于是25x x m ++=(x +2)(x +n ).则25x x m ++=2x +(n +2)x +2n ,∴n +2=5,m =2n ,解得n =3,m =6,∴另一个因式为x +3,m 的值为6依照以上方法解答下面问题:(1)若二次三项式2x ﹣7x +12可分解为(x ﹣3)(x +a ),则a = ;(2)若二次三项式22x +bx ﹣6可分解为(2x +3)(x ﹣2),则b = ;(3)已知代数式23x +2x +kx ﹣3有一个因式是2x ﹣1,求另一个因式以及k 的值.【答案】(1)-4;(2)-1;(3)另一个因式为2x +x +3,k 的值为5.【分析】(1)仿照题干中给出的方法计算即可;(2)仿照题干中给出的方法计算即可;(3)设出另一个因式为(2ax bx c ++),对比两边三次项系数可得a =1,再参照题干给出的方法计算即可.【详解】(1)∵2(3)()33x x a x x ax a -+=-+-=2(3)3x a x a +--=2712x x -+.∴a ﹣3=﹣7,﹣3a =12,解得:a =﹣4.(2)∵2(23)(2)2346x x x x x +-=+--=226x x --.=226x bx +-.∴b =﹣1.(3)设另一个因式为(2ax bx c ++),得32223(21)()x x kx x ax bx c ++-=-++.对比左右两边三次项系数可得:a =1.于是32223(21)()x x kx x x bx c ++-=-++.则3232232232222(21)(2)x x kx x x bx bx cx c x b x c b x c ++-=-+-+-=+-+--.∴﹣c =﹣3,2b ﹣1=1,2c ﹣b =k .解得:c =3,b =1,k =5.故另一个因式为23x x ++,k 的值为5.【点评】本题以阅读材料给出的方法为背景考查了因式分解、整式乘法、合并同类项等知识,熟练掌握以上知识是解题关键.14.解答下列各题:(1)计算:()()()22x 12x 52x 5+-+-(2)分解因式:()225m 2x y 5mn --. 【答案】(1)426x +;(2)()()5m 2x y+n 2x y n ---【分析】(1)利用完全平方公式和平方差公式分别计算前后两部分,然后进行加减运算即可;(2)先提取公因式5m ,再利用平方差公式计算.【详解】(1)原式2241=4425x x x +++-=426x +(2)原式()22=5m 2x y n -⎡⎤-⎣⎦()()=5m 2x y+n 2x y n ---【点评】本题考查整式的混合运算和因式分解,解题的关键是熟练掌握完全平方公式和平方差公式的法则. 15.将下列各式因式分解:(1)324x xy -;(2)(x ﹣y )2x +6xy (y ﹣x )+9(x ﹣y )2y .【答案】(1)x (x+2y )(x-2y );(2)(x ﹣y )2(3)x y -.【分析】(1)先提取公因式x ,后变形成为22(2)x y -,用平方差公式分解即可;(2)先将6xy (y ﹣x )变形为-6xy (x﹣y),后提取公因式,再用完全平方公式分解即可.【详解】(1)324x xy -=22(4)x x y -=22[(2)]x x y -=x (x+2y )(x-2y );(2)(x ﹣y )2x +6xy (y ﹣x )+9(x ﹣y )2y=(x ﹣y )2x -6xy (x ﹣y )+9(x ﹣y )2y=(x ﹣y )(2x -6xy +92y )=(x ﹣y )2(3)x y -.【点评】本题考查了提取公因式法,平方差公式法,完全平方公式法分解因式,熟练掌握先提后套用公式分解因式是解题的关键.16.我们常利用数形结合思想探索整式乘法的一些法则和公式.类似地,我们可以借助一个棱长为a 的大正方体进行以下探索:(1)在大正方体一角截去一个棱长为()<b b a 的小正方体,如图1所示,则得到的几何体的体积为________;(2)将图1中的几何体分割成三个长方体①、②、③,如图2所示,∵BC a =,AB a b =-,CF b =,∴长方体①的体积为()ab a b -.类似地,长方体②的体积为________,长方体③的体积为________;(结果不需要化简)(3)将表示长方体①、②、③的体积相加,并将得到的多项式分解因式的结果为________;(4)用不同的方法表示图1中几何体的体积,可以得到的等式为________.(5)已知4a b -=,2ab =,求33a b -的值.【答案】(1)33a b -;(2)()2b a b -,()2a a b -;(3)()+ab a b -()2b a b -()2+a a b -()()22a b a ab b =-++;(4)()()3322a b a b a ab b -=-++;(5)88.【分析】(1)由大的正方体的体积为3,a 截去的小正方体的体积为3,b 从而可得答案;(2)由,,ED OD b DM a b ===-,,GH HJ a HN a b ===-利用长方体的体积公式直接可得答案; (3)提取公因式-a b ,即可得到答案;(4)由(1)(3)的结论结合等体积的方法可得答案;(5)利用()2222,a b a b ab +=-+先求解22,a b + 再利用()()3322a b a b a ab b -=-++,再整体代入求值即可得到答案.【详解】(1)由大的正方体的体积为3,a 截去的小正方体的体积为3,b所以截去后得到的几何体的体积为:33,a b -故答案为:33.a b -(2),,ED OD b DM a b ===-由长方体的体积公式可得:长方体②的体积为()2b a b -,,,GH HJ a HN a b ===-所以长方体③的体积为()2,aa b - 故答案为:()2b a b -,()2.a a b -(3)由题意得:()+ab a b -()2b a b -()2+a a b -()()22.a b a ab b =-++故答案为:()+ab a b -()2b a b -()2+a a b -()()22.a b a ab b =-++(4)由(1)(3)的结论,可以得到的等式为:()()3322.a b a b a ab b -=-++故答案为:()()3322.a b a b a ab b -=-++(5) 4a b -=,2ab =,()222216420,a b a b ab ∴+=-+=+=()()3322a b a b a ab b -=-++,()33420288.a b ∴-=⨯+=【点评】本题考查的是完全平方公式的变形,提公因式分解因式,代数恒等式的几何意义,掌握利用不同的方法表示同一个几何体的体积得到代数恒等式,以及应用得到的恒等式解决问题是解题的关键. 17.已知7,12a b ab -==-(1)求22ab a b -的值(2)求22a b +的值【答案】(1)84;(2)25.【分析】(1)先提取公因式ab -将所求式子因式分解为()ab a b --,再将已知式子的值代入即可得; (2)利用完全平方公式进行变形求值即可得.【详解】(1)7,12a b ab -==-,()22ab a b ab a b ∴-=--,()127=--⨯,84=;(2)7,12a b ab -==-,()249a b ∴-=,22249a b ab ∴+-=,()2221249a b ∴+-⨯-=,2225a b ∴+=.【点评】本题考查了利用因式分解和完全平方公式进行变形求值,熟练掌握因式分解的方法和完全平方公式是解题关键.18.设333201720182019x y z ==,322222x mx nx x mx n =+++++,且=.求111x y z++的值. 【答案】1.【分析】由322222x mx nx x mx n =+++++,可得000x y z >>>,,,令333201720182019x y z k ===,由=变形得=可得2111111x y z x y z ⎛⎫++=++ ⎪⎝⎭因式分解11111110x y z x y z ⎛⎫⎛⎫++++-= ⎪⎪⎝⎭⎝⎭,由000x y z >>>,,,1110x y z ++>,可得1111x y z ++=. 【详解】∵322222x mx nx x mx n =+++++,∴000x y z >>>,,,或,,x y z 一正,两负,333201720182019x y z ==说明x ,y ,z 同号,∴000x y z >>>,,,令333201720182019x y z k ===,=++,=+,=+,111x y z ⎛⎫=++ ⎪⎝⎭,111x y z=++, ∴2111111x y z x y z ⎛⎫++=++ ⎪⎝⎭, ∴11111110x y z x y z ⎛⎫⎛⎫++++-= ⎪⎪⎝⎭⎝⎭, ∵000x y z >>>,,,1110x y z++>, ∴1111x y z++=. 【点评】本题考查立方根条件求值问题,掌握立方根的性质,巧秒恒等变形使实际问题简化,利用等式两边平方,因式分解求出代数式的值是解题关键.19.已知5x y +=,4xy =,求下列各式的值.(1)x y -;(2)33x y xy +.【答案】(1)3±;(2)68【分析】(1)根据完全平方公式的变形公式(x ﹣y )2=(x+y)2﹣4xy 进行求解即可;(2)利用完全平方公式求解x 2+y 2,再将所求代数式因式分解,进而代入数值即可求解.【详解】(1)∵5x y +=,4xy =,∴(x ﹣y )2=(x+y)2﹣4xy=52﹣4×4=9,∴x ﹣y=±3;(2)∵(x+y )2= x 2+y 2+2xy ,∴x 2+y 2=52﹣2×4=17,∴33x y xy +=xy(x 2+y 2)=4×17=68.【点评】本题考查代数式求值、完全平方公式、平方根、因式分解、有理数的混合运算,熟记完全平方公式,灵活运用公式是解答的关键.20.仔细阅读下面的例题:例题:已知二次三项式25x x m ++有一个因式是2x +,求另一个因式及m 的值.解:设另一个因式为x n +,得25(2)()x x m x x n ++=++,则225(2)2x x m x n x n ++=+++,25n ∴+=,2m n =,解得3n =,6m =,∴另一个因式为3x +,m 的值为6.依照以上方法解答下列问题:(1)若二次三项式254x x -+可分解为(1)()x x a -+,则a =________;(2)若二次三项式226x bx +-可分解为(23)(2)x x +-,则b =________;(3)已知二次三项式229x x k +-有一个因式是21x -,求另一个因式以及k 的值.【答案】(1)4-;(2)1-;(3)另一个因式为5x +,k 的值为5.【分析】(1)将(1)()x x a -+展开,根据所给出的二次三项式即可求出a 的值;(2)(2x +3)(x ﹣2)展开,可得出一次项的系数,继而即可求出b 的值;(3)设另一个因式为(x +n ),得2x 2+9x ﹣k =(2x ﹣1)(x +n ),可知2n ﹣1=9,﹣k =﹣n ,继而求出n 和k 的值及另一个因式.【详解】(1)∵(1)()x x a -+=x 2+(a ﹣1)x ﹣a =254x x -+,∴a ﹣1=﹣5,解得:a =﹣4;故答案是:﹣4(2)∵(2x +3)(x ﹣2)=2x 2﹣x ﹣6=2x 2+bx ﹣6,∴b =﹣1.故答案是:﹣1.(3)设另一个因式为(x+n),得2x2+9x﹣k=(2x﹣1)(x+n),则2x2+9x﹣k=2x2+(2n﹣1)x﹣n,∴2n﹣1=9,﹣k=﹣n,解得n=5,k=5,∴另一个因式为x+5,k的值为5.【点评】本题考查因式分解的意义,解题关键是对题中所给解题思路的理解,同时要掌握因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.祝福语祝你考试成功!。

(完整版)八年级数学上册同步练习题及答案

(完整版)八年级数学上册同步练习题及答案

12.1.1平方根(第一课时)◆随堂检测1、若x 2=a ,则叫的平方根,如16的平方根是,972的平方根是 2、3±表示的平方根,12-表示12的3、196的平方根有个,它们的和为4、下列说法是否正确?说明理由(1)0没有平方根;(2)—1的平方根是1±;(3)64的平方根是8;(4)5是25的平方根;(5)636±=5、求下列各数的平方根(1)100(2))8()2(-⨯-(3)1.21(4)49151 ◆典例分析例若42-m 与13-m 是同一个数的平方根,试确定m 的值◆课下作业●拓展提高一、选择1、如果一个数的平方根是a+3和2a-15,那么这个数是()A 、49B 、441C 、7或21D 、49或4412、2)2(-的平方根是()A 、4B 、2C 、-2D 、2±二、填空3、若5x+4的平方根为1±,则x=4、若m —4没有平方根,则|m —5|=5、已知12-a 的平方根是4±,3a+b-1的平方根是4±,则a+2b 的平方根是三、解答题6、a 的两个平方根是方程3x+2y=2的一组解(1)求a 的值(2)2a 的平方根7、已知1-x +∣x+y-2∣=0求x-y 的值●体验中考1、(09河南)若实数x ,y 满足2-x +2)3(y -=0,则代数式2x xy -的值为2、(08咸阳)在小于或等于100的非负整数中,其平方根是整数的共有个3、(08荆门)下列说法正确的是()A 、64的平方根是8B 、-1的平方根是1±C 、-8是64的平方根D 、2)1(-没有平方根◆随堂检测1、259_____ 2、一个数的算术平方根是9,则这个数的平方根是3x 的取值范围是,若a ≥04、下列叙述错误的是()A 、-4是16的平方根B 、17是2(17)-的算术平方根C 、164的算术平方根是18D 、0.4的算术平方根是0.02 ◆典例分析例:已知△ABC 的三边分别为a 、b 、c 且a 、b |4|0b -=,求c 的取值范围分析:根据非负数的性质求a 、b 的值,再由三角形三边关系确定c 的范围◆课下作业●拓展提高一、选择12=,则2(2)m +的平方根为()A 、16B 、16±C 、4±D 、2±2A 、4B 、4±C 、2D 、2±二、填空3、如果一个数的算术平方根等于它的平方根,那么这个数是42(4)y +=0,则x y =三、解答题5、若a 是2(2)-的平方根,b 是16的算术平方根,求2a +2b 的值6、已知a 为170的整数部分,b-1是400的算术平方根,求a b +的值●体验中考.(2009年山东潍坊)一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是()A .1a +B .21a +C .21a +D .1a +2、(08年泰安市)88的整数部分是;若a<57<b ,(a 、b 为连续整数),则a=,b=3、(08年广州)如图,实数a 、b 在数轴上的位置,化简222()a b a b ---=4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米2的房间,小明想知道每块瓷砖的规格,请你帮助算一算.12.1.2立方根◆随堂检测1、若一个数的立方等于—5,则这个数叫做—5的,用符号表示为,—64的立方根是,125的立方根是;的立方根是—5.2、如果3x =216,则x =.如果3x =64,则x =.3、当x 为时,32x -有意义.4、下列语句正确的是()A 、64的立方根是2B 、3-的立方根是27C 、278的立方根是32±D 、2)1(-立方根是1- 典例分析例若338x 51x 2+-=-,求2x 的值.●拓展提高一、选择1、若22)6(-=a ,33)6(-=b ,则a+b 的所有可能值是()A 、0B 、12-C 、0或12-D 、0或12或12-2、若式子3112a a -+-有意义,则a 的取值范围为() A 、21≥aB 、1≤aC 、121≤≤a D 、以上均不对 二、填空 3、64的立方根的平方根是4、若162=x ,则(—4+x )的立方根为三、解答题5、求下列各式中的x 的值(1)1253)2(-x =343(2)64631)1(3-=-x 6、已知:43=a ,且03)12(2=-++-c c b ,求333c b a ++的值●体验中考1、(09宁波)实数8的立方根是2、(08泰州市)已知0≠a ,a ,b 互为相反数,则下列各组数中,不是互为相反数的一组是()A 、3a 与3bB 、a +2与b +2C 、2a 与2b -D 、3a 与3b3、(08益阳市)一个正方体的水晶砖,体积为100cm 3,它的棱长大约在()A 、4~5cm 之间B 、5~6cm 之间C 、6~7cm 之间D 、7~8cm 之间12.2实数与数轴◆随堂检测1、下列各数:23,722-,327-,414.1,3π-,12122.3,9-,••9641.3中,无理数有个,有理数有个,负数有个,整数有个.2、33-的相反数是,|33-|=57-的相反数是,21-的绝对值=3、设3对应数轴上的点A ,5对应数轴上的点B ,则A 、B 间的距离为4、若实数a<b<0,则|a||b|;大于17小于35的整数是; 比较大小:6334112535、下列说法中,正确的是()A .实数包括有理数,0和无理数B .无限小数是无理数C .有理数是有限小数D .数轴上的点表示实数.◆典例分析例:设a 、b 是有理数,并且a 、b 满足等式2522-=++b b a ,求a+b 的平方根◆课下作业●拓展提高一、选择1、如图,数轴上表示1,2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 表示的实数为()A .2-1B .1-2C .2-2D .2-22、设a 是实数,则|a|-a 的值()A .可以是负数B .不可能是负数C .必是正数D .可以是整数也可以是负数二、填空3、写出一个3和4之间的无理数4、下列实数1907,3π-,0,49-,21,31-1…(每两个1之间的0的个数逐次加1)中,设有m 个有理数,n 个无理数,则n m =三、解答题5、比较下列实数的大小(1)|8-|和3(2)52-和9.0-(3)215-和87 6、设m 是13的整数部分,n 是13的小数部分,求m-n 的值.●体验中考.(2011年青岛二中模拟)如图,数轴上A B ,两点表示的数分别为1-,点B 关于点A 的对称点为C ,则点C 所表示的数为()A.2-B.1- C.2- D.1+.(2011年湖南长沙)已知实数a在数轴上的位置如图所示,则化简|1|a -的结果为()C A 0B(第46题图)A .1B .1-C .12a -D .21a - 3、(2011年江苏连云港)实数a b ,在数轴上对应点的位置如图所示,则必有()A .0a b +>B .0a b -<C .0ab >D .0a b< 4、(2011年浙江省杭州市模2)如图,数轴上点A 所表示的数的倒数是( )A .2-B .2C .12D .12- §13.1幂的运算1.同底数幂的乘法试一试(1)23×24=()×()=2();(2)53×54=5();(3)a 3·a 4=a ().概括:a m ·a n =()()==a n m +.可得a m ·a n =a n m +这就是说,同底数幂相乘,.例1计算:(1)103×104;(2)a ·a 3;(3)a ·a 3·a 5.练习1.判断下列计算是否正确,并简要说明理由.(1)a ·a 2=a 2;(2)a +a 2=a 3;(3)a 3·a 3=a 9;(4)a 3+a 3=a 6.2.计算:(1)102×105;(2)a 3·a 7;(3)x ·x 5·x 7.3.填空:(1)ma 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________;(第8题图)(3)4)2(-表示________,42-表示________;(4)根据乘方的意义,3a =________,4a =________,因此43a a ⋅=)()()(+同底数幂的乘法练习题1.计算:(1)=⋅64a a (2)=⋅5b b(3)=⋅⋅32m mm (4)=⋅⋅⋅953c c c c (5)=⋅⋅p n m a a a(6)=-⋅12m t t (7)=⋅+q q n 1(8)=-+⋅⋅112p p n n n 2.计算:(1)=-⋅23b b (2)=-⋅3)(a a(3)=--⋅32)()(y y (4)=--⋅43)()(a a (5)=-⋅2433(6)=--⋅67)5()5((7)=--⋅32)()(q q n (8)=--⋅24)()(m m (9)=-32(10)=--⋅54)2()2((11)=--⋅69)(b b (12)=--⋅)()(33a a3.下面的计算对不对?如果不对,应怎样改正? (1)523632=⨯;(2)633a a a =+;(3)n n n yy y 22=⨯;(4)22m m m =⋅; (5)422)()(a a a =-⋅-;(6)1243a a a=⋅; (7)334)4(=-;(8)6327777=⨯⨯;(9)42-=-a ;(10)32n n n =+.4.选择题:(1)22+m a 可以写成( ).A .12+m a B .22a a m +C .22a a m ⋅D .12+⋅m a a(2)下列式子正确的是( ).A .4334⨯=B .443)3(=-C .4433=-D .3443=(3)下列计算正确的是( ).A .44a a a =⋅B .844a a a =+C .4442a a a =+D .1644a a a =⋅2.幂的乘方根据乘方的意义及同底数幂的乘法填空:(1)(23)2=×=2();(2)(32)3=×=3();(3)(a 3)4=×××=a ().概括(a m )n =(n 个)=(n 个)=a mn可得(a m )n =a mn (m 、n 为正整数).这就是说,幂的乘方,.例2计算:(1) (103)5;(2)(b 3)4.练习1.判断下列计算是否正确,并简要说明理由.(1)(a 3)5=a 8;(2)a 5·a 5=a 15;(3)(a 2)3·a 4=a 9.2.计算:(1)(22)2;(2)(y 2)5;(3)(x 4)3;(4)(y 3)2·(y 2)3.3、计算: (1)x·(x 2)3(2)(x m )n ·(x n )m (3)(y 4)5-(y 5)4(4)(m 3)4+m 10m 2+m·m 3·m 8(5)[(a -b )n ]2[(b -a )n -1]2(6)[(a -b )n ]2[(b -a )n -1]2(7)(m 3)4+m 10m 2+m·m 3·m 8幂的乘方一、基础练习1、幂的乘方,底数_______,指数____.(a m )n =___(其中m 、n 都是正整数)2、计算:(1)(23)2=_____;(2)(-22)3=______;(3)-(-a 3)2=______;(4)(-x 2)3=_______。

人教版八年级数学上册同步练习题及答案+八年级数学下册同步练习题及答案

人教版八年级数学上册同步练习题及答案+八年级数学下册同步练习题及答案

人教版八年级数学上册同步练习题及答案+八年级数学下册同步练习题及答案人教八年级数学上册同步练习题及答案第十一章全等三角形11.1全等三角形1、已知⊿ABC≌⊿DEF,A与D,B与E分别是对应顶点,∠A=52°,∠B=67 °,BC =15cm,= ,FE = .则F2、∵△ABC≌△DEF∴AB= ,AC= BC= ,(全等三角形的对应边)∠A= ,∠B= ,∠C= ;(全等三角形的对应边)3、下列说法正确的是()A:全等三角形是指形状相同的两个三角形 B:全等三角形的周长和面积分别相等C:全等三角形是指面积相等的两个三角形 D:所有的等边三角形都是全等三角形4、如图1:ΔABE≌ΔACD,AB=8cm,AD=5cm,∠A=60°,∠B=40°,则AE=_____,∠C=____。

C课堂练习1、已知△ABC ≌△CDB ,AB 与CD 是对应边,那么AD= ,∠A= ;2、如图,已知△ABE ≌△DCE ,AE=2cm ,BE=1.5cm ,∠A=25°∠B=48°; 那么DE= cm ,EC= cm ,∠C= 度.3、如图,△ABC ≌△DBC ,∠A=800,∠ABC=300,则∠DCB= 度;(第1小题) (第2小题) (第3小题) (第4小题)4、如图,若△ABC ≌△ADE ,则对应角有 ; 对应边有 (各写一对即可);11.2.1全等三角形的判定(sss )课前练习1、如图1:AB=AC ,BD=CD ,若∠B=28°则∠C= ;2、如图2:△EDF ≌△BAC ,EC=6㎝,则BF= ;3、如图,AB ∥EF ∥DC ,∠ABC =900,AB =DC ,那么图中有全等三角形 对。

第2题图EDCBA(第1小题) (第2小题) (第3小题)课堂练习4、如图,在△ABC 中,∠C =900,BC =40,AD 是∠BAC 的平分线交BC 于D ,且DC ∶DB =3∶5,则点D 到AB 的距离是 。

八年级数学上册同步练习与答案

八年级数学上册同步练习与答案

度数为 ( )
A.40°
B.35°
C.30°Biblioteka D.25°三、解答题
13.已知:如图 1-7 所示,以 B 为中心,将 Rt△EBC 绕 B 点逆时针旋转 90°得到△ABD,
若∠E=35°,求∠ADB 的度数.
图 1-7
图 1-8
图 1-9 一、填空题 14.如图 1-8,△ABE 和△ADC 是△ABC 分别沿着 AB,AC 翻折 180°形成的若∠1∶∠2∶
图 1-10
2 三角形全等的条件(一) 学习要求
1.理解和掌握全等三角形判定方法 1——“边边边”, 2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等. 一、填空题 1.判断_____的_____ 叫做证明三角形全等. 2.全等三角形判定方法 1——“边边边”(即______)指的是_____ ___________________________________________________________________________. 3.由全等三角形判定方法 1——“边边边”可以得出:当三角形的三边长度一定时,这个 三角形的_____也就确定了.
图 1-1 5.如图 1-1 所示,ΔABC≌ΔDCB.(1)若∠D=74°∠DBC=38°,则∠A=_____,∠
ABC=_____ (2)如果 AC=DB,请指出其他的对应边_____; (3)如果ΔAOB≌ΔDOC,请指出所有的对应边_____,对应角_____.
图 1-2
图 1-3
6.如图 1-2,已知△ABE≌△DCE,AE=2 cm,BE=1.5 cm,∠A=25°,∠B=48°;那
______ ______(已知), ______ ______(已证), ______ ______( ),

2023-2024学年人教版八年级数学上册《第十二章 三角形全等的判定》同步练习题附带答案

2023-2024学年人教版八年级数学上册《第十二章 三角形全等的判定》同步练习题附带答案

2023-2024学年人教版八年级数学上册《第十二章三角形全等的判定》同步练习题附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,在△ACD与△ABD中∠C=∠B,再添加下列哪个条件,能判定△ADC≌△ADB()A.AC=AB B.AC⊥CD C.DA平分∠BDC D.CD=BD2.如图,一块玻璃碎成三片,小智只带了第③块去玻璃店,就能配一块一模一样的玻璃,你能用三角形的知识解释,这是为什么?()A.ASA B.AAS C.SAS D.SSSBC若ΔABC的面积3.如图,AE垂直于∠ABC的平分线于点D,交BC于点E,CE=13为12,则ΔCDE的面积是()A.2B.3C.4D.64.工人常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分別与点M、N重合,过角尺顶点C作射线OC,由此作法便可得△NOC≅△MOC,共依据是()A.SSS B.SAS C.ASA D.AAS5.如图,在△ABC中∠C=90°,D是AC上一点,DE⊥AB于点E,BE=BC连接BD,若AC=8cm,则AD+DE等于()A.6cm B.7cm C.8cm D.10cm6.如图,为了测出池塘两端A,B间的距离,小铱在地面上取一个可以直接到达A点和B点的点O,连接AO并延长到C,使OC=OA;连接BO并延长到D,使OD=OB,连接CD并和测量出它的长度,小铱认为CD的长度就是A,B间的距离,她是根据△OAB≌△OCD来判断的AB=CD,那么判定这两个三角形全等的依据是().A.SSS B.SAS C.ASA D.AAS7.“又是一年三月三”.在校内劳动课上,小明所在小组的同学们设计了如图所示的风筝框架.已知∠B=∠E,AB=DE,BF=EC,△ABC的周长为24cm,FC=3cm制作该风筝框架需用材料的总长度至少为()A.44cm B.45cm C.46cm D.48cm8.如图,AB⊥BC,EC⊥BC,AD⊥DE,AD=DE,AB=3,BC=8,则CE长为()A.4 B.5 C.8 D.10二、填空题9.如下图,已知AC=AB,要使△ABE≌△ACD.则需添加一个条件.10.数学实践活动课中,老师布置了“测量小口圆柱形瓶底部内径”的探究任务,某学习小组设计了如下方案:如图,用螺丝钉将两根小棒AC,BD的中点O固定,现测得C,D之间的距离为75mm,那么小口圆柱形瓶底部的内径AB=mm.11.如图,在Rt△ABC中∠BAC=90°,AB=AC分别过点B、C作经过点A的直线的垂线段BD、CE,若BD=5厘米,CE=8厘米,则DE的长为.12.如图,△ABC中,AD是中线AC=3,AB=5则AD的取值范围是.13.如图,在四边形ABEF中,AB=4,EF=6,点C是BE上一点,连接AC、CF,若AC=CF,∠B=∠E=∠ACF,则BE的长为.三、解答题14.图1是郝老师制作的风筝,图2是风筝骨架的示意图,其中AB=AC,BD=CD,∠C=23°.求∠B的度数.15.如图,已知在△ABC中,D、E是BC上两点,且∠ADE=∠AED,∠BAD=∠EAC,求证:AB=AC.16.如图,C是AB上一点,点D,E分别在AB两侧AD∥BE,且AD=BC,BE=AC求证:CD=EC.17.如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON⊥BC于点N,若OM=ON,求∠ABO度数.18.课间,小明拿着老师的直角三角尺玩,不小心掉到两堆砖块之间,如图所示,已知∠ACB= 90°,AC=BC,AD⊥DE,BE⊥DE.(1)试说明:△ADC≌△CEB;(2)已知DE=35cm,请你帮小明求出砖块的厚度a(每块砖的厚度相同)参考答案1.C2.A3.A4.A5.C6.B7.B8.B9.∠C=∠B (答案不唯一)10.7511.13厘米12.1<AD <413.1014.解:在△ABD 和△ACD 中{AB =AC AD =AD BD =CD ∴△ABD ≌△ACD(SSS) ∴∠B =∠C ∵∠C =23° ∴∠B =23°.15.证明:∵∠ADE =∠AED∴AD =AE ,∠ADB =∠AEC在△ABD 与△ACE 中{∠BAD =∠EAC AD =AE ∠ADB =∠AEC∴△ABD ≌△ACE(ASA)∴AB =AC16.证明:∵AD ∥BE∴∠A =∠B在△ADC 和△BCE 中{AD =BC∠A =∠B AC =BE∴△DAC ≌△CBE∴CD =CE ;17.解:∵OM ⊥AB ,ON ⊥BC ∴∠OMB =∠ONB =90°在Rt △OMB 和Rt △ONB 中{OM =ON OB =OB∴Rt △OMB ≌Rt △ONB(HL)∴∠OBM =∠OBN∵∠ABC =30°∴∠ABO =15°.18.(1)解:∵∠ACB =90°∴∠ACD +∠BCE =90°∵AD ⊥DE∴∠ACD +∠DAC =90°∴∠BCE =∠DAC在△ADC 与△CEB 中{∠ADC =∠BEC =90°∠BCE =∠DACAC =BC∴△ADC ≌△CEB(AAS);(2)解:∵△ADC ≌△CEB∴DC =BE ,AD =CE∴DE =DC +CE =BE +AD =35cm ∵一共有7块砖∴每块砖块的厚度a 为:35÷7=5cm .。

八年级数学人教版上册同步练习分式的基本性质(解析版)

八年级数学人教版上册同步练习分式的基本性质(解析版)

15.1.2分式的基本性质一、单选题1.下列约分计算结果正确的是 ( )A .22a b a b a b+=++ B .a m m a n n +=+ C .1a b a b -+=-- D .632a a a= 【答案】C 【分析】利用因式分解,确定分子,分母的公因式,后约分化简,计算即可.【详解】∵22a b +与a +b 没有公因式, ∴22a b a b++无法计算, ∴22a b a b a b+=++的计算是错误的, ∴选项A 不符合题意;∵a +m 与a +n 没有公因式, ∴++a m a n 无法计算, ∴a m m a n n+=+的计算是错误的; ∴选项B 不符合题意;∵-a +b = -(a +b )与a +b 的公因式是a +b , ∴()1a b a b a b a b-+--==---, ∴选项C 符合题意; ∵642a a a=, ∴632a a a=的计算是错误的; ∴选项D 不符合题意;故选C .【点评】本题考查了分式的化简,同底数幂的除法,熟练掌握化简计算的要领是解题的关键.2.下列分式中,属于最简分式的个数是( )①42x ,②221x x +,③211x x --,④11x x --,⑤22y x x y -+,⑥2222x y x y xy++. A .1个B .2个C .3个D .4个【答案】B【分析】根据最简分式的定义判断即可. 【详解】①422x x =,③21111x x x -=-+,④111x x -=--,⑤22y x y x x y-=-+,可约分,不是最简分式; ②221x x +,⑥2222x y x y xy++分子分母没有公因式,是最简分式,一共有二个; 故选:B .【点评】本题考查了最简分式,解题关键是明确最简分式的定义,准确判断分子分母是否含有公因式. 3.下列命题中的真命题是( )A .多项式x 2-6x +9是完全平方式B .若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是直角三角形C .分式211x x +-是最简分式 D .命题“对顶角相等”的逆命题是真命题【答案】A【分析】根据完全平方公式、直角三角形性质、分式化简、和对顶角相等的逆命题进行判断即可.【详解】∵x 2-6x +9=(x -3)2,故A 选项是真命题;∵∠A ∶∠B ∶∠C =3∶4∶5,∴∠A =45°,∠B =60°,∠C =75°,故B 选项是假命题; ∵21111x x x +=--,故C 选项是假命题; “对顶角相等”的逆命题是相等的角是对顶角,是假命题,故D 选项是假命题;故选:A【点评】本题考查了分式的性质、完全平方公式、直角三角形性质、逆命题,解题关键是熟练掌握相关知识,准确进行判断.4.化简211x x --的结果是( ) A .11x -+ B .11x - C .11x + D .11x-【答案】A【分析】分母因式分解,再约分即可. 【详解】2111(1)(1)11x x x x x x --==-+-+-, 故选:A .【点评】本题考查了分式的约分,解题关键是把多项式因式分解,然后熟练运用分式基本性质进行约分. 5.若把x ,y 的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )A .()22x y x + B .xy x y + C .22x y ++ D .22x y -- 【答案】A 【分析】根据分式的基本性质即可求出答案.【详解】A 、()22224x y x +=()22x y x +,故A 的值保持不变. B 、42=22xy xy x y x y++,故B 的值不能保持不变. C 、221=221x x y y ++++,故C 的值不能保持不变. D 、221=221x x y y ----,故D 的值不能保持不变. 故选:A .【点评】本题考查了分式,解题的关键是正确理解分式的基本性质,本题属于基础题型.6.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 【答案】B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点评】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解.7.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253x x x -是最简分式C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等【答案】C【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可.【详解】A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意; B. ()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意; C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.8.若a b ,则下列分式化简中,正确的是( ) A .22a a b b+=+ B .22a a b b -=- C .33a a b b = D .22a a b b = 【答案】C【分析】根据ab ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵ab A 、22a a b b+≠+ ,故该选项错误; B 、22a a b b-≠- ,故该选项错误; C 、33a a b b= ,故该选项正确; D 、22a a b b≠ ,故该选项错误; 故选:C .【点评】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;二、填空题目9.已知a 、b 、c 、d 、e 、f 都为正数,12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d=,4 abcdf e=,8 abcde f =,则222222a b c d e f +++++=________. 【答案】1198【分析】根据等式性质及分式性质进行计算即可求得结果. 【详解】由12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d =,4 abcdf e=,8 abcde f =,可将每个等式的左右两边相乘得: ()51abcdef abcdef =,∴1abcdef =,2112bcdef a a a a ⋅==⋅, ∴22a =,同理可得:24b =,28c =,212d =,214e =,218f =, ∴2222221198a b c d e f +++++=; 故答案为1198. 【点评】本题主要考查等式性质及分式性质,熟练掌握等式性质及分式性质是解题的关键. 10.已知114y x -=,则分式2322x xy y x xy y+---的值为______. 【答案】112 【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果. 【详解】∵114y x-=,∴x-y=4xy ,∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点评】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键.11.已知2310x x --=,求4231x x x x ++=-__________. 【答案】4 【分析】将分式整理成()()2222131x x x x -+-,根据2310x x --=可得213x x -=,代入分式并约分即可求解.【详解】∵2310x x --=,∴213x x -=∴4231x x x x++- ()()2222131x x x x -+=- ()223343x x x x+==⋅, 故答案为:4. 【点评】本题考查分式的性质,将分式整理成()()2222131x x x x -+-的形式是解题的关键. 12.将分式132132a b a b +-的分子、分母各项系数化为整数,其结果为_______________. 【答案】6243a b a b+- 【分析】根据分式的基本性质,分子分母都乘以最小公倍数6,分式的值不变,并且其分子、分母各项系数化为整数.【详解】1623214332a b a b a ba b ++=--. 故答案为:6243a b a b+-. 【点评】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.三、解答题13.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:11211x x x x +-+=--=1211x x x -+-- =1+21x -. (1)请写出分式的基本性质 ;(2)下列分式中,属于真分式的是 ;A .21x x -B .11x x -+C .﹣321x -D .2211x x +- (3)将假分式231m m ++,化成整式和真分式的形式. 【答案】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变;(2)C ;(3)231m m ++=m ﹣1+41m + 【分析】(1)根据分式的基本性质回答即可;(2)根据分子的次数小于分母的次数的分式称为真分式进行判断即可;(3)先把23m +转化为214m -+得到22314111m m m m m +-=++++,其中前面一个分式约分后化为整式,后面一个是真分式.【详解】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.(2)根据题意得:选项C 的分子次数是0,分母次数是1,分子的次数小于分母的次数是真分式.而其他选项是分子的次数均不小于分母的次数的分式,故AB D 选项是假分式,故选:C .(3)∵22231441411111m m m m m m m m +-+-=+=++++++=m ﹣1+41m +, ∴故答案为:m ﹣1+41m +. 【点评】本题考察了分式的基本性质以及未知数的次数问题,解答本题的关键是熟悉掌握未知数次数的判断以及分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.14.约分(1)1232632418a x y a x; (2)ma mb mc a b c+-+-; (3)2222444a ab b a b-+-. 【答案】(1)6243a y ;(2)m ;(3)22a b a b-+ 【分析】(1)约去分子分母的公因式636a x 即可得到结果;(2)将分子进行因式分解,约去公因式(a b c +-)即可得到结果;(3)首先把分子分母分解因式,然后再约掉分子分母的公因式即可.【详解】(1)1232632418a x y a x=6362636463a x a y a x ⨯ =6243a y ; (2)ma mb mc a b c+-+- =()m a b c a b c +-+- =m ;(3)2222444a ab b a b-+-=2(2)(2)(2)a b a b a b -+- =22a b a b-+. 【点评】此题主要考查了分式的约分,关键是正确确定分子分母的公因式.15.先约分,再求值:32322444a ab a a b ab--+ 其中12,2a b ==-. 【答案】2123a b a b +-, 【分析】先把分式的分子分母分解因式,约分后把a 、b 的值代入即可求出答案.【详解】原式=2222444a a b a a ab b ()()--+ =2(2)(2)(2)a a b a b a a b +-- =22a b a b +- 当122a b ==-,时 原式=2121-+=13. 【点评】本题考查了分式的约分,解题的关键是熟练进行分式的约分,本题属于基础题型.16.已知32(1)(1)11x A B x x x x -=++--+,求A 、B 的值. 【答案】A=12, B=52 【分析】先对等式右边通分,再利用分式相等的条件列出关于A 、B 的方程组,解之即可求出A 、B 的值. 【详解】∵()()()()(1)(1)()111111A B A x B x A B x A B x x x x x x ++-++-+==-++-+- , 又∵()()321111A B x x x x x -+=-++-, ∴()()()()()321111A B x A B x x x x x ++--=+-+-,∴32A B A B +=⎧⎨-=-⎩ , 解得1252A B ⎧=⎪⎪⎨⎪=⎪⎩. ∴A =12, B =52. 【点评】本题考查了分式的基本性质.利用分式的基本性质进行通分,再利用系数对应法列出方程组是解题的关键.17.若分式,A B 的和化简后是整式,则称,A B 是一对整合分式.(1)判断22244x x x ---与22x x -是否是一对整合分式,并说明理由; (2)已知分式M ,N 是一对整合分式,2a b M a b-=+,直接写出两个符合题意的分式N . 【答案】(1)是一对整合分式,理由见解析;(2)答案不唯一,如1224,b a a b N N a b a b -+==++. 【分析】(1)根据整合分式的定义即可求出答案.(2)根据整合分式的定义以及分式的运算法则即可求出答案.【详解】(1)是一对整合分式,理由如下: ∵2222222424(2)424x x x x x x x x x x x ----+++==---, 满足一对整合分式的定义,22244x x x --∴-与22x x -是一对整合分式. (2)答案不唯一,如1224,b a a b N N a b a b-+==++. 【点评】本题考查了分式的加减法,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.已知430,4520,x y z x y z +-=⎧⎨-+=⎩0xyz ≠. (1)用含z 的代数式表示x ,y ;(2)求222232x xy z x y+++的值. 【答案】(1)13x z =,23y z =;(2)165. 【分析】(1)根据加减消元法解关于x 、y 的方程组即可(2)将(1)中的结果代入分式中进行运算即可【详解】(1)430,4520,x y z x y z +-=⎧⎨-+=⎩①② ①4⨯-②得21140y z -=,解得23y z =. 把23y z =代入①,得24303x z z +⨯-=, 解得13x z =. (2)2222222211232321633351233z z z z x xy z x y z z ⎛⎫⨯+⨯⨯+ ⎪++⎝⎭==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查了用加减法解方程组的特殊解法,把x 、y 看作未知数解方程组是解题的关键19.一个矩形的面积为223()x y -,如果它的一边为()x y +,求这个矩形的周长.【答案】这个矩形的周长为:84x y -【分析】根据整式的除法运算法则与合并同类项法则,即可求解.【详解】∵矩形的一边长为()x y +,面积为223()x y -, ∴矩形的另一边长为:223()3()()x y x y x y -=-+ ∴该矩形的周长为:2[()3()]x y x y ++-2(42)x y =-84x y =-.答:这个矩形的周长为:84x y -.【点评】本题主要考查整式的除法法则与加法法则,掌握因式分解与合并同类项法则,是解题的关键. 20.阅读理解:对于二次三项式a 2+2ab+b 2,能直接用完全平方公式进行因式分解,得到结果为(a+b )2.而对于二次三项式a 2+4ab ﹣5b 2,就不能直接用完全平方公式了,但我们可采用下述方法:a2+4ab﹣5b2=a2+4ab+4b2﹣4b2﹣5b2=(a+2b)2﹣9b2,=(a+2b﹣3b)(a+2b+3b)=(a﹣b)(a+5b).像这样把二次三项式分解因式的方法叫做添(拆)项法.解决问趣:(1)请利用上述方法将二次三项式a2+6ab+8b2分解因式;(2)如图,边长为a的正方形纸片1张,边长为b的正方形纸片8张,长为a,宽为b的长方形纸片6张,这些纸片可以拼成一个不重叠,无空隙的长方形图案,请画出示意图;(3)已知x>0,且x≠2,试比较分式2244812x xx x++++与22428xx x-+-的大小.【答案】(1)(a+2b)(a+4b);(2)见解析;(3)222244428812 x x xx x x x-++>+-++【分析】(1)根据题目的引导,先分组,后运用公式法对原式进行因式分解;(2)根据第一问的因式分解结果,对图形进行排列即可;(3)对两个分式的分子和分母分别进行因式分解,然后对分式进行化简并比较大小.【详解】(1)原式=a2+6ab+9a2﹣b2=(a+3b)2﹣b2=(a+3b﹣b)(a+3b+b)=(a+2b)(a+4b);(2)如图:(3)224(2)(2)(2)28(4)(2)(4)x x x xx x x x x-+-+==+-+-+;22244(2)(2)812(2)(6)(6)x x x xx x x x x++++==+++++;∵x>0,∴x+4<x+6,∴222244428812 x x xx x x x-++>+-++.【点评】本题考查了因式分解的应用,通过因式分解化简分式,根据分母大,分数值反而小来比较大小是解题的关键.祝福语祝你考试成功!。

八年级上册数学同步练习册答案

八年级上册数学同步练习册答案

八年级上册数学同步练习册答案【练习一:有理数的加减法】1. 计算下列各题:- (1) 3 + (-2) = 1- (2) -4 + 5 = 1- (3) 0 + (-7) = -72. 解决实际问题:- 某同学在一次数学测试中得了92分,第二次测试得了88分,求他两次测试的平均分。

- 平均分 = (92 + 88) / 2 = 90【练习二:有理数的乘除法】1. 计算下列各题:- (1) (-3) × (-4) = 12- (2) 5 × (-2) = -10- (3) (-6) ÷ 2 = -32. 解决实际问题:- 一个工厂的产量在一年内增加了原来的25%,求现在产量是原来的多少倍。

- 现在产量 = 1 + 25% = 1.25倍【练习三:整式的加减】1. 计算下列各题:- (1) 3x + 2y - 4x = -x + 2y- (2) 5a - 3b + 2a = 7a - 3b2. 解决实际问题:- 如果一个长方形的长是宽的两倍,且周长是24厘米,求长和宽。

- 设宽为x,则长为2x,周长 = 2(x + 2x) = 24,解得x = 4,所以长为8厘米,宽为4厘米。

【练习四:一元一次方程】1. 解下列方程:- (1) 3x - 5 = 10,解得 x = 5- (2) 2x + 7 = 15,解得 x = 42. 解决实际问题:- 一个班级有40名学生,其中男生比女生多6人,求男女生各有多少人。

- 设女生人数为x,则男生人数为x + 6,x + x + 6 = 40,解得x = 17,所以女生有17人,男生有23人。

【练习五:几何初步】1. 计算下列各题:- (1) 一个正方形的边长是5厘米,求它的周长和面积。

- 周长= 4 × 5 = 20厘米,面积= 5 × 5 = 25平方厘米- (2) 一个圆的半径是3厘米,求它的周长和面积。

- 周长= 2 × π × 3 ≈ 18.85厘米,面积= π × 3² ≈ 28.27平方厘米结束语:以上是八年级上册数学同步练习册的部分答案,希望能帮助同学们更好地理解和掌握数学知识。

人教版2023-2024学年八年级上册数学《多边形及其内角》同步练习(含答案)

人教版2023-2024学年八年级上册数学《多边形及其内角》同步练习(含答案)

人教版2023-2024学年八年级上册数学《多边形及其内角》同步练习一、单选题1.一个多边形的每个外角都等于与它相邻的内角,这个多边形是( )边形A .四B .五C .六D .八2.若一个多边形的每个内角都是,那么它的边数是( )140︒A .5B .7C .9D .113.中国古代建筑具有悠久的历史传统和光辉的成就,其建筑艺术也是美术鉴赏的重要对象.如图是中国古代建筑中的一个正八边形的窗户,则它的内角和为( )A .B .C .D .1080︒900︒720︒540︒4.如图,一束平行太阳光照射到正五边形上,若∠1=46°,则∠2的度数为( )A .46°B .108°C .26°D .134°5.如图1是一个2×5长方形方格,用图2所示的1×2的黑色长方形(允许只用一种)去填满,共有( )种不同的方法.A .7B .8C .9D .106.如图,四边形中,与相邻的两外角平分线交ABCD 90,ADC ABC ∠=∠=︒ADC ABC ∠∠、于点若则的度数为( ),E 60,A ∠=︒E ∠A .B .C .D .60 50 40 307.如图,要使一个七边形木架不变形,至少要再钉上木条的根数是( )A .1根B .2根C .3根D .4根8.七边形中,、的延长线相交于点.若图中、、、的ABCDEFG AB ED O 1∠2∠3∠4∠外角的角度和为,则的度数为( )220︒BOD ∠A .B .C .D .30︒35︒40︒45︒9.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A .B .C .D .240︒220︒180︒330︒10.如图,直线,将一个含角的直角三角尺按图中方式放置,点E 在AB CD ∥60︒EGF 上,边、分别交于点H 、K ,若,则等于( ).AB GF EF CD 64BEF ∠=︒GHC ∠三、解答题21.若一个多边形的内角和等于它的外角和的24.已知一个正n边形的内角和是正三角形内角和的4倍.(1)求n;(2)用边长相等的正n 边形和正三角形两种地板镶嵌地面,则一个公共顶点处需要正n边形和正三角形的个数分别为x、y,求x和y的关系式.25.如图,小明从点A出发,前进10m后向右转30°,再前进10m后又向右转30°,……,如此反复下去,直到她第一次回到出发点A,他所走的路径构成了一个正多边形.(1)求小明一共走了多少米;(2)求这个正多边形的内角和.答案:1.A2.C3.A4.C5.B6.D7.D8.C9.A10.B11.512.③④13.50°或130°14. 15 60°15.18/十八16. 2 817./36度36︒18./度 144︒1443519. 144 10 144020./度180︒18021.这个多边形是十边形22.(1)15;(2)1523.(1)8(2)360︒24.(1)6n =(2)26x y +=25.(1)小明一共走了120米1800 (2)这个多边形的内角和是.。

人教八年级数学上册同步练习题及详细答案

人教八年级数学上册同步练习题及详细答案

人教八年级数学上册同步练习题及详细答案————————————————————————————————作者:————————————————————————————————日期:23 / 104图1ABCED第十一章 全等三角形11.1全等三角形1、 已知⊿ABC ≌⊿DEF ,A 与D ,B 与E 分别是对应顶点,∠A=52°,∠B=67 °,BC =15cm ,则F = ,FE = .2、∵△ABC ≌△DEF∴AB= ,AC= BC= ,(全等三角形的对应边 )∠A= ,∠B= ,∠C= ; (全等三角形的对应边 ) 3、下列说法正确的是( )A :全等三角形是指形状相同的两个三角形B :全等三角形的周长和面积分别相等C :全等三角形是指面积相等的两个三角形D :所有的等边三角形都是全等三角形4、 如图1:ΔABE ≌ΔACD ,AB=8cm ,AD=5cm ,∠A=60°,∠B=40°,则AE=_____,∠C=____。

4 / 104课堂练习1、已知△ABC ≌△CDB ,AB 与CD 是对应边,那么AD= ,∠A= ;2、如图,已知△ABE ≌△DCE ,AE=2cm ,BE=1.5cm ,∠A=25°∠B=48°; 那么DE= cm ,EC= cm ,∠C= 度.3、如图,△ABC ≌△DBC ,∠A=800,∠ABC=300,则∠DCB= 度;(第1小题) (第2小题) (第3小题) (第4小题)4、如图,若△ABC ≌△ADE ,则对应角有 ; 对应边有 (各写一对即可);E B A D CFE DC B AED C B A D CB A5 / 10411.2.1全等三角形的判定(sss )课前练习1、如图1:AB=AC ,BD=CD ,若∠B=28°则∠C= ;2、如图2:△EDF ≌△BAC ,EC=6㎝,则BF= ;3、如图,AB ∥EF ∥DC ,∠ABC =900,AB =DC ,那么图中有全等三角形 对。

初二上册数学同步练习训练题含答案

初二上册数学同步练习训练题含答案

初二上册数学同步练习训练题含答案八年级数学上册同步测试题含答案一、填空题(共13小题,每小题2分,满分26分)1.已知:2某-3y=1,若把看成的函数,则可以表示为2.已知y是某的一次函数,又表给出了部分对应值,则m的值是3.若函数y=2某+b经过点(1,3),则b=_________.4.当某=_________时,函数y=3某+1与y=2某-4的函数值相等。

5.直线y=-8某-1向上平移___________个单位,就可以得到直线y=-8某+3.6.已知直线y=2某+8与某轴和y轴的交点的坐标分别是______________;与两条坐标轴围成的三角形的面积是__________ 7一根弹簧的原长为12cm,它能挂的重量不能超过15kg并且每挂重1kg就伸长0.5cm写出挂重后的弹簧长度y(cm)与挂重某(kg)之间的函数关系式是_______________.8.写出同时具备下列两个条件的一次函数表达式:(写出一个即可)___.(1)y随着某的增大而减小;(2)图象经过点(0,-3).9.若函数是一次函数,则m=_______,且随的增大而_______.10.如图是某工程队在“村村通”工程中,修筑的公路长度y(米)与时间某(天)之间的关系图象.根据图象提供的信息,可知该公路的长度是______米.11.如图所示,表示的是某航空公司托运行李的费用y(元与托运行李的质量某(千克)的关系,由图中可知行李的质量只要不超过_________千克,就可以免费托运.12.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线(k>0)和某轴上,已知点B1(1,1),B2(3,2),B3(7,4),则Bn的坐标是______________.13.如下图所示,利用函数图象回答下列问题:(1)方程组的解为__________;(2)不等式2某>-某+3的解集为___________;二、选择题(每小题3分,满分24分)1.一次函数y=(2m+2)某+m中,y随某的增大而减小,且其图象不经过第一象限,则m的取值范围是()A.B.C.D.2.把直线y=-2某向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6则直线AB的解析式是().A、y=-2某-3B、y=-2某-6C、y=-2某+3D、y=-2某+63.下列说法中:①直线y=-2某+4与直线y=某+1的交点坐标是(1,1);②一次函数=k某+b,若k>0,b<0,那么它的图象过第一、二、三象限;③函数y=-6某是一次函数,且y随着某的增大而减小;④已知一次函数的图象与直线y=-某+1平行,且过点(8,2),那么此一次函数的解析式为y=-某+6;⑤在平面直角坐标系中,函数的图象经过一、二、四象限⑥若一次函数中,y随某的增大而减小,则m的取值范围是m>3学⑦点A的坐标为(2,0),点B在直线y=-某上运动,当线段AB最短时,点B的坐标为(-1,1);⑧直线y=某—1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有5个.正确的有()A.2个B.3个C.4个D.5个4.已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-3某+b上,则y1,y2,y3的值的大小关系是()A.y1>y2>y3B.y1y1>y2D.y35.下列函数中,其图象同时满足两个条件①у随着χ的增大而增大;②与ỵ轴的正半轴相交,则它的解析式为()(A)у=-2χ-1(B)у=-2χ+1(C)у=2χ-1(D)у=2χ+16.已知y-2与某成正比例,且某=2时,y=4,若点(m,2m+7),在这个函数的图象上,则m的值是()A.-2B.2C.-5D.57.某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是()A.310元B.300元C.290元D.280元8.已知函数y=k某+b的图象如图,则y=2k某+b的图象可能是()三、解答题(共50分)1.(10分)两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给出的数据信息,解答问题:(1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数某(个)之间的一次函数解析式(不要求写出自变量某的取值范围);(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度。

八年级数学人教版上册同步练习同底数幂的乘法(解析版)

八年级数学人教版上册同步练习同底数幂的乘法(解析版)

14.1.1同底数幂的乘法一、单选题1.已知32,33x y ==,则3x y +的值为( )A .6B .5C .36D .3【答案】A【分析】原式逆用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【详解】∵32,33x y ==,∴3=33236x y x y +⋅=⨯=,故选:A【点评】本题考查了同底数幂乘法的逆运算,熟练掌握法则是解题的关键,2.已知2,3m n a a ==,则m n a +的值为( )A .6B .5C .3D .1 【答案】A【分析】根据同底数幂的乘法的逆用可直接进行求解.【详解】∵2,3m n a a ==,∴236m n m n a a a +=⋅=⨯=;故选A .【点评】本题主要考查同底数幂的乘法的逆用,熟练掌握同底数幂的乘法的逆用是解题的关键.3.计算(-2)99+(-2)100结果等于 ( )A .(-2)199B .-2199C .299D .-299 【答案】C【分析】原式利用乘方的意义计算即可得到结果.【详解】原式=(-2)99+(-2)99×(-2)=(-2)99×(1-2)=299,故选:C .【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.4.若23a =,25b =,215c =,则( )A .a b c +=B .1a b c ++=C .2a b c +=D .22a b c +=【分析】根据同底数幂乘法的逆运算进行计算即可【详解】∵23a =,25b =,215c =,∵21535222+==⨯=⨯=a b c a b∴a b c +=故选:A【点评】本题考查了同底数幂乘法的逆运算,熟练掌握法则是解题的关键5.计算()()9910022-+-的结果为( ) A .992-B .992C .2-D .2 【答案】B【分析】根据同底数幂的乘法法则运算即可.【详解】()()9910022-+- =9100922-=9999222-⨯=()99212-⨯ =992故选B .【点评】本题考查了有理数的混合运算,解题的关键是合理利用同底数幂的乘法法则进行简便运算. 6.计算23a a ⋅的结果是( )A .6aB .5aC .4aD .3a【答案】B【分析】根据同底数幂相乘的法则进行计算,然后判断即可.【详解】23235a a a a +⋅==,故选:B .【点评】本题考查了同底数幂相乘,按照法则—同底数幂相乘,底数不变,指数相加进行计算是关键,属于基础题型.7.若3x =10,3y =5,则3x +y 的值是( )A .15B .50C .0.5D .2【分析】直接逆用同底数幂的乘法法则计算得出答案.【详解】∵3x =10,3y =5,∴3x +y =3x •3y =10×5=50.故选:B .【点评】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.8.10102(2)+-所得的结果是( )A .0B .102C .112D .202【答案】C【分析】先把10(2)-化为102,合并后再根据同底数幂的运算法则计算即可.【详解】10102(2)+-=1010101122222=⋅=+.故选:C .【点评】本题考查了同底数幂的运算和合并同类项,属于常考题型,明确求解的方法是解题关键.二、填空题目9.如果23x =,27y =,则2x y +=_____________.【答案】21【分析】根据同底数幂的乘法可得222x y x y +=⋅,继而可求得答案.【详解】∵23x =, 27y =,∴2223721x y x y +=⋅=⨯=,故答案为:21.【点评】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.本题中要注意掌握公式的逆运算. 10.已知5122120m m ++-=,则m 的值是_________________.【答案】2【分析】根据同底数幂的乘法法则将原式变形可得52222120m m ⨯-⨯=,再利用乘法分配律合并计算,得到m 值.【详解】∵5122120m m ++-=,∴52222120m m ⨯-⨯=,∴()2322120m ⨯-=,∴24m =,∴m=2,故答案为:2.【点评】本题考查了同底数幂的乘法,解题的关键是灵活运用运算法则.11.我们规定一个新数“i ”,使其满足i 1=i ,i 2=﹣1,并且进一步规定:一切有理数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i 1=i ,i 2=﹣1,i 3=i 2•i =﹣i ,i 4=i 2•i 2=﹣1×(﹣1)=1.那么i 6=____,i 1+i 2+i 3+…+i 2022+i 2023=____.【答案】-1 -1【分析】各式利用题中的新定义计算即可求出值.【详解】i 6=i 5•i =-1,由题意得,i 1=i ,i 2=﹣1,i 3=i 2•i =﹣i ,i 4=i 2•i 2=﹣1×(﹣1)=1,i 5=i 4•i =i ,i 6=i 5•i =-1,故可发现4次一循环,一个循环内的和为0,2023÷4=505 (3)i 1+i 2+i 3+…+i 2022+i 2023=505×0+(i -1-i )=-1.故答案为:-1,-1.【点评】本题考查了同底数幂的乘法运算,解答本题的关键是计算出前面几个数的值,发现规律,求出一个循环内的和再计算,有一定难度.12.已知4222112x x +-⋅=,则x =________【答案】3【分析】利用同底数幂乘法的逆运算求解即可.【详解】∵()4411312222222172x x x x x x +++++-⋅-=⋅=⋅-=,∴172112x +⋅=,即:142162x +==,∴14x +=,∴3x =,故答案为:3.【点评】本题主要考查同底数幂乘法的逆运算,灵活运用同底数幂乘法法则是解题关键.13.已知8m x =,6n x =,则2m n x +的值为______.【答案】384【分析】利用同底数幂相乘的逆运算得到2m n m m n x x x x +⋅⋅=,将数值代入计算即可.【详解】∵8m x =,6n x =,∴2886m n m m n x x x x +⋅⋅==⨯⨯=384,故答案为:384.【点评】此题考查同底数幂相乘的逆运算,正确将多项式变形为2m n m m n x x x x +⋅⋅=是解题的关键. 14.已知25,23a b ==,求2a b +的值为________.【答案】15.【分析】逆用同底数幂的乘法运算法则将原式变形得出答案.【详解】∵2a =5,2b =3,∴2a+b =2a ×2b =5×3=15.故答案为:15.【点评】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.三、解答题15.光的速度约为3×105千米/秒,太阳光射到地球需要时间约是5×102秒,地球与太阳的距离约是多少千米?【答案】81.510⨯【分析】根据路程=速度×时间,先列式表示地球到太阳的距离,再用科学记数法表示.【详解】3×105×5×102=15×107=1.5×108千米.故地球与太阳的距离约是1.5×108千米.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.表示时关键要正确确定a 的值以及n 的值.同时考查了同底数幂的乘法.16.判断23221()()()()n m a m a b b a a b a b -++-⋅-⋅-=-是否正确,并说明理由.【答案】不正确,理由见解析【分析】根据题意,要进行幂的乘法运算,先把每一项写成同底数的形式,所以把()3b a -转换成()3a b --,然后进行同底数幂的乘法运算,底数不变指数相加.【详解】不正确.理由如下:232()()()n m a b b a a b --⋅-⋅-232()[()]()n m a b a b a b -=-⋅--⋅-232()()()n m a b a b a b -=--⋅-⋅-21()n m a b ++=--.【点评】本题考查了同底数幂的乘法,需要注意的是当指数是奇数的时候,底数变为原来的相反数,幂的前面要加上负号.17.计算:2726733333(3)⨯-⨯+⨯-.【答案】83【分析】由题意先根据同底数幂相乘指数相加进行运算,再进行同类项合并即可求值.【详解】2726733333(3)⨯-⨯+⨯-272617333+++=--883323=⨯-⨯83=.【点评】本题考查整式乘法,熟练掌握同底数幂的乘法运算法则以及合并同类项原则是解题的关键. 18.若3a =5,3b =10,则3a+b 的值.【答案】50【分析】根据同底数幂乘法的逆运算即可得出答案【详解】3a+b =3a ⨯3b =5⨯10=50【点评】此题考查了同底数幂乘法的逆运算,熟练掌握运算法则是解题的关键19.如果c a b =,那么我们规定()a b c =,.例如:因为328=,所以(2,8)3=.(1)根据上述规定,填空:(4,16)= ,(2,32)= .(2)记(3,5)a =,(3,6)b =,(3,30)c =.求证:a b c +=.【答案】(1)2,5;(2)证明见解析.【分析】(1)由新定义设()4,16,x =可得416,x = 从而可得答案,同理可得()2,32的结果;(2)由新定义可得:35a =,36b =,330c =,从而可得:333=30,a b a b += 从而可得33a b c +=,从而可得结论.【详解】(1)()a b c =,,,c a b ∴=设()4,16,x =24164,x ∴==2,x ∴=()4,16=2∴,设()2,32,y =52322,y ∴==5,y ∴=()2,32 5.∴=故答案为:2,5.(2)证明:根据题意得:35a =,36b =,330c =∵5630⨯=∴333a b c ⋅= 则33a b c +=∴a b c +=.【点评】本题考查的新定义情境下幂的运算,弄懂新定义的含义,掌握同底数幂的乘法,幂的含义是解题的关键.20.规定两正数a ,b 之同的一种运算,记作:E(a ,b),如果a c =b ,那么E(a ,b)=c .例如23=8,所以E(2,8)=3(1)填空:E(3,27)= ,E 11,216⎛⎫ ⎪⎝⎭= (2)小明在研究这和运算时发现一个现象:E(3n ,4n )=E(3,4)小明给出了如下的证明:设E(3n ,4n )=x ,即(3n )x =4n ,即(3n ,4n )=4n ,所以3x =4,E(3,4)=x ,所以E(3n ,4n )=E(3,4),请你尝试运用这种方法说明下面这个等式成立:E(3,4)+E(3,5)=E(3,20)【答案】(1)3;4;(2)证明见解析.【分析】(1)根据规定的两数之间的运算法则:知4311327,,216⎛⎫== ⎪⎝⎭ 从而可得答案; (2)设E (3,4)=x ,E (3,5)=y ,根据定义得:34,35,x y ==利用同底数幂的乘法可得答案.【详解】(1)∵3327,=∴E (3,27)=3; ∵411,216⎛⎫= ⎪⎝⎭ ∴11,4,216E ⎛⎫= ⎪⎝⎭故答案为:3;4;(2)设E (3,4)=x ,E (3,5)=y ,则34,35,x y ==∴3334520,x y x y +=•=⨯=∴E (3,20)=x+y ,∴E (3,4)+E (3,5)=E (3,20).【点评】本题是利用新定义考查幂的运算的逆运算,掌握幂的运算,同底数幂的乘法运算是解题的关键. 21.(1)若2x a =,3y a =,求x y a -的值; (2)计算2310012222++++⋅⋅⋅+的值.【答案】(1)23;(2)10121-. 【分析】(1)逆用同底数幂的除法的运算法则解答即可;(2)设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+, 把这两个式子相减即可求解.【详解】(1)∵2x a =,3y a =, ∴23x y x y a a a -=÷=; (2) 设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+,∴S=2S-S=10121-.【点评】本题考查了同底数幂的除法及同底数幂的乘法的应用,熟练运用法则是解决问题的关键.22.已知a x=5,a x+y=30,求a x+a y的值.【答案】11.【详解】分析:首先根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,求出y a的值是多少;然后把x a、y a的值相加,求出x a+y a的值是多少即可.本题解析:∵a x=5,a x+y=30,∴a y=a x+y﹣x=30÷5=6,∴a x+a y=5+6=11,即a x+a y的值是11.祝福语祝你考试成功!。

2023-2024学年人教版数学八年级上册 11.3多边形及其内角和同步练习(含答案)

2023-2024学年人教版数学八年级上册  11.3多边形及其内角和同步练习(含答案)

2023-2024学年人教版数学八年级上册11.3多边形及其内角和同步练习(含答案)2023-2024学年人教版数学八年级上册11.3 多边形及其内角和同步练习一、单选题1.五边形的内角和为()A.720° B.540° C.360° D.180°2.下列角度中,不能成为多边形内角和的是()A.600° B.720° C.900° D.1080°3.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形4.若从一个正多边形的一个顶点出发,最多可以引5条对角线,则它的一个内角为()A.B.C.D.5.如果一个四边形的面积正好等于它的两条对角线乘积的一半,那么这个四边形一定是()A.菱形B.矩形C.正方形D.对角线互相垂直的四边形6.在一个凸n边形的纸板上切下一个三角形后,剩下一个内角和为1080°的多边形,则n的值为()A.7 B.8C.9 D.以上都有可能7.一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.14或15或16 B.15或16或17 C.15或16 D.16或178.下列说法中,正确的个数有()①若一个多边形的外角和等于360°,则这个多边形的边数为4;②三角形的高相交于三角形的内部;③三角形的一个外角大于任意一个内角;④一个多边形的边数每增加一条,这个多边形的内角和就增加;⑤对角线共有5条的多边形是五边形.A.1个B.2个C.3个D.4个二、填空题9.若一个正多边形的一个外角等于18°,则这个正多边形的边数是.10.一个多边形的内角和与外角和的比是4:1,则它的边数是.11.如图,点O是正五边形ABCDE的中心,连接BD、OD,则∠BDO =°.12.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.13.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=度.三、解答题14.一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.15.如图,是四边形的一个外角,且.那么与互补吗?为什么?16.如图,CD∠AF,∠CDE=∠BAF,AB∠BC,∠C=120°,∠E=80°,试求∠F的度数.17.如图,四边形ABCD中,BA丄DA,CD丄BC,BE、DF分别是∠ABC、∠ADC的平分线.(1)∠1与∠2有什么数量关系,为什么?(2)BE与DF有什么位置关系?请说明理由.18.如图,将六边形纸片ABCDEF沿虚线剪去一个角(∠BCD)后,得到∠1+∠2+∠3+∠4+∠5=460°.(1)求六边形ABCDEF的内角和;(2)求∠BGD的度数.19.如图,五边形中,.(1)求的度数;(2)直接写出五边形的外角和.参考答案1.B 2.A 3.C 4.D 5.D 6.D 7.A 8.B 9.2010.1011.1812.24°13.360 °14.解:根据题意,得(n﹣2)180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.15.解:与互补,理由如下:∠ ,∠ABC+=180∠∠ABC+∠D=180 ,∠四边形内角和等于360 ,∠ + =360°-(∠ABC+∠D)=180°∠ 与互补.解:如图,连结AD在四边形ABCD中,∠BAD+∠ADC+∠B+∠C=360°.∠AB∠BC,∠∠B=90°.又∠∠C=120°,∠∠BAD+∠ADC=150°.∠CD∠AF,∠∠CDA=∠DAF.又∠∠CDE =∠BAF,∠∠EDA=∠BAD.在四边形ADEF∠DAF+∠EDA+∠F+∠E=360°,∠∠F+∠E=360°(∠ADC+∠BAD)=210°.又∠∠E=80°,∠∠F=130°17.(1)解:∠1+∠2=90°;理由如下:∠BE,DF分别是∠ABC,∠ADC的平分线,∠∠ABC=2∠1,∠ADC=2∠2,∠BA丄DA,CD丄BC,∠∠A=∠C=90°,∠∠ABC+∠ADC=180°,∠2(∠1+∠2)=180°,∠∠1+∠2=90°;(2)解:BE∠DF;理由如下:在∠FCD中,∠∠C=90°,∠∠DFC+∠2=90°,∠∠1+∠2=90°,∠∠1=∠DFC,∠BE∠DF.18.(1)解:六边形ABCDEF的内角和为:180°×(6-2)=720°;(2)解:∠∠1+∠2+∠3+∠4+∠5=460°,∠∠GBC+∠C+∠CDG=720°-460°=260°,∠∠G=360°-(∠GBC+∠C+∠CDG)=100°.19.(1)解:∠AE∠CD,∠∠D+∠E=180°,∠五边形ABCDE中,∠A=100°,∠B=120°,∠.(2)解:根据多边形的外角和定理:五边形的外角和是:°。

八年级数学上册最短路径问题同步练习含解析

八年级数学上册最短路径问题同步练习含解析

最短路径问题一、单选题(共10小题)1.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间 D.BC之间【答案】A【解析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.【详解】解:①以点A为停靠点,则所有人的路程的和=15×300+10×900=13500(米),②以点B为停靠点,则所有人的路程的和=30×300+10×600=15000(米),③以点C为停靠点,则所有人的路程的和=30×900+15×600=36000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m <300),则所有人的路程的和是:30m+15(300-m)+10(900-m)=13500+5m>13500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<600),则总路程为30(300+n)+15n+10(600—n)=15000+35n>13500.∴该停靠点的位置应设在点A;故选:A.【点睛】考查了比较线段的长短,此题为数学知识的应用,考查知识点为两点之间线段最短.2.已知村庄A和B分别在一条河的两岸,现要在河上造一座桥MN(假定河的两岸彼此平行,且桥与河岸互相垂直),下列示意图中,桥的建造位置能使从村庄A经桥过河到村庄B的路程最短的是()A.B.C.D.【答案】C【解析】如图作AI∥MN,且AI=MN,连接BI,由两点之间线段最短可知此时从A点到B点的距离最短,所以AM∥BN。

八年级数学人教版上册同步练习分式方程(解析版)

八年级数学人教版上册同步练习分式方程(解析版)

15.3分式方程一、单选题1.已知关于x 的不等式组62176324()13(21)x x x a x -+⎧+≤⎪⎨⎪++<+⎩无解,关于y 的分式方程22822a y y y y -=--有整数解,则满足条件的所有整数a 的和为( )A .6B .8C .10D .13【答案】D2.石家庄某活动小组到教育基地游学,租用面包车的车费为180元.出发时又增加了2名同学,结果每名同学比原来少摊了3元车费.若设该活动小组原有x 人,则所列方程为( ) A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=+ D .18018032x x -=- 【答案】B 【分析】根据总费用÷总人数为人均分摊费用,计算两次的分摊费用,后根据题意列出方程即可【详解】设该活动小组原有x 人,则出发后的人数为(x +2)人,根据题意,得18018032x x -=+, 故选B【点评】本题考查了分式方程解应用题,熟练掌握列分式方程的基本要领是解题的关键.3.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x 套,由题意列方程正确的是( )A .60080040=-xx B .60080040=-x x C .60080040=+x x D .60080040=+x x 【答案】C 【分析】根据第一次进书的总钱数÷第一次购进套数=第二次进书的总钱数÷第二次购进套数列方程可得.【详解】若设书店第一次购进该科幻小说x 套, 由题意列方程正确的是60080040x x =+,故选:C .【点评】本题考查由实际问题抽象出分式方程,解题的关键是理解题意找到题目蕴含的相等关系. 4.已知关于x 的方程22x m x +-=3的解是正数,那么m 的取值范围为( ) A .m >﹣6且m ≠2B .m <6且m ≠2C .m >﹣6且m ≠﹣4D .m <6且m ≠﹣2 【答案】C【分析】先求得分式方程的解(含m 的式子),然后根据解是正数可知m +6>0,从而可求得m >-6,然后根据分式的分母不为0,可知x ≠2,即m +6≠2,由此即可求解.【详解】将分式方程转化为整式方程得:2x +m =3x -6解得:x =m +6.∵方程得解为正数,所以m +6>0,解得:m >-6.∵分式的分母不能为0,∴x -2≠0,∴x ≠2,即m +6≠2.∴m ≠-4.故m >-6且m ≠-4.故选C .【点评】本题主要考查的是解分式方程和一元一次不等式的应用,求得方程的解,从而得到关于m 的不等式是解题的关键.5.有一段全长为800米的公路,路面需整改,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的功效比原计划增加10%, 结果提前3天完成这一任务,设原计划每天整改x 米,则下列方程正确的是( )A .()800800-3x 110%x =+B .()800800-3x1-10%x = C .()800800-3x 110%x=+ D .()800800-3x 1-10%x= 【答案】C 【分析】用x 表示出计划和实际完成的时间,再结合实际比计划提前3天完成任务作为等量关系列方程即可.【详解】实际每天整改()1+10%x 米,则实际完成时间()8001+10%x 天,计划完成时间800x 天, ∵实际比计划提前3天完成任务 ∴得方程()8008003110%x x-=+. 故选C . 【点评】本题考查了分式方程的应用.列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,找出等量关系,因此需围绕题中关键词进行分析.6.若关于x 的方程221933m x x x +=-+-有增根,则m 的值为( ) A .不存在B .6C .12D .6或12 【答案】D【分析】根据增根的定义确定x 的值,把分式方程去分母后,代入即可求m 的值. 【详解】221933m x x x +=-+-, 去分母得,2(3)3m x x +-=+ ∵方程221933m x x x +=-+-有增根, 当3x =时,336m =+=;当3x =-时,2(33)0m +--=,12m =;故选:D .【点评】本题考查了分式方程的增根,解题关键是明确增根的意义,确定未知数的值.7.已知关于x 的一元一次不等式组4(3)222x x x a -+<-⎧⎨+≥⎩的解集为x >7,且关于y 的分式方程53ay y +-﹣1=43y-的解为正整效,则满足条件的所有整数a 的和为( ) A .﹣3B .﹣6C .﹣8D .﹣11【答案】C【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可.【详解】不等式组整理得:72xx a>⎧⎨≥-⎩,由解集为x>7,得到2﹣a≤7,解得a≥﹣5,分式方程去分母得:ay+5﹣y +3=﹣4,解得:y=121a -,∵y为正整数解,且y≠3,∴a=0,﹣1,﹣2,﹣5,﹣11,又∵a≥﹣5,∴a=0,﹣1,﹣2,﹣5,∴满足条件的整数a的和为﹣8.故选:C.【点评】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.8.已知关于x的不等式组251333xxx a+⎧>+⎪⎨⎪≥-⎩有解,且关于y的分式方程9433y a ay y+-=---有正整数解,则所有满足条件的整数a的值的个数为()A.2 B.3 C.4 D.5 【答案】A【分析】根据分式方程的解为正整数即可得出a>32-,且a≠3,根据不等式组有解,即可得a<9,找出所有符合条件的正整数,a的个数为2.【详解】解方程9433y a ay y+-=---得:233ay+=,∵分式方程的解为正整数,∴2a+3>0,即a>-32,又y≠3,∴233a+≠3,即a≠3,则a>32-,且a≠3,251333x x x a +⎧>+⎪⎨⎪≥-⎩①②, 解不等式①,得x <2,解不等式②,得x ≥33a -, ∵此不等式组有解, ∴33a -<2, 解得a <9, 综上,a 的取值范围是32-<a <9,且a ≠3, 则符合题意的整数a 的值有0,6共2个,故选:A .【点评】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为正整数结合不等式组有解,找出32-<a <9,且a ≠3是解题的关键.二、填空题目9.某班在植树节时需完成一批植树任务,若由全班学生一起完成每人需植树8棵;若由女生单独完成每人需植树12棵,则由男生单独完成每人需植树_____棵.【答案】24.【分析】要求单独由男生完成,每人应植树多少棵,就要先设出未知数,根据题中的等量关系,列方程求解即可.【详解】设单独由男生完成,每人应植树x 棵.那么根据题意可得出方程:111128x +=, 解得:x =24.检验得x =24是方程的解.因此单独由男生完成,每人应植树24棵.故答案为:24.【点评】本题考查了分式方程的应用,为工作效率问题,可根据题意列出方程,判断所求的解是否符合题意即可.10.若关于x 的分式方程221111a x x x -=-+-无解,则a 的值是______. 【答案】2或-4 【分析】按照解分式方程的步骤,把方程两边乘最简公分母,化为关于x 的一元一次方程,把增根代入一元一次方程中,可求得a 的值.【详解】方程两边同乘(x +1)(x -1),得a -2(x -1)=x +1由于分式方程在增根x =1和x =-1把x =1代入a -2(x -1)=x +1中,得a =2把x =-1代入a -2(x -1)=x +1中,得a =-4所以a 的取值为2或-4故答案为:2或-4【点评】本题考查了分式方程有增根时参数的取值问题,关键要根据分式方程的分母确定方程的增根. 11.若关于x 的分式方程2111a x x =+--有增根,则a =__________. 【答案】2【分析】先将分式方程去分母转化为整式方程,根据分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值. 【详解】2111a x x =+--, 去分母,得 a =2+x −1,∵分式方程有增根,∴x −1=0,解得x =1,将x =1代入整式方程,得a =2,故答案为:2.【点评】此题考查了分式方程无解问题,解答此类问题可按如下步骤进行:①化分式方程为整式方程;②确定增根;③把增根代入整式方程,计算后即可求得相关字母的值.12.已知方程232a a a -+=,且关于x 的不等式组x a x b ≥⎧⎨≤⎩只有3个整数解,那么b 的取值范围是_______. 【答案】3≤b <4【分析】首先解分式方程求得a 的值,然后根据不等式组的解集确定x 的范围,再根据只有3个整数解,确定b的范围.【详解】解方程232aa a-+=,两边同时乘以a得:2-a+2a=3,解得:a=1,∴关于x的不等式组x a x b≥⎧⎨≤⎩,则解集是1≤x≤b,∵不等式组只有3个整数解,则整数解是1,2,3,∴3≤b<4.故答案是:3≤b<4.【点评】此题考查的是一元一次不等式组的解法和解分式方程,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三、解答题13.某班13位同学参加每周一次的卫生大扫除,按学校的卫生要求需要完成总面积为280m的三个项目的任务,三个项目的面积比例和每人每分钟完成各项目的工作量如下图所示:(1)从上述统计图中可知:①每人每分钟擦课桌椅______2m;②擦玻璃、擦课桌椅、扫地拖地的面积分别是________2m,_______2m,________2m;(2)他们一起完成扫地和拖地的任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅,如果你是卫生委员,该如何分配这两组的人数,才能同时地完成任务.【答案】(1)①12;②16;20;44;(2)8人擦玻璃,5人擦课桌椅【分析】(1)①②观察统计图,直接计算;(2)把这13人分成两组,一组去擦玻璃,一组去擦课桌椅,设有x 人擦玻璃,则有(13-x )人擦课桌椅,擦玻璃的面积是16m 2,擦课桌椅的面积是20m 2,据此列出方程,解之即可.【详解】(1)①由统计图可得, 每人每分钟能擦课桌椅12m 2; ②擦玻璃的面积是80×20%=16m 2,擦课桌椅的面积是80×25%=20m 2,扫地拖地的面积是80×55%=44m 2;(2)设有x 人擦玻璃,则有(13-x )人擦课桌椅,由题意得: ()16200.250.513x x =-, 解得x =8,经检验:x =8是方程的解,∴13-x =13-8=5(人),所以派8人擦玻璃,5人擦课桌椅,能同时完成任务.【点评】本题考查条形统计图、扇形统计图、分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件.14.已知关于x 的方程233x mx x 的解为非负数,求m 的取值范围.【答案】6m ≤且3m ≠【分析】先解分式方程,因为解为负数,解不等式,要注意解不能为增根.【详解】233x m x x 移项:233x m x x =+-- 去分母:2(3)x x m =-+解得:6x m =-方程的解为非负数∴0x ≥∴60m -≥∴6m ≤又3x ≠∴63m -≠∴3m ≠∴m 的取值范围为:63m m ≤≠且【点评】本题考查了,分式方程的解,解分式方程,一元一次不等式的解法;注意分式方程要检验,本题检验是解题的关键.15.2020年春,湖北省武汉市爆发新冠疫情,我校师生积极捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?【答案】450人【分析】设第一天有x 人参加捐款,根据已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,可列出方程求解.【详解】设第一天有x 人参加捐款,则第二天有(50)x +人参加捐款 依题意得:4800600050x x =+, 解得:200x =,检验:200x =时,(50)0x x +≠ ,即200x =是原方程的解,故第一天有200人捐款,第二天有250人捐款,两天一共有450人捐款,答:两天参加捐款的人一共有450人.【点评】本题考查了分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键,再列分式方程解应用题时,设间接未知数,有时可使解答变得简捷.16.解下列方程:(1)23111x x x+=--; (2)11322x x x-+=-- 【答案】(1)2x =;(2)原方程无解【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)23111x x x+=-- 去分母,得:231x x -=-解得,2x =检验:当2x =时,10x -≠2x ∴=是原方程的解;(2)11322x x x-+=-- 去分母得,13(2)(1)x x +-=--解得,2x =检验,当2x =时,20x -=,2x ∴=是原方程的增根∴原方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.某公司购买了A 、B 两种不同型号的口罩,已知A 型口罩的单价比B 型口罩的单价多4.5元,且用12000元购买A 型口罩的数量与用3000元购买B 型口罩的数量相同.(1)A 、B 两种型号口罩的单价各是多少元?(2)该公司还需要增加购买一些口罩,增加购买B 型口罩数量是A 型口罩数量的4倍,若总费用不超过6000元,则增加购买A 型口罩的数量最多是多少个?【答案】(1)A 型口罩的单价为6元,则B 型口罩的单价为1.5元;(2)增加购买A 型口罩的数量最多是500个【分析】(1)设A 型口罩的单价为x 元,则B 型口罩的单价为(x ﹣4.5)元,根据数量=总价÷单价,结合用12000元购买A 型口罩的数量与用3000元购买B 型口罩的数量相同,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设增加购买A 型口罩的数量是m 个,则增加购买B 型口罩数量是4m 个,根据总价=单价×数量,结合总价不超过6000元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设A 型口罩的单价为x 元,则B 型口罩的单价为(x ﹣4.5)元, 根据题意,得:1200030004.5x x =-.解方程,得:x=6.经检验:x=6是原方程的根,且符合题意.所以x﹣4.5=1.5.答:A型口罩的单价为6元,则B型口罩的单价为1.5元;(2)设增加购买A型口罩的数量是m个,根据题意,得:1.5×4m+6m≤6000.解不等式,得:m≤500.正整数m的最大值为500.答:增加购买A型口罩的数量最多是500个.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.18.用电脑程序控制小型赛车进行50m比赛,“畅想号”和“和谐号”两辆赛车进入了决赛,比赛前的练习中,两辆车从起点同时出发,“畅想号”到达终点时,“和谐号”离终点还差5m,已知“畅想号”的平均速度为2.5m/s.(1)求“和谐号”的平均速度;(2)如果两车重新开始比赛,“畅想号”从起点后退5m,两车同时出发,两车能否同时到达终点?若能,求出两车到达终点的时间;若不能,在此种情况下,请重新调整一辆车的平均速度,使两车能同时到达终点.【答案】(1)2.25m/s;(2)“畅想号”的平均速度降低140m/s或“和谐号”的平均速度增加144m/s,可使两车能同时到达终点.【分析】(1)设“和谐号”的平均速度为x,根据,“畅想号”运动50m与“和谐号”运动45m所用时间相等,可得方程,解出即可.(2)分别算出两车到达终点的时间可判断不能同时到达,再设“畅想号”的平均速度降低x m/s和“和谐号”的平均速度增加x m/s,根据时间相等,得出方程求解即可.【详解】(1)设“和谐号”的平均速度为x m/s,由题意得,50505 2.5x-=,解得:x=2.25,经检验x=2.25是原方程的解.答:“和谐号”的平均速度2.25m/s .(2)“畅想号”到达终点的时间是5052.5+=22s , “和谐号”到达终点的时间是502222.259=s , ∴两车不能同时到达,“畅想号”先到.方案一:设“畅想号”的平均速度降低x m/s 时能使两车同时到达终点, 则505502.5 2.25x +=-, 解得:x =140,经检验x =140是原方程的解, 方案二:设“和谐号”的平均速度增加x m/s 时能使两车同时到达终点, 则50552.25 2.5x =+, 解得:x =144,经检验x =144是原方程的解, 答:“畅想号”的平均速度降低140m/s 或“和谐号”的平均速度增加144m/s ,可使两车能同时到达终点. 【点评】本题考查了分式方程的应用,解答本题的关键是仔细审题,找到等量关系,建立方程,难度一般. 19.3月12日是植树节,重庆市第一实验中学开展了“我与自然——一实农场”的活动:初一、初二年级以班级为单位,各自开辟了一块菜园种植蔬菜.初二某班学生经商量计划购买番茄苗和茄子苗共100株,经了解茄子苗的单价是番茄苗单价的18018032x x -=+,若花80元购进番茄苗,则购买茄子苗需要90元.(1)求番茄苗和茄子苗的单价;(2)班长在购买菜苗时了解到,在当前种植条件下,番茄的成活率为75%,一株番茄苗大约能结8个番茄,茄子的存活率为90%,一株茄子苗大约能结5个茄子,班长决定再多购买番茄和茄子苗共20株,但是不能超过预算210元,且番茄苗的总数量不低于茄子苗总数量的18018032x x -=+,班长最终应该如何购买,才能使所结的果实数量最多.【答案】(1)番茄苗单价2元,茄子苗单价为1.5元;(2)当番茄苗20珠,茄子苗0珠0时,最多 20.已知关于x 的分式方程311(1)(2)x k x x x -+=++-的解为非负数,求k 的取值范围. 【答案】8k ≥-且0k ≠.【分析】先解分式方程,再建立不等式求解即可.【详解】解分式方程,得84k x +=, 根据题意,得:804k +≥且881,244k k ++≠-≠, 解得:8k ≥-且0k ≠.【点评】本题考查了分式方程与不等式,熟练掌握分式方程及不等式的解法是解题的关键,注意不要遗漏条件:最简公分母不能为0.祝福语祝你考试成功!。

初二数学上册同步练习册习题与答案大全

初二数学上册同步练习册习题与答案大全

初二数学上册同步练习册习题与答案大全初中数学与小学不同,会比较难,学好初中数学需要平时的练习,练习越多,掌握越熟练。

下面是小编为大家整理的关于初二数学上册同步练习册习题与答案,希望对您有所帮助!初二数学上册练习题及答案1.下列四个说法中,正确的是( )A.一元二次方程有实数根;B.一元二次方程有实数根;C.一元二次方程有实数根;D.一元二次方程_2+4_+5=a(a≥1)有实数根.【答案】D2.一元二次方程有两个不相等的实数根,则满足的条件是A. =0B. 0C. 0D. ≥0【答案】B3.(20__四川眉山)已知方程的两个解分别为、,则的值为A. B. C.7 D.3【答案】D4.(20__浙江杭州)方程 _2 + _ – 1 = 0的一个根是A. 1 –B.C. –1+D.【答案】D5.(20__年上海)已知一元二次方程_2 + _ ─ 1 = 0,下列判断正确的是( )A.该方程有两个相等的实数根B.该方程有两个不相等的实数根C.该方程无实数根D.该方程根的情况不确定【答案】B6.(20__湖北武汉)若是方程 =4的两根,则的值是( )A.8B.4C.2D.0【答案】D7.(20__山东潍坊)关于_的一元二次方程_2-6_+2k=0有两个不相等的'实数根,则实数k的取值范围是( ).A.k≤B.kC.k≥D.k【答案】B初二数学练习及答案一、选择题:(每小题3分,共30分)1. 如右图,图中共有三角形( )A、4个B、5个C、6个D、8个2.下面各组线段中,能组成三角形的是( )A.1,2,3B.1,2,4C.3,4,5D.4,4,83.下列图形中具有不稳定性的是( )A、长方形B、等腰三角形C、直角三角形D、锐角三角形4. 在△ABC中,∠A=39°,∠B=41°,则∠C的度数为( )A.70°B. 80°C.90°D. 100°5. 如右图所示,AB∥CD,∠A=45°,∠C=29°,则∠E的度数为( )A.22.5°B. 16°C.18°D.29°6. 下列几何图形中,是轴对称图形且对称轴的条数大于1的有( )①长方形;②正方形;③圆;④三角形;⑤线段;⑥射线.A. 3个B. 4个C. 5个D. 6个7. 如图所示,∠A+∠B+∠C+∠D+∠E的结果为( )A.90°B.1 80°C.360°D. 无法确定8. 正多边形的一个内角等于144°,则该多边形是正( )边形.A.8B.9C.10D.119. 如图所示,BO,CO分别是∠ABC,∠ACB的两条角平分线,∠A=100°,则∠BOC的度数为( ).A.80°B.90°C.120°D.140°10. 如图,△ABC中,∠A=90°,AB=AC,BD平分∠ABC交AC于D,DE⊥BC于点E,且BC=6,则△DEC的周长是( )(A)12 cm (B)10 cm (C)6cm (D)以上都不对二、填空题:(每小题3分,共24分)11. 已知三角形两边长分别为4和9,则第三边的取值范围是 .12. 等腰三角形的周长为20cm,一边长为6cm,则底边长为______.13. 已知在△ABC中,∠A=40°,∠B-∠C=40°,则∠B=_____,∠C=______.14. 如图,所示,在△ABC中,D在AC上,连结BD,且∠ABC=∠C=∠1,∠A=∠3,则∠A 的度数为 .15. 把边长相同的正三角形和正方形组合镶嵌,若用2个正方形,则还需要____个正三角形才可以镶嵌.16. 如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点可以连_____•条对角线.17. 如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是____________.18. 已知△ABC的三边长a、b、c,化简│a+b-c│-│b-a-c│的结果是_________.三、解答下列各题:19. 如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2分)(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.(4分)20. 如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD 的周长为13cm.求△ABC的周长.21如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.22. 如图所示,BE平分∠ABD,DE平分∠CDB,BE和DE相交于AC上一点E,•如果∠BED=90°,试说明AB∥CD.23. 请完成下面的说明:(1)如图①所示,△ABC的外角平分线交于G,试说明∠BGC=90°- ∠A.说明:根据三角形内角和等于180°,可知∠ABC+∠ACB=180°-∠_____.根据平角是180°,可知∠ABE+∠ACF=180°×2=360°,所以∠EBC+∠FCB=360°-(∠ABC+∠ACB)=360°-(180°-∠_____)=180 °+ ∠______.根据角平分线的意义,可知∠2+∠3= (∠EBC+∠FCB)= (180°+∠_____)=90°+ ∠_______.所以∠BGC=180°-(∠2+∠3)=90°-∠____.(2)如图②所示,若△ABC的内角平分线交于点点I,试说明∠BIC=90°+ ∠A.(3)用(1),(2)的结论,你能说出∠BGC和∠BIC的关系吗?24. 在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30º,求∠ACF度数.参考答案:一、选择题:(每小题3分,共30分)1. D2. C3. A4. D5.B6.B7.B8.C9.D 10.C二、填空题:(每小题3分,共24分)三、解答下列各题:(19-20题,每小题6分;21-23题,每小题6分;24题10分,本大题共46分)19. 解:(1)如答图所示.(2)∠BAD=60°,∠CAD=40°.20. 解:∵DE是线段AC的垂直平分线∴AD=CD∵△ABD的周长为13cm∴AB+BC=13cm∵AE=3cm∴AC=2AE=6cm. ∴△ABC的周长为:AB+BC+AC=19cm.21. 证明:∵AF=DC,∴AC=DF,又∠A=∠D,AB=DE,∴△ABC≌△DEF,∴∠ACB=∠DFE,∴BC∥EF.22.证明:在△BDE中,∵∠BED=90°,∠BED+∠EBD+∠EDB=180°,∴∠EBD+∠EDB=180°-∠BED=180°-90°=90°.又∵BE平分∠ABD,DE平分∠CDB,∴∠ABD=2∠EBD,∠CDB=2∠EDB,∴∠ABD+∠CDB=2(∠EBD+∠EDB)=2×90°=180°,∴AB∥CD.24.(1)∵∠ABC=90°,∴∠CBF=∠ABE=90°.在Rt△ABE和Rt△CBF中,∵AE=CF,AB=BC,∴Rt△ABE≌Rt△CBF(HL)(2)∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°.∵∠BAE=∠CAB-∠CAE=45°-30°=15°.由(1)知Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=45°+15°=60°.八年级上册数学练习及答案一、请细心推敲,写出正确结果(每小题3分,共27分)1、已知方程3_+5y—3=0,用含_的代数式表示y,则y=________、2、若_a—b—2—2ya+b=3是二元一次方程,则a=________。

八年级数学人教版上册同步练习积的乘方(解析版)

八年级数学人教版上册同步练习积的乘方(解析版)

14.1.3积的乘方一、单选题1.下列运算中,正确的是( )A .22()ab ab =B .()325a a =C .23a a a ⋅=D .22()2a a -=-【答案】C【分析】根据幂的运算性质判断即可;【详解】222()ab a b =,故A 错误; ()326a a =,故B 错误; 23a a a ⋅=,故C 正确;22()a a -=,故D 错误;故答案选C .【点评】本题主要考查了幂的运算性质,准确分析判断是解题的关键.2.下列运算正确..的是( ) A .246x x x ⋅=B .246()x x =C .3362x x x +=D .33(2)6x x -=- 【答案】A【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可.【详解】A 选项246x x x ⋅=,选项正确,故符合题意;B 选项248()x x =,选项错误,故不符合题意;C 选项3332x x x +=,选项错误,故不符合题意;D 选项33(2)8x x -=-,选项错误,故不符合题意.故选:A .【点评】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键.3.数151025N =⨯是( )A .10位数B .11位数C .12位数D .13位数 【答案】C【分析】利用同底数幂的乘法和积的乘方的逆运算,将原数改写变形即可得出结论.【详解】()1015105101051011252252253210 3.210N =⨯=⨯⨯=⨯⨯=⨯=⨯,∴N 是12位数,故选:C .【点评】本题考查同底数幂的乘法和积的乘方的逆运算的应用,灵活运用基本运算法则对原式变形是解题关键.4.计算()()202020213232 -⨯的结果是( ) A .32- B .23- C .23 D .32【答案】D【分析】利用积的乘方的逆运算解答. 【详解】()()202020213232-⨯ =20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32. 故选:D .【点评】此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.5.下列运算正确的是( )A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 9【答案】B【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可.【详解】∵x 2•x 3=x 5,∴选项A 不符合题意;∵(x 3)2=x 6,∴选项B 符合题意;∵(−3x )3=−27x 3,∴选项C 不符合题意;∵x 4+x 5≠x 9,∴选项D 不符合题意.故选:B .【点评】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握.6.计算()20192020122⎛⎫-⨯- ⎪⎝⎭等于( ) A .﹣2B .2C .﹣12D .12 【答案】A【分析】逆运用同底数幂的乘法法则,把()20202-写成()()201922-⨯-的形式,再逆运用积的乘方法则得结论.【详解】()20192020122⎛⎫-⨯- ⎪⎝⎭()()201920191222⎛⎫=-⨯-⨯- ⎪⎝⎭()()20191222⎡⎤⎛⎫=--⨯- ⎪⎢⎥⎝⎭⎣⎦()201921?=-⨯2=-.故选:A .【点评】本题考查了同底数幂的乘法、积的乘方等知识点,熟练运用和逆用幂的运算法则是解决本题的关键.二、填空题目7.2007200820092()(1.5)(1)3⨯÷-=_____.【答案】-1.5【分析】首先把20081.5分解成20071.5 1.5⨯,再根据积的乘方的性质的逆用解答即可. 【详解】原式=()200720072 1.5 1.513⎛⎫⨯⨯÷- ⎪⎝⎭=()20072 1.5 1.513⎛⎫⨯⨯⨯- ⎪⎝⎭=﹣1.5, 故答案为-1.5 .【点评】本题考查有理数的乘方运算,逆用积的乘方法则是解题关键.8.计算:()()299990.045⎡⎤⨯-⎣⎦的结果是______. 【答案】1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】原式()()()()99992999999990.0450.04250.110425⎡⎤⨯-⨯⨯⎣===⎦== 故答案为:1【点评】本题考查了积的乘方的逆运算和幂的乘方,熟练掌握法则是解题的关键9.计算:(-0.125)2021×82 020=________. 【答案】18-【分析】先根据同底数幂乘法的逆运算将2021(0.125)-化为20201(1))8(8⨯--,再利用积的乘方逆运算得到20201(8)81()8-⨯⨯-,求值即可. 【详解】20212020(0.1285)-⨯ =202020201())881(8⨯-⨯- =20201(8)81()8-⨯⨯- =18- 故答案为:18-. 【点评】本题考查同底数幂相乘的逆运算,积的乘方的逆运算.熟记公式并灵活运用公式是解题的关键.10.计算201520162332⎛⎫⎛⎫⨯-= ⎪ ⎪⎝⎭⎝⎭________________. 【答案】32【分析】直接运用积的乘方运算法则进行计算即可.【详解】201520162332⎛⎫⎛⎫⨯- ⎪ ⎪⎝⎭⎝⎭ =20152015233322⎛⎫⎛⎫⎛⎫⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =2015233322⎡⎤⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=()2015312⎛⎫-⨯- ⎪⎝⎭=312⎛⎫-⨯-⎪⎝⎭ =32. 故答案为:32. 【点评】本题主要考查了积的乘方运算,熟练掌握运算法则是解答此题的关键.三、解答题11.计算:()()322435x x x -+-⋅. 【答案】62x -【分析】根据幂的运算法则计算即可.【详解】原式6242725x x x =-+⋅,662725x x =-+, 62x =-.【点评】本题考查了幂的运算,解题关键是熟知幂的运算法则,熟练进行计算.12.已知x 2n =4,求(x 3n )2﹣x n 的值.(其中x 为正数,n 为正整数)【答案】62【分析】由积的乘方逆用可得x n =2,然后将(x 3n )2﹣x n 化成只含有x n 的形式,然后将x n =2代入计算即可.【详解】∵x 2n =4(x 为正数,n 为正整数)∴x n =2,∴(x 3n )2﹣x n =(x n )6﹣x n =26﹣2=62.【点评】本题主要考查了幂的乘方和积的乘方,灵活运用幂的乘方和积的乘方运算法则是解答本题的关键. 13.计算:()2323(2)3a b ab a b⋅-+-. 【答案】3a 4b 2.【分析】根据同底数幂乘法及积的乘方的运算法则计算,再合并同类项即可得答案.【详解】()2323(2)3a b ab a b⋅-+-=-6a 4·b 2+9a 4b 2=3a 4b 2.【点评】本题考查整式的运算,熟练掌握同底数幂乘法、积的乘方及合并同类项法则是解题关键. 14.已知21202a b ⎛⎫-++= ⎪⎝⎭,求20202021a b 的值. 【答案】12- 【分析】先根据绝对值和平方的非负性求得2a =,12b =-,再将20202021a b 化为20202020a b b ⋅,再逆运用积的乘方公式适当变形后代入值计算即可.【详解】∵21202a b ⎛⎫-++= ⎪⎝⎭, ∴20a -=,102b +=, 解得2a =,12b =-. ∴2020202120202020a b a b b =⋅=2020()ab b ⋅ 将2a =,12b =-代入, 原式=202011[2()]()22⨯-⨯- =20201(1)()2-⨯- =11()2⨯- =12-.【点评】本题考查积的乘方运算的逆运算,同底数幂的乘法的逆运算,绝对值和平方的非负性.理解几个非负数(式)的和为0,那么这几个非负数(式)都为0.15.计算:32327(3)4a a a a -⋅-⋅【答案】.95a【分析】原式利用幂的乘方与积的乘方,以及同底数幂的乘法运算法则计算,合并即可得到结果.【详解】32327(3)4a a a a -⋅-⋅327694a a a a =⋅-⋅9994a a =-95a =.【点评】本题考查了幂的乘方与积的乘方,同底数幂的乘法以及合并同类项,熟练掌握运算法则是解本题的关键.16.已知32a =,35b =,3200c =,写出一个a ,b ,c 的等量关系式.【答案】32a b c +=【分析】根据8×25=200进行变形代入,再利用幂的乘方及同底数幂乘法计算即可得到结论.【详解】∵8×25=200,∴3225200⨯=,∵32a =,35b =,3200c =,∴()()32333a b c ⨯=,∴32333a b c ⨯=,∴3233a b c +=,∴32a b c +=.【点评】本题考查了同底数幂乘法及幂的乘方,熟练运用法则是解题的关键.17.计算题(1)若a 2=5,b 4=10,求(ab 2)2;(2)已知a m =4,a n =4,求a m+n 的值.【答案】(1)50;(2)16【分析】(1)根据积的乘方与幂的乘方运算法则进行计算求值即可;(2)逆用同底数幂乘法法则进行计算即可.【详解】(1)∵a 2=5,b 4=10,∴(ab 2)2=a 2•b 4=5×10=50;(2)∵a m =4,a n =4,∴a m+n =a m •a n =4×4=16.【点评】本题考查了同底数幂的乘法,积的乘方与幂的乘方,熟练掌握运算法则是解题的关键. 18.尝试解决下列有关幂的问题:(1)若1632793m m ⨯÷=,求m 的值;(2)已知2,3,x y a a =-=求32x y a -的值;(3)若n 为正整数,且24n x =,求()()223234n nx x -的值 【答案】(1)15;(2)89-;(3)512 【分析】(1)首先利用幂的乘方运算法则化简,再利用同底数幂的乘除法运算法则求出答案; (2)根据同底数幂的除法被幂的乘方法则解答;(3)将()()223234n n x x -利用幂的乘方和积的乘方法则变形为()()222394n n x x -,再代入计算.【详解】(1)∵1632793m m ⨯÷=,∴16323333m m ÷=⨯,∴11633m +=,∴m+1=16,∴m=15;(2)∵2,3x y a a =-=,∴32x y a -=32x y a a ÷=()()32x y a a ÷ =()3223-÷ =89-; (3)∵24n x =,∴()()223234n nx x - =()()222394n n x x -=239444⨯-⨯=512【点评】本题考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键. 19.如果n x y =,那么我们规定(,)x y n =.例如:因为239=,所以(3,9)2=.(1)(理解)根据上述规定,填空:(2,8)= ,12,4⎛⎫= ⎪⎝⎭;(2)(说理)记(4,12)a =,(4,5)b =,(4,60)c =.试说明:a b c +=;(3)(应用)若(,16)(,5)(,)m m m t +=,求t 的值.【答案】(1)3,-2;(2)见解析;(3)80【分析】(1)根据规定的两数之间的运算法则解答;(2)根据积的乘方法则,结合定义计算;(3)根据定义解答即可.【详解】(1)23=8,(2,8)=3, 2124-=,(2,14)=-2, 故答案为:3;-2;(2)∵(4,12)=a ,(4,5)=b ,(4,60)=c ,∴412a =,45b =,460c =,∵12560⨯=,∴444a b c ⨯=,∴44a b c +=,∴a b c +=;(3)设(m ,16)=p ,(m ,5)=q ,(m ,t )=r ,∴16p m =,5q m =,r m t =,∵(16)(5)()m m m t +=,,,, ∴p q r +=,∴p q r m m +=,∴p q r m m m ⨯=,即165t ⨯=,∴80t =.【点评】本题考查了幂的乘方和积的乘方以及新定义下的实数运算,掌握幂的乘方和积的乘方法则是解题的关键.20.计算:()20192020122⎛⎫-⨯ ⎪⎝⎭=________.【答案】2【分析】利用同底数幂的乘法运算将原式变形,再利用积的乘方求出结果. 【详解】(-2)202012⨯()2019 =2202012⨯()2019 =2⨯2201912⨯()2019 =2122⨯⨯()2019 =21⨯=2【点评】此题考察整式乘法公式的运用,准确变形是解题的关键.祝福语祝你考试成功!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方根(第一课时)◆随堂检测1、若x 2= a ,则 叫 的平方根,如16的平方根是 ,972的平方根是 2、3±表示 的平方根,12-表示12的3、196的平方根有 个,它们的和为4、下列说法是否正确?说明理由 (1)0没有平方根; (2)—1的平方根是1±; (3)64的平方根是8; (4)5是25的平方根; (5)636±=5、求下列各数的平方根(1)100 (2))8()2(-⨯- (3) (4)49151◆典例分析例 若42-m 与13-m 是同一个数的平方根,试确定m 的值◆课下作业●拓展提高一、选择1、如果一个数的平方根是a+3和2a-15,那么这个数是( )A 、49B 、441C 、7或21D 、49或441 2、2)2(-的平方根是( )A 、4B 、2C 、-2D 、2± 二、填空3、若5x+4的平方根为1±,则x=4、若m —4没有平方根,则|m —5|=5、已知12-a 的平方根是4±,3a+b-1的平方根是4±,则a+2b 的平方根是 三、解答题6、a 的两个平方根是方程3x+2y=2的一组解 (1) 求a 的值 (2)2a 的平方根7、已知1-x +∣x+y-2∣=0 求x-y 的值● 体验中考1、(09河南)若实数x ,y 满足2-x +2)3(y -=0,则代数式2x xy -的值为2、(08咸阳)在小于或等于100的非负整数中,其平方根是整数的共有 个3、(08荆门)下列说法正确的是( )A 、64的平方根是8B 、-1 的平方根是1±C 、-8是64的平方根D 、2)1(-没有平方根平方根(第二课时)◆随堂检测1、259的算术平方根是 ;___ __ 2、一个数的算术平方根是9,则这个数的平方根是3x 的取值范围是 ,若a ≥0 4、下列叙述错误的是( )A 、-4是16的平方根B 、17是2(17)-的算术平方根 C 、164的算术平方根是18 D 、的算术平方根是◆典例分析例:已知△ABC 的三边分别为a 、b 、c 且a 、b |4|0b -=,求c 的取值范围 分析:根据非负数的性质求a 、b 的值,再由三角形三边关系确定c 的范围◆课下作业●拓展提高一、选择12=,则2(2)m +的平方根为( )A 、16B 、16±C 、4±D 、2±2 )A 、4B 、4±C 、2D 、2± 二、填空3、如果一个数的算术平方根等于它的平方根,那么这个数是42(4)y +=0,则xy =三、解答题5、若a 是2(2)-的平方根,b 2a +2b 的值6、已知a b-1是400●体验中考1.(2009年山东潍坊)一个自然数的算术平方根为,则和这个自然数相邻的下一个自然数是( ) A .B .C .D .2、(08的整数部分是 ;若<b ,(a 、b 为连续整数),则a= , b=3、(08年广州)如图,实数a 、b 在数轴上的位置,化简 =4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成米2的房间,小明想知道每块瓷砖的规格,请你帮助算一算.立方根◆随堂检测1、若一个数的立方等于 —5,则这个数叫做—5的 ,用符号表示为 ,—64的立方根是 ,125的立方根是 ; 的立方根是 —5.2、如果3x =216,则x = . 如果3x =64, 则x = .3、当x 为 时,.4、下列语句正确的是( )A 、64的立方根是2B 、3-的立方根是27C 、278的立方根是32± D 、2)1(-立方根是1- 典例分析例 若338x 51x 2+-=-,求2x 的值.●拓展提高一、选择1、若22)6(-=a ,33)6(-=b ,则a+b 的所有可能值是( )A 、0B 、12-C 、0或12-D 、0或12或12- 2、若式子3112a a -+-有意义,则a 的取值范围为( )A 、21≥aB 、1≤aC 、121≤≤a D 、以上均不对 二、填空3、64的立方根的平方根是4、若162=x ,则(—4+x )的立方根为 三、解答题5、求下列各式中的x 的值(1)1253)2(-x =343 (2)64631)1(3-=-x6、已知:43=a ,且03)12(2=-++-c c b ,求333c b a ++的值●体验中考1、(09宁波)实数8的立方根是2、(08泰州市)已知0≠a ,a ,b 互为相反数,则下列各组数中,不是互为相反数的一组是( )A 、3a 与3bB 、a +2与b +2C 、2a 与2b -D 、3a 与3b3、(08益阳市)一个正方体的水晶砖,体积为100 cm 3,它的棱长大约在( ) A 、4~5cm 之间 B 、5~6cm 之间 C 、6~7 cm 之间D 、7~8cm 之间实数与数轴◆随堂检测1、下列各数:23,722-,327-,414.1,3π-,12122.3,9-,••9641.3中,无理数有 个,有理数有 个,负数有 个,整数有 个. 2、33-的相反数是 ,|33-|=57-的相反数是 ,21-的绝对值=3、设3对应数轴上的点A ,5对应数轴上的点B ,则A 、B 间的距离为4、若实数a<b<0,则|a| |b|;大于17小于35的整数是 ;比较大小:3 5 5、下列说法中,正确的是( )A .实数包括有理数,0和无理数B .无限小数是无理数C .有理数是有限小数D .数轴上的点表示实数.◆典例分析例: 设a 、b 是有理数,并且a 、b 满足等式2522-=++b b a ,求a+b 的平方根◆课下作业●拓展提高一、选择1、 如图,数轴上表示1,2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点CABC 表示的实数为 ( ) A .2-1 B .1-2 C .2-2D .2-22、设a 是实数,则|a|-a 的值( )A .可以是负数B .不可能是负数C .必是正数D .可以是整数也可以是负数二、填空3、写出一个3和4之间的无理数4、下列实数1907,3π-,0,49-,21,31-,…(每两个1之间的0的个数逐次加1)中,设有m 个有理数,n 个无理数,则n m = 三、解答题5、比较下列实数的大小(1)|8-| 和3 (2)52- 和9.0- (3)215-和876、设m 是13的整数部分,n 是13的小数部分,求m-n 的值.● 体验中考2.(2011年青岛二中模拟)如图,数轴上两点表示的数分别为和, 点B 关于点A 的对称点为C ,则点C 所表示的数为( ) A . B .C .D .3.(2011年湖南长沙)已知实数a在数轴上的位置如图所示,则化简|1|a -的结果为( )A .1B .1-C .12a -D .21a -3、(2011年江苏连云港)实数a b ,在数轴上对应点的位置如图所示, 则必有( )A .0a b +>B .0a b -<(第46题图)a 1-0 (第8题图)C .0ab >D .0a b< 4、(2011年浙江省杭州市模2)如图,数轴上点A 所表示的数的倒数是( )A. 2-B. 2C.12 D. 12- § 幂的运算1. 同底数幂的乘法试一试(1) 23×24=( )×( )=2();(2) 53×54=5(); (3) a3·a 4=a ().概 括:a m ·a n =( )( )= =a n m +.可得 a m ·a n =a n m +这就是说,同底数幂相乘, .例1计算:(1) 103×104; (2) a ·a 3; (3) a ·a 3·a 5.练习1. 判断下列计算是否正确,并简要说明理由.(1) a ·a2=a 2;(2) a +a 2=a 3;(3)a 3·a 3=a 9;(4)a 3+a 3=a 6.2. 计算:(1) 102×105; (2) a 3·a 7; (3) x ·x 5·x 7.3.填空:(1)ma 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________; (3)4)2(-表示________,42-表示________;(4)根据乘方的意义,3a =________,4a =________,因此43a a ⋅=)()()(+同底数幂的乘法练习题1.计算: (1)=⋅64a a(2)=⋅5b b(3)=⋅⋅32m m m (4)=⋅⋅⋅953c c c c(5)=⋅⋅p n ma a a (6)=-⋅12m t t (7)=⋅+q qn 1(8)=-+⋅⋅112p p n n n2.计算:(1)=-⋅23b b (2)=-⋅3)(a a(3)=--⋅32)()(y y (4)=--⋅43)()(a a(5)=-⋅2433 (6)=--⋅67)5()5((7)=--⋅32)()(q q n(8)=--⋅24)()(m m(9)=-32 (10)=--⋅54)2()2((11)=--⋅69)(b b(12)=--⋅)()(33a a3.下面的计算对不对?如果不对,应怎样改正?(1)523632=⨯; (2)633a a a =+;(3)nnny y y 22=⨯; (4)22m m m =⋅;(5)422)()(a a a =-⋅-; (6)1243a a a =⋅;(7)334)4(=-; (8)6327777=⨯⨯;(9)42-=-a ; (10)32n n n =+. 4.选择题: (1)22+m a可以写成( ).A .12+m aB .22a am+ C .22a a m ⋅ D .12+⋅m a a(2)下列式子正确的是( ).A .4334⨯= B .443)3(=- C .4433=- D .3443= (3)下列计算正确的是( ).A .44a a a =⋅ B .844a a a =+C .4442a a a =+D .1644a a a =⋅2. 幂的乘方根据乘方的意义及同底数幂的乘法填空: (1) (23)2= × =2(); (2) (32)3= × =3();(3) (a 3)4= × × × =a ().概 括(a m )n = (n 个)= (n 个)=a mn可得(a m )n=a mn (m 、n 为正整数).这就是说,幂的乘方, .例2计算:(1) (103)5; (2) (b 3)4.练习1. 判断下列计算是否正确,并简要说明理由.(1) (a 3)5=a 8;(2) a 5·a 5=a 15;(3) (a 2)3·a 4=a 9.2. 计算:(1)(22)2; (2)(y 2)5; (3)(x 4)3; ( 4)(y 3)2·(y 2)3.3、计算: (1)x·(x 2)3 (2)(x m )n ·(x n )m (3)(y 4)5-(y 5)4(4)(m 3)4+m 10m 2+m·m 3·m 8 (5)[(a -b )n ] 2 [(b -a )n -1] 2(6)[(a-b)n] 2 [(b-a)n-1] 2 (7)(m3)4+m10m2+m·m3·m8幂的乘方一、基础练习1、幂的乘方,底数_______,指数____.(a m)n= ___(其中m、n都是正整数)2、计算:(1)(23)2=_____;(2)(-22)3=______;(3)-(-a3)2=______;(4)(-x2)3=_______。

相关文档
最新文档