人教版高中数学选修4-4知识点

合集下载

最新人教版高三数学选修4-4电子课本课件【全册】

最新人教版高三数学选修4-4电子课本课件【全册】
最新人教版高三数学选修4-4电子 课本课件【全册】
四 柱坐标系与球坐标系简介
最新人教版高三数学选修4-4电子 课本课件【全册】
第二讲 参数方程
最新人教版高三数学选修4-4电子 课本课件【全册】目录
0002页 0066页 0118页 0187页 0243页 0338页
引言 一 平面直角坐标系 三 简单曲线的极坐标方程 第二讲 参数方程 二 圆锥曲线的参数方程 四 渐开线与摆线
引言
最新人教版高三数学选修4-4电子 课本课件【全册】
第一讲 坐标系
一 曲线的参数方程
最新人教版高三数学选修4-4电子 课本课件【全册】
最新人教版高三数学选修4-4电子 课本课件【全册】
一 平面直角坐标系
最新人教版高三数学选修4-4电子 课本课件【全册】
二 极坐标系
最新人教版高三数学选修4-4电子 课本课件【全册】
三 简单曲线的极坐标方程

【精编】高中数学选修4-4知识点清单

【精编】高中数学选修4-4知识点清单

高中数学选修4­4坐标系与参数方程知识点总结第一讲一平面直角坐标系1.平面直角坐标系(1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系.(2)平面直角坐标系:①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系;②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向;③坐标轴水平的数轴叫做x轴或横坐标轴,竖直的数轴叫做y轴或纵坐标轴,x轴或y 轴统称为坐标轴;④坐标原点:它们的公共原点称为直角坐标系的原点;⑤对应关系:平面直角坐标系上的点与有序实数对(x,y)之间可以建立一一对应关系.(3)距离公式与中点坐标公式:设平面直角坐标系中,点P1(x1,y1),P2(x2,y2),线段P1P2的中点为P,填表:2.设点P(x,y)是平面直角坐标系中的任意一点,在变换φ点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.二极坐标系(1)定义:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向.(3)图示2.极坐标(1)极坐标的定义:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ).(2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O的极坐标是(0,θ),(θ∈R),若点M的极坐标是M(ρ,θ),则点M的极坐标也可写成M(ρ,θ+2kπ),(k∈Z).若规定ρ>0,0≤θ<2π,则除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系.3.极坐标与直角坐标的互化公式如图所示,把直角坐标系的原点作为极点,x轴的正半轴作为极轴,且长度单位相同,设任意一点M的直角坐标与极坐标分别为(x,y),(ρ,θ).(1)极坐标化直角坐标=ρcosθ,=ρsinθW.(2)直角坐标化极坐标2=x2+y2,θ=yx(x≠0).三简单曲线的极坐标方程1.曲线的极坐标方程一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.2.圆的极坐标方程(1)特殊情形如下表:圆心位置极坐标方程图形圆心在极点(0,0)ρ=r (0≤θ<2π)圆心在点(r ,0)ρ=2r cos_θ(-π2≤θ<π2)圆心在点(r ,π2)ρ=2r sin_θ(0≤θ<π)圆心在点(r ,π)ρ=-2r cos_θ(π2≤θ<3π2)圆心在点(r ,3π2)ρ=-2r sin_θ(-π<θ≤0)(2)一般情形:设圆心C (ρ0,θ0),半径为r ,M (ρ,θ)为圆上任意一点,则|CM |=r ,∠COM =|θ-θ0|,根据余弦定理可得圆C 的极坐标方程为ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0即)cos(2002022θθρρρρ--+=r 3.直线的极坐标方程00△OPM 中利用正弦定理可得直线l 的极坐标方程为ρsin(α-θ)=ρ0sin(α-θ0).四柱坐标系与球坐标系简介(了解)1.柱坐标系(1)定义:一般地,如图建立空间直角坐标系Oxyz .设P 是空间任意一点,它在Oxy 平面上的射影为Q ,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点Q 在平面Oxy 上的极坐标,这时点P 的位置可用有序数组(ρ,θ,z )(z ∈R )表示.这样,我们建立了空间的点与有序数组(ρ,θ,z )之间的一种对应关系.把建立上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z )叫做点P 的柱坐标,记作P (ρ,θ,z ),其中ρ≥0,0≤θ<2π,z ∈R .(2)空间点P 的直角坐标(x ,y ,z )与柱坐标(ρ,θ,z )x =ρcos θy =ρsin θz =z.2.球坐标系(1)定义:一般地,如图建立空间直角坐标系Oxyz .设P 是空间任意一点,连接OP ,记|OP |=r ,OP 与Oz 轴正向所夹的角为φ,设P 在Oxy 平面上的射影为Q ,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角为θ,这样点P 的位置就可以用有序数组(r ,φ,θ)表示,这样,空间的点与有序数组(r ,φ,θ)之间建立了一种对应关系.把建立上述对应关系的坐标系叫做球坐标系(或空间极坐标系),有序数组(r ,φ,θ),叫做点P 的球坐标,记作P (r ,φ,θ),其中r ≥0,0≤φ≤π,0≤θ<2π.(2)空间点P 的直角坐标(x ,y ,z )与球坐标(r ,φ,θ)之间x =r sin φcos θy =r sin φsin θz =r cos φ.第二讲:一曲线的参数方程1.参数方程的概念1.参数方程的概念(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数:=f (t )=g (t )①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.(2)参数的意义:参数是联系变数x ,y 的桥梁,可以是有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.2.参数方程与普通方程的区别与联系(1)区别:普通方程F (x ,y )=0,直接给出了曲线上点的坐标x ,y 之间的关系,它含有x ,y =f (t )=g (t )(t 为参数)间接给出了曲线上点的坐标x ,y 之间的关系,它含有三个变量t ,x ,y ,其中x 和y 都是参数t 的函数.(2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一个变量的值;参数方程中自变量也只有一个,而且给定参数t 的一个值,就可以求出唯一对应的x ,y 的值.这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引入参数,也可把普通方程化为参数方程.2.圆的参数方程1.圆心在坐标原点,半径为r 的圆的参数方程如图圆O 与x 轴正半轴交点M 0(r ,0).(1)设M (x ,y )为圆O 上任一点,以OM 为终边的角设为θ,则以θ为参数的圆O 的参数其中参数θ的几何意义是OM 0绕O 点逆时针旋转到OM 的位置时转过的角度.(2)设动点M 在圆上从M 0点开始逆时针旋转作匀速圆周运动,角速度为ω,则OM 0经过时间t 转过的角θ=ωt ,则以t 为参数的圆O 其中参数t 的物理意义是质点做匀速圆周运动的时间.2.圆心为C (a ,b ),半径为r 的圆的参数方程圆心为(a ,b ),半径为r 的圆的参数方程可以看成将圆心在原点,半径为r 的圆通过坐3.参数方程和普通方程的互化曲线的参数方程和普通方程的互化(1)曲线的参数方程和普通方程是在同一平面直角坐标系中表示曲线的方程的两种不同形式,两种方程是等价的可以互相转化.(2)将曲线的参数方程化为普通方程,有利于识别曲线的类型.参数方程通过消去参数就可得到普通方程.(3)普通方程化参数方程,首先确定变数x ,y 中的一个与参数t 的关系,例如x =f (t ),其次将x =f (t )代入普通方程解出y =g (t )(4)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.二圆锥曲线的参数方程1.椭圆的参数方程椭圆的参数方程(1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1(a >b >0)φ是参数),规定参数φ的取值范围是[0,2π).(2)中心在原点,焦点在y 轴上的椭圆y 2a 2+x 2b 2=1(a >b >0)φ是参数),规定参数φ的取值范围是[0,2π).(3)中心在(h ,k )的椭圆普通方程为(x -h )2a 2+(y -k )2b 2=1,则其参数方程为φ是参数).2.双曲线的参数方程和抛物线的参数方程1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1规定参数φ的取值范围为φ∈[0,2π)且φ≠π2,φ≠3π2.(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=12.抛物线的参数方程(1)抛物线y 2=2px (2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.三直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线l t 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M =x 0+t cos α=y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)=x 0+at =y 0+bt(t 为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.四渐开线与摆线(了解)1.渐开线的概念及参数方程(1)渐开线的产生过程及定义把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展开,铅笔画出的曲线叫做圆的渐开线,相应的定圆叫做渐开线的基圆.(2)圆的渐开线的参数方程以基圆圆心O 为原点,直线OA 为x 轴,建立如图所示的平面直角坐标系.设基圆的半径为r ,绳子外端M 的坐标为(x ,y )φ是参数).这就是圆的渐开线的参数方程.2.摆线的概念及参数方程(1)摆线的产生过程及定义平面内,一个动圆沿着一条定直线无滑动地滚动时圆周上一个固定点所经过的轨迹,叫做平摆线,简称摆线,又叫旋轮线.(2)半径为r的圆所产生摆线的参数方程为φ是参数).。

最新人教版高中数学选修4-4《极坐标系》教材梳理

最新人教版高中数学选修4-4《极坐标系》教材梳理

最新⼈教版⾼中数学选修4-4《极坐标系》教材梳理庖丁巧解⽜知识·巧学⼀、极坐标系的概念1.在⽣活中,如台风预报、地震预报、测量、航空、航海等,经常⽤距离和⽅向来表⽰⼀点的位置.⽤距离和⽅向表⽰平⾯上⼀点的位置,就是极坐标.极坐标系的建⽴:在平⾯内取⼀个定点O ,叫做极点.引⼀条射线Ox ,叫做极轴.再选定⼀个长度单位和⾓度正⽅向(通常取逆时针⽅向).这样就建⽴了⼀个极坐标系.2.如图1-2-3,极坐标系内⼀点的极坐标的规定:对于平⾯上任意⼀点M ,⽤ρ表⽰线段OM 的长度,⽤θ表⽰从Ox 到OM 的⾓度,ρ叫做M 的极径,θ叫做点M 的极⾓,有序数对(ρ,θ)就叫做M 的极坐标.图1-2-3深化升华极点、极轴、长度单位、⾓度单位和它的正⽅向,构成了极坐标系的四要素,缺⼀不可.1.特别规定:当M 在极点时,它的极坐标ρ=0,θ可以取任意值.2.平⾯上⼀点的极坐标是不唯⼀的,有⽆数种表⽰⽅法.坐标不唯⼀是由极⾓引起的.不同的极坐标可以写出统⼀表达式.⼆、极坐标和直⾓坐标的互化1.互化的前提条件:①极坐标系中的极点与直⾓坐标系中的原点重合;②极轴与x 轴的正半轴重合;③两种坐标系中取相同的长度单位.2.互化公式??≠=+===.0,t an ,,sin ,co s 222x x y y x y x θρθρθρ在进⾏两种坐标间的互化时,应注意以下⼏点:①两套公式是在三条规定下得到的;②由直⾓坐标求极坐标时,理论上不是唯⼀的,但这⾥约定只在主值范围内求值;③由直⾓坐标⽅程化为极坐标⽅程,最后要化简;④由极坐标⽅程化为直⾓坐标⽅程时要注意变形的等价性,通常总要⽤ρ去乘⽅程的两端,应该检查极点是否在曲线上,若在是等价变形,否则,不是等价变形.问题·探究问题1 平⾯内建⽴直⾓坐标系是⼈们公认的最容易接受并且被经常采⽤的⽅法,但为什么它并不是确定点的位置的唯⼀⽅法,为什么要使⽤极坐标?探究:确定平⾯内⼀个点的位置时,有时是依靠⽔平距离与垂直距离这两个量,有时却是依靠距离与⽅位⾓(即“长度”与“⾓度”,这就是极坐标系的基本思想)这两个量.在⽣活中,如台风预报、地震预报、测量、航空、航海中等,甚⾄更贴近⽣活的如⼈听声⾳,不但有⾼低之分,还有⽅向之分.描述⼀个⼈所⾛的⽅向和路程,经常会这样说:从A 点出发向北偏东60°⽅向⾛了⼀段距离到B 点,再从B 点向南偏西15°⽅向⾏⾛……描述某飞机的位置:飞⾏⾼度1 200⽶,从飞机上看地平⾯控制点B 的俯⾓α=16°31′……这种位置的刻画能够给⼈⼀个很直观的形象.⽣活中除了应⽤这两种坐标系外,还应⽤地理坐标系,它实际上能称为真实世界的坐标系了.它能确定物体在地球上的位置.最常⽤的地理坐标系是经纬度坐标系,这个坐标系可以确定地球上任何⼀点的位置.另外,从⼏何上来说,有些复杂的曲线,⽐如说环绕⼀点做旋转运动的点的轨迹,⽤直⾓坐标表⽰,形式极其复杂,但⽤极坐标表⽰,就变得⼗分简单且便于处理.在应⽤上有重要价值的等速螺线,它的直⾓坐标x 与y 之间的关系很难确定,可是它的极坐标ρ与θ却有⼀个简单的⼀次函数关系ρ=ρ0+aθ(a≠0),从⽽可以看出ρ的值是随着θ的增加(或减少)⽽增加(或减少)的.总之,使⽤极坐标是⼈们⽣产⽣活的需要.平⾯内建⽴直⾓坐标系是⼈们公认的最容易接受并且被经常采⽤的⽅法,但它并不是确定点的位置的唯⼀⽅法.问题2 ⽤极坐标与直⾓坐标来表⽰点时,⼆者究竟有哪些相同和不同呢?探究:极坐标系是⽤距离和⾓来表⽰平⾯上的点的位置的坐标系,它由极点O 与极轴Ox 组成.对于平⾯内任⼀点P ,若设|OP|=ρ(≥0),以Ox 为始边,OP 为终边的⾓为θ,则点P 可⽤有序数对(ρ,θ)表⽰.直⾓坐标是⽤两个长度来度量的,直⾓坐标系是在数轴的基础上发展起来的,⾸先定义原点,接着⽤两条互相垂直的直线分别构成x 轴和y 轴.点的位置⽤有序数对(x,y)来表⽰.在平⾯直⾓坐标系内,点与有序实数对,即坐标(x ,y )是⼀⼀对应的,可是在极坐标系内,虽然⼀个有序实数对(ρ,θ)只能与⼀个点P 对应,但⼀个点P 却可以与⽆数多个有序实数对(ρ,θ)对应.也就是说平⾯上⼀点的极坐标是不唯⼀的.极坐标系中的点与有序实数对极坐标(ρ,θ)不是⼀⼀对应的.典题·热题例1设有⼀颗彗星,围绕地球沿⼀抛物线轨道运⾏,地球恰好位于该抛物线轨道的焦点处,当此彗星离地球为30(万千⽶)时,经过地球和彗星的直线与抛物线的轴的夹⾓为30°,试建⽴适当的极坐标系,写出彗星此时的极坐标.思路分析:如图1-2-4所⽰,建⽴极坐标系,使极点O 位于抛物线的焦点处,极轴Ox 过抛物线的对称轴,由题设可得下列四种情形:图1-2-4(1)当θ=30°时,ρ=30(万千⽶);(2)当θ=150°时,ρ=30(万千⽶);(3)当θ=210°时,ρ=30(万千⽶);(4)当θ=330°时,ρ=30(万千⽶).解:彗星此时的极坐标有四种情形:(30,30°),(30,150°),(30,210°),(30,330°).误区警⽰彗星此时的极坐标是四个,不能忽略了夹⾓的概念.如果只找到了⼀个极坐标,这是三⾓概念不清.例2极坐标与直⾓坐标的互化:(1)化点M 的直⾓坐标(-3,4)为极坐标;(2)化点M 的极坐标(-2,6π-)为直⾓坐标.思路分析:本题利⽤直⾓坐标与极坐标之间的互化公式,化极坐标时,需要找到点所对应的极径,极⾓;将极坐标化为直⾓坐标,直接根据公式可得到横,纵坐标.解:(1)∵ρ=22224)3(+-=+y x =5,tanθ=34-=x y , ⼜∵x<0,y>0,∴θ是第⼆象限⾓.∴θ=π-arctan 34. ∴点M 的极坐标为(5,π-arctan34). (2)x=2cos(6π-)=3-,y=-2sin(65π-)=1,∴点M 的直⾓坐标为(3-,1).深化升华(1)化点的直⾓坐标为极坐标时,⼀般取ρ≥0,0≤θ<2π,即θ取最⼩正⾓,由tanθ=xy 求θ时,还需结合点(x,y)所在的象限来确定θ的值. (2)化点的极坐标为直⾓坐标时,直接⽤互化公式?==,sin ,cos θρθρy x 例3在极坐标系中,A(4,9π),B(1,185π),则△OAB 的⾯积是__________. 思路解析:如图1-2-5所⽰,∠AOB=185π-9π=6π,图1-2-5S △AOB =21·|AO|·|BO|·sin ∠AOB=21·4·1·sin 6π=1. 答案:1⽅法归纳既然是求⾯积,那么就要明确所⽤到的⾯积公式不是⼀般的底乘⾼的⾯积公式,⽽是正弦定理的⾯积公式.例4已知两点的极坐标A(3,2π)、B(3,6π),则|AB|=______,AB 与极轴正⽅向所夹的⾓为____.图1-2-6思路解析:如图1-2-6所⽰,根据极坐标的定义可得|AO|=|BO|=3,∠AOB=60°,即△AOB 为正三⾓形.答案:3,65π⽅法归纳在坐标系中找到点的位置后,利⽤数形结合的⽅法可求出距离来.例5在极坐标中,若等边△ABC 的两个顶点是A(2,4π)、B(2,45π),那么顶点C 的坐标可能是( )A.(4,43π)B.(32,43π) C.(32,π) D.(3,π)思路解析:如图1-2-7,由题设可知A 、B 两点关于极点O 对称,即O 是AB 的中点.图1-2-7⼜|AB|=4,△ABC 为正三⾓形,|OC|=32,∠AOC=2π,C 对应的极⾓θ=4π+2π=43π或θ=4π-2π=4π-,即C 点极坐标为(32,43π)或(32,4π-). 答案:B深化升华在找点的极坐标时,把图形画出来,通过画图解决问题.例6(1)θ=43π的直⾓坐标⽅程是______; (2)极坐标⽅程ρ=sinθ+2cosθ所表⽰的曲线是______. 思路解析:(1)根据极坐标的定义,∵t anθ=xy ,∴tan 43π=x y ,即y=-x. (2)将极坐标⽅程化为直⾓坐标⽅程即可判断曲线的形状,因为给定的ρ不恒等于零,⽤ρ同乘⽅程的两边得ρ2=ρsinθ+2ρcosθ.化成直⾓坐标⽅程为x 2+y 2=y+2x,即(x-1)2+(y-21)2=45,这是以点(1,21)为圆⼼,半径为25的圆. 答案:(1)y=-x (2)以点(1,21)为圆⼼,半径为25的圆+++++++++++ ⽅法归纳当极坐标⽅程中含有sinθ、cosθ时,可将⽅程两边同乘以ρ,凑成含有ρsinθ、ρcosθ的项,然后再代⼊互化公式便可化为直⾓坐标⽅程,此法称为拼凑法.。

人教版高中数学选修4-4《1.4柱坐标系与球坐标系简介》

人教版高中数学选修4-4《1.4柱坐标系与球坐标系简介》

φ r o θ
P(r,φ,θ) y Q
x OP与Oz轴正向所夹的角为φ
转过的最小正角为θ
Ox轴按逆时针方向旋转到OQ时所
点P的位置可以用有序数组(r,φ,θ)表示 我们把建立上述对应关系的坐标系叫 球坐标系(或空间极坐标系) 有序数组(r,φ,θ)叫做点P的球坐标
其中 r 0, 0 , 0 2
5 5 3 点M的直角坐标为(- , ) 2 2
如图,建立空间直角坐标系Oxyz, z 设P是空间任意一点, P(ρ,θ,Z) p在平面Oxy的射影为Q o θ Q x 用(ρ,θ)(ρ≥0,0≤θ<2π)表示点Q 在平面Oxy上的极坐标,
y
点P的位置可用有序数组(ρ,θ,Z)表示
把建立上述对应关系的坐标系叫做 柱坐标系.
空间点P的直角坐标(x, y, z)与球坐标
(r,φ,θ)之间的变换关系为
x r sin cos y r sin sin z r cos
3、已知点 N的球坐标是(2, , ), 3 4 求它的直角坐标。
3
1、通过这节课的学习, 我们知道, 为了表示空间中所有的 点,我们可 以建立 _______________________ 、 ______________ 和 ______________ 来表示这些点。
2、这节课我们需要了解 的内容有:
谢谢
有序数组(ρ,θ,Z)叫点P的柱坐标.
其中ρ≥0, 0≤θ<2π, -∞<Z<+∞
注:柱坐标系又称半极坐标系,它是由 平面极坐标系及空间直角坐标系中的 一部分建立z)与柱坐标
(ρ,θ,Z)之间的变换关系为
x cos y sin zz

高中数学选修4-4(人教A版)第一讲坐标系1.3知识点总结含同步练习及答案

高中数学选修4-4(人教A版)第一讲坐标系1.3知识点总结含同步练习及答案
高中数学选修4-4(人教A版)知识点总结含同步练习题及答案
第一讲 坐标系 三 简单曲线的极坐标方程
一、知识清单
极坐标与极坐标方程
二、知识讲解
1.极坐标与极坐标方程 描述: 极坐标系 在平面上取一个定点O ,由O 点出发的一条射线Ox,一个长度单位及计算角度的正方向(通常取 逆时针方向),合称为一个极坐标系.O 点称为极点,Ox称为极轴.平面任一点M 的位置可以由 线段OM 的长度ρ 和从Ox到OM 的角度θ 来刻画.这两个数组成的有序对(ρ, θ)称为点M 的极坐 标.ρ 称为极径,θ 称为极角. 在极坐标系(ρ, θ)中,一般限定ρ ≥ 0.当ρ = 0时,就与极点重合,此时θ 不确定.给定点的极坐 标(ρ, θ),就唯一地确定了平面上的一个点.但是,平面上的一个点的极坐标并不是唯一的,它有 无穷多种表示形式.事实上,(ρ, θ)和(ρ, θ + 2kπ)代表同一个点,其中k 为整数.可见,平面上的 点与它的极坐标不是一一对应关系.这是极坐标与直角坐标的不同之处,如果限定ρ ≥ 0, 0 ≤ θ ≤ 2π,则除极点外,平面上的点就与它的极坐标系构成一一对应关系. ρ < 0,此时极坐标(ρ, θ)对应的点M 的位置按下面规则确定:点M 在与极轴成θ 角的射线的反向 延长线上,它到极点O 的距离为|ρ|,即规定当ρ < 0时,点M (ρ, θ)就是点M (−ρ, θ + π). 极坐标与直角坐标系的关系 设M 为平面上的一点,它的直角坐标系为(x, y),极坐标为(ρ, θ).则有{ x = ρ cos θ 或
⎧ ρ2 = x 2 + y 2 ⎨ ⎩ tan θ = y (x ≠ 0) ,ρ < 0也成立. x
y = ρ sin θ
曲线的极坐标方程 在给定的平面上极坐标系下,有一个二元方程F (ρ, θ) = 0.如果曲线C 是由极坐标(ρ, θ)满足方程 的所有点组成的,则称此二元方程F (ρ, θ) = 0为曲线C 的极坐标方程. 圆心(a, 0)在极轴上且过极点的圆,其极坐标方程是ρ = 2a cos θ ;圆心在点(a, 圆,其极坐标方程是ρ = 2a sin θ,0 ≤ θ ≤ π.

高中数学选修4-4知识点归纳

高中数学选修4-4知识点归纳

高中数学选修4-4知识点归纳高中数学选修4-4主要内容是复数的运算和应用。

复数是实数与虚数的和,形式为a+bi,其中a和b都是实数,i是虚数单位,满足i^2=-1。

1.复数的表示和性质:复数可以用直角坐标系表示,实部和虚部分别对应于横坐标和纵坐标。

复数具有加法、减法、乘法和除法四则运算,遵循实数的运算法则。

复数的共轭复数表示为a-bi,共轭复数具有性质:两个复数的和等于其实部的和加上虚部的和,两个复数的积等于实部的积减去虚部的积。

2.复数的平方根与n次方:对于任意一个复数z=a+bi,令w=x+yi是z的平方根,则w^2=z,即(x+yi)^2=a+bi。

将等式两边展开,得到x^2-y^2+(2xy)i=a+bi。

由此得到实部的方程组x^2-y^2=a和虚部的方程组2xy=b。

解这两个方程组,就可以得到平方根w的实部和虚部。

同样的方法,我们可以计算复数的n次方。

3.复数的模和辐角:复数的模表示复数到原点的距离,记为|z|,计算公式是|z|=√(a^2+b^2)。

复数的辐角表示复数与正实轴之间的夹角,记为θ,计算公式是tanθ=b/a。

复数的辐角一般用弧度表示,可以在求辐角时使用反正切函数。

复数的模和辐角与复数的实部和虚部之间有一定的关系,可以通过公式a=|z|cosθ,b=|z|sinθ进行互相转换。

4.复数的指数形式和三角形式:复数的指数形式表示为z=|z|e^(iθ),其中e是数学常数自然常数,e≈2.71828。

将复数的指数形式进行展开,可以得到z=|z|(cosθ+isinθ)。

这个形式叫做复数的三角形式,其中|z|表示模,θ表示辐角。

三角形式可以用于复数的运算和求解复数方程。

指数形式可以用于复数乘法和除法的运算,有简洁的表达方式。

5.复数的应用:复数广泛应用于科学和工程领域,尤其是在电学和物理学中。

在电学中,复数可以描述交流电的电压和电流,计算复数的平均功率和相位差。

在物理学中,复数可以描述波的传播和干涉现象,求解复杂的波动方程。

高中数学选修1-1、1-2、4-1、4-4知识点归纳

高中数学选修1-1、1-2、4-1、4-4知识点归纳
相似三角形的判定: ( 1)两角对应相等,两三角形相似; ( 2)两边对应成比例且夹角相等,两三角形相似; ( 3)三边对应成比例,两三角形相似。
射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项; 两直角边分别是它们在斜边上射影与斜边的比例中项。
圆周角定理:圆上一条弧所对的圆周角等于它所对的圆周角的一半。 圆心角定理:圆心角的度数等于它所对弧的度数。
选修 1- 1、 1-2 数学知识点
第一部分 简单逻辑用语
1. 原命题:“若 p ,则 q ”;逆命题: “若 q ,则 p ”; 否命题:“若 p ,则 q ”;逆否命题: “若 q ,则 p ”
2. 四种命题的真假性之间的关系: ( 1)两个命题互为逆否命题,它们有相同的真假性; ( 2)两个命题为互逆命题或互否命题,它们的真假性没有关系.
3. 若 p 若p
q ,则 p 是 q 的充分条件, q 是 p 的必要条件. q ,则 p 是 q 的充要条件(充分必要条件) .
集合间的包含关系:若 A B ,则 A 是 B 的充分条件或 B 是 A 的必要条件;
若 A=B,则 A 是 B 的充要条件;
4. ⑴全称量词——“所有的” 、“任意一个”等,用“
3. 极坐标与直角坐标的互化:
2 x2 y2 , x y sin , tan
cos , y (x 0) x
3.圆 ( x a) 2 ( y b)2 r 2的参数方程可表示为
x a rcos , ( 为参数 ) .
y b rsin .
2
2
椭圆 x a2
y b2
1 (a b
0) 的参数方程可表示为
x acos , ( 为参数 ) .
nx n

(完整版)高中数学选修4—4(坐标系与参数方程)知识点总结

(完整版)高中数学选修4—4(坐标系与参数方程)知识点总结

坐标系与参数方程 知识点1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩g g 的作用下,点P(x,y)对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩222tan (0)x y yx xρθ=+=≠ 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程曲线 图形 极坐标方程圆心在极点,半径为r 的圆(02)r ρθπ=≤<圆心为(,0)r ,半径为r 的圆2cos ()22r ππρθθ=-≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ≤<过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或 (2)(0)(0)θαρθπαρ=≥=+≥和过点(,0)a ,与极轴垂直的直线cos ()22a ππρθθ=-<<过点(,)2a π,与极轴平行的直线sin (0)a ρθθπ=<<注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=.二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方程,求出另一个变数与参数的关系()y g t =,那么()()x f t y g t =⎧⎨=⎩就是曲线的参数方程,在参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。

人教版选修4-4 极坐标与参数方程(精品课件)共24张PPT

人教版选修4-4 极坐标与参数方程(精品课件)共24张PPT

三、极坐标的正式应用和扩展
◆1736年出版的《流数术和无穷级数》一书中,牛顿 第一个将极坐标系应用于表示平面上的任何一点。牛 顿在书中验证了极坐标和其他九种坐标系的转换关系。 ◆在1691年出版的《博学通报》一书中伯努利正式使 用定点和从定点引出的一条射线,定点称为极点,射 线称为极轴。平面内任何一点的坐标都通过该点与定 点的距离和与极轴的夹角来表示。伯努利通过极坐标 系对曲线的曲率半径进行了研究。
(2)点P(ρ,θ)与点(ρ,2kπ+θ)(k∈Z)
所表示的是同一个点,即角θ与2kπ+θ的终边是 相同的。 综上所述,在极坐标系中,点与其点的极 坐标之间不是一一对应而是一对多的对应
(ρ,θ),(ρ,2kπ+θ),(-ρ,(2k+1)π+θ)均 表示同一个点
3.极坐标和直角坐标的互化
y
(1)互化背景:把直角坐标系 的原点作为极点,x轴的正半轴 作为极轴,并在两种坐标系中取 相同的长度单位,如图所示:
极坐标系和参数方程虽为选修内容,高中学生也 应该重视对本专题的学习,既可以体会其中的数 学思想,也能提高对数学的认识,而且可以与已 学知识融会贯通
极坐标系
定义:平面内的一条有规 定有单位长度的射线0x,0 为极点,0x为极轴,选定 一个长度单位和角的正方 向(通常取逆时针方向), 这就构成了极坐标系。
关于教材编排
参数方程是选修4-4专题的一个重要内容。这一专 题包含、涉及了很多高中内容。利用高二学生已掌 握的直线、圆和圆锥曲线曲线方程为基础,鼓励学 生利用参数的思想对它们进行探究解析,以及能学 习掌握如何优化参数的选择推出已知曲线方程的参 数形式,能等价互化参数方程与普通方程;借助实 际生活例子或相应习题体会参数方程的优势,理解 学习参数方程的缘由。

高中数学选修4-4-参数方程

高中数学选修4-4-参数方程

参数方程知识集结知识元参数方程知识讲解1.参数方程的概念【知识点的认识】参数方程的定义在平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数,即,并且对于t的每一个允许值,由该方程组所确定的点M(x,y)都在这条曲线上,那么此方程组就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数.对于参数方程而言,直接给出点的坐标间关系的方程F(x,y)=0叫做普通方程.2.参数方程化成普通方程【知识点的认识】参数方程和普通方程的互化由参数方程化为普通方程:消去参数,消参数的方法有代入法、加减(或乘除)消元法、三角代换法等.如果知道变数x,y中的一个与参数t的关系,例如x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.3.直线的参数方程【知识点的认识】直线、圆锥曲线的普通方程和参数方程轨迹普通方程参数方程直线y﹣y0=tan α(x﹣x0)(t为参数)圆(x﹣a)2+(y﹣b)2=r2(θ为参数)椭圆(θ为参数)+=1(a>b>0)双曲线(θ为参数)﹣=1抛物线y2=2px(p>0)(t为参数)【解题思路点拨】1.选取参数时的一般原则是:(1)x,y与参数的关系较明显,并列出关系式;(2)当参数取一值时,可唯一的确定x,y的值;(3)在研究与时间有关的运动物体时,常选时间作为参数;在研究旋转物体时,常选用旋转角作为参数;此外,也常用线段的长度、倾斜角、斜率、截距等作为参数.2.求曲线的参数方程常常分成以下几步:(1)建立直角坐标系,在曲线上设任意一点P(x,y);(2)选择适当的参数;(3)找出x,y与参数的关系,列出解析式;(4)证明(常常省略).3.根据直线的参数方程标准式中t的几何意义,有如下常用结论:(1)若M1,M2为l上任意两点,M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1﹣t2|;(2)若M0为线段M1M2的中点,则有t1+t2=0;(3)若线段M1M2的中点为M,则M=t M=.一般地,若点P分线段M1M2所成的比为λ,则t P=.4.直线的参数方程的一般式(t为参数),是过点M0(x0,y0),斜率为的直线的参数方程.当且仅当a2+b2=1且b≥0时,才是标准方程,t才具有标准方程中的几何意义.将非标准方程化为标准方程是(t′∈R),式中“±”号,当a,b同号时取正;当a,b异号时取负.5.参数方程与普通方程互化时,要注意:(1)不是所有的参数方程都能化为普通方程;(2)在化参数方程为普通方程时变量的范围不能扩大或缩小;(3)把普通方程化为参数方程时,由于参数选择的不同而不同,参数的选择是由具体的问题来决定的.6.在已知圆、椭圆、双曲线和抛物线上取一点可考虑用其参数方程设定点的坐标,将问题转化为三角函数问题求解.7.在直线与圆和圆锥位置关系问题中,涉及距离问题探求可考虑应用直线参数方程中参数的几何意义求解.8.在求某些动点的轨迹方程时,直接寻找x,y的关系困难,甚至找不出时,可以通过引入参数,建立动点的参数方程后求解.4.圆的参数方程【知识点的认识】直线、圆锥曲线的普通方程和参数方程轨迹普通方程参数方程直线y﹣y0=tan α(x﹣x0)(t为参数)圆(x﹣a)2+(y﹣b)2=r2(θ为参数)椭圆(θ为参数)+=1(a>b>0)双曲线(θ为参数)﹣=1抛物线y2=2px(p>0)(t为参数)【解题思路点拨】1.选取参数时的一般原则是:(1)x,y与参数的关系较明显,并列出关系式;(2)当参数取一值时,可唯一的确定x,y的值;(3)在研究与时间有关的运动物体时,常选时间作为参数;在研究旋转物体时,常选用旋转角作为参数;此外,也常用线段的长度、倾斜角、斜率、截距等作为参数.2.求曲线的参数方程常常分成以下几步:(1)建立直角坐标系,在曲线上设任意一点P(x,y);(2)选择适当的参数;(3)找出x,y与参数的关系,列出解析式;(4)证明(常常省略).3.根据直线的参数方程标准式中t的几何意义,有如下常用结论:(1)若M1,M2为l上任意两点,M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1﹣t2|;(2)若M0为线段M1M2的中点,则有t1+t2=0;(3)若线段M1M2的中点为M,则M0M=t M=.一般地,若点P分线段M1M2所成的比为λ,则t P=.4.直线的参数方程的一般式(t为参数),是过点M0(x0,y0),斜率为的直线的参数方程.当且仅当a2+b2=1且b≥0时,才是标准方程,t才具有标准方程中的几何意义.将非标准方程化为标准方程是(t′∈R),式中“±”号,当a,b同号时取正;当a,b异号时取负.5.参数方程与普通方程互化时,要注意:(1)不是所有的参数方程都能化为普通方程;(2)在化参数方程为普通方程时变量的范围不能扩大或缩小;(3)把普通方程化为参数方程时,由于参数选择的不同而不同,参数的选择是由具体的问题来决定的.6.在已知圆、椭圆、双曲线和抛物线上取一点可考虑用其参数方程设定点的坐标,将问题转化为三角函数问题求解.7.在直线与圆和圆锥位置关系问题中,涉及距离问题探求可考虑应用直线参数方程中参数的几何意义求解.8.在求某些动点的轨迹方程时,直接寻找x,y的关系困难,甚至找不出时,可以通过引入参数,建立动点的参数方程后求解.例题精讲参数方程例1.直线l的参数方程为(t为参数).圆C的参数方程为(θ为参数),则直线l被圆C截得的弦长为___.例2.已知圆C的参数方程为(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ+ρcosθ=1,则直线l截圆C所得的弦长是___.例3.在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,已知抛物线C的极坐标方程为ρcos2θ=4sinθ(ρ≥0),直线l的参数方程为(t为参数),设直线l与抛物线C的两交点为A、B,点F为抛物线C的焦点,则|AF|+|BF|=___.当堂练习填空题练习1.在平面直角坐标系xOy中,直线l的参数方程为(t为参数).圆C的参数方程是=(θ为参数),直线l与圆C交于两个不同的点A、B,当点P在圆C上运动时,△PAB面积的最大值为___练习2.参数方程(θ∈R)所表示的曲线与x轴的交点坐标是_______练习3.设直线的参数方程为(t为参数),点P在直线上,且与点M0(-4,0)的距离为2,若该直线的参数方程改写成(t为参数),则在这个方程中P点对应的t值为____.练习4.设a∈R,直线ax-y+2=0和圆(θ为参数)相切,则a的值为___。

(完整版)高中数学选修4-4知识点总结

(完整版)高中数学选修4-4知识点总结

选修4-4数学知识点一、选考内容《坐标系与参数方程》高考考试大纲要求:1.坐标系: ① 理解坐标系的作用. ② 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.③ 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④ 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.2.参数方程:① 了解参数方程,了解参数的意义.② 能选择适当的参数写出直线、圆和圆锥曲线的参数方程.二、知识归纳总结:1.伸缩变换:设点是平面直角坐标系中的任意一点,在变换),(y x P 的作用下,点对应到点,称为平面直角坐标⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ),(y x P ),(y x P '''ϕ系中的坐标伸缩变换,简称伸缩变换。

2.极坐标系的概念:在平面内取一个定点,叫做极点;自极点引一条射线叫做极O O Ox 轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。

3.点的极坐标:设是平面内一点,极点与点的距离叫做点的极径,M M O M ||OM M 记为;以极轴为始边,射线为终边的叫做点的极角,记为。

有序ρOx OM xOM ∠M θ数对叫做点的极坐标,记为.),(θρM ),(θρM 极坐标与表示同一个点。

极点的坐标为.),(θρ)Z )(2,(∈+k k πθρO )R )(,0(∈θθ4.若,则,规定点与点关于极点对称,即与0<ρ0>-ρ),(θρ-),(θρ),(θρ-表示同一点。

),(θπρ+如果规定,那么除极点外,平面内的点可用唯一的极坐标表πθρ20,0≤≤>),(θρ示;同时,极坐标表示的点也是唯一确定的。

新课标人教A版高中数学选修4-4知识点

新课标人教A版高中数学选修4-4知识点

高中数学选修4­4坐标系与参数方程知识点总结第一讲一平面直角坐标系1.平面直角坐标系(1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系.(2)平面直角坐标系:①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系;②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向;③坐标轴水平的数轴叫做x 轴或横坐标轴,竖直的数轴叫做y 轴或纵坐标轴,x 轴或y 轴统称为坐标轴;④坐标原点:它们的公共原点称为直角坐标系的原点;⑤对应关系:平面直角坐标系上的点与有序实数对(x ,y )之间可以建立一一对应关系.(3)距离公式与中点坐标公式:设平面直角坐标系中,点P 1(x 1,y 1),P 2(x 2,y 2),线段P 1P 2的中点为P2.微信公众号:学设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.二极坐标系(1)定义:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向.(3)图示2.极坐标(1)极坐标的定义:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ).(2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O 的极坐标是(0,θ),(θ∈R ),若点M 的极坐标是M (ρ,θ),则点M 的极坐标也可写成M (ρ,θ+2k π),(k ∈Z ).若规定ρ>0,0≤θ<2π,则除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系.3.极坐标与直角坐标的互化公式如图所示,把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,且长度单位相同,设任意一点M 的直角坐标与极坐标分别为(x ,y ),(ρ,θ).(1)极坐标化直角坐标=ρcos θ,=ρsin θW.(2)直角坐标化极坐标2=x 2+y 2,θ=yx(x ≠0).三简单曲线的极坐标方程1.曲线的极坐标方程一般地,在极坐标系中,如果平面曲线C 上任意一点的极坐标中至少有一个满足方程f (ρ,θ)=0,并且坐标适合方程f (ρ,θ)=0的点都在曲线C 上,那么方程f(ρ,θ)=0叫做曲线C 的极坐标方程.2.圆的极坐标方程(1)特殊情形如下表:微信公众号:学圆心位置极坐标方程图形圆心在极点(0,0)ρ=r (0≤θ<2π)圆心在点(r ,0)ρ=2r cos_θ(-π2≤θ<π2)圆心在点(r ,π2)ρ=2r sin_θ(0≤θ<π)圆心在点(r ,π)ρ=-2r cos_θ(π2≤θ<3π2)圆心在点(r ,3π2)ρ=-2r sin_θ(-π<θ≤0)(2)一般情形:设圆心C (ρ0,θ0),半径为r ,M (ρ,θ)为圆上任意一点,则|CM |=r ,∠COM =|θ-θ0|,根据余弦定理可得圆C 的极坐标方程为ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0即)cos(2002022θθρρρρ--+=r 3.直线的极坐标方程00△OPM 中利用正弦定理可得直线l 的极坐标方程为ρsin(α-θ)=ρ0sin(α-θ0).微信公众号:学四柱坐标系与球坐标系简介(了解)1.柱坐标系(1)定义:一般地,如图建立空间直角坐标系Oxyz .设P 是空间任意一点,它在Oxy 平面上的射影为Q ,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点Q 在平面Oxy 上的极坐标,这时点P 的位置可用有序数组(ρ,θ,z )(z ∈R )表示.这样,我们建立了空间的点与有序数组(ρ,θ,z )之间的一种对应关系.把建立上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z )叫做点P 的柱坐标,记作P (ρ,θ,z ),其中ρ≥0,0≤θ<2π,z ∈R .(2)空间点P 的直角坐标(x ,y ,z )与柱坐标(ρ,θ,z )x =ρcos θy =ρsin θz =z2.球坐标系(1)定义:一般地,如图建立空间直角坐标系Oxyz .设P 是空间任意一点,连接OP ,记|OP |=r ,OP 与Oz 轴正向所夹的角为φ,设P 在Oxy 平面上的射影为Q ,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角为θ,这样点P 的位置就可以用有序数组(r ,φ,θ)表示,这样,空间的点与有序数组(r ,φ,θ)之间建立了一种对应关系.把建立上述对应关系的坐标系叫做球坐标系(或空间极坐标系),有序数组(r ,φ,θ),叫做点P 的球坐标,记作P (r ,φ,θ),其中r ≥0,0≤φ≤π,0≤θ<2π.(2)空间点P 的直角坐标(x ,y ,z )与球坐标(r ,φ,θ)之间x=r sin φcos θy =r sin φsin θz =r cos φ.微信公众号:学第二讲:一曲线的参数方程1.参数方程的概念1.参数方程的概念(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t的函数:=f (t )=g (t )①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.(2)参数的意义:参数是联系变数x ,y 的桥梁,可以是有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.2.参数方程与普通方程的区别与联系(1)区别:普通方程F (x ,y )=0,直接给出了曲线上点的坐标x ,y 之间的关系,它含有x ,y=f (t )=g (t )(t 为参数)间接给出了曲线上点的坐标x ,y 之间的关系,它含有三个变量t ,x ,y ,其中x 和y 都是参数t 的函数.(2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一个变量的值;参数方程中自变量也只有一个,而且给定参数t 的一个值,就可以求出唯一对应的x ,y 的值.这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引入参数,也可把普通方程化为参数方程.2.圆的参数方程1.圆心在坐标原点,半径为r 的圆的参数方程如图圆O 与x 轴正半轴交点M 0(r ,0).(1)设M (x ,y )为圆O 上任一点,以OM 为终边的角设为θ,则以θ为参数的圆O 的参数微信公众号:学其中参数θ的几何意义是OM 0绕O 点逆时针旋转到OM 的位置时转过的角度.(2)设动点M 在圆上从M 0点开始逆时针旋转作匀速圆周运动,角速度为ω,则OM 0经过时间t 转过的角θ=ωt ,则以t 为参数的圆O其中参数t 的物理意义是质点做匀速圆周运动的时间.2.圆心为C (a ,b ),半径为r 的圆的参数方程圆心为(a ,b ),半径为r 的圆的参数方程可以看成将圆心在原点,半径为r 的圆通过坐3.参数方程和普通方程的互化曲线的参数方程和普通方程的互化(1)曲线的参数方程和普通方程是在同一平面直角坐标系中表示曲线的方程的两种不同形式,两种方程是等价的可以互相转化.(2)将曲线的参数方程化为普通方程,有利于识别曲线的类型.参数方程通过消去参数就可得到普通方程.(3)普通方程化参数方程,首先确定变数x ,y 中的一个与参数t 的关系,例如x =f (t ),其次将x =f (t )代入普通方程解出y =g (t )(4)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.二圆锥曲线的参数方程1.椭圆的参数方程椭圆的参数方程(1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1(a >b>0)φ是参数),规定参数φ的取值范围是[0,2π).(2)中心在原点,焦点在y 轴上的椭圆y 2a 2+x 2b 2=1(a >b >0)φ是参数),规定参数φ的取值范围是[0,2π).(3)中心在(h ,k )的椭圆普通方程为(x -h )2a 2+(y -k )2b 2=1,则其参数方程为φ是参数).2.双曲线的参数方程和抛物线的参数方程1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1规定参数φ的取值范围为φ∈[0,2π)且φ≠π2,φ≠3π2.微信公众号:学(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=12.抛物线的参数方程(1)抛物线y 2=2px(2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.三直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线lt 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M =x 0+t cos α=y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)=x 0+at =y 0+bt(t 为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.四渐开线与摆线(了解)1.渐开线的概念及参数方程(1)渐开线的产生过程及定义把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展开,铅笔画出的曲线叫做圆的渐开线,相应的定圆叫做渐开线的基圆.(2)圆的渐开线的参数方程以基圆圆心O 为原点,直线OA 为x 轴,建立如图所示的平面直角坐标系.设基圆的半径为r ,绳子外端M 的坐标为(x ,y )φ是参数).这就是圆的渐开线的参数方程.2.摆线的概念及参数方程(1)摆线的产生过程及定义平面内,一个动圆沿着一条定直线无滑动地滚动时圆周上一个固定点所经过的轨迹,叫做平摆线,简称摆线,又叫旋轮线.微信公众号:学(2)半径为r 的圆所产生摆线的参数方程为φ是参数).微信公众号:学。

高中数学选修4-4知识点清单教学提纲

高中数学选修4-4知识点清单教学提纲

高中数学选修4­4坐标系与参数方程知识点总结第一讲一平面直角坐标系1.平面直角坐标系(1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系.(2)平面直角坐标系:①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系;②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向;③坐标轴水平的数轴叫做x轴或横坐标轴,竖直的数轴叫做y轴或纵坐标轴,x轴或y 轴统称为坐标轴;④坐标原点:它们的公共原点称为直角坐标系的原点;⑤对应关系:平面直角坐标系上的点与有序实数对(x,y)之间可以建立一一对应关系.(3)距离公式与中点坐标公式:设平面直角坐标系中,点P1(x1,y1),P2(x2,y2),线段P1P2的中点为P2.设点P(x,y)是平面直角坐标系中的任意一点,在变换φ点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.二极坐标系(1)定义:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向.(3)图示2.极坐标(1)极坐标的定义:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ).(2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O的极坐标是(0,θ),(θ∈R),若点M的极坐标是M(ρ,θ),则点M的极坐标也可写成M(ρ,θ+2kπ),(k∈Z).若规定ρ>0,0≤θ<2π,则除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系.3.极坐标与直角坐标的互化公式如图所示,把直角坐标系的原点作为极点,x轴的正半轴作为极轴,且长度单位相同,设任意一点M的直角坐标与极坐标分别为(x,y),(ρ,θ).(1)极坐标化直角坐标=ρcosθ,=ρsinθW.(2)直角坐标化极坐标2=x2+y2,θ=yx(x≠0).三简单曲线的极坐标方程1.曲线的极坐标方程一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.2.圆的极坐标方程(1)特殊情形如下表:圆心位置极坐标方程图形圆心在极点(0,0)ρ=r (0≤θ<2π)圆心在点(r ,0)ρ=2r cos_θ(-π2≤θ<π2)圆心在点(r ,π2)ρ=2r sin_θ(0≤θ<π)圆心在点(r ,π)ρ=-2r cos_θ(π2≤θ<3π2)圆心在点(r ,3π2)ρ=-2r sin_θ(-π<θ≤0)(2)一般情形:设圆心C (ρ0,θ0),半径为r ,M (ρ,θ)为圆上任意一点,则|CM |=r ,∠COM =|θ-θ0|,根据余弦定理可得圆C 的极坐标方程为ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0即)cos(2002022θθρρρρ--+=r 3.直线的极坐标方程00△OPM 中利用正弦定理可得直线l 的极坐标方程为ρsin(α-θ)=ρ0sin(α-θ0).四柱坐标系与球坐标系简介(了解)1.柱坐标系(1)定义:一般地,如图建立空间直角坐标系Oxyz .设P 是空间任意一点,它在Oxy 平面上的射影为Q ,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点Q 在平面Oxy 上的极坐标,这时点P 的位置可用有序数组(ρ,θ,z )(z ∈R )表示.这样,我们建立了空间的点与有序数组(ρ,θ,z )之间的一种对应关系.把建立上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z )叫做点P 的柱坐标,记作P (ρ,θ,z ),其中ρ≥0,0≤θ<2π,z ∈R .(2)空间点P 的直角坐标(x ,y ,z )与柱坐标(ρ,θ,z )x =ρcos θy =ρsin θz =z2.球坐标系(1)定义:一般地,如图建立空间直角坐标系Oxyz .设P 是空间任意一点,连接OP ,记|OP |=r ,OP 与Oz 轴正向所夹的角为φ,设P 在Oxy 平面上的射影为Q ,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角为θ,这样点P 的位置就可以用有序数组(r ,φ,θ)表示,这样,空间的点与有序数组(r ,φ,θ)之间建立了一种对应关系.把建立上述对应关系的坐标系叫做球坐标系(或空间极坐标系),有序数组(r ,φ,θ),叫做点P 的球坐标,记作P (r ,φ,θ),其中r ≥0,0≤φ≤π,0≤θ<2π.(2)空间点P 的直角坐标(x ,y ,z )与球坐标(r ,φ,θ)之间x =r sin φcos θy =r sin φsin θz =r cos φ.第二讲:一曲线的参数方程1.参数方程的概念1.参数方程的概念(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数:=f (t )=g (t )①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.(2)参数的意义:参数是联系变数x ,y 的桥梁,可以是有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.2.参数方程与普通方程的区别与联系(1)区别:普通方程F (x ,y )=0,直接给出了曲线上点的坐标x ,y 之间的关系,它含有x ,y =f (t )=g (t )(t 为参数)间接给出了曲线上点的坐标x ,y 之间的关系,它含有三个变量t ,x ,y ,其中x 和y 都是参数t 的函数.(2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一个变量的值;参数方程中自变量也只有一个,而且给定参数t 的一个值,就可以求出唯一对应的x ,y 的值.这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引入参数,也可把普通方程化为参数方程.2.圆的参数方程1.圆心在坐标原点,半径为r 的圆的参数方程如图圆O 与x 轴正半轴交点M 0(r ,0).(1)设M (x ,y )为圆O 上任一点,以OM 为终边的角设为θ,则以θ为参数的圆O 的参数其中参数θ的几何意义是OM 0绕O 点逆时针旋转到OM 的位置时转过的角度.(2)设动点M 在圆上从M 0点开始逆时针旋转作匀速圆周运动,角速度为ω,则OM 0经过时间t 转过的角θ=ωt ,则以t 为参数的圆O 其中参数t 的物理意义是质点做匀速圆周运动的时间.2.圆心为C (a ,b ),半径为r 的圆的参数方程圆心为(a ,b ),半径为r 的圆的参数方程可以看成将圆心在原点,半径为r 的圆通过坐3.参数方程和普通方程的互化曲线的参数方程和普通方程的互化(1)曲线的参数方程和普通方程是在同一平面直角坐标系中表示曲线的方程的两种不同形式,两种方程是等价的可以互相转化.(2)将曲线的参数方程化为普通方程,有利于识别曲线的类型.参数方程通过消去参数就可得到普通方程.(3)普通方程化参数方程,首先确定变数x ,y 中的一个与参数t 的关系,例如x =f (t ),其次将x =f (t )代入普通方程解出y =g (t )(4)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.二圆锥曲线的参数方程1.椭圆的参数方程椭圆的参数方程(1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1(a >b >0)φ是参数),规定参数φ的取值范围是[0,2π).(2)中心在原点,焦点在y 轴上的椭圆y 2a 2+x 2b 2=1(a >b >0)φ是参数),规定参数φ的取值范围是[0,2π).(3)中心在(h ,k )的椭圆普通方程为(x -h )2a 2+(y -k )2b 2=1,则其参数方程为φ是参数).2.双曲线的参数方程和抛物线的参数方程1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1规定参数φ的取值范围为φ∈[0,2π)且φ≠π2,φ≠3π2.(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=12.抛物线的参数方程(1)抛物线y 2=2px (2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.三直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线l t 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M =x 0+t cos α=y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)=x 0+at =y 0+bt(t 为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.四渐开线与摆线(了解)1.渐开线的概念及参数方程(1)渐开线的产生过程及定义把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展开,铅笔画出的曲线叫做圆的渐开线,相应的定圆叫做渐开线的基圆.(2)圆的渐开线的参数方程以基圆圆心O 为原点,直线OA 为x 轴,建立如图所示的平面直角坐标系.设基圆的半径为r ,绳子外端M 的坐标为(x ,y )φ是参数).这就是圆的渐开线的参数方程.2.摆线的概念及参数方程(1)摆线的产生过程及定义平面内,一个动圆沿着一条定直线无滑动地滚动时圆周上一个固定点所经过的轨迹,叫做平摆线,简称摆线,又叫旋轮线.(2)半径为r的圆所产生摆线的参数方程为φ是参数).。

人教版高中数学选修4-4《1.2.2极坐标和直角坐标的互化》

人教版高中数学选修4-4《1.2.2极坐标和直角坐标的互化》
知识回顾:
极坐标系的建立: 在平面内取一个定点O,叫做极点。 引一条射线OX,叫做极轴。
O X
再选定一个长度单位和角度正方向(通常取 逆时针方向)。 这样就建立了一个极坐标系。 建立了极坐标系的平面称为极坐标平面
二、极坐标系内一点的极坐标的规定
对于平面内异于极点O的任意一点M,|OM| =叫做
设点M的直角坐标是 (x, y) ,极坐标是 (ρ ,θ ) (限定ρ ≥0,0≤θ <2π )
M(x , y)
极坐标转化直角坐标 x = cos , y = sin
y

直角坐标转化极坐标 y 2 2 2 x y , tan ( x 0)O x
X
2 例1:将点M 的极坐标(5, )化成直角坐标。 3
自主预习案
2 2 5 3 解:x 5 cos ,y 5 sin 3 3 2 5 5 3 所以,点M的直角坐标( , )。 2 2
例2:将点M的直角坐标( 3, 1 )化成极坐标。
2 2 解: ( 3) (1 ) 3 1 2,
1 1 3 t an 。 3 3 3 7 因为点M在第三象限,所以 。 6 7 因此,点M的极坐标为( 2, )。 6
2.在极坐标系中,已知 两
。 求A,B中点的极坐标 2 点 A 6. , B 6. 6 3
已知定点 P 4. 3 (1)将极点移至 O 2 3, 极坐标轴方 6
向不变,求点P的新坐标。


课下探究
(2)极点不变,将极轴逆时针转动
ห้องสมุดไป่ตู้

例3.点P的直角坐标为,则点 P(1, 3)的极坐标为( C)

人教版高中数学选修4-4《柱坐标系与球坐标系简介》

人教版高中数学选修4-4《柱坐标系与球坐标系简介》

(ρ,θ,z) (z∈ 面 Oxy 上的极坐标,这时点 P 的位置可用有序数组_________
R)表示,这样,我们建立了空间的点与有序数组(ρ,θ,z)之间的一 种对应关系,把建立上述对应关系的坐标系叫做柱坐标系,有序数 P(ρ,θ,z) , ρ≥0,0≤θ 组(ρ, θ, z)叫做点 P 的柱坐标, 记作___________ 其中____________
3.求下列各点的直角坐标:
π π 3π 7π (1)M2,6,3 ;(2)N2, 4 , 6 .
解:(1)由变换公式得: π π 1 x=rsin φcos θ=2sin cos = , 6 3 2 π π 3 y=rsin φsin θ=2sin sin = , 6 3 2 π z=rcos φ=2cos = 3. 6
柱坐标系与 球坐标系简介
四 柱 坐 标 系 与 球 坐 标 系 简 介
理解教材新知
第 一 讲
把握热点考向
考点一
考点二
应用创新演练

柱坐标系与球坐标系简介
1.柱坐标系 (1)定义:建立空间直角坐标系 Oxyz.设 P 是空间任意一点,它 在 Oxy 平面上的射影为 Q,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点 Q 在平
1 故其直角坐标是 2, 3 , 3 . 2
(2)由变换公式得: 3π 7π 6 x=rsin φcos θ=2sin cos =- . 4 6 2 3π 7π 2 y=rsin φsin θ=2sin sin =- . 4 6 2 3π z=rcos φ=2cos =- 2. 4
由直角坐标化为球坐标时, 可设点的球坐标为(r, φ, θ), x=rsin φcos θ, 利用变换公式y=rsin φsin θ, z=rcos φ,

人教课标版高中数学选修4-4:《极坐标系》教案-新版

人教课标版高中数学选修4-4:《极坐标系》教案-新版

1.2 极坐标系一、教学目标(一)核心素养通过这节课学习,认识极坐标系、能在极坐标系下用极坐标表示点的位置,会进行极坐标和直角坐标的互化,在直观想象、数学抽象中感受极坐标的特点.(二)学习目标1.通过实例,认识极坐标系,体会用极坐标表示点的特点.2.了解用极坐标系表示点的不唯一性.3.能进行极坐标系与平面直角坐标系的互化,体会在极坐标系和平面直角坐标系中刻画点的位置的区别.(三)学习重点1.认识极坐标系的重要性.2.用极坐标刻画点的位置.3.会进行极坐标与直角坐标的互化.(四)学习难点1.理解用极坐标刻画点的位置的基本思想.2.认识点与极坐标之间的对应关系.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第8页至第11页,填空:极坐标系的建立:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.极坐标系内一点的极坐标的规定:设M是平面内一点,极点O与点M的距离OM叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记ρ叫做点M为θ.有序数对),(θρ,θ可取任意实数.为0≥(2)想一想:点与极坐标有什么关系?一般地,极坐标),(θρ与)2,(πθρk +)(Z k ∈表示同一个点.特别地,极点O 的坐标为))(,0(R ∈θθ.如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用惟一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是惟一确定的. (3)写一写:极坐标系与直角坐标系如何转化?把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的单位长度.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,则:=x θρcos , =y θρsin=2ρ22y x +, =θtan )0(≠x xy2.预习自测(1)在极坐标系中,下列各点中与)3,2(π表示的不是同一个点的是( )A .)35,2(π-B .)37,2(πC .)35,2(πD .)313,2(π 【知识点】极坐标系【解题过程】由于极坐标),(θρ与)2,(πθρk +)(Z k ∈表示同一个点,检验得,选项C 不是同一个点【思路点拨】根据点的极坐标定义代入验证可得 【答案】C(2)已知点A 的直角坐标为)2,0(,则点A 的极坐标为( )A .)2,2(πB .)0,2(C .)2,2(πD .)2,2(π-【知识点】极坐标与直角坐标互化【解题思路】根据极坐标与直角坐标互化公式可得:22022=+=ρ,显然2πθ=【思路点拨】由极坐标与直角坐标互化可得 【答案】A(3)已知点M 的极坐标为)4,3(π,则点M 的直角坐标为( )A .)3,3(B .)223,223(C .)233,23( D .)33,3( 【知识点】极坐标与直角坐标互化【解题思路】根据极坐标与直角坐标互化公式可得:223sin ,223cos ====θρθρy x 【思路点拨】由极坐标与直角坐标互化可得 【答案】B(4)已知A 、B 两点极坐标为)32,6(),3,4(ππ-B A ,则线段AB 中点的极坐标为________.【知识点】极坐标与直角坐标互化、中点坐标公式【解题过程】 将A,B 两点化为直角坐标得 )33,3(),32,2(--B A ,所以中点的直角坐标为)23,21(--,化为极坐标得)34,1(π【思路点拨】先化为直角坐标,利用在直角坐标系下的中点坐标公式求出中点,再化为极坐标 【答案】)34,1(π(二)课堂设计 1.知识回顾(1)平面直角坐标系中的点P 与坐标(a ,b)是一一对应的. 2.问题探究探究一 结合实例,认识极坐标系★ ●活动① 提出问题,创设情境如右图1是某校园教学平面示意图,假设某同学在教学楼处,请回答下列问题: (1)他向东偏北 60方向走m 120后到达什么位置?该位置唯一确定吗?(2)如果有人打听体育馆和办公楼的位置,他应如何描述? (学生回答)(1) 他向东偏北 60方向走m 120后到达是点C 图书馆的位置,该位置唯一确定.(2)如果去体育馆向正东方向走m 60,去办公楼向北偏西图145走m 50.上面刻画位置是以A 作为基点,并以射线AB 为参照方向,然后利用与A 距离和与AB 所成角度来描述位置,例如“东偏北 60,距离m 120”,即利用“距离”和“角度”来刻画平面上点的位置.在上一节中,我们用“在信息中心的西偏北 45方向,距离m 10680处”描述了巨响的位置.即以信息中心为基点,以正西方向为参照,用与信息中心的距离与正西方向所成的角来刻画巨响的位置.有时候它比直角坐标更方便,在现实生活中,有很多的应用,例如台风预报,地震预报,测量、航空、航海中主要采用这种方法.【设计意图】从生活实例到数学问题,引入学习极坐标系概念的必要性,形成用角和距离刻画点的位置的直觉.●活动② 互动交流,类比提炼概念我们类比建立平面直角坐标系的过程,怎样建立用距离与角度确定平面上点的位置的坐标系?(学生讨论交流)平面直角坐标系的建立是在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系.通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x 轴或横轴,垂直的数轴叫做y 轴或纵轴,它们的公共原点O 称为直角坐标系的原点,以点O 为原点的平面直角坐标系记作平面直角坐标系xOy .类比上述过程,我们在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.极坐标建立后,如何来定义平面中的点的极坐标呢? 如右图2,设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.一般地,不作特殊说明时,我们认为0≥ρ,θ可取任意实数.【设计意图】从特殊到特殊,类比得到极坐标系,让学生不会觉得极坐标系来得太突然,顺其图2B 自然得到点在极坐标系中的定义. ●活动③ 巩固基础,检查反馈 例1 在极坐标系里描出下列各点.)0,3(A ,)2,3(πB ,)34,5(πC ,)65,3(πD ,)35,6(πE【知识点】极坐标系的定义、点在极坐标系中的表示【数学思想】数形结合【解题过程】根据点在极坐标的表示,ρ表示的是点到极点的距离,θ表示射线与极轴所成的角,所以个点在极坐标的位置如图. 【思路点拨】欲确定点的位置,需先确定ρ和θ的值. 【答案】如右图.同类训练 在右图3的极坐标系中描出下列点的位置:)4,3(πF ,),4(πG【知识点】极坐标系的定义、点在极坐标系中的表示【数学思想】数形结合【解题过程】根据点在极坐标的表示,ρ表示的是点到极点的距离,θ表示射线与极轴所成的角,所以个点在极坐标的位置如图3.【思路点拨】欲确定点的位置,需先确定ρ和θ的值. 【答案】如右图3.探究二 探究点与极坐标的对应关系 ●活动① 认识差异、辨析极坐标系在图1中,用点E D C B A ,,,,分别表示教学楼,体育馆,图书馆,实验楼,办公楼的位置.建立适当的极坐标系,写出各点的极坐标.我们以点A 为极点,AB 所在的射线为极轴(单位长度为m 1),GFAD CE4πOx2π 65π π34π 35π图34πOx2π 65π π34π 35π x图4建立极坐标系,则E D C B A ,,,,的极坐标分别为)43,50(),2,360(),3,120(),0,60(),0,0(πππ建立极坐标系后,给定ρ和θ,就可以在平面内惟一确定点M ,反过来,给点平面内任意一点,也可以找到她的极坐标),(θρ.但是否和平面直角坐标系中的点和直角坐标一样,极坐标和点事一一对应的关系呢?【设计意图】通过对点的极坐标的认识,为后面点的极坐标不惟一做好铺垫. ●活动② 合作探究,解决问题我们来观察下列极坐标表示的点之间有何关系呢?)26,4(),46,4(),26,4(),6,4(πππππππ-++由终边相同的角的定义可知,上述极坐标表示的是同一个点,于是:一般地,极坐标),(θρ和))(2,(Z k k ∈+πθρ表示同一个点,所以,极坐标和直角坐标不同,平面内一个点的极坐标有无数种表示.特别地,极点O 的极坐标为))(,0(R ∈θθ如果我们规定πθρ20,0<≤>,那么除极点外,平面内的点可用惟一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是惟一确定的.同类训练 在极坐标系中,写出下图中各点的极坐标(πθρ20,0<≤>)A (4,0)B ( )C ( )D ( ) F ( ) G ( ) 【知识点】极坐标系的定义、点在极坐标系中的表示 【数学思想】数形结合【解题过程】根据点A 的极坐标,可以得到其它点的极坐标)4,2(πB ,)2,3(πC ,)65,1(πD ,)34,6(πF ,)35,5(πG .【思路点拨】(1)写点的极坐标要注意顺序:极径ρ在前,极角θ在后,不能把顺序颠倒了. (2)点的极坐标是不惟一的,但若限制ρ>0,0≤θ<2π,则除极点外,点的极坐标是惟一确定的.【答案】)4,2(πB ,)2,3(πC ,)65,1(πD ,)34,6(πF ,)35,5(πG .【设计意图】通过辨析认识点的极坐标是不唯一的,加深对极坐标系的认识. 探究三 实现极坐标与直角坐标的互化★▲ ●活动① 归纳梳理、理解实质平面内的一个点既可以用直角坐标表示,也可以用极坐标来表示,那么这两种坐标之间有何联系呢?把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图5所示.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,于是极坐标与直角坐标的互化公式如下:⎩⎨⎧==θρθρsin cos y x ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x y y x θρ 这就是极坐标和直角坐标的互化公式. 【设计意图】得到直角坐标与极坐标之间的关系. 活动② 巩固基础,检查反馈例2 分别把下列点的极坐标化为直角坐标(1))6,2(π (2))2,3(π【知识点】极坐标与直角坐标互化. 【解题过程】(1)由cos 2cos36sin 2sin16x y πρθπρθ======所以点的极坐标)6,2(π化为直角坐标为)1,3(.图5(2)由cos 3cos02sin 3sin32x y πρθπρθ======所以点的极坐标)2,3(π化为直角坐标为)3,0(.【思路点拨】将点的极坐标),(θρ化为点的直角坐标),(y x 时,运用到求角θ的正弦值和余弦值,熟练掌握特殊角的三角函数值,灵活运用三角恒等变换公式是关键. 【答案】(1) )1,3( (2) )3,0(. 同类训练 分别把下列点的极坐标化为直角坐标(1))32,4(π(2)),(ππ 【知识点】极坐标与直角坐标互化. 【数学思想】【解题过程】(1)3232sin 4sin 232cos 4cos ===-===πθρπθρy x 所以点的极坐标)32,4(π化为直角坐标为)32,2(-.(2)由cos cos sin sin 0x y ρθπππρθππ===-===所以点的极坐标),(ππ化为直角坐标为)0,(π-.【思路点拨】将点的极坐标),(θρ化为点的直角坐标),(y x 时,运用到求角θ的正弦值和余弦值,熟练掌握特殊角的三角函数值,灵活运用三角恒等变换公式是关键. 【答案】(1) )32,2(- (2) )0,(π-.例3 已知点B 、C 的直角坐标为)2,2(-,)15,0(-,求它的极坐标(ρ>0,0≤θ<2π). 【知识点】极坐标与直角坐标互化.【解题过程】∵ρ=,22)2(22222=-+=y x +122tan -=-=θ,且点位于第四象限∴θ=47π,点B 的极坐标为(22,47π).又∵x =0,y <0,ρ=15,∴点C 的极坐标为(15,23π).【思路点拨】化点的直角坐标为极坐标时,一般取πθρ20,0<≤≥,即θ取最小正角,由tanθ=xy求θ时,还需结合在直角坐标系下点),(y x 所在的象限来确定θ的值. 【答案】B(22,47π) C(15,23π).同类训练 分别把下列点的直角坐标化为极坐标(限定ρ≥0,0≤θ<2π)(1) )3,3(; (2) )1,1(-- ;(3) )0,3(-. 【知识点】极坐标与直角坐标互化. 【数学思想】【解题过程】(1)333tan ,323)3(22===+=θρ 又因为点在第一象限,所以3πθ=.所以点)3,3(的极坐标为)3,32(π. (2)111tan ,2)1()1(22=--==-+-=θρ又因为点在第三象限,所以45πθ=.所以点)1,1(--的极坐标为)45,2(π.(3)30)3(22=+-=ρ,极角为π,所以点)0,3(-的极坐标为),3(π.【思路点拨】化点的直角坐标为极坐标时,一般取πθρ20,0<≤≥,即θ取最小正角,由tanθ=xy求θ时,还需结合在直角坐标系下点),(y x 所在的象限来确定θ的值. 【答案】(1))3,32(π (2))45,2(π(3)),3(π.【设计意图】巩固检查极坐标与直角坐标互化公式. 3.课堂总结 知识梳理(1)极坐标系的建立:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系内一点的极坐标的规定:设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.一般地,不作特殊说明时,我们认为0≥ρ,θ可取任意实数.(3)如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用惟一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是惟一确定的.(4)把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,于是极坐标与直角坐标的互化公式如下:⎩⎨⎧==θρθρsin cos y x ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x y y x θρ 重难点归纳(1)极坐标系就是用长度和角度来确定平面内点的位置.极坐标系的建立有四个要素:①极点;②极轴;③长度单位;④角度单位和它的正方向.四者缺一不可.(2)写点的极坐标要注意顺序:极径ρ在前,极角θ在后,不能颠倒顺序(3)若两个坐标系符合三个前提条件:(1)极点与直角坐标系的原点重合; (2) 极轴与直角坐标系的x 轴的正半轴重合; (3) 两种坐标系的单位长度相同.则其相互转化:(三)课后作业 基础型 自主突破1.极坐标系中,点)1,2(πP 到极点的距离是( ) A .0 B .1 C .2 D .π2 【知识点】极坐标的定义.【解题过程】由极坐标定义)1,2(πP 已知πρ2=,故P 到极点的距离为2π. 【思路点拨】根据极坐标的定义进行判断. 【答案】D .2.下列各点中与极坐标)7,5(π表示同一个点的是( ).)0(tan ,222≠=+=x xyy x θρ 直角坐标),(y x M极坐标),(θρMθρθρsin ,cos ==y xA .(5,67π)B .(5,157π)C .(5,67π-)D .(5,7π-) 【知识点】点在极坐标系中的表示.【数学思想】 【解题过程】根据极坐标)7,5(π和))(27,5(Z k k ∈+ππ表示同一个点,取1=k ,得选项B . 【思路点拨】极坐标),(θρ和))(2,(Z k k ∈+πθρ表示同一个点.【答案】B .3.在直角坐标系中点()3,1-P ,则它的极坐标是A .⎪⎭⎫ ⎝⎛3,2πB .⎪⎭⎫ ⎝⎛34,2πC .⎪⎭⎫ ⎝⎛-3,2πD .⎪⎭⎫ ⎝⎛-34,2π 【知识点】极坐标与直角坐标互化. 【解题过程】因为313tan ,21)3(22-=-==+-=θρ,且点在第四象限,所以选C 【思路点拨】根据极坐标与直角坐标互化来求解.【答案】C .4.已知O 为极点,π23A ⎛⎫ ⎪⎝⎭, ,7π56B ⎛⎫- ⎪⎝⎭,,则AOB S ∆= ( ) A.2 B.3 C.4 D.5错误!未找到引用源。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学选修4-4知识点第一章 坐标系1.1 平面直角坐标系一、平面直角坐标系(1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系.(2)平面直角坐标系:①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系;②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向;③坐标轴水平的数轴叫做x 轴或横坐标轴,竖直的数轴叫做y 轴或纵坐标轴,x 轴或y 轴统称为坐标轴;④坐标原点:它们的公共原点称为直角坐标系的原点;⑤对应关系:平面直角坐标系上的点与有序实数对(x ,y )之间可以建立一一对应关系.(3)距离公式与中点坐标公式:设平面直角坐标系中,点P 1(x 1,y 1),P 2(x 2,y 2),线段P 1P 2的中点为P ,填表:两点间的距离公式中点P 的坐标公式|P 1P 2|=212212)()(y y x x -+-⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x 二、.设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λx (λ>0)y ′=μy (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.1.2 极坐标系一、极坐标系(1)定义:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向. (3)图示二、极坐标(1)极坐标的定义:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ).(2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O 的极坐标是(0,θ),(θ∈R ),若点M 的极坐标是M (ρ,θ),则点M 的极坐标也可写成M (ρ,θ+2k π),(k ∈Z ).若规定ρ>0,0≤θ<2π,则除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系. 三、极坐标与直角坐标的互化公式如图所示,把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,且长度单位相同,设任意一点M 的直角坐标与极坐标分别为(x ,y ),(ρ,θ).(1)极坐标化直角坐标⎩⎨⎧x =ρcos θ,y =ρsin θ, (2)直角坐标化极坐标⎩⎨⎧ρ2=x 2+y 2,tan θ=y x (x ≠0).1.3 简单曲线的极坐标方程一、曲线的极坐标方程一般地,在极坐标系中,如果平面曲线C 上任意一点的极坐标中至少有一个满足方程f (ρ,θ)=0,并且坐标适合方程f (ρ,θ)=0的点都在曲线C 上,那么方程f (ρ,θ)=0叫做曲线C 的极坐标方程. 二、圆的极坐标方程(1)圆心位置 极坐标方程图 形 圆心在极点(0,0)ρ=r (0≤θ<2π)圆心在点(r ,0) ρ=2r cos θ(-π2≤θ<π2)圆心在点(r ,π2)ρ=2r sin θ(0≤θ<π)圆心在点(r ,π) ρ=-2r cos θ(π2≤θ<3π2)圆心在点(r ,3π2)ρ=-2r sin θ(-π<θ≤0)(2)一般情形:设圆心C (ρ0,θ0),半径为r ,M (ρ,θ)为圆上任意一点,则|CM |=r ,∠COM =|θ-θ0|,根据余弦定理可得圆C 的极坐标方程为ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0 即)cos(2002022θθρρρρ--+=r三、直线的极坐标方程直线位置极坐标方程图 形过极点,倾斜角为α(1)θ=α(ρ∈R ) 或θ=α+π(ρ∈R ) (2)θ=α(ρ≥0) 和θ=π+α(ρ≥0)过点(a ,0),且与极轴垂直ρcos θ=a ⎝⎛⎭⎪⎫-π2<θ<π2过点⎝ ⎛⎭⎪⎫a ,π2,且与极轴平行 ρsin θ=a (0<θ<π)过点(a ,0)倾斜角为α ρsin(α-θ)=a sin α(0<θ<π)l P ρ0θ0αM ρθl 动点,则在△OPM 中利用正弦定理可得直线l 的极坐标方程为ρsin(α-θ)=ρ0sin(α-θ0).1.4 柱坐标系与球坐标系简介一、柱坐标系(1)定义:一般地,如图建立空间直角坐标系Oxyz .设P 是空间任意一点,它在Oxy 平面上的射影为Q ,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点Q 在平面Oxy 上的极坐标,这时点P 的位置可用有序数组(ρ,θ,z )(z ∈R )表示.这样,我们建立了空间的点与有序数组(ρ,θ,z )之间的一种对应关系.把建立上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z )叫做点P 的柱坐标,记作P (ρ,θ,z ),其中ρ≥0,0≤θ<2π,z ∈R .(2)空间点P 的直角坐标(x ,y ,z )与柱坐标(ρ,θ,z )之间的变换公式为⎩⎨⎧x =ρcos θy =ρsin θz =z.二、球坐标系(1)定义:一般地,如图建立空间直角坐标系Oxyz .设P 是空间任意一点,连接OP ,记|OP |=r ,OP 与Oz 轴正向所夹的角为φ,设P 在Oxy 平面上的射影为Q ,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角为θ,这样点P 的位置就可以用有序数组(r ,φ,θ)表示,这样,空间的点与有序数组(r ,φ,θ)之间建立了一种对应关系.把建立上述对应关系的坐标系叫做球坐标系(或空间极坐标系),有序数组(r ,φ,θ),叫做点P 的球坐标,记作P (r ,φ,θ),其中r ≥0,0≤φ≤π,0≤θ<2π.(2)空间点P 的直角坐标(x ,y ,z )与球坐标(r ,φ,θ)之间的变换公式为⎩⎨⎧x =r sin φcos θy =r sin φsin θz =r cos φ.第二章 参数方程 2.1 曲线的参数方程一、参数方程的概念1.参数方程的概念(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数:⎩⎨⎧x =f (t )y =g (t )①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.(2)参数的意义:参数是联系变数x ,y 的桥梁,可以是有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.2.参数方程与普通方程的区别与联系(1)区别:普通方程F (x ,y )=0,直接给出了曲线上点的坐标x ,y 之间的关系,它含有x ,y 两个变量;参数方程⎩⎨⎧x =f (t )y =g (t )(t 为参数)间接给出了曲线上点的坐标x ,y 之间的关系,它含有三个变量t ,x ,y ,其中x 和y 都是参数t 的函数.(2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一个变量的值;参数方程中自变量也只有一个,而且给定参数t 的一个值,就可以求出唯一对应的x ,y 的值.这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引入参数,也可把普通方程化为参数方程. 二、圆的参数方程1.圆心在坐标原点,半径为r 的圆的参数方程 如图圆O 与x 轴正半轴交点M 0(r ,0).(1)设M (x ,y )为圆O 上任一点,以OM 为终边的角设为θ,则以θ为参数的圆O 的参数方程是⎩⎨⎧x =r cos θy =r sin θ(θ为参数). 其中参数θ的几何意义是OM 0绕O 点逆时针旋转到OM 的位置时转过的角度.(2)设动点M 在圆上从M 0点开始逆时针旋转作匀速圆周运动,角速度为ω,则OM 0经过时间t转过的角θ=ωt ,则以t 为参数的圆O 的参数方程为⎩⎨⎧x =r cos ωty =r sin ωt(t 为参数).其中参数t 的物理意义是质点做匀速圆周运动的时间. 2.圆心为C (a ,b ),半径为r 的圆的参数方程圆心为(a ,b ),半径为r 的圆的参数方程可以看成将圆心在原点,半径为r 的圆通过坐标平移得到,所以其参数方程为⎩⎨⎧x =a +r cos θ,y =b +r sin θ(θ为参数).三、参数方程和普通方程的互化(1)曲线的参数方程和普通方程是在同一平面直角坐标系中表示曲线的方程的两种不同形式,两种方程是等价的可以互相转化.(2)将曲线的参数方程化为普通方程,有利于识别曲线的类型.参数方程通过消去参数就可得到普通方程.(3)普通方程化参数方程,首先确定变数x ,y 中的一个与参数t 的关系,例如x =f (t ),其次将x =f (t )代入普通方程解出y =g (t ),则⎩⎨⎧x =f (t )y =g (t )(t 为参数)就是曲线的参数方程.(4)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.2.2 圆锥曲线的参数方程一、椭圆的参数方程(1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是⎩⎨⎧x =a cos φy =b sin φ(φ是参数),规定参数φ的取值范围是[0,2π).(2)中心在原点,焦点在y 轴上的椭圆y 2a 2+x 2b 2=1(a >b >0)的参数方程是⎩⎨⎧x =b cos φy =a sin φ(φ是参数),规定参数φ的取值范围是[0,2π).(3)中心在(h ,k )的椭圆普通方程为12222=-+-b k y a h x )()(,则其参数方程为⎩⎨⎧x =h +a cos φy =k +b sin φ(φ是参数). 二、双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1的参数方程是⎩⎨⎧x =a sec φy =b tan φ(φ为参数),规定参数φ的取值范围为φ∈[0,2π)且φ≠2,φ≠2.(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=1的参数方程是⎩⎨⎧x =b tan φy =a sec φ(φ为参数).三、抛物线的参数方程(1)抛物线y 2=2px 的参数方程为⎩⎨⎧x =2pt 2y =2pt(t 为参数).(2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.2.3 直线的参数方程一、直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).二、直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.三、直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M 得到的参数方程⎩⎨⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =b a (a ,b 为常数)的直线,参数方程为⎩⎨⎧x =x 0+aty =y 0+bt (t 为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.2.4 渐开线与摆线(了解)一、渐开线的概念及参数方程(1)渐开线的产生过程及定义把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展开,铅笔画出的曲线叫做圆的渐开线,相应的定圆叫做渐开线的基圆.(2)圆的渐开线的参数方程以基圆圆心O 为原点,直线OA 为x 轴,建立如图所示的平面直角坐标系.设基圆的半径为r ,绳子外端M 的坐标为(x ,y ),则有⎩⎨⎧-=+=)cos (sin )sin (cos ϕϕϕϕϕϕr y r x (φ为参数).这就是圆的渐开线的参数方程.二、摆线的概念及参数方程(1)摆线的产生过程及定义平面内,一个动圆沿着一条定直线无滑动地滚动时圆周上一个固定点所经过的轨迹,叫做平摆线,简称摆线,又叫旋轮线.(2)半径为r 的圆所产生摆线的参数方程为(sin ),()(1cos ).x r y r ϕϕϕϕ=-⎧⎨=-⎩为参数.。

相关文档
最新文档