盐城市中考数学试题及答案全

合集下载

2022年江苏省盐城市中考数学试卷原卷附解析

2022年江苏省盐城市中考数学试卷原卷附解析

2022年江苏省盐城市中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.夜晚在亮有路灯的路上,若想没有影子,你应该站的位置是()A.路灯的左侧B.路灯的右侧C.路灯的下方D.以上都可以2.若α是锐角,且sinα=34,则()A.60°<a<90°B. 45°<α<60°C. 30°<α<45°D.0°<a<30°3.如图,AB切⊙O于B,割线ACD经过圆心O,若∠BCD=70°则∠A的度数为()A.20°B.50°C.40°D.80°4.给出下列四个事件:(1)打开电视,正在播广告;(2)任取一个负数,它的相反数是负数;(3)掷一枚均匀的骰子,骰子停止转动后偶数点朝上;(4)取长度分别为2,3,5的三条线段,以它们为边组成一个三角形.其中不确定事件是()A.(1)(2)B.(1)(3)C.(2)(3)D.(2)(4)5.如图,AB、CD 是⊙O的两条直径,∠1≠∠2,则图中相等的弧(半圆除外)共有()A.8对B.6 对C.4对D.2 对6.王京从点O出发.先向西走40米,再向南走30米,到达点M.如果点M的位置用(-40,-30)表示,从点M继续向东走50米,再向北走50米,到达点N,那么点N的坐标是()A.(-l0,10)B.(10,-l0)C.(10,-20)D.(10,20)7.如图,一只小狗在方砖上走来走去,则最终停在阴影方砖上的概率是()A.415B.13C.15D.2158.下面每组图形中的两个图形不是通过相似变换得到的是()9.c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形10.将叶片图案旋转l80°后,得到的图形是( )11.如图所示,已知∠1=∠2,AD=CB ,AC ,BD 相交于点0,MN 经过点O ,则图中全等三角形的对数为( ) A .4对B .5对C .6对D .7对12.下列图形中.成轴对称图形的是 ( )13.“羊”字象征着美好和吉祥,下列图案都与“羊”字有关,其中轴对称图形的个数是 ( )A .1个B .2个C .3个D .4个二、填空题14.如图,⊙O 的半径为4cm ,直线l ⊥OA ,垂足为O ,则直线l 沿射线OA 方向平移________cm 时与⊙O 相切.15.如图是两棵小树在同一时刻的影子,请问它们的影子是在 灯光 光线下形成的.(填“太阳”或“灯光”)16.某青年棒球队14名队员的年龄如下表:1年龄(岁)192021221人数(人)3722则出现次数最多的年龄是.17.如图,在△ABC中,∠A=80°,BD=BE,CD=CF,则∠EDF .18.在存折中有 3000 元,取出 2600 元,又存入500 元后,如果不考虑利息,存折中还有元.19.聪明的小明借助谐音用阿拉伯数字戏说爸爸舅舅喝酒:81979,87629,97829,8806,9905,98819,54949(大意是:爸邀舅吃酒,爸吃六两酒,舅吃八两酒,爸爸动怒,舅舅动武,舅把爸衣揪,误事就是酒),请问这组数据中,数字9出现的频率是.三、解答题20.如图,AB为⊙O的直径,P为AB的延长线上一点,PT切⊙O于T,若PT=6,PB=3,求⊙O的直径.21.如图①,在矩形 ABCD 中,AB =20 cm,BC=4 cm,点 P从A 开始沿折线A B C D---以 4 cm/s 的速度移动,点Q从C开始沿 CD 边以 1 cm/s 的速度移动,如果点P、Q分别从A、C 同时出发,当其中一点到达 D 时,另一点也随之停止运动,设运动时间为 t(s).(1)t 为何值时,四边形 APQD 为矩形?(2)如图②,如果⊙P 和⊙Q 的半径都是2 cm,那么t为何值时,OP 与⊙Q外切?图1图222.武当山风景管理区,为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由44减至32,已知原台阶AB 的长为5米(BC 所在地面为水平面). (1)改善后的台阶会加长多少?(精确到0.01米) (2)改善后的台阶多占多长一段地面?(精确到0.01米)23.如图,已知点 A .B 和直线l ,求作一圆,使它经过A 、B 两点,且圆心在直线l 上.24.在△ABC 中,P 是BC 上一动点,过点P 作PE ∥AC 交AB 于点E ,过点P 作PF ∥AB 交AC 于点F ,当点P 运动到什么位置时,四边形AEPF 是菱形?25.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC BE .26.如图所示是小孔成像原理的示意图,你能根据图中所标的尺寸求出在暗盒中所成像的 高度吗?说说其中的道理...lB A27.为了了解某校七年级学生的视力情况,抽测了一批同学的视力,检测结果如下表:视力情况差中良优合计人数(人)7203百分比(%)1410028.在一次美化校园的活动中,老师安排32人除草,20人植树.后来发现人手不够,就增派20人去支援,并且使除草的人数是植树人数的2倍.问:增派的20人中,支援除草的有多少人?29.下列表述中字母各表示什么?(1)正方形的面积为2a;(2)买 5 斤桔子需5a元钱;(3)七年级甲班有40 人,乙班人数为40x 人.30.文明于世的埃及字塔、形似方锥,大小各异,这些金字塔的高与底面边长的比都接近于黄金比,胡夫金字塔是埃及现存规模最大的金字塔,破喻为“世界古代七大奇观之一”,底面呈正方形,每边长约为230m.请估计该金字塔的高度(精确到1 m).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.B4.B5.C6.D7.B8.D9.D10.D11.C12.D13.B二、填空题 14. 415.灯光16.20岁17.50°18.90019.31三、解答题 20. 921.(1)当四边形 APQD 为矩形时,DQ=AP,20-t=4t,t=4(s)(2)∵r=2,∴当 PQ=4 时,⊙P 与⊙Q 外切,即四边形APQD 为矩形 20-t=4t,t=4(s).22.解:(1)如图,在Rt ABC △中,sin 445sin 44 3.473AC AB ==≈.在Rt ACD △中,3.4736.554sin 32sin 32AC AD ==≈, 6.5545 1.55AD AB ∴-=-≈.即改善后的台阶会加长1.55米. (2)如图,在Rt ABC △中,cos 445cos 44 3.597BC AB ==≈.在Rt ACD △中,3.4735.558tan 32tan 32AC CD ==≈,5.558 3.597 1.96BD CD BC ∴=-=-≈. 即改善后的台阶多占1.96米长的一段地面.23.画AB 的垂直平分线与直线l 的交点就是圆心,图略.24.P 运动到∠A 的平分线与BC 的交点25.(1)解:图2中ABE ACD △≌△. 证明如下:ABC △与AED △均为等腰直角三角形, AB AC ∴=,AE AD =,90BAC EAD ∠=∠=.BAC CAE EAD CAE ∴∠+∠=∠+∠,即BAE CAD ∠=∠,ABE ACD ∴△≌△.(2)证明:由(1)ABE ACD △≌△知45ACD ABE ∠=∠=,又45ACB ∠=,90BCD ACB ACD ∴∠=∠+∠=,DC BE ∴⊥.26.3 cm ,理由略27.表中依次填:20,50;40,40,628.设支援除草的有x 人,则支援植树的有(20—x )人, 由题意得322(40)x x +=- ,x=16,∴支援除草的有16 人.29.(1)a 表示正方形的边长 (2)a 表示桔子的单价 (3)x 表示乙班比甲班多x 人30.设该金字塔的高度为 x (m).由题意得230x =,1)x =,142x ≈ 答:该金字塔高度约为 142 m .。

2022年江苏省盐城市中考数学试卷及答案解析

2022年江苏省盐城市中考数学试卷及答案解析

2022年江苏省盐城市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)2022的倒数是()A.2022B.﹣2022C.D.﹣2.(3分)下列计算,正确的是()A.a+a2=a3B.a2•a3=a6C.a6÷a3=a2D.(a2)3=a6 3.(3分)下列四幅照片中,主体建筑的构图不对称的()A.B.C.D.4.(3分)盐城市图书馆现有馆藏纸质图书1600000余册.数据1600000用科学记数法表示为()A.0.16×107B.1.6×107C.1.6×106D.16×105 5.(3分)一组数据﹣2,0,3,1,﹣1的极差是()A.2B.3C.4D.56.(3分)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.强B.富C.美D.高7.(3分)小明将一块直角三角板摆放在直尺上,如图所示,则∠ABC与∠DEF的关系是()A.互余B.互补C.同位角D.同旁内角8.(3分)“跳眼法”是指用手指和眼睛估测距离的方法,步骤:第一步:水平举起右臂,大拇指紧直向上,大臂与身体垂直;第二步:闭上左眼,调整位置,使得右眼、大拇指、被测物体在一条直线上;第三步:闭上右眼,睁开左眼,此时看到被测物体出现在大拇指左侧,与大拇指指向的位置有一段横向距离,参照被测物体的大小,估算横向距离的长度;第四步:将横向距离乘以10(人的手臂长度与眼距的比值一般为10),得到的值约为被测物体离观测点的距离值.如图是用“跳眼法”估测前方一辆汽车到观测点距离的示意图,该汽车的长度大约为4米,则汽车到观测点的距离约为()A.40米B.60米C.80米D.100米二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9.(3分)若有意义,则x的取值范围是.10.(3分)已知反比例函数的图象经过点(2,3),则该函数表达式为.11.(3分)分式方程=1的解为.12.(3分)如图,电路图上有A、B、C3个开关和1个小灯泡,闭合开关C或同时闭合开关A、B都可以使小灯泡发亮.任意闭合其中的1个开关,小灯泡发亮的概率是.13.(3分)如图,AB、AC是⊙O的弦,过点A的切线交CB的延长线于点D,若∠BAD=35°,则∠C=°.14.(3分)如图,在矩形ABCD中,AB=2BC=2,将线段AB绕点A按逆时针方向旋转,使得点B落在边CD上的点B'处,线段AB扫过的面积为.15.(3分)若点P(m,n)在二次函数y=x2+2x+2的图象上,且点P到y轴的距离小于2,则n的取值范围是.16.(3分)《庄子•天下篇》记载“一尺之棰,日取其半,万世不竭”.如图,直线l1:y=x+1与y轴交于点A,过点A作x轴的平行线交直线l2:y=x于点O1,过点O1作y轴的平行线交直线l1于点A1,以此类推,令OA=a1,O1A1=a2,…,O n﹣1A n﹣1=a n,若a1+a2+…+a n≤S对任意大于1的整数n恒成立,则S的最小值为.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(6分)|﹣3|+tan45°﹣(﹣1)0.18.(6分)解不等式组:.19.(8分)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.20.(8分)某社区举行新冠疫情防控核酸检测大演练,卫生防疫部门在该社区设置了三个核酸检测点A、B、C,甲、乙两人任意选择一个检测点参加检测.求甲、乙两人不在同一检测点参加检测的概率.(用画树状图或列表的方法求解)21.(8分)小丽从甲地匀速步行去乙地,小华骑自行车从乙地匀速前往甲地,同时出发.两人离甲地的距离y(m)与出发时间x(min)之间的函数关系如图所示.(1)小丽步行的速度为m/min;(2)当两人相遇时,求他们到甲地的距离.22.(10分)证明:垂直于弦AB的直径CD平分弦以及弦所对的两条弧.23.(10分)如图,在△ABC与△A′B′C′中,点D、D′分别在边BC、B′C′上,且△ACD∽△A′C′D′,若,则△ABD∽△A′B′D′.请从①=;②=;③∠BAD=∠B′A′D′这3个选项中选择一个作为条件(写序号),并加以证明.24.(10分)合理的膳食可以保证青少年体格和智力的正常发育.综合实践小组为了解某校学生膳食营养状况,从该校1380名学生中调查了100名学生的膳食情况,调查数据整理如下:(1)本次调查采用的调查方法;(填“普查”或“抽样调查”)(2)通过对调查数据的计算,样本中的蛋白质平均供能比约为14.6%,请计算样本中的脂肪平均供能比和碳水化合物平均供能比;(3)结合以上的调查和计算,对照下表中的参考值,请你针对该校学生膳食状况存在的问题提一条建议.中国营养学会推荐的三大营养素供能比参考值蛋白质10%﹣15%脂肪20%﹣30%碳水化合物50%﹣65%25.(10分)2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB、BC为机械臂,OA=1m,AB=5m,BC=2m,∠ABC=143°.机械臂端点C到工作台的距离CD=6m.(1)求A、C两点之间的距离;(2)求OD长.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈2.24)26.(12分)【经典回顾】梅文鼎是我国清初著名的数学家,他在《勾股举隅》中给出多种证明勾股定理的方法.图1是其中一种方法的示意图及部分辅助线.在△ABC中,∠ACB=90°,四边形ADEB、ACHI和BFGC分别是以Rt△ABC的三边为一边的正方形.延长IH和FG,交于点L,连接LC并延长交DE于点J,交AB于点K,延长DA交IL于点M.(1)证明:AD=LC;(2)证明:正方形ACHI的面积等于四边形ACLM的面积;(3)请利用(2)中的结论证明勾股定理.【迁移拓展】(4)如图2,四边形ACHI和BFGC分别是以△ABC的两边为一边的平行四边形,探索在AB下方是否存在平行四边形ADEB,使得该平行四边形的面积等于平行四边形ACHI、BFGC的面积之和.若存在,作出满足条件的平行四边形ADEB(保留适当的作图痕迹);若不存在,请说明理由.27.(14分)【发现问题】小明在练习簿的横线上取点O为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描出了同心圆与横线的一些交点,如图1所示,他发现这些点的位置有一定的规律.【提出问题】小明通过观察,提出猜想:按此步骤继续画圆描点,所描的点都在某二次函数图象上.【分析问题】小明利用已学知识和经验,以圆心O为原点,过点O的横线所在直线为x轴,过点O且垂直于横线的直线为y轴,相邻横线的间距为一个单位长度,建立平面直角坐标系,如图2所示.当所描的点在半径为5的同心圆上时,其坐标为.【解决问题】请帮助小明验证他的猜想是否成立.【深度思考】小明继续思考:设点P(0,m),m为正整数,以OP为直径画⊙M,是否存在所描的点在⊙M上.若存在,求m的值;若不存在,说明理由.2022年江苏省盐城市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.【分析】根据倒数的定义即可得出答案.【解答】解:2022的倒数是.故选:C.【点评】本题考查了倒数,掌握乘积为1的两个数互为倒数是解题的关键.2.【分析】选项A根据合并同类项法则判断即可;选项B根据同底数幂的乘法法则判断即可,同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;选项C根据同底数幂的除法法则判断即可,同底数幂的除法法则:底数不变,指数相减;选项D根据幂的乘方运算法则判断即可,幂的乘方法则:底数不变,指数相乘.【解答】解:A.a与a2不是同类项,所以不能合并,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.a6÷a3=a3,故本选项不合题意;D.(a2)3=a6,故本选项符合题意;故选:D.【点评】本题考查了合并同类项,同底数幂的乘除法以及幂的乘方,掌握相关运算法则是解答本题的关键.3.【分析】根据轴对称定义作答.【解答】解:A、该主体建筑的构图是轴对称图形,不符合题意;B、该主体建筑的构图找不到对称轴,不是轴对称图形,符合题意;C、该主体建筑的构图是轴对称图形,不符合题意;D、该主体建筑的构图是轴对称图形,不符合题意.故选:B.【点评】本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.4.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:1600000=1.6×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【分析】根据极差的定义求解即可.【解答】解:数据﹣2,0,3,1,﹣1的极差是3﹣(﹣2)=3+2=5,故选:D.【点评】本题主要考查极差,解题的关键是掌握极差是指一组数据中最大数据与最小数据的差.6.【分析】正方体的表面展开图相对的面之间一定相隔一个正方形,根据这一特点进行作答.【解答】解:正方体的表面展开图相对的面之间一定相隔一个正方形,“盐”与“高”是相对面,“城”与“富”是相对面,“强”与“美”是相对面,故选:D.【点评】本题主要考查了正方体相对两个面上的文字,关键在于要注意正方体的空间图形,从相对面入手解答问题.7.【分析】利用平行线的性质可得出答案.【解答】解:如图,过点G作GH∥ED,∵BC∥ED,∴ED∥GH∥BC,∴∠ABC=∠AGH,∠DEF=∠HGF,∵∠HGF+∠AGH=90°,∴∠ABC+∠DEF=90°∴∠DEF和∠ABC互余,故选:A.【点评】本题考查了矩形的性质,平行线的性质,灵活运用性质解决问题是解题的关键.8.【分析】根据图形估计出横向距离,再根据“跳眼法”的步骤得到答案.【解答】解:观察图形,横向距离大约是汽车的长度的2倍,∵汽车的长度大约为4米,∴横向距离大约是8米,由“跳眼法”的步骤可知,将横向距离乘以10,得到的值约为被测物体离观测点的距离值,∴汽车到观测点的距离约为80米,故选:C.【点评】本题考查的是图形的相似以及“跳眼法”,正确估计出横向距离是解题的关键.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9.【分析】根据二次根式的被开方数是非负数列出不等式x﹣1≥0,解不等式即可求得x的取值范围.【解答】解:根据题意得x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.10.【分析】利用反比例函数的定义列函数的解析式,运用待定系数法求出函数的解析式即可.【解答】解:令反比例函数为y=(k≠0),∵反比例函数的图象经过点(2,3),∴3=,k=6,∴反比例函数的解析式为y=.故答案为:y=.【点评】考查反比例函数的解析式,关键要掌握利用待定系数法求解函数的解析式.11.【分析】先把分式方程转化为整式方程,再求解即可.【解答】解:方程的两边都乘以(2x﹣1),得x+1=2x﹣1,解得x=2.经检验,x=2是原方程的解.故答案为:x=2.【点评】本题考查了解分式方程,掌握解分式方程的一般步骤是解决本题的关键.12.【分析】直接由概率公式求解即可求得答案.【解答】解:∵闭合开关C或者同时闭合开关A、B,都可使小灯泡发光,∴任意闭合其中一个开关共有3种等可能的结果,小灯泡发光的只有闭合C这1种结果,∴小灯泡发光的概率为.故答案为:.【点评】此题考查了概率公式的应用.此题比较简单,注意概率=所求情况数与总情况数之比.13.【分析】连接AO并延长交⊙O于点E,连接BE,根据切线的性质可得∠OAD=90°,从而求出∠BAE=55°,然后利用直径所对的圆周角是直角可得∠ABE=90°,从而利用直角三角形的两个锐角互余可求出∠E的度数,最后根据同弧所对的圆周角相等,即可解答.【解答】解:连接OA并延长交⊙O于点E,连接BE,∵AD与⊙O相切于点A,∴∠OAD=90°,∵∠BAD=35°,∴∠BAE=∠OAD﹣∠BAD=55°,∵AE是⊙O的直径,∴∠ABE=90°,∴∠E=90°﹣∠BAE=35°,∴∠C=∠E=35°,故答案为:35.【点评】本题考查了切线的性质,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.14.【分析】由旋转的性质可得AB'=AB=2,由锐角三角函数可求∠DAB'=60°,由扇形面积公式可求解.【解答】解:∵AB=2BC=2,∴BC=1,∵四边形ABCD是矩形,∴AD=BC=1,∠D=∠DAB=90°,∵将线段AB绕点A按逆时针方向旋转,∴AB'=AB=2,∵cos∠DAB'==,∴∠DAB'=60°,∴∠BAB'=30°,∴线段AB扫过的面积==,故答案为:.【点评】本题考查了旋转的性质,矩形的性质,扇形面积公式,锐角三角函数等知识,灵活运用这些性质解决问题是解题的关键.15.【分析】由题意可知﹣2<m<2,根据m的范围即可确定n的范围.【解答】解:∵y=x2+2x+2=(x+1)2+1,∴二次函数y=x2+2x+2的图象开口向上,顶点为(﹣1,1),对称轴是直线x=﹣1,∵P(m,n)到y轴的距离小于2,∴﹣2<m<2,而﹣1﹣(﹣2)<2﹣(﹣1),当m=2,n=(2+1)2+1=10,当m=﹣1时,n=1,∴n的取值范围是1≤n<10,故答案为:1≤n<10.【点评】本题考查二次函数的性质,解题的关键是掌握二次函数的图象及性质.16.【分析】由直线l1的解析式求得A,即可求得a1,把A的坐标代入y=x求得O1的坐标,进而求得A1的坐标,即可求得a2,把A1的纵坐标代入y=x求得O2的坐标,进而求得A2的坐标,即可求得a3,…,得到规律,即可求得O n﹣1A n﹣1=a n=()n﹣1,根据a1+a2+…+a n≤S对任意大于1的整数n恒成立,则S的最小值为2.【解答】解:把x=0代入y=x+1得,y=1,∴A(0,1),∴OA=a1=1,把y=1代入y=x得,x=1,∴O1(1,1),把x=1代入y=x+1得,y=×1+1=,∴A1(1,),∴O1A1=a2=﹣1=,把y=代入y=x得,y=,∴O2(,),把x=代入y=x+1得,y=×+1=,∴A2(,),∴O2A2=a3=﹣=,…,A n﹣1=a n=()n﹣1,∴O n﹣1∵a1+a2+…+a n≤S对任意大于1的整数n恒成立,∴S的最小,∵S≥a1+a2+…+a n=1+++…+=1+1﹣+﹣+…+﹣=2﹣,∴S的最小值为2,故答案为:2.【点评】本题考查了一次函数图象上点的坐标特征,图象上点的坐标适合函数的解析式是解题的关键.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.【分析】先计算()0,化简绝对值、代入tan45°,最后加减.【解答】解:原式=3+1﹣1=3.【点评】本题考查了实数的运算,掌握零指数幂的意义、绝对值的意义及特殊角的三角函数值是解决本题的关键.18.【分析】分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:,解不等式①,得x≥1,解不等式②,得x<2,故原不等式组的解集为:1≤x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【分析】根据平方差公式、完全平方公式、合并同类项法则把原式化简,整体代入即可.【解答】解:原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.【点评】本题考查的是整式的化简求值,掌握平方差公式、完全平方公式、合并同类项法则、灵活运用整体思想是解题的关键.20.【分析】画树状图,共有9种等可能的结果,其中甲、乙两人不在同一检测点参加检测的结果有6种,再由概率公式求解即可.【解答】解:画树状图如下:共有9种等可能的结果,其中甲、乙两人不在同一检测点参加检测的结果有6种,∴甲、乙两人不在同一检测点参加检测的概率为=.【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】(1)用路程除以速度即可得小丽步行的速度;(2)求出小华的速度,即可求出两人相遇所需的时间,进而可得小丽所走路程,即是他们到甲地的距离.【解答】解:(1)由图象可知,小丽步行的速度为=80(m/min),故答案为:80;(2)由图象可得,小华骑自行车的速度是=120(m/min),∴出发后需要=12(min)两人相遇,∴相遇时小丽所走的路程为12×80=960(m),即当两人相遇时,他们到甲地的距离是960m.【点评】本题考查一次函数的应用,解题的关键是读懂题意,能从图象中获取有用的信息.22.【分析】先根据已知画图,然后写出已知和求证,再进行证明即可.【解答】如图,CD为⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为M.求证:AM=BM,,.证明:连接OA、OB,∵OA=OB,∴△OAB是等腰三角形,∵AB⊥CD,∴AM=BM,∠AOC=∠BOC,∴,.【点评】本题考查了垂径定理,根据命题画出图形并根据圆的隐含条件半径相等进行证明是解题的关键.23.【分析】利用相似三角形的判定:两角对应相等的两个三角形相似可证明.【解答】解:③.理由如下:∵△ACD∽△A′C′D′,∴∠ADC=∠A'D'C',∴∠ADB=∠A'D'B',又∵∠BAD=∠B′A′D′,∴△ABD∽△A'B'D'.同理,选①也可以.故答案是:③(答案不唯一).【点评】本题主要考查相似三角形的判定,掌握相似三角形的判定条件是解题的关键.24.【分析】(1)根据抽样调查,普查的定义判断即可;(2)求出脂肪平均供能比和碳水化合物平均供能比的平均数即可;(3)结合以上的调查和计算,对照上表中的参考值,提出建议即可.【解答】解:(1)本次调查采用抽样调查的调查方法.故答案为:抽样调查;(2)∵(15.4%×35+15.5%×25+13.3%×40)÷(35+25+40)≈14.6%,样本中的脂肪平均供能比=(36.6%×35+40.4%×25+39.2%×40)÷(35+25+40)≈38.6%.碳水化合物平均供能比=(48.0%×35+44.1%×25+47.5%×40)÷(35+25+40)≈46.8%;(3)建议:减少脂肪类食物,增加碳水化合物食物.【点评】本题考查条形统计图,抽样调查,扇形统计图等知识,解题的关键是理解题意,灵活运用所学知识解决问题.25.【分析】(1)过点A作AE⊥CB,垂足为E,在Rt△ABE中,由AB=5m,∠ABE=37°,可求AE和BE,即可得出AC的长;(2)过点A作AF⊥CD,垂足为F,在Rt△ACF中,由勾股定理可求出AF,即OD的长.【解答】解:(1)如图,过点A作AE⊥CB,垂足为E,在Rt△ABE中,AB=5m,∠ABE=37°,∵sin∠ABE=,cos∠ABE=,∴=0.60,=0.80,∴AE=3m,BE=4m,∴CE=6m,在Rt△ACE中,由勾股定理AC==3≈6.7m.(2)过点A作AF⊥CD,垂足为F,∴FD=AO=1m,∴CF=5m,在Rt△ACF中,由勾股定理AF==2m.∴OD=2≈4.5m.【点评】本题考查了解直角三角形的应用、勾股定理等知识;正确作出辅助线构造直角三角形是解题的关键.26.【分析】(1)根据正方形的性质和SAS证明△ACB≌△HCG,可得结论;=S△CHL,所以S△AMI=S△CHL,由此可得结论;(2)证明S△CHG(3)证明正方形ACHI的面积+正方形BFGC的面积=▱ADJK的面积+▱KJEB的面积=正方形ADEB,可得结论;(4)如图2,延长IH和FG交于点L,连接LC,以A为圆心CL为半径画弧交IH于一点,过这一点和A作直线,以A为圆心,AI为半径作弧交这直线于D,分别以D,B为圆心,以AB,AI为半径画弧交于E,连接AD,DE,BE,则四边形ADEB即为所求.【解答】(1)证明:如图1,连接HG,∵四边形ACHI,ABED和BCGF是正方形,∴AC=CH,BC=CG,∠ACH=∠BCG=90°,AB=AD,∵∠ACB=90°,∴∠GCH=360°﹣90°﹣90°﹣90°=90°,∴∠GCH=∠ACB,∴△ACB≌△HCG(SAS),∴GH=AB=AD,∵∠GCH=∠CHI=∠CGL=90°,∴四边形CGLH是矩形,∴CL=GH,∴AD=LC;(2)证明一:∵∠CAI=∠BAM=90°,∴∠BAC=∠MAI,∵AC=AI,∠ACB=∠I=90°,∴△ABC≌△AMI(ASA),由(1)知:△ACB≌△HCG,∴△AMI≌△HGC,∵四边形CGLH是矩形,=S△CHL,∴S△CHG=S△CHL,∴S△AMI∴正方形ACHI的面积等于四边形ACLM的面积;证明二:∵四边形CGLH是矩形,∴PH=PC,∴∠CHG=∠LCH,∴∠CAB=∠CHG=∠LCH,∵∠ACH=90°,∴∠ACK+∠LCH=90°,∴∠ACK+∠CAK=90°,∴∠AKC=90°,∴∠AKC=∠BAD=90°,∴DM∥LK,∵AC∥LI,∴四边形ACLM是平行四边形,∵正方形ACHI的面积=AC•CH,▱ACLH的面积=AC•CH,∴正方形ACHI的面积等于四边形ACLM的面积;(3)证明:由正方形ADEB可得AB∥DE,又AD∥LC,∴四边形ADJK是平行四边形,由(2)知,四边形ACLM是平行四边形,由(1)知:AD=LC,∴▱ADJK的面积=▱ACLM的面积=正方形ACHI,延长EB交LG于Q,同理有▱KJEB的面积=▱CBQL的面积=正方形BFGC,∴正方形ACHI的面积+正方形BFGC的面积=▱ADJK的面积+▱KJEB的面积=正方形ADEB,∴AC2+BC2=AB2;(4)解:如图2即为所求作的▱ADEB.【点评】本题是四边形的综合题,考查的是全等三角形的性质和判定,平行四边形的性质和判定,矩形的性质和判定,正方形的性质,勾股定理的证明等知识;熟练掌握正方形的性质和全等相似三角形的判定与性质,根据图形面积的关系证出勾股定理是解题的关键,属于中考常考题型.27.【分析】【分析问题】根据题意可知:该点的纵坐标为4,利用勾股定理,即可求出该点的横坐标,进而可得出点的坐标;【解决问题】设所描的点在半径为n(n为正整数)的同心圆上,则该点的纵坐标为(n ﹣1),利用勾股定理可得出该点的坐标为(﹣,n﹣1)或(,n﹣1),结合点横、纵坐标间的关系,可得出该点在二次函数y=x2﹣的图象上,进而可证出小明的猜想正确;【深度思考】设该点的坐标为(±,n﹣1),结合⊙M的圆心坐标,利用勾股定理,即可用含n的代数式表示出m的值,再结合m,n均为正整数,即可得出m,n的值.【解答】【分析问题】解:根据题意,可知:所描的点在半径为5的同心圆上时,其纵坐标y=5﹣1=4,∵横坐标x=±=±3,∴点的坐标为(﹣3,4)或(3,4).【解决问题】证明:设所描的点在半径为n(n为正整数)的同心圆上,则该点的纵坐标为(n﹣1),∴该点的横坐标为±=±,∴该点的坐标为(﹣,n﹣1)或(,n﹣1).∵(±)2=2n﹣1,n﹣1=,∴该点在二次函数y=(x2﹣1)=x2﹣的图象上,∴小明的猜想正确.【深度思考】解:设该点的坐标为(±,n﹣1),⊙M的圆心坐标为(0,m),∴=m,∴m====n﹣1+2+.又∵m,n均为正整数,∴n﹣1=1,∴m=1+2+1=4,∴存在所描的点在⊙M上,m的值为4.【点评】本题考查了勾股定理、二次函数图象上点的坐标特征以及与圆有关的位置关系,解题的关键是:【分析问题】利用勾股定理,求出该点的横坐标;【解决问题】根据点的横、纵坐标间的关系,找出点在二次函数y=x2﹣的图象上;【深度思考】利用勾股定理,用含n的代数式表示出m的值.。

2022年江苏省盐城市中考数学试卷和答案解析

2022年江苏省盐城市中考数学试卷和答案解析

2022年江苏省盐城市中考数学试卷和答案解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)2022的倒数是()A.﹣2022B.C.2022D.﹣2.(3分)下列计算,正确的是()A.a+a2=a3B.a2•a3=a6C.a6÷a3=a2D.(a2)3=a6 3.(3分)下列四幅照片中,主体建筑的构图不对称的()A.B.C.D.4.(3分)盐城市图书馆现有馆藏纸质图书1600000余册.数据1600000用科学记数法表示为()A.0.16×107B.1.6×107C.1.6×106D.16×105 5.(3分)一组数据﹣2,0,3,1,﹣1的极差是()A.2B.3C.4D.56.(3分)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.强B.富C.美D.高7.(3分)小明将一块直角三角板摆放在直尺上,如图所示,则∠ABC 与∠DEF的关系是()A.互余B.互补C.同位角D.同旁内角8.(3分)“跳眼法”是指用手指和眼睛估测距离的方法,步骤:第一步:水平举起右臂,大拇指紧直向上,大臂与身体垂直;第二步:闭上左眼,调整位置,使得右眼、大拇指、被测物体在一条直线上;第三步:闭上右眼,睁开左眼,此时看到被测物体出现在大拇指左侧,与大拇指指向的位置有一段横向距离,参照被测物体的大小,估算横向距离的长度;第四步:将横向距离乘以10(人的手臂长度与眼距的比值一般为10),得到的值约为被测物体离观测点的距离值.如图是用“跳眼法”估测前方一辆汽车到观测点距离的示意图,该汽车的长度大约为4米,则汽车到观测点的距离约为()A.40米B.60米C.80米D.100米二、填空题(本大题共有8小题,每小题3分,共24分.不需写出参考答案过程,请将答案直接写在答题卡的相应位置上)9.(3分)若有意义,则x的取值范围是.10.(3分)已知反比例函数的图象经过点(2,3),则该函数表达式为.11.(3分)分式方程=1的解为.12.(3分)如图,电路图上有A、B、C3个开关和1个小灯泡,闭合开关C或同时闭合开关A、B都可以使小灯泡发亮.任意闭合其中的1个开关,小灯泡发亮的概率是.13.(3分)如图,AB、AC是⊙O的弦,过点A的切线交CB的延长线于点D,若∠BAD=35°,则∠C=°.14.(3分)如图,在矩形ABCD中,AB=2BC=2,将线段AB绕点A按逆时针方向旋转,使得点B落在边CD上的点B'处,线段AB扫过的面积为.15.(3分)若点P(m,n)在二次函数y=x2+2x+2的图象上,且点P到y轴的距离小于2,则n的取值范围是.16.(3分)《庄子•天下篇》记载“一尺之棰,日取其半,万世不竭”.如图,直线l1:y=x+1与y轴交于点A,过点A作x轴的平行线交直线l2:y=x于点O1,过点O1作y轴的平行线交直线l1于点A1,以此类推,令OA=a1,O1A1=a2,…,O n﹣1A n﹣1=a n,若a1+a2+…+a n≤S对任意大于1的整数n恒成立,则S的最小值为.三、参考答案题(本大题共有11小题,共102分.请在答题卡指定区域内作答,参考答案时应写出文字说明、推理过程或演算步骤)17.(6分)|﹣3|+tan45°﹣(﹣1)0.18.(6分)解不等式组:.19.(8分)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.20.(8分)某社区举行新冠疫情防控核酸检测大演练,卫生防疫部门在该社区设置了三个核酸检测点A、B、C,甲、乙两人任意选择一个检测点参加检测.求甲、乙两人不在同一检测点参加检测的概率.(用画树状图或列表的方法求解)21.(8分)小丽从甲地匀速步行去乙地,小华骑自行车从乙地匀速前往甲地,同时出发.两人离甲地的距离y(m)与出发时间x(min)之间的函数关系如图所示.(1)小丽步行的速度为m/min;(2)当两人相遇时,求他们到甲地的距离.22.(10分)证明:垂直于弦AB的直径CD平分弦以及弦所对的两条弧.23.(10分)如图,在△ABC与△A′B′C′中,点D、D′分别在边BC、B′C′上,且△ACD∽△A′C′D′,若,则△ABD∽△A′B′D′.请从①=;②=;③∠BAD=∠B′A′D′这3个选项中选择一个作为条件(写序号),并加以证明.24.(10分)合理的膳食可以保证青少年体格和智力的正常发育.综合实践小组为了解某校学生膳食营养状况,从该校1380名学生中调查了100名学生的膳食情况,调查数据整理如下:(1)本次调查采用的调查方法;(填“普查”或“抽样调查”)(2)通过对调查数据的计算,样本中的蛋白质平均供能比约为14.6%,请计算样本中的脂肪平均供能比和碳水化合物平均供能比;(3)结合以上的调查和计算,对照下表中的参考值,请你针对该校学生膳食状况存在的问题提一条建议.中国营养学会推荐的三大营养素供能比参考值蛋白质10%﹣15%脂肪20%﹣30%碳水化合物50%﹣65%25.(10分)2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB、BC为机械臂,OA=1m,AB=5m,BC=2m,∠ABC=143°.机械臂端点C 到工作台的距离CD=6m.(1)求A、C两点之间的距离;(2)求OD长.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈2.24)26.(12分)【经典回顾】梅文鼎是我国清初著名的数学家,他在《勾股举隅》中给出多种证明勾股定理的方法.图1是其中一种方法的示意图及部分辅助线.在△ABC中,∠ACB=90°,四边形ADEB、ACHI和BFGC分别是以Rt△ABC的三边为一边的正方形.延长IH和FG,交于点L,连接LC并延长交DE于点J,交AB于点K,延长DA交IL 于点M.(1)证明:AD=LC;(2)证明:正方形ACHI的面积等于四边形ACLM的面积;(3)请利用(2)中的结论证明勾股定理.【迁移拓展】(4)如图2,四边形ACHI和BFGC分别是以△ABC的两边为一边的平行四边形,探索在AB下方是否存在平行四边形ADEB,使得该平行四边形的面积等于平行四边形ACHI、BFGC的面积之和.若存在,作出满足条件的平行四边形ADEB(保留适当的作图痕迹);若不存在,请说明理由.27.(14分)【发现问题】小明在练习簿的横线上取点O为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描出了同心圆与横线的一些交点,如图1所示,他发现这些点的位置有一定的规律.【提出问题】小明通过观察,提出猜想:按此步骤继续画圆描点,所描的点都在某二次函数图象上.【点拨问题】小明利用已学知识和经验,以圆心O为原点,过点O的横线所在直线为x轴,过点O且垂直于横线的直线为y轴,相邻横线的间距为一个单位长度,建立平面直角坐标系,如图2所示.当所描的点在半径为5的同心圆上时,其坐标为.【解决问题】请帮助小明验证他的猜想是否成立.【深度思考】小明继续思考:设点P(0,m),m为正整数,以OP为直径画⊙M,是否存在所描的点在⊙M上.若存在,求m的值;若不存在,说明理由.参考答案解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.【点拨】直接利用倒数的定义得出答案.倒数:乘积是1的两数互为倒数.【参考答案】解:2022的倒数是.故选:B.2.【点拨】选项A根据合并同类项法则判断即可;选项B根据同底数幂的乘法法则判断即可,同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;选项C根据同底数幂的除法法则判断即可,同底数幂的除法法则:底数不变,指数相减;选项D根据幂的乘方运算法则判断即可,幂的乘方法则:底数不变,指数相乘.【参考答案】解:A.a与a2不是同类项,所以不能合并,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.a6÷a3=a3,故本选项不合题意;D.(a2)3=a6,故本选项符合题意;故选:D.3.【点拨】根据轴对称定义作答.【参考答案】解:A、该主体建筑的构图是轴对称图形,不符合题意;B、该主体建筑的构图找不到对称轴,不是轴对称图形,符合题意;C、该主体建筑的构图是轴对称图形,不符合题意;D、该主体建筑的构图是轴对称图形,不符合题意.故选:B.4.【点拨】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【参考答案】解:1600000=1.6×106.故选:C.5.【点拨】根据极差的定义求解即可.【参考答案】解:数据﹣2,0,3,1,﹣1的极差是3﹣(﹣2)=3+2=5,故选:D.6.【点拨】正方体的表面展开图相对的面之间一定相隔一个正方形,根据这一特点进行作答.【参考答案】解:正方体的表面展开图相对的面之间一定相隔一个正方形,“盐”与“高”是相对面,“城”与“富”是相对面,“强”与“美”是相对面,故选:D.7.【点拨】利用平行线的性质可得出答案.【参考答案】解:如图,过点G作GH∥ED,∵BC∥ED,∴ED∥GH∥BC,∴∠ABC=∠AGH,∠DEF=∠HGF,∵∠HGF+AGH=90°,∴∠ABC+∠DEF=90°∴∠DEF和∠ABC互余,故选:A.8.【点拨】根据图形估计出横向距离,再根据“跳眼法”的步骤得到答案.【参考答案】解:观察图形,横向距离大约是汽车的长度的2倍,∵汽车的长度大约为4米,∴横向距离大约是8米,由“跳眼法”的步骤可知,将横向距离乘以10,得到的值约为被测物体离观测点的距离值,∴汽车到观测点的距离约为80米,故选:C.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出参考答案过程,请将答案直接写在答题卡的相应位置上)9.【点拨】根据二次根式的被开方数是非负数列出不等式x﹣1≥0,解不等式即可求得x的取值范围.【参考答案】解:根据题意得x﹣1≥0,解得x≥1.故答案为:x≥1.10.【点拨】利用反比例函数的定义列函数的解析式,运用待定系数法求出函数的解析式即可.【参考答案】解:令反比例函数为y=(k≠0),∵反比例函数的图象经过点(2,3),∴3=,k=6,∴反比例函数的解析式为y=.故答案为:y=.11.【点拨】先把分式方程转化为整式方程,再求解即可.【参考答案】解:方程的两边都乘以(2x﹣1),得x+1=2x﹣1,解得x=2.经检验,x=2是原方程的解.故答案为:x=2.12.【点拨】直接由概率公式求解即可求得答案.【参考答案】解:∵闭合开关C或者同时闭合开关A、B,都可使小灯泡发光,∴任意闭合其中一个开关共有3种等可能的结果,小灯泡发光的只有闭合C这1种结果,∴小灯泡发光的概率为.故答案为:.13.【点拨】连接AO并延长交⊙O于点E,连接BE,根据切线的性质可得∠OAD=90°,从而求出∠BAE=55°,然后利用直径所对的圆周角是直角可得∠ABE=90°,从而利用直角三角形的两个锐角互余可求出∠E的度数,最后根据同弧所对的圆周角相等,即可参考答案.【参考答案】解:连接OA并延长交⊙O于点E,连接BE,∵AD与⊙O相切于点A,∴∠OAD=90°,∵∠BAD=35°,∴∠BAE=∠OAD﹣∠BAD=55°,∵AE是⊙O的直径,∴∠ABE=90°,∴∠E=90°﹣∠BAE=35°,∴∠C=∠E=35°,故答案为:35.14.【点拨】由旋转的性质可得AB'=AB=2,由锐角三角函数可求∠DAB'=60°,由扇形面积公式可求解.【参考答案】解:∵AB=2BC=2,∴BC=1,∵四边形ABCD是矩形,∴AD=BC=1,∠D=∠DAB=90°,∵将线段AB绕点A按逆时针方向旋转,∴AB'=AB=2,∵cos∠DAB'==,∴∠DAB'=60°,∴∠BAB'=30°,∴线段AB扫过的面积==,故答案为:.15.【点拨】由题意可知﹣2<m<2,根据m的范围即可确定n的范围.【参考答案】解:∵y=x2+2x+2=(x+1)2+1,∴二次函数y=x2+2x+2的图象开口象上,顶点为(﹣1,1),对称轴是直线x=﹣1,∵P(m,n)到y轴的距离小于2,∴﹣2<m<2,而﹣1﹣(﹣2)<2﹣(﹣1),当m=2,n=(2+1)2+1=10,当m=﹣1时,n=1,∴n的取值范围是1≤n<10,故答案为:1≤n<10.16.【点拨】由直线l1的解析式求得A,即可求得a1,把A的坐标代入y=x求得O1的坐标,进而求得A1的坐标,即可求得a2,把A1的纵坐标代入y=x求得O2的坐标,进而求得A2的坐标,即可求得a3,…,得到规律,即可求得O n﹣1A n﹣1=a n=()n﹣1,根据a1+a2+…+a n≤S对任意大于1的整数n恒成立,则S的最小值为2.【参考答案】解:把x=0代入y=x+1得,y=1,∴A(0,1),∴OA=a1=1,把y=1代入y=x得,x=1,∴O1(1,1),把x=1代入y=x+1得,y=×1+1=,∴A1(1,),∴O1A1=a2=﹣1=,把y=代入y=x得,y=,∴O2(,),把x=代入y=x+1得,y=×+1=,∴A2(,),∴O2A2=a3=﹣=,…,A n﹣1=a n=()n﹣1,∴O n﹣1∵a1+a2+…+a n≤S对任意大于1的整数n恒成立,∴S的最小,∵S≥a1+a2=1+++…+=2﹣,∴S的最小值为2,故答案为:2.三、参考答案题(本大题共有11小题,共102分.请在答题卡指定区域内作答,参考答案时应写出文字说明、推理过程或演算步骤)17.【点拨】先计算()0,化简绝对值、代入tan45°,最后加减.【参考答案】解:原式=3+1﹣1=3.18.【点拨】分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【参考答案】解:,解不等式①,得x≥1,解不等式②,得x<2,故原不等式组的解集为:1≤x<2.19.【点拨】根据平方差公式、完全平方公式、合并同类项法则把原式化简,整体代入即可.【参考答案】解:原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.20.【点拨】画树状图,共有9种等可能的结果,其中甲、乙两人不在同一检测点参加检测的结果有6种,再由概率公式求解即可.【参考答案】解:画树状图如下:共有9种等可能的结果,其中甲、乙两人不在同一检测点参加检测的结果有6种,∴甲、乙两人不在同一检测点参加检测的概率为=.21.【点拨】(1)用路程除以速度即可得小丽步行的速度;(2)求出小华的速度,即可求出两人相遇所需的时间,进而可得小丽所走路程,即是他们到甲地的距离.【参考答案】解:(1)由图象可知,小丽步行的速度为=80(m/min),故答案为:80;(2)由图象可得,小华骑自行车的速度是=120(m/min),∴出发后需要=12(min)两人相遇,∴相遇时小丽所走的路程为12×80=960(m),即当两人相遇时,他们到甲地的距离是960m.22.【点拨】先根据已知画图,然后写出已知和求证,再进行证明即可.【参考答案】如图,CD为⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为M.求证:AM=BM,,.证明:连接OA、OB,∵OA=OB,∴△OAB是等腰三角形,∵AB⊥CD,∴AM=BM,∠AOC=∠BOC,∴,.23.【点拨】利用相似三角形的判定:两角对应相等的两个三角形相似可证明.【参考答案】解:③.理由如下:∵△ACD∽△A′C′D′,∴∠ADC=∠A'D'C',∴∠ADB=∠A'D'B',∵∠BAD=∠B'A'D',∠ADC=∠B+∠BAD,∠A'D'C'=∠B'+∠B'A'D',∴∠B=∠B',∴△ABD∽△A'B'D'.同理,选①也可以.故答案是:③(答案不唯一).24.【点拨】(1)根据抽样调查,普查的定义判断即可;(2)求出脂肪平均供能比和碳水化合物平均供能比的平均数即可;(3)结合以上的调查和计算,对照上表中的参考值,提出建议即可.【参考答案】解:(1)本次调查采用抽样调查的调查方法.故答案为:抽样调查;(2)∵(15.4%×35+15.5%×25+13.3%×40)÷(35+25+40)≈14.6,样本中的脂肪平均供能比=(36.6%×35+40.4%×25+39.2%×40)÷(35+25+40)≈38.6%.碳水化合物平均供能比=(48.0%×35+44.1%×25+47.5%×40)÷(35+25+40)≈46.8%;(3)建议:减少脂肪类食物,增加碳水化合物食物.25.【点拨】(1)过点A作AE⊥CB,垂足为E,在Rt△ABE中,由AB=5,∠ABE=37°,可求AE和BE,即可得出AC的长;(2)过点A作AF⊥CD,垂足为F,在Rt△ACF中,由勾股定理可求出AF,即OD的长.【参考答案】解:(1)如图,过点A作AE⊥CB,垂足为E,在Rt△ABE中,AB=5,∠ABE=37°,∵sin∠ABE=,cos∠ABE=,∴=0.60,=0.80,∴AE=3,BE=4,∴CE=6,在Rt△ACE中,由勾股定理AC==3≈6.7m.(2)过点A作AF⊥CD,垂足为F,∴FD=AO=1,∴CF=5,在Rt△ACF中,由勾股定理AF==2.∴OD=2≈4.5m.26.【点拨】(1)根据正方形的性质和SAS证明△ACB≌△HCG,可得结论;(2)证明S△CHG=S△CHL,所以S△AMI=S△CHL,由此可得结论;(3)证明正方形ACHI的面积+正方形BFGC的面积=▱ADJK的面积+▱KJEB的面积=正方形ADEB,可得结论;(4)如图2,延长IH和FG交于点L,连接LC,以A为圆心CL 为半径画弧交IH于一点,过这一点和A作直线,以A为圆心,AI为半径作弧交这直线于D,分别以A,B为圆心,以AB,AI 为半径画弧交于E,连接AD,DE,BE,则四边形ADEB即为所求.【参考答案】(1)证明:如图1,连接MG,∵四边形ACHI,ABED和BCGF是正方形,∴AC=CH,BC=CG,∠ACH=∠BCG=90°,AB=AD,∵∠ACB=90°,∴∠GCH=360°﹣90°﹣90°﹣90°=90°,∴∠GCH=∠ACB,∴△ACB≌△HCG(SAS),∴GH=AB=AD,∵∠GCH=∠CHI=∠CGL=90°,∴四边形CGLH是矩形,∴CL=GH,∴AD=LC;(2)证明一:∵∠CAI=∠BAM=90°,∴∠BAC=∠MAI,∵AC=AI,∠ACB=∠I=90°,∴△ABC≌△AMI(ASA),由(1)知:△ACB≌△HCG,∴△AMI≌△HGC,∵四边形CGLH是矩形,∴S△CHG=S△CHL,∴S△AMI=S△CHL,∴正方形ACHI的面积等于四边形ACLM的面积;证明二:∵四边形CGLH是矩形,∴PH=PC,∴∠CHG=∠LCH,∴∠CAB=∠CHG=∠LCH,∵∠ACH=90°,∴∠ACK+∠LCH=90°,∴∠ACK+∠CAK=90°,∴∠AKC=90°,∴∠AKC=∠BAD=90°,∴DM∥LK,∵AC∥LI,∴四边形ACLM是平行四边形,∵正方形ACHI的面积=AC•CH,▱ACLH的面积=AC•CH,∴正方形ACHI的面积等于四边形ACLM的面积;(3)证明:由正方形ADEB可得AB∥DE,又AD∥LC,∴四边形ADJK是平行四边形,由(2)知,四边形ACLM是平行四边形,由(1)知:AD=LC,∴▱ADJK的面积=▱ACLM的面积=正方形ACHI,延长EB交LG于Q,同理有▱KJEB的面积=▱CBQL的面积=正方形BFGC,∴正方形ACHI的面积+正方形BFGC的面积=▱ADJK的面积+▱KJEB的面积=正方形ADEB,∴AC2+BC2=AB2;(4)解:如图2即为所求作的▱ADEB.27.【点拨】【点拨问题】根据题意可知:该点的纵坐标为4,利用勾股定理,即可求出该点的横坐标,进而可得出点的坐标;【解决问题】设所描的点在半径为n(n为正整数)的同心圆上,则该点的纵坐标为(n﹣1),利用勾股定理可得出该点的坐标为(﹣,n﹣1)或(,n﹣1),结合点横、纵坐标间的关系,可得出该点在二次函数y=x2﹣的图象上,进而可证出小明的猜想正确;【深度思考】设该点的坐标为(±,n﹣1),结合⊙M的圆心坐标,利用勾股定理,即可用含n的代数式表示出m的值,再结合m,n均为正整数,即可得出m,n的值.【参考答案】【点拨问题】解:根据题意,可知:所描的点在半径为5的同心圆上时,其纵坐标y=5﹣1=4,∵横坐标x=±=±3,∴点的坐标为(﹣3,4)或(3,4).【解决问题】证明:设所描的点在半径为n(n为正整数)的同心圆上,则该点的纵坐标为(n﹣1),∴该点的横坐标为±=±,∴该点的坐标为(﹣,n﹣1)或(,n﹣1).∵(±)2=2n﹣1,n﹣1=,∴该点在二次函数y=(x2﹣1)=x2﹣的图象上,∴小明的猜想正确.【深度思考】解:设该点的坐标为(±,n﹣1),⊙M的圆心坐标为(0,m),∴=m,∴m====n﹣1+2+.又∵m,n均为正整数,∴n﹣1=1,∴m=1+2+1=4,∴存在所描的点在⊙M上,m的值为4.。

2023年江苏省盐城市中考数学试卷附解析

2023年江苏省盐城市中考数学试卷附解析

2023年江苏省盐城市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.其市气象局预报称:明天本市的降水概率为70%,这句话指的是( ) A . 明天本市70%的时间下雨,30%的时间不下雨 B . 明天本市70%的地区下雨,30%的地区不下雨 C . 明天本市一定下雨D . 明天本市下雨的可能性是70%2.如图,AC 、BC 是两个半圆的直径,∠ACP=30°,若AB=10㎝,则PQ 的值为( ) A .5㎝ B .35 C .6D .8㎝函数y kx b =+的图象如图所示,则2y kx b =+的图象可能是( )3.已知A .B .C .D . 4.某物体的三视图是如图所示的三个图形,那么该物体的形状是( )A .长方体B .圆锥体C .正方体D .圆柱体5. 如图,AB ∥CD ,∠1=110°, ∠ECD =70°,∠E 等于( ) A .30°B . 40°C . 50°D . 60°1QP6.小数表示2610-⨯结果为( ) A . 0.06B . -0.006C .-0.06D .0.0067.如图所示的几张图中,相似图形是( )A .①和②B .①和③C .①和④D .②和③8.如图所示,把三个相同的宽为l cm 、长为2 cm 的长方形拼成一个长为3 cm 、宽为2 cm 的长方形ABGH ,分别以B ,C 两点为圆心,2 cm 长为半径画弧AE 和弧DG ,则阴影部分的面积是( )A .34πcm 2 B .32πcm 2 C .2cm 2 D .(4)2π-cm 29.如图.在△ABC 中,AB AC ,AB 的中垂线DE 交AC 于点D ,交AB 于点E ,如果BC=10,△BDC 的周长为22,那么△ABC 的周长是( ) A .24B .30C .32D .34二、填空题10.已知⊙O 1与⊙O 2的半径分别为2cm 和3cm ,当⊙O 1与⊙O 2外切时,圆心距O 1O 2=____ cm .θ=,则θ= .11.若θ为三角形的一个锐角,且2sin312.已知Rt△ABC中,∠C=90°,∠A=60°,BC=5,BD是中线,则BD= .13.如图,在梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,AD=6,BC=8,则梯形的高为.14.一个多边形的每个外角都相等,且比它们的内角小l40°,这个多边形的边数为,它有条对角线.15.将三粒质地均匀的分别标有 1、2、3、4、5、6的正六面体骰子同时掷出,出现的数字分别为a、b、c,则a、b、c正好都相同的概率是 .解答题16.如图,在△ABC中,AD是高,E是AB上一点,AD与CE相交于点P,已知∠APE=50°,∠AEP=80°,则∠B= .17.浙江省教育网开通了网上教学,某校九年级(8)班班主任为了了解学生上网学习时间,对本班40名学生某天上网学习时间进行了调查,将数据(取整数)整理后,绘制出如图所示频率分布直方图,已知从左到右各个小组的频率分别是0.15,0.25,0.35,0.20, 0.05,则根据直方图所提供的信息,这一天上网学习时间在100~119 min之间的学生人数是人.三、解答题18.如图,梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC•的中点,EF与BD 相交于点M. (1)求证:△EDM∽△FBM;(2)若DB=9,求BM.19.已知抛物线2y x bx c =++的图象向右平移3个单位,再向下平移 2 个单位得到抛物线2(3)1y x =-+,求b 、c 的值.20.今青少年视力水平的下降已引起全社会的关注,为了了解某中学毕业年级300名学生的视力情况,从中抽取了一部分学生的视力,进行数据整理后如下表: (1)在这个问题中总体是 ; (2)填写频数分布表中未完成的部分;(3)若视力为4.9,5.0,5.1均属正常,不需矫正,试估计该校毕业年级学生视力正常的人数约为多少?21.如图,AD ,BE 是△ABC 的高,F 是DE 中点,G 是AB 的中点.求证:GF ⊥DE .B 组22.通过证明结论的 不成立,从而得出 成立,这种证明方法叫做反证法,它的关键是找出由假设所产生的,与 、 、 、 之间的矛盾.分组 频数 频率 3.95~4.252 0.046 0.124.55~4.85 234.85~5.155.15~5.45 10.02 合计1.0023.试判断命题:“若一条直线上的两点到另一条直线的距离相等,则这两条直线平行”的真假,并说明理由.24.将如图所示的几何体分类,并说明理由.(1)立方体 (2)圆柱 (3)长方体 4)球 (5)圆锥 (6)三棱锥25.如图,如果∠1 是它的补角的5倍,∠2的余角是∠2的2倍,那么AB∥CD吗?为什么?26.705班在召开期末总结表彰会前,班主任安排班长史小青去商店购买奖品,下面是史小青与售货员的对话:史小青:阿姨,你好!售货员:同学你好,想买点什么?史小青:我只有100元,请帮助我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见!根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?27.图②、③、④、⑤分别由图①变换而成的,请你分析它们的形成过程.28.如图,将△ABC先向上平移5格得到△A′B′C′,再以直线MN为对称轴,将△A′B′C′作轴对称变换,得到△A″B″C″,作出△A′B′C′和△A″B″C″.29.已知,如图所示,点B,E,C,F在同一条直线上,AB=DE,AC=DF,BE=CF.试判断∠B与∠DEC是否相等,并说明理由.30.小彬解方程21152x x a-++=时,方程左边1 没有乘以 10,由此求得方程的解为 x=4. 试求 a的值,并正确地求出方程的解.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.C4.D5.B6.A7.C8.C9.D二、填空题10.511.60°12.335 13. 714.18,13515.13616. 40°17.14三、解答题 18.(1)略(2)3.19.由题意,平移前解析式为22(33)123y x x =-+++=+,∴b= 0 , c= 320.⑴某中学毕业年级300名学生视力的全体情况;⑵频率分布表的第一列应填4.25~4.55;第二列从上到下依次为:18,50;第三列从上到下依次为:0.46,0.36;⑶108名.21.连结EG ,DG .证EG=DG22.反面,结论,已知,定义,公理,定理23.假命题,如图所示,AB ⊥BD 于B ,CD ⊥BD 于D ,AB=CD ,但AC 不平行BD24.答案不唯一,如:(1)按平面分:立方体、长方体、三棱锥;(2)按曲面分:圆柱、球、圆锥25.AB∥CD.理由:设∠l的度数为x,则x=5×(180°-x),解得x=150°.同理,∠2的度数为30°∵∠l+∠2=150°+30°=180°,∴AB∥CD26.5元和3元.27.由图①经过连续四次绕圆心顺时针旋转90°得到28.略29.∠B=∠DEC,理由略30.x=1a=-,13。

江苏省盐城市2024年中考数学试题(含答案)

江苏省盐城市2024年中考数学试题(含答案)

2024年扬州市中考数学试题一、选择题(本题有8小题,每小题3分,共24分)1.-3的肯定值是【】A.3 B.-3 C.-3 D.1 32.下列图形中,既是轴对称图形,又是中心对称图形的是【】A.平行四边形B.等边三角形C.等腰梯形D.正方形3.今年我市参与中考的人数大约有41300人,将41300用科学记数法表示为【】A.413×102B.41.3×103C.4.13×104D.0.413×103 4.已知⊙O1、⊙O2的半径分别为3cm、5cm,且它们的圆心距为8cm,则⊙O1与⊙O2的位置关系是【】A.外切B.相交C.内切D.内含5.如图是由几个相同的小立方块搭成的几何体的三视图,则这几个几何体的小立方块的个数是【】A.4个B.5个C.6个D.7个6.将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是【】A.y=(x+2)2+2 B.y=(x+2)2-2C.y=(x-2)2+2 D.y=(x-2)2-27.某校在开展“爱心捐助”的活动中,初三一班六名同学捐款的数额分别为:8,10,10,4,8,10(单位:元),这组数据的众数是【】A.10 B.9 C.8 D.48.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2024,则m的值是【】A.43 B.44 C.45 D.46二、填空题(本大题共10小题,每小题3分,共30分)9.扬州市某天的最高气温是6℃,最低气温是-2℃,那么当天的日温差是.10.一个锐角是38度,则它的余角是度.11.已知2a-3b2=5,则10-2a+3b2的值是.12.已知梯形的中位线长是4cm,下底长是5cm,则它的上底长是cm.13.在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.14.如图,P A、PB是⊙O的切线,切点分别为A、B两点,点C在⊙O上,假如∠ACB=70°,那么∠P的度数是.15.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处.若ABBC=23,则tan∠DCF的值是.16.如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是.17.已知一个圆锥的母线长为10cm,将侧面绽开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是cm.18.如图,双曲线y=kx经过Rt△OMN斜边上的点A,与直角边MN相交于点B,已知OA=2AN,△OAB的面积为5,则k的值是.三、解答题(本大题共有10小题,共96分)19.(1)计算:9-(-1)2+(-2024)0;(2)因式分解:m3n-9mn.20.先化简:1-a-1a÷a2-1a2+2a,再选取一个合适的a值代入计算.21.扬州市中小学全面开展“体艺2+1”活动,某校依据学校实际,确定开设A:篮球,B:乒乓球,C:声乐,D:塑身操等四中活动项目,为了解学生最喜爱哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制了两幅不完整的统计图.请回答下列问题:(1)这次被调查的学生共有人.(2)请你将统计图1补充完整.(3)统计图2中D项目对应的扇形的圆心角是度.(4)已知该校学生2400人,请依据调查结果估计该校最喜爱乒乓球的学生人数.22.一个不透亮的布袋里装有4个大小,质地都相同的乒乓球,球面上分别标有数字1,-2,3,-4,小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出其次个乒乓球.(1)共有种可能的结果.(2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.23.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=DE.24.为了改善生态环境,防止水土流失,某村安排在荒坡上种480棵树,由于青年志愿者的支援,每日比原安排多种13,结果提前4天完成任务,原安排每天种多少棵树?25.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就马上指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离(结果精确到0.1海里,参考数据:2≈1.41,3≈1.73).26.如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的切线,垂足为D.(1)求证:AC平分BAD;(2)若AC=25,CD=2,求⊙O的直径.27.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,干脆写出全部符合条件的点M的坐标;若不存在,请说明理由.28.如图1,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y 轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H.(1)①干脆写出点E的坐标:;②求证:AG=CH.(2)如图2,以O为圆心,OC为半径的圆弧交OA与D,若直线GH与弧CD所在的圆相切于矩形内一点F,求直线GH的函数关系式.(3)在(2)的结论下,梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,求⊙P的半径.参考答案一、选择题(本题有8小题,每小题3分,共24分)1.(2024•扬州)-3的肯定值是( )A.3B.-3 C.-3 D.考点:肯定值。

最新江苏省盐城市中考数学真题试卷附解析

最新江苏省盐城市中考数学真题试卷附解析

江苏省盐城市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,已知点 P 是△ABC 的边 AB 上一点,且满足△APC ∽△ACB ,则下列的比例式:① AP AC PC CB =;②AC AB AP AC=;③PC AC PB AP =;④AC PC AB PB =.其中正确的比例式的序号是( ) A . ①② B .③④ C .①②③ D . ②③④2.已知四边形ABCD 中,90A B C ===∠∠∠,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A .∠D=90°B .AB=CDC .AD=BCD .BC=CD3.如图,AB ,CD 相交于点0,则下列条件中能得到AC ∥BD 且AC=BD 的是( )A .∠A=∠B ,∠C=∠DB .OA=BC .OC=ODD .∠A=∠B ,OA=OB4.如图是小敏同学6次数学测验的成绩统计表,则该同学6次成绩的中位数是( )A . 60分B . 70分C .75分D . 80分 5.分式221m m m m -+-约分后的结果是( ) A 1m m n -+ B .1(1)m m m --+ C .1m m - D .1(1)m m m -+ 6.20人一行外出旅游住旅社,因特妹原因,服务员安排房间时每间比原来多住 1 人,结 果比原来少用了一个房间. 若原来每间住 x 人,则x 应满足的关系式为( ) A .202011x x -=+ B .202011x x -=- C .202011x x -=- D .202011x x -=+ 90 85 80 75 70 65 60 55 分数7.如图所示,△ABC 和△A ′B ′C ′关于直线l 对称,那么下列结论中正确的有( ) ①△ABC ≌△A ′B ′C ′;②∠BAC=∠A ′B ′C ′;③l 垂直平分CC ′;④直线BC 和B ′C ′的交点不一定在l 上.A .4个B .3个C .2个D .1个8.下列计算结果为负数的是( )A .3-B .3--||C .2(3)-D .3(3)-- 9.火车票上的车次号有两个意义:(1)数字越小表示车速越快,如 1~98次为特快列车,101~198次直快列车,301~398次为普快列车,401~498次为普客列车;(2)奇数与偶数表示不同的行驶方向,例如:奇数表示从北京开出,偶数表示开往北京. 根据以上规定,杭州开往北京的某一直快列车的车次号可能是( )A . 20B .119C .120D .319二、填空题10.若反比例函数1y x=-的图象上有两点A (1,y 1),B (2,y 2),则y 1______ y 2(填“>”或“=”或“<”). 11.在“We like maths .”这个句子的所有字母中,字母“e ”出现的频率约为 (结果保留2个有效数字).12. 完成下列配方过程.(1)26x x ++( )=2(3)x +;(2)2x - +916=23()4x -; (3)25x x -+ =2(___)x -(4)222x x -+ =2(__)x -.13.关于x 的方程22(23)103a x ax ---=是一元二次方程,则a 的取值范围是 . 14. 从1至9这9个自然数中任取一个,是2的倍数或是3的倍数的概率是________15.如图,∠A=36°,∠DBC=36°,∠C=72°,则图中的等腰三角形分别是 .16.如图所示,△ABC 是等腰直角三角形,AD ⊥BC ,则△ABD 可以看做是由△ACD 绕 点逆时针旋转 得到的. 17.在括号内填上适当的代数式,使等式成立. (1)()b a a a +=-;(2)322323()y x x y y x --=-;(3)216()324ab a a=;(4)39()()x x x y x y +=+ 解答题18.用四舍五入法,保留l 个有效数字,则取80600的近似值为 ,保留2个有效数 字的近似值为 .19.如果 -22 元表示亏损 22 元,那么 45 元表示 .20.若关于x 的方程39x =与4x k +=有相同的解,则代数式212kk -的值为 .三、解答题21.如图,已知直角梯形 AECD 和直角梯形A ′B ′C ′D ′中,∠A=∠A ′=∠B=∠B ′= 90°, ∠D= ∠D ′ ,AB : A ′B ′= BC : B ′C ′,求证:梯形ABCD ∽梯形A ′B ′C ′D ′.22.如图,在△ABC 中,DE ∥FG ∥BC ,DE 、FG 将△ABC 的面积三等分,若 BC = 12 cm ,求 FG 的长.23.在一块边长为1m 的正方形铁板上截出一个面积为800cm 2的矩形铁板,使长比宽多20cm ,问矩形铁板的长和宽各为多长?24.一个台阶如图,阶梯每一层的高为 15 cm ,宽为 25 cm ,长为 60 cm.一只蚂蚁从 A 点爬到B 点最短路程是多少?25.解不等式5122(43)x x --≤,并把它的解集在数轴上表示出来.26.某班组织一次数学测试,全班学生分为两组,这两组成绩(单位:分)的分布情况如下图所示. (1)全班学生数学成绩的众数是 分.全班学生数学成绩为众数的有 人,全班学生数学成绩的中位数是 分;(2)分别计算这两个小组超过全班数学成绩中位数的人数占全班人数的百分比.1 2 3 0 1- 2- 3-27.先化简,再求值:22()a b a ba b b a ab++÷--,其中31a=,31b=.28.先化筒,再求值:2(32)(32)5(1)(21)x x x x x+-----,其中13x=-.29.在“跳蚤市场”活动中初一(1)班的销售额为n元,初一(2)班的销售额是初一(1)班的的2倍少28元,初一(3)班的销售额比初一(1)班的一半多42元,问三个班一共销售商品多少元?30.浙江省的民营企业在市场经济的运作下,迅速壮大起来.从下面一个企业提供的数据之中,我们就能感觉到中国经济迅猛发展的趋势:1997年产值110万,l999年产值200万,2001年产值500万,2002年产值900万,2003年产值1700万.请你设计一张统计表,简明地表达这一段文字的信息.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.D4.C5.C6.A7.B8.B9.C二、填空题10.11.0.1812.(1)9;(2)32x ;(3)254,52;(4)13.23a ≠14. 32 15. △ABD ,△CBD,△ABC16.D ,90°17.(1)a b --;(2)32x y -;(3)2b ;(4)23()x y +18.8×lO 4,8.1×1O 419.盈利 45 元20.1349-三、解答题21.连结 AC 、A ′C ′.在△ABC 和△A ′B ′C ′ 中,AB BC A B B C ='''',∠B=∠B ′,∴△ABC ∽△A ′B ′C ′,∴∠1=∠5 ,∠3 =∠7. AC AB A C A B =''''.在△ADC 和△A ′D ′C ′中,∠2=90°-∠1 ,∠6=90°-∠5 ,∴∠2=∠6, 又∠D=∠D ′,∴△ADC ∽△A ′D ′C ′. ∴AD AC DC A D A C D C =-='''''',∠4=∠8,∴AB BC DC AD A B B C D C A D ===''''''''又∵∠BCD=∠B ′C ′D ′,∴梯形ABCD ∽梯形A ′B ′C ′D ′.22.∵DE ∥FG ∥BC ,∴△ADE ∽△AFG ∽△ABC. 又∵23AFG ABC S S ∆∆=,∴23FG BC =,∴46FG =㎝.23.长 40 cm ,宽 20 cm24.100 cm25.解:去括号,得51286x x --≤.移项,得58612x x --+≤.合并,得36x -≤.系数化为1,得2x -≥.不等式的解集在数轴上表示如下:(1)95,20,92.5; (2)第一组超过全班数学成绩中位数的人数占全班人数的百分比为111100%24%50+⨯=,第二组超过全班数学成绩中位数的人数占全班人数的百分比为94100%26%50+⨯=. 27.ab ,228.95x -,-829.(3.5n+14)元30.略 12301-2-3-26.。

2022年江苏省盐城市中考数学测试试卷附解析

2022年江苏省盐城市中考数学测试试卷附解析

2022年江苏省盐城市中考数学测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.同时抛掷两枚均匀硬币,正面都同时向上的概率是( )A .31B .41C .21D .432.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( )A .0.5mB .0.55mC .0.6mD .2.2m 3.过⊙O 内一点P 的最长的弦长为10cm ,最短的弦长为8cm ,则OP 的长为( ) A .3cmB .5cmC .2cmD .3cm 4. 如图,已知圆锥形烛台的侧面积是底面积的 2 倍,则两条母线所夹的∠AOB 为( )A .30°B .45°C .60°D .120°5.某校对1200名女生的身高进行了测量,身高在1.58~1.63(单位:m )这一小组的频率为0.25,则该组的人数为( )A .150人B .300人C .600人D .900人6.已知2y 2+y-2的值为3,则4y 2+2y+1的值为( )A .10B .11C .10或11D .3或117. 一元二次方程2230x x --=的两个根分别为( )A .11x =,23x =-B .11x =-,23x =C .11x =,23x =D . 11x =-,23x =-8.将一元二次方程(1)(22)2x x -+=-化为一般形式是( ) A .22410x x +-= B .22410x x -+= C .2230x x -=D .220x = 9.在△ABC 中,三个内角满足以下关系:∠A=12∠B=13∠C ,那么这个三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .任意三角形10.下列多项式:①16x 5-x ;②(x-1)2-4(x-1)+4;③(x+1)4-4x (x+1)+4x 2;④-4x 2-1+4x ,分解因式后,结果含有相同因式的是( )A.①④B.②④C.③④D.②③11.31254--可以读作()A.35减负2减负14B.正35,正 2 与正14的和C.正35,负 2与负14的差 D.35减 2减1412.在|7|-,|5|,(3)-+,|0|-中,负数共有()A.1 个B.2 个C.3 个 D.4 个13.将矩形ABCD沿AE折叠.得到如图所示的图形,已知∠CED′=60°.那么∠AED的大小是()A.50°B.55°C.60°D.75°二、填空题14.如图,D、E两点分别在△ABC 的边AB、AC上,DE与BC不平行,当满足条件(写出一个即可)时,△ADE∽△ACB.15.如图所示,⊙O表示一个圆形工件,AB=15cm,OM= 8cm,并且MB:MA=1:4,则工件半径的长为 cm.解答题16.某商店销售一种纪念品,已知成批购进时单价为 4 元,根据市场调查,销售量与销售单价在一段时间内满足如下关系:单价为10 元时销售量为 300 枚,而单价每降低 1元,就可多售出 5枚,那么当销售单价降低x元(4<x<10)时,销售量是枚,若设利润为y元,则y与x 的函数关系是.17.梯形的中位线长为3,高为2,则该梯形的面积为.18.如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是 cm.19.判断题(对的打“√,错的打“×”)(1)211()22-=-( ) (2)22( 2.5)( 2.5)-=( )(3)211()22-=-( ) (4)211(2)2122=⨯=( ) 20.如图,在长方形ABCD 中,AB=6,BC=8,如果将该矩形沿对角线BD 折叠,那么图中重叠部分的面积是 .21.如图所示,已知DE ∥BC ,△ADE 是△ABC 经相似变换后的像,若图形缩小12,而BC=4,∠B=50°,则DE= ,∠D= .22.9的平方根是 ,64-的立方根是 .23.一个立方体的体积是125cm 3,则它的棱长是 cm .三、解答题24.如图,两建筑物的水平距离 BG 为 27m ,从点A 测得点D 的俯角α=30°,测得点C 的俯角β= 60°,求 AB 和CD 两建筑物的高.25.已知y 是x 的反比例函数,当x=3时,y=4,则当x=2时求函数y 的值.6.26.如图,在Rt △ABC 中,∠C=90°,∠A=60°,AC=3,将△ABC 绕点B 旋转至△A ′BC′的位置,且使点A,B,C′三点在同一直线上,则点A 经过的最短路线长是______cm.A 'C 'CB A27. 四张大小、质地均相同的卡片上分别标有数字1,2,3,4,5,6,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张卡片(不放回),再从桌子上剩下的5张中随机抽取第二张卡片.(1)用画状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况;(2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?28.如图,已知线段AC=8,BD=6.(1)已知线段AC ⊥BD 于0.设图①,图②,图③中的四边形ABCD 的面积分别为S 1,S 2,S 3,则 S 1= ,S 2= ,S 3= ;(2)如图④,对于线段AC 与线段BD 垂直相交(垂足O 不与A ,B ,C ,D 重合)的任意情况,请你猜想四边形ABCD 的面积,并说明你的猜想是正确的;(3)当线段BD 与AC(或CA)的延长线垂直相交时,猜想顺次连结点A ,B ,C ,D ,A 所围成的封闭图形的面积是多少;请画出图形,并说明你的猜想是正确的.29.一个三角形一边长为a b-,求+,第三边长比这条边小3a b+,另一边长比这条边大2a b这个三角形的周长 C.+25a b30.暑假两名教师带 8 名学生外出旅游,旅游费教师每人a元、学生每人 b元,因是团体,给予优惠,教师打八折,学生按六五折优惠,共需旅游费多少无?并计算当 a=30,b=20 时,旅游费的总金额.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.D4.C5.B6.B7.B8.D9.A10.A11.D12.A13.C二、填空题14.∠ADE=∠ACB (或∠AED=∠ABC 或AD AE AC AB=) 15.1016.300 + 5x ,(6)(3005)y x x =-+17.618.319.(1)×(2)√ (3)×(4)×20.75421. 2,50°22.23.5三、解答题24.如图,过A 作AM ∥BC ,交 CD 的延长线于M ,由题意得,四边形 ABCM 是矩形. ∵∠MAC=60°,∴∠BAC=30°.在 Rt △C 中,tan BC BAC AE ∠=,∴0tan 30BC AB ==在 Rt △AMD 中,tan AM DM MAD ∠=,∵∠MAD=30°,∴DM=AM ×tan30°=27×33 = 93 ∴27393183CD AB DM =-=-=答:AB 的高为183m .25.26.π335 27. (1)略 (2)1528.(1)S 1=24,S 2=24,S 3=24;(2)面积为24,411111()862422222S BD AO BD CO BD AO CO BD AC =⋅+⋅=+=⋅=⨯⨯=; (3)图略,原理类似于(2),面积为2429.25a b +30.(1)(1.6a+5.2b)元,152 元。

最新江苏省盐城市中考数学测试试题附解析

最新江苏省盐城市中考数学测试试题附解析

江苏省盐城市中考数学测试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若半径为3,5的两个圆相切,则它们的圆心距为( )A .2B .8C .2或8D .1或42.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,若∠ADE=∠C ,且AB=5,AC=4,AD=x ,AE=y ,则y 与x 的关系式是( )A .x y 5=B .x y 54=C .x y 45=D .x y 209= 3.如图,A 、B 、C 是⊙O 上三点,∠AOB= 50°,则∠ACB= ( )A .25°B .50°C .30°D .100° 4.把y =-x 2-4x +2化成y =a (x +m )2+n 的形式是( )A .y =-(x -2)2 -2B .y =-(x -2)2 +6C .y =-(x +2)2 -2D .y =-(x +2)2+65.方程29x =的解是( )A .9x =B .19x =,29x =-C .3x =D .13x =,23x =-6.若2a a >,则a 应满足( )A .0a <B .01a <<C .11a -<<D .1a >或0a < 7.掷一枚均匀的骰子,骰子停止转动后朝上一面的点数出现以下情况的概率最小的是( ) A .偶数B .奇数C .比5小的数D .数6 8.如图所示,在4×4的正方形网格中,∠l ,∠2,∠3的大小关系是( ) A .∠l>∠2>∠3B .∠1=∠2>∠3C .∠l<∠2=∠3D .∠l=∠2=∠39.下面结论中,错误的是( )A .一个数的平方不可能是负数B .一个数的平方一定是正数C.一个非 0有理数的偶数次方是正数D.一个负数的奇数次方还是负数10.已知矩形的周长是24 cm,相邻两边之比是1:2,那么这个矩形的面积是()A.24 cm2B.32 cm2 C.48 cm2 D.128 cm2二、填空题11.如图,ABCD 是矩形,AB= 12 厘米,BC=16 厘米,⊙O1、⊙O2分别为△ABC、△ADC 的内切圆,E、F为切点,则 EF 的长是厘米.12.已知反比例函数8yx=-的图象经过点P(a-1,4),则a=_____.-113.已知Rt△ABC的两直角边的长分别为6cm和8cm,则它的外接圆的半径为___________cm.14.如图所示的抛物线,当x _时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小;当 x 时,y有最大值.15.已知一种卡车每辆至多能载4吨货物,现有38吨黄豆,若要一次运完这批黄豆,至少需要这种卡车辆.16.林城是一个美丽的城市,为增强市民的环保意识,配合6月5日的“世界环境日”活动,某校初三(1)班50名学生调查了各自家庭一天丢弃塑料袋的情况,统计结果如下:这50个同学家一天丢弃废塑料袋的众数是;17.如图,平面镜A 与B之间的夹角为 120°,光线经平面镜A 反射到平面镜B上,再反射出去.若∠1=∠2,则∠1 的度数为 .18.若4y-3x=0 ,则y yx+= .19.如图,在△ABC中,∠BAC=45,现将△ABC绕点A逆时针旋转30至△ADE的位置.则∠DAC= .20.被减式为232x xy-,差式为2243x xy y-+,则减式为.三、解答题21.根据生物学家的研究,人体的许多特征都是由基因控制的,有的人是单眼皮,有的人是双眼皮,这是由一对人体基因控制的,控制单眼皮的基因f是隐性的,控制双眼皮的基因F是显性的,这样控制眼皮的一对基因可能是ff、FF或Ff,基因ff的人是单眼皮,基因FF或Ff的人是双眼皮.在遗传时,父母分别将他们所携带的一对基因中的一个遗传给子女,而且是等可能的,例如,父母都是双眼皮而且他们的基因都是Ff,那么他们的子女只有ff、FF或Ff三种可能,具体可用下表表示:你能计算出他们的子女是双眼皮的概率吗?如果父亲的基因是Ff,母亲的基因是ff呢?22.如图,点 P 的坐标为(4,0),OP 的半径为 5,且⊙P与x 轴交于点A、B,与y轴交于点C、D,试求出点A、B、C、D 的坐标.23.如图,梯形ABCD中,DC∥AB,DE∥BC交AB于E,已知△ADE的周长为12cm,CD=5 cm.求梯形的周长.24.某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1 所有评委所给分的平均数.方案2 在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3 所有评委所给分的中位数.方案4 所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.25.已知等腰三角形△ABC中,AB=AC,AC边上的中线BD将它的周长分成9 cm和8 cm两部分,求腰长.26.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图1, 连结DF、BF,线段DF与BF的长相等.若正确请说明理由;若不正确,请举出反例;(2)若将正方形AEFG绕点A按顺时针方向旋转, 连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.27.在某次美化校园活动中,先安排34人去拔草,l8人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和支援植树的分别有多少人?28.小明买了6个梨的总质量是0.95 kg,那么平均每个梨的质量约为多少(精确到0.01 kg)?29.若 a-1 的相反数是 2,b 的绝对值是 3,求a-b的值.30.如图,某班教室中有9排5列座位,请根据下列四位同学的描述.在图中标出“5号”孙靓的位置.1号同学说:“孙靓在我的后方.”2号同学说:“孙靓在我的左后方.”3号同学说:“孙靓在我的左前方.”4号同学说:“孙靓离1号同学和3号同学的距离一样远.”【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.A4.D5.D6.D7.D8.B9.B10.B二、填空题11.412.13.514.≤2,≥2,215.1016.217.30°18.37 19. 15°20.223x xy y ---三、解答题21. 概率为43. 若父亲的基因是Ff ,母亲的基因是ff 时,子女出现双眼皮的概率为21(50%). 22.∵点 P 的坐标为 (4,0),∴OP=4 ,∵⊙P 的半径为 5,∴AP=PB= 5,∴OA=AP-OP= 5- 4 = 1,OB=OP+PB=4+5 = 9,∴A(-1,0) ,B(9 ,0)连结 PC 、PD ,在 Rt △POO 中,PC=5,OP=4,∴OC= 3,同理 OD=3,∴C(0,3) ,D(0,-3)23.22 cm24.解:(1)方案1最后得分:1(3.27.07.83838.49.8)7.7 10+++⨯+⨯+=;方案2最后得分:1(7.07.83838.4)8 8++⨯+⨯=;方案3最后得分:8;方案4最后得分:8或8.4.(2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.25.6cm或163cm26.(1)正确,理由略,(2)DG=BE27.拔草14人,植树6人28.0.16 kg29.-4或230.如图:。

2022年江苏省盐城市中考数学真题(含答案解析)

2022年江苏省盐城市中考数学真题(含答案解析)

2022年江苏省盐城市中考数学真题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.2022的倒数是( ) A .2022B .2022-C .12022D .12022-2.下列计算正确的是( ) A .23a a a +=B .236()a a =C .236a a a ⋅=D .632a a a ÷=3.下列四幅照片中,主体建筑的构图不对称的是( )A .B .C .D .4.盐城市图书馆现有馆藏纸质图书1600000余册.数据1600000用科学记数法表示为( ) A .70.1610⨯B .71.610⨯C .61.610⨯D .51610⨯5.一组数据2-,0,3,1,1-的极差是( ) A .2B .3C .4D .56.正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )A .强B .富C .美D .高7.小明将一块直角三角板摆放在直尺上,如图所示,则ABC ∠与DEF ∠的关系是( )A.互余B.互补C.同位角D.同旁内角8.“跳眼法”是指用手指和眼睛估测距离的方法步骤:第一步:水平举起右臂,大拇指紧直向上,大臂与身体垂直;第二步:闭上左眼,调整位置,使得右眼、大拇指、被测物体在一条直线上;第三步:闭上右眼,睁开左眼,此时看到被测物体出现在大拇指左侧,与大拇指指向的位置有一段横向距离,参照被测物体的大小,估算横向距离的长度;第四步:将横向距离乘以10(人的手臂长度与眼距的比值一般为10),得到的值约为被测物体离观测,点的距离值.如图是用“跳眼法”估测前方一辆汽车到观测点距离的示意图,该汽车的长度大约为4米,则汽车到观测点的距离约为()A.40米B.60米C.80米D.100米二、填空题9x的取值范围是_______.10.已知反比例函数的图象过点(2,3),则该函数的解析式为_____.11.分式方程1121xx+=-的解为__________.12.如图所示,电路图上有A ,B ,C 三个开关和一个小灯泡,闭合开关C 或者同时闭合开关A ,B ,都可使小灯泡发光.现任意闭合其中一个开关,则小灯泡发光的概率等于____________13.如图,AB 、AC 是O 的弦,过点A 的切线交CB 的延长线于点D ,若35BAD ∠=︒,则C ∠=___________°.14.如图,在矩形ABCD 中,22AB BC ==,将线段AB 绕点A 按逆时针方向旋转,使得点B 落在边CD 上的点B '处,线段AB 扫过的面积为___________.15.若点(),P m n 在二次函数222=++y x x 的图象上,且点P 到y 轴的距离小于2,则n 的取值范围是____________.16.《庄子▪天下篇》记载“一尺之锤,日取其半,万世不竭.”如图,直线11:12l y x =+与y 轴交于点A ,过点A 作x 轴的平行线交直线2:l y x =于点1O ,过点1O 作y 轴的平行线交直线1l 于点1A ,以此类推,令1OA a =,112O A a =,,11n n n O A a --=,若12n a a a S +++≤对任意大于1的整数n 恒成立,则S 的最小值为___________.三、解答题 17.)3tan 451-+︒-.18.解不等式组:()212,12142x x x x +≥+⎧⎪⎨-<+⎪⎩. 19.先化简,再求值:()()()2443x x x +-+-,其中2310x x -+=.20.某社区举行新冠疫情防控核酸检测大演练,卫生防疫部门在该社区设置了三个核酸检测点A 、B 、C ,甲、乙两人任意选择一个检测点参加检测.求甲、乙两人不在同一检测点参加检测的概率.(用画树状图或列表的方法求解)21.小丽从甲地匀速步行去乙地,小华骑自行车从乙地匀速前往甲地,同时出发,两人离甲地的距离y (m )与出发时间x (min )之间的函数关系如图所示.(1)小丽步行的速度为__________m/min ; (2)当两人相遇时,求他们到甲地的距离.22.证明:垂直于弦AB 的直径CD 平分弦以及弦所对的两条弧.23.如图,在ABC 与A B C '''中,点D 、D 分别在边BC 、B C ''上,且ACD A C D '''∽△△,若___________,则ABD A B D '''△∽△.请从①BD B D CD C D ''='';①AB A B CD C D ''='';①BAD B A D '''∠=∠这三个选项中选择一个作为条件(写序号),并加以证明.24.合理的膳食可以保证青少年体格和智力的正常发育.综合实践小组为了解某校学生膳食营养状况,从该校1380名学生中调查了100名学生的膳食情况,调查数据整理如下:注:供能比为某物质提供的能量占人体所需总能量的百分比. (1)本次调查采用___________的调查方法;(填“普查”或“抽样调查”)(2)通过对调查数据的计算,样本中的蛋白质平均供能比约为14.6%,请计算样本中的脂肪平均供能比和碳水化合物平均供能比;(3)结合以上的调查和计算,对照下表中的参考值,请你针对该校学生膳食状况存在的问题提一条建议.25.2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA 是垂直于工作台的移动基座,AB 、BC 为机械臂,1OA =m ,5AB =m ,2BC =m ,143ABC ∠=︒.机械臂端点C 到工作台的距离6CD =m .(1)求A 、C 两点之间的距离; (2)求OD 长.(结果精确到0.1m ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈,2.24≈)26.【经典回顾】梅文鼎是我国清初著名的数学家,他在《勾股举隅》中给出多种证明勾股定理的方法图1是其中一种方法的示意图及部分辅助线.在ABC 中,90ACB ∠=︒,四边形ADEB 、ACHI 和BFGC 分别是以Rt ABC 的三边为一边的正方形.延长IH 和FG ,交于点L ,连接LC 并延长交DE 于点J ,交AB 于点K,延长DA交IL于点M.;(1)证明:AD LC(2)证明:正方形ACHI的面积等于四边形ACLM的面积;(3)请利用(2)中的结论证明勾股定理.(4)【迁移拓展】如图2,四边形ACHI和BFGC分别是以ABC的两边为一边的平行四边形,探索在AB下方是否存在平行四边形ADEB,使得该平行四边形的面积等于平行四边形ACHI、BFGC的面积之和.若存在,作出满足条件的平行四边形ADEB(保留适当的作图痕迹);若不存在,请说明理由.27.【发现问题】小明在练习簿的横线上取点O为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描出了同心圆与横线的一些交点,如图1所示,他发现这些点的位置有一定的规律.【提出问题】小明通过观察,提出猜想:按此步骤继续画圆描点,所描的点都在某二次函数图像上.(1)【分析问题】小明利用已学知识和经验,以圆心O 为原点,过点O 的横线所在直线为x 轴,过点O 且垂直于横线的直线为y 轴,相邻横线的间距为一个单位长度,建立平面直角坐标系,如图2所示.当所描的点在半径为5的同心圆上时,其坐标为___________. (2)【解决问题】请帮助小明验证他的猜想是否成立. (3)【深度思考】小明继续思考:设点()0,P m ,m 为正整数,以OP 为直径画M ,是否存在所描的点在M 上.若存在,求m 的值;若不存在,说明理由.参考答案:1.C【解析】【分析】根据倒数的定义作答即可.【详解】2022的倒数是1 2022,故选:C.【点睛】本题考查了倒数的概念,即乘积为1的两个数互为倒数,牢记倒数的概念是解题的关键.2.B【解析】【分析】根据合并同类项,幂的乘方以及同底数幂的乘除法求解即可.【详解】解:A.2a a、不是同类项,不能合并,选项错误,不符合题意;B.236()a a=,选项正确,符合题意;C.235a a a⋅=,选项错误,不符合题意;D.633a a a÷=,选项错误,不符合题意;故选B.【点睛】此题考查了合并同类项,幂的乘方以及同底数幂的乘除法,掌握它们的运算法则是解题的关键.3.B【解析】【分析】根据轴对称图形的定义,逐项判断即可求解.【详解】解:A、主体建筑的构图对称,故本选项不符合题意;B 、主体建筑的构图不对称,故本选项符合题意;C 、主体建筑的构图对称,故本选项不符合题意;D 、主体建筑的构图对称,故本选项不符合题意; 故选B . 【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键. 4.C 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a ≤<n 为整数,确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同,当原数绝对值≥10时, n 是正数,当原数的绝对值<1时, n 是负数. 【详解】解:61600000 1.610=⨯. 故选:C . 【点睛】本题主要考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中110,a ≤<n 为整数,正确确定a 的值及n 的值是解此题的关键.5.D 【解析】 【分析】极差:一组数据中最大值与最小值的差,根据极差的定义进行计算即可. 【详解】解:①这组数据中最大的为3,最小的为2,- ①极差为最大值3与最小值2-的差为:()325--=, 故选D . 【点睛】本题考查的是极差的含义,掌握“极差的定义”是解本题的关键.6.D【解析】【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,即可求解.【详解】解:根据题意得:“盐”字所在面相对的面上的汉字是“高”,故选D【点睛】本题主要考查了正方体的平面展开图的特征,熟练掌握正方体的表面展开图,相对的面之间一定相隔一个正方形是解题的关键.7.A【解析】【分析】利用平行线的性质可得出答案.【详解】∥,解:如图,过点G作GH平行于BC,则GH DE∴∠=∠,DEF FGH∠=∠,ABC AGH∠+∠=︒,AGH FGH90∴∠+∠=︒,90ABC DEF故选A.【点睛】本题考查了平行线的性质,灵活运用性质解决问题是解题的关键.8.C【解析】【分析】参照题目中所给的“跳眼法”的方法估测出距离即可.【详解】由“跳眼法”的步骤可知被测物体与观测点的距离是横向距离的10倍.观察图形,横向距离大约是汽车长度的2倍,为8米,所以汽车到观测点的距离约为80米,故选C .【点睛】本题主要考查了测量距离,正确理解“跳眼法”测物距是解答本题的关键.9.1x【解析】【分析】根据二次根式的被开方数是非负数列出不等式10x -,解不等式即可求得x 的取值范围.【详解】解:根据题意得10x -,解得1x .故答案为:1x .【点睛】本题考查了二次根式有意义的条件,解题的关键是利用被开方数是非负数得出不等式. 10.y=6x. 【解析】【分析】 待定系数法求反比例函数解析式.首先设反比例函数解析式k y x=,再根据反比例函数图象上点的坐标特点可得,236k ,=⨯= 进而可得反比例函数解析式. 【详解】 解:设反比例函数解析式为k y x=, 23反比例函数图象经过点(,),236k ∴=⨯=,6y x∴=反比例函数解析式为, 6.y x=故答案为 【点睛】此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.11.2x =【解析】【分析】方程两边同时乘以2x -1,然后求出方程的解,最后验根.【详解】解:方程两边同乘()21x -得121x x +=-解得2x =,经检验,2x =是原分式方程的根,故答案为:2x =.【点睛】本题主要考查了解分式方程的知识,解答本题的关键是掌握解分式方程的步骤,注意要验根.12.13【解析】【分析】根据概率公式知,共有3个开关,只闭一个开关时,只有闭合C 时才发光,所以小灯泡发光的概率等于13. 【详解】解:根据题意,三个开关,只有闭合C 小灯泡才发光,所以小灯泡发光的概率等于13. 【点睛】本题考查随机事件概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m P A n=.【解析】【分析】连接AO 并延长,交O 于点E ,连接BE ,首先根据圆周角定理可得90E BAE ∠+∠=︒,再根据AD 为O 的切线,可得90BAE BAD ∠+∠=︒,可得35E BAD ,再根据圆周角定理即可求得.【详解】解:如图,连接AO 并延长,交O 于点E ,连接BE .AE ∵为O 的直径,90ABE ∴∠=︒,90E BAE ∴∠+∠=︒, AD 为O 的切线,90DAE ∴∠=︒,90BAE BAD ,35E BAD , 35C E .故答案为:35.【点睛】本题考查了圆周角定理,切线的性质,作出辅助线是解决本题的关键.14.π3##13π 【解析】【分析】由旋转的性质可得'2,AB AB ==由锐角三角函数可求'60,DAB ∠=︒从而得出'30,BAB ∠=︒由扇形面积公式即可求解.解:22,AB BC ==1,BC ∴=①矩形ABCD 中,1,90,AD BC D DAB ∴==∠=∠=︒由旋转可知AB AB '=,①22AB BC ==,①'2,AB AB ==''1cos ,2AD DAB AB ∠== '60,DAB ∴∠=︒'30,BAB ∴∠=︒①线段AB 扫过的面积2302.3603ππ︒⨯⨯==︒ 故答案为:.3π 【点睛】本题主要考查了旋转的性质,矩形的性质,扇形面积公式,锐角三角函数等知识,灵活运用这些性质解决问题是解此题的关键.15.110n ≤<【解析】【分析】先判断22m -<<,再根据二次函数的性质可得:()222211n m m m =++=++,再利用二次函数的性质求解n 的范围即可.【详解】 解:点P 到y 轴的距离小于2, 22m ∴-<<,点(),P m n 在二次函数222=++y x x 的图象上,()222211n m m m ∴=++=++,∴当1m =-时,n 有最小值为1.当2m =时,()221110n =++=,n ∴的取值范围为110n ≤<. 故答案为:110n ≤<【点睛】本题考查的是二次函数的性质,掌握“二次函数的增减性”是解本题的关键.16.2【解析】【分析】先由直线2:l y x =与y 轴的夹角是45°,得出1OAO △,112O AO ,…都是等腰直角三角形, 1OA O A ∴=,1121O A O A =,2232O A O A =,…,得出点1O 的横坐标为1,得到当1x =时,131122y =⨯+=,点1A 的坐标为31,2⎛⎫ ⎪⎝⎭,112131122O A O A ==-=,点2O 的横坐标13122+=,当32x =时,1371224y =⨯+=,得出点2A 的坐标为37,24⎛⎫ ⎪⎝⎭,以此类推,最后得出结果. 【详解】 解:直线2:l y x =与y 轴的夹角是45°,1OAO ∴△,112O AO ,…都是等腰直角三角形,1OA O A ∴=,1121O A O A =,2232O A O A =,…点A 的坐标为()0,1,∴点1O 的横坐标为1,当1x =时,131122y =⨯+=,∴点1A 的坐标为31,2⎛⎫ ⎪⎝⎭, 112131122O A O A ∴==-=, ∴点2O 的横坐标13122+=, 当32x =时,1371224y =⨯+=, ∴点2A 的坐标为37,24⎛⎫ ⎪⎝⎭, 32227111424O A O A ∴==--=,…… 以此类推,得11OA a ==,11212O A a ==,22314O A a ==,33418O A a ==,……,11112n n n n O A a ---==, 123111*********n n n a a a a S --∴++++=++++=-≤, S ∴的最小值为2.【点睛】本题考查了此题考查一次函数图象上的点的坐标特征,探究以几何图形为背景的问题时,一是要破解几何图形之间的关系,二是实现线段长度和点的坐标的正确转换,三是观察分析所得数据并找出数据之间的规律.17.3【解析】【分析】先计算)01,化简绝对值、代入tan45°,最后加减. 【详解】解:)03tan 451-+︒- 311=+-3=.【点睛】本题考查了实数的运算,掌握零指数幂的意义、绝对值的意义及特殊角的三角函数值是解决本题的关键.18.12x ≤<【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的方法部分即可.【详解】()212,12142x x x x +≥+⎧⎪⎨-<+⎪⎩解不等式212x x +≥+,得1≥x ,解不等式()12142x x -<+,得2x <, 所以不等式组的解集是12x ≤<【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.19.2267x x --,-9【解析】【分析】根据平方差公式和完全平方公式可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】解:原式221669x x x =-+-+2267x x =--.2310x x -+=,231x x ∴-=-,原式()()22372179x x =--=⨯--=-【点睛】本题考查整式的混合运算-化简求值,解答本题的关键是明确整式化简求值的方法. 20.23【解析】【分析】画树状图,共有9种等可能的结果,其中甲、乙两人在不同检测点做核酸有6种结果,再由概率公式求解即可.【详解】解:画树状图如下:由图可知,共有9种等可能的结果,其中甲、乙两人不在同一检测点参加检测的结果有6种,故甲、乙两人不在同一检测点参加检测的概率为6293=. 【点睛】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 21.(1)80(2)960m【解析】【分析】(1)由图象可知小丽行走的路程与时间,根据速度=路程÷时间计算即可;(2)方法一:根据两函数图象的交点坐标来求解;方法二:根据行程问题中的相遇问题列出一元一次方程求解.(1)解:由图象可知,小丽步行30分钟走了2400米,小丽的速度为:2400÷30=80 (m/min),故答案为:80.(2)解法1:小丽离甲地的距离y (m )与出发时间x (min )之间的函数表达式是()80030y x x =≤≤丽,小华离甲地的距离y (m )与出发时间x (min )之间的函数表达式是()1202400020y x x =-+≤≤华,两人相遇即y y =丽华时,801202400x x =-+,解得12x =,当12x =时,80960y x ==丽(m ).答:两人相遇时离甲地的距离是960m .解法2:设小丽与小华经过t min 相遇,由题意得801202400t t +=,解得12t =,所以两人相遇时离甲地的距离是8012960⨯=m .答:两人相遇时离甲地的距离是960m .【点睛】本题考查函数的图象,两直线相交问题,一元一次方程的应用,从图象中获取有用的信息是解题关键.22.见解析【解析】【分析】根据命题的题设:垂直于弦AB 的直径CD ,结论:CD 平分AB ,CD 平分,,ADB ACB 写出已知,求证,再利用等腰三角形的性质,圆心角与弧之间的关系证明即可.【详解】已知:如图,CD 是O 的直径,AB 是O 的弦,AB CD ⊥,垂足为P .求证:PA PB =,AD BD =,AC BC =.证明:如图,连接OA 、OB .因为 OA OB =,OP AB ⊥,所以PA PB =,AOD BOD ∠=∠.所以AD BD =,AOC BOC ∠=∠.所以AC BC =.【点睛】本题考查的是命题的证明,圆心角与弧,弦之间的关系,等腰三角形的性质,熟练的运用在同圆与等圆中,相等的圆心角所对的弧相等是解本题的关键.23.见解析.【解析】【分析】根据相似三角形的判定定理证明即可.【详解】解:若选①BD B D CD C D ''='', 证明:①ACD A C D '''∽△△, ①ADC A D C '''∠=∠,AD CD A D C D ='''', ①ADB A D B '''∠=∠, ①BD B D CD C D ''='', ①BD CD B D C D ='''', ①AD BD A D B D ='''', 又ADB A D B '''∠=∠,①ABD A B D '''△∽△.选择①BA B A CD C D ''='',不能证明ABD A B D '''△∽△. 若选①BAD B A D '''∠=∠,证明:①ACD A C D '''∽△△, ①ADC A D C ''∠'=,①ADB A D B '''∠=∠,又①BAD B A D '''∠=∠,①ABD A B D '''△∽△.【点睛】本题考查相似三角形的判定定理,解题的关键是掌握相似三角形的判定方法.24.(1)抽样调查(2)样本中的脂肪平均供能比为38.59%,碳水化合物平均供能比为46.825%(3)答案见解析【解析】【分析】(1)由全面调查与抽样调查的含义可得答案;(2)利用加权平均数公式可得:求解三个年级的人数分别乘以各自的平均供能比的和,再除以总人数即可得到整体的平均数;(3)结合中国营养学会推荐的三大营养素供能比参考值,把求解出来的平均值与标准值进行比较可得:蛋白质平均供能比在合理的范围内,脂肪平均供能比高于参考值,碳水化合物供能比低于参考值,再提出合理建议即可.(1)解:由该校1380名学生中调查了100名学生的膳食情况,可得:本次调查采用抽样的调查方法;故答案为:抽样(2) 样本中所有学生的脂肪平均供能比为3536.6%2540.4%4039.2%100%38.59%352540⨯+⨯+⨯⨯=++, 样本中所有学生的碳水化合物平均供能比为3548.0%2544.1%4047.5%100%46.825%352540⨯+⨯+⨯⨯=++. 答:样本中的脂肪平均供能比为38.59%,碳水化合物平均供能比为46.825%.(3)该校学生蛋白质平均供能比在合理的范围内,脂肪平均供能比高于参考值,碳水化合物供能比低于参考值,膳食不合理,营养搭配不均衡,建议增加碳水化合物的摄入量,减少脂肪的摄人量.(答案不唯一,建议合理即可)【点睛】本题考查的是全面调查与抽样调查的含义,加权平均数的计算,利用平均数作决策,掌握“计算加权平均数的方法”是解本题的关键.25.(1)6.7m(2)4.5m【解析】【分析】(1)连接AC ,过点A 作AH BC ⊥,交CB 的延长线于H ,根据锐角三角函数定义和勾股定理即可解决问题.(2)过点A 作AG DC ⊥,垂足为G ,根据锐角三角函数定义和勾股定理即可解决问题.(1)解:如图2,连接AC ,过点A 作AH BC ⊥,交CB 的延长线于H .在Rt ABH 中,18037ABH ABC ∠=︒-∠=︒,sin 37AH AB ︒=,所以sin373m AH AB =⋅︒≈, cos37BH AB︒=,所以cos374m BH AB =⋅︒≈, 在Rt ACH 中,3AH =m ,6CH BC BH =+=m ,根据勾股定理得 6.7AC ==≈m ,答:A 、C 两点之间的距离约6.7m .(2)如图2,过点A 作AG DC ⊥,垂足为G ,则四边形AGDO 为矩形,1GD AO ==m ,AG OD =,所以5CG CD GD =-=m ,在Rt ACG 中,AG =,5CG =m ,根据勾股定理得 4.5AG ≈m .4.5OD AG ∴==m .答:OD 的长为4.5m .【点睛】求角的三角画数值或者求线段的长时,我们经常通过观察图形将所求的角成者线段转化到直角三角形中(如果没有直角三角形,设法构造直角三角形),再利用锐角三角画数求解 26.(1)见解析(2)见解析(3)见解析(4)存在,见解析【解析】【分析】(1)根据正方形的性质和SAS 证明①ACB ①①HCG ,可得结论;(2)证明S △CHG =S △CHL ,所以S △AMI =S △CHL ,由此可得结论;(3)证明正方形ACHI 的面积+正方形BFGC 的面积=▱ADJK 的面积+▱KJEB 的面积=正方形ADEB ,可得结论;(4)如图2,延长IH 和FG 交于点L ,连接LC ,以A 为圆心CL 为半径画弧交IH 于一点,过这一点和A 作直线,以A 为圆心,AI 为半径作弧交这直线于D ,分别以A ,B 为圆心,以AB ,AI 为半径画弧交于E ,连接AD ,DE ,BE ,则四边形ADEB 即为所求.(1)证明:如图1,连接HG ,①四边形ACHI ,ABED 和BCGF 是正方形,①AC =CH ,BC =CG ,①ACH =①BCG =90°,AB =AD ,①①ACB =90°,①①GCH =360°﹣90°﹣90°﹣90°=90°,①①GCH =①ACB ,①①ACB ①①HCG (SAS ),①GH =AB =AD ,①①GCH =①CHI =①CGL =90°,①四边形CGLH 是矩形,①CL =GH ,①AD =LC ;(2)证明:①①CAI =①BAM =90°,①①BAC =①MAI ,①AC =AI ,①ACB =①I =90°,①①ABC ①①AMI (ASA ),由(1)知:①ACB ①①HCG ,①①AMI ①①HGC ,①四边形CGLH 是矩形,①S △CHG =S △CHL ,①S △AMI =S △CHL ,①正方形ACHI 的面积等于四边形ACLM 的面积;(3)证明:由正方形ADEB 可得AB DE ∥,又AD LC ,所以四边形ADJK 是平行四边形,由(2)知,四边形ACLM 是平行四边形,由(1)知,AD LC =,所以ACHI ADJK ACLM S S S ==正方形平行四边形平行四边形,延长EB 交LG 于Q ,同理有BFGC KJEB CBQL S S S ==正方形平行四边形平行四边形,所以+ACHI BFGC ADEB ADJK KJEB S S S S S +==正方形正方形正方形平行四边形平行四边形.所以222AC BC AB +=.(4)解:如图为所求作的平行四边形ADEB .【点睛】本题是四边形的综合题,考查的是全等三角形的性质和判定,平行四边形的性质和判定,矩形的性质和判定,正方形的性质,勾股定理的证明等知识;熟练掌握正方形的性质和全等三角形的判定与性质,根据图形面积的关系证出勾股定理是解题的关键,属于中考常考题型.27.(1)()3,4-或()3,4(2)成立,理由见解析(3)存在,4【解析】【分析】(1)先画出图形,再结合实际操作可得5,4,,OA OB OD OCOC AB 再利用勾股定理求解AC ,BC ,从而可得答案;(2)解法1:设半径为n 的圆与直线1y n =-的交点为P (),1x n -.利用勾股定理可得()2221x n n +-=,即221x n =-,可得21122n x =+,可得211122y n x =-=-上,从而验证猜想;解法2:设半径为n 的圆与直线1y n =-交点为(),1P x n -,可得()2221x n n +-=,解方程可得()1P n -.则1x y n ⎧=⎪⎨=-⎪⎩,再消去n ,可得21122y x =-,从而验证猜想;(3)如图,设所描的点()1N n -在M 上,由MO MN =, 建立方程(222122m m n ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭,整理得221111,111n n m n n n n -+===++---结合m ,n 都是正整数,从而可得答案.(1)解:如图,5,4,,OA OB OD OC OC AB①22543,AC BC ①3,4,3,4,A B故答案为:()3,4-或()3,4(2)小明的猜想成立.解法1:如图,设半径为n 的圆与直线1y n =-的交点为P (),1x n -.因为OP n =,所以()2221x n n +-=,即221x n =-, 所以21122n x =+, 所以211122y n x =-=-上,小明的猜想成立. 解法2:设半径为n 的圆与直线1y n =-交点为(),1P x n -,因为OP n =,所以()2221x n n +-=,解得x =,所以()1P n -.1x y n ⎧=⎪⎨=-⎪⎩,消去n ,得21122y x =-, ∴点在抛物线21122y x =-上,小明的猜想成立. (3)存在所描的点在M 上,理由:如图,设所描的点()1N n -在M 上,则MO MN =,因为0,2m M ⎛⎫ ⎪⎝⎭,所以(222122m m n ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭, 整理得221111,111n n m n n n n -+===++---, 因为m ,n 都是正整数,所以只有2n =,4m =满足要求.因此,存在唯一满足要求的m ,其值是4.【点睛】本题考查的是切线的性质,垂径定理的应用,坐标与图形,二次函数的图像与性质,勾股定理的应用,方程的正整数解问题,理解题意,建立几何模型与函数模型是解本题的关键.。

2022年江苏省盐城市中考数学试卷甲卷附解析

2022年江苏省盐城市中考数学试卷甲卷附解析

2022年江苏省盐城市中考数学试卷甲卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列成语所描述的事件是必然事件的是()A.水中捞月B.拔苗助长C.守株待兔D.瓮中捉鳖2.二次函数221(0)y kx x k=++<的图象可能是()3.下列四个命题中,属于真命题的是()A.底边相等的两个等腰三角形全等B.同旁内角互补C.两个锐角的和一定是钝角D.对顶角相等4.如图,在正方形ABCD中,CE=MN,∠BCE=40°,则∠ANM等于()A.70°B.60°C.50°D.40°5.如果分式-23x-的值为负,则x的取值范围是()A.x>2 B.x>3 C.x<3 D.x<26.下列说法中,正确的是()A.买一张电影票,座位号一定是偶数B.投掷一枚均匀的硬币,正面一定朝上C.三条任意长的线段可以组成一个三角形D.从1,2,3,4,5这五个数字中任取一个数,取得奇数的可能性大7.小红设计了一个计算程序,并按此程序进行了两次计算.在计算中输入了不同的x值,但一次没有结果,另一次输出的结果是42,则这两次输入的x值不可能是()A. 0,2 B.-1,-2 C. 0,1 D.6,-3二、填空题8.α为锐角,若sin α=32,则α= ;若cos α=32,则α= ; 若tan α=33,则α= . 9.半径分别为6cm 和4cm 的两圆内切,则它们的圆心距为 cm .10.如图,一架梯子斜靠在墙上,若梯子到墙的距离AC =3米,3cos 4BAC ∠=,则梯子AB 的长度为 米.11.当m 取 时,232(3)m m y m x -+=-是二次函数.12. 一水池内储水 20m 3,设放完这池水所需的时间为 T(h),每小时流水量为 W(m 3/h),规 定放水时间不得超过10h ,则 T 关于W 的函数解析式为 ,自变量W 的取值范围 .13.已知a 是方程210x x --=的一个根,则代数式3222a a --的值为 .14.梯形的中位线长为3,高为2,则该梯形的面积为 .15. 某商品的标价是 1375元,打 8 折(按标价的 80%)售出,仍可获利 10%,如果设该商品的进价是x 元,那么可列出方程 .解答题16.图形的相似变换不改变图形中 的大小;图形中 的都扩大或缩小相同的倍数.17.观察图形:其中是轴对称图形的是 (填序号) .18.若一个长方形的面积等于(3346mn m n +)cm 2,其中长是(2223n m +)cm ,则该长方形的宽是 .19.如图所示,是用笔尖扎重叠的纸得到的关于直线l 成轴对称的两个图形,连结CE 交l 于0,则 ⊥ ,且 = ,AB 的对应线段是 ,EF 的对应线段是 ,∠DC0的对应角是 .20.22 2(2)-+-= , -8÷2×21=______ ,425= . 21.在数轴上,在原点的左边与表示1-的点的距离是2的点所表示的数是 .22. 已知23100A a a a a =++++,则当a=1时,2A = ,当1a =-时,A = .三、解答题23.不透明的口袋里装有2个红球2个白球(除颜色外其余都相同).事件A :随机摸出一个球后放回,再随机摸出一个球,两次都摸到红球;事件B :随机摸出一个球后不放回,再随机摸出一个球,两次都摸到相同颜色的球.试比较上述两个事件发生的可能性哪个大?请说明理由.24.(1)你能找出几个使不等式2 2.515x-≥⋅成立的x的值吗?(2)x=3,5,7 能使不等式225 1.5x-⋅≥成立吗?25.小玲家的鱼塘里养了2000条鲢鱼,现准备打捞出售,为了估计鱼塘中鲢鱼的总量,从鱼塘中捕捞了3次进行统计,得到数据如下表:鱼的条数平均每条鱼的质量第一次捕捞20 1.6 kg第二次捕捞10 2.2 kg第三次捕捞10 1.8 kg试求出鱼塘中鲢鱼的总质量约是多少?26.一个零件的三视图如图所示(单位:cm),这个零件的体积和表面积各为多少?27.如图,将△ABC先向上平移5格得到△A′B′C′,再以直线MN为对称轴,将△A′B′C′作轴对称变换,得到△A″B″C″,作出△A′B′C′和△A″B″C″.28.在社会实践活动中,某校甲、乙、丙三位同学共同调查了高峰时段宁波二环路十三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下.甲同学说:“二环路的车流量为每小时10000辆.”乙同学:“四环路比三环路每小时多2000辆.”丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.”请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流晕各是多少.29.利用等式的性质解下列方程,并写出检验过程.(1)9x=8x-6(2)253 3x-=(3)11 232 x+=30.如果 5 个人7 天可以做 10 个工艺品,那么7 个人用相同的速度做8个相同的工艺品需要多少天?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.D4.C5.B6.D7.D二、填空题8.60°,30°,30°9.210.411.12.20T W=,W ≥2 13.-314.615.x 1.18.01375=⨯16.每一个角;每一条边17.①②③④⑥18.2mn 19.l ,CE ,OC ,O)E ,GH .CD ,∠FE020.0,-2,25- 21.-322.10000,0三、解答题23.P (A )=41164=,P (B )=31124=, ∴事件B 发生的可能性大.24.(1)能,x=2,3,4,…;(2)成立25.3600 k26.体积为l800cm 3 ,表面积为900cm 227.略28.设高峰时段三环路,的车流量为每小时x 辆,则高峰时段四环路的车流量为每小时(2000x +)辆.根据题意,得3(2000)210000x x -+=⨯,解得11000x =, ∴200013000x +=辆.答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13 000辆. 29.(1)6x =-检验略 (2)x =12 (3)13x = 30.4 天。

2022年江苏省盐城市中考数学试卷附解析

2022年江苏省盐城市中考数学试卷附解析

2022年江苏省盐城市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米 B.6米 C.7.2米 D.8米下列图形中,不是正方体平面展开图的是()3.如图,有一张矩形纸片ABCD,AB=2.5,AD=1.5,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则CF的长为()A.0.5 B.0.75 C.1 D.1.254.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线互相平分的四边形是平行四边形C.四条边相等的四边形是菱形D.对角线互相垂直且相等的四边形是正方形5.下列命题中正确的是()A.对角线互相平分的四边形是菱形B.对角线互相平分且相等的四边形是菱形C.对角线互相垂直且相等的四边形是正方形D.对角线相等的平行四边形是矩形6.在平行四边形ABCD中,AB=2,BC=3,∠B=60°,则平行四边形ABCD的面积为()A.6 B.332C.3D.37.下列交通标志中既是中心对称图形,又是轴对称图形的是()8.如图,将矩形ABCD沿AE折叠,已知∠CED′=60°则∠AED等于()A.75°B.60°C.55°D.50°9. 已知m 是整数,且满足210521m m ->⎧⎨->-⎩,则关于x 的方程2242(2)34mx x m x x --=+++的解为( )A .12x =-,232x =-B .12x =,232x =C .67x =-D .12x =-,232x =-或67x =- 10.已知120x x +<,且120x x ⋅<,下列判断正确的是( )A .10x <,0z x >B .10x >,20x <C .1x ,2x 同号D .1x ,2x 异号且负数的绝对值较大 11.如图,在等腰△ABC 中,AB=AC ,∠A=44°,CD ⊥AB 于D ,则∠DCB 等于( )A . 68°B .46°C .44°D .22°12.下列说法:①直线向两方无限延伸,它无长短之分,但有粗细之别;②两条直线相交, 只有一个交点;③点a 在直线AB 外;④直线动经过点P .其中不正确的有( )A .1个B .2个C .3个D .4个 13.9416 ) A .34 B .324±C .223D 173414.把方程0382=+-x x 化成n m x =+2)(的形式,则n m ,的值( )A .4、13B .-4、19C .-4、13D .4、19二、填空题15.已知两数 1 和一2,请你再写出两个数,使它们与 1、一2 能构成一个比例式,则这两个数可以是 .16.如图,0BCD 是边长为1的正方形,∠Box=60°,则点B 的坐标为 .17.△ABC 的两边分别为5,12,另一边c 为奇数,且a+b+c•是3•的倍数,•则c•应为________,此三角形为________三角形.18.若代数式31 x 有意义,则实数x 的取值范围是 .19.由一个圆平均分成8个相等扇形的转盘,每个扇形内标有如图数字,固定指针,转动转盘,则指针指到负数的概率是 .20.小舒 t(h)走了 s(km)的路程,则小舒走路的平均速度是 km/h.三、解答题21.如图,BC 是⊙O 的直径,0 是圆心,P 是BC 延长线上一点,PA 切⊙O 于点 A ,若 ∠B=30°,问 AB 与 AP 是否相等?请说 明理由.22.如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.23.近年来某市政府不断加大对城市绿化的经济投入,使全市绿地面积不断增加,从2004年底到2006年底城市绿地面积变化如图所示,那么绿地面积的年平均增长率是.24.已知:如图,直线l是一次函数y kx b=+的图象.求:(1)这个函数的解析式;(2)当4x=时,y的值.25.当x取什么值时,代数式5134xx+-的值为:(1)负数;(2)非负数;(3)小于2.26.将下列各图形的变换与变换的名称用线连起来:平移变换相似变换旋转变换轴对称变换27.有个多项式,它的前后两项被墨水污染了看不清,已知它的中间项是12xy,且每一项的系数均为整数,请你把前后两项补充完整,使它成为完全平方式,并将它进行因式分解.你有几种方法?试试看!多项式:■+12xy+■=( )228.如果25xy=⎧⎨=-⎩和11xy=⎧⎨=-⎩是方程15mx ny+=的两个解,求m,n的值.29.去括号,并合并同类项:(1)2(3)(72)x y y----+(2)23(21)2(32)a a---++30.用计算器计算:(1)25.15+(-3.2)+18.36;(2)6×182-25;(3)(-5)4-2×(-3)2;(4)48+24×53÷(-21.5-3.5).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.D5.D6.C7.D8.B9.D10.D11.D12.C13.D14.C二、填空题15.2、一4(不唯一).16. (12,32) 17.13,直角18.3 x 19.83 20. s t三、解答题21.AB=AP.理由如下:连结AO.∵OA=OB ,∴∠OAB=∠B=30°,∵AP 切⊙O 于点A ,∴∠OAP= 90°,∴∠BAP=120°,∴∠P=180°- 120°'-30°= 30°=∠B ,∴AB=AP .22.(1)略;(2)△BEF 为等边三角形;(3)设BE=BF=EF= x ,则S=243x当BE ⊥AD 时, x 最小=3,∴S 最小=433. 当BE 与AB 重合时,x 最大=2,∴S 最大=3. ∴3433≤≤S . 23.10%24.解:(1)依题意,得201k b b -+=⎧⎨=⎩,.,解得112k b ==,. 112y x =+∴. (2)当4x =时,3y =.25. (1)17x >;(2)17x ≤;(3)x>-1 26.略.27.2224129(23)x xy y x y ++=+或2221236(6)x xy y x y ++=+或2229124(32)x xy y x y ++=+或 22236121(61)x y xy xy ++=+或2221236(6)x y xy xy ++=+等28.m=20 ,n= 529.(1)27x y -++ (2)129a +30.(1)40.31 (2)77.76 (3)607 (4)-72。

2023年江苏省盐城市中考数学试卷原卷附解析

2023年江苏省盐城市中考数学试卷原卷附解析

2023年江苏省盐城市中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.随机掷一枚均匀的硬币两次,两次都是反面朝上的概率是( ) A .1B .34C .12D .142. 边长为4的正方形ABCD 的对称中心是坐标原点O,AB ∥x 轴,BC ∥y 轴, 反比例函数y =2x 与y =-2x 的图象均与正方形ABCD 的边相交,则图中的阴影部分的面积是( ) A .2B .4C .8D .63.抛物线()223y x =++的顶点坐标是( ) A .(-2,3) B .(2,3) C .(-2,-3) D .(2,-3) 4.关于x 的一元二次方程(m -3)x 2+x +m 2-m -6=0的一个根是0,则m 的值为( ) A .-1或6B .-2C .3D .-2或35. 一个矩形的长比宽多 4m ,面积是100 m 2.若设矩形的长为 x (m ),根据题意列出下列方程,正确的是( ) A . 241000x x +-= B .241000x x --= C .241000x x ++=D .241000x x -+=6.与如图所示的三视图相对应的几何体是( )A .B .C .D .7.一个几何体的三视图如下图所示,则这个几何体应该是 ( )A .B .C .D .8. 如图,给出了过直线外一点作已知直线的平行线的方法, 其依据是( ) A .同位角相等,两直线平行 B .内错角相等,两直线平行 C .同旁内角互补,两直线平行 D .两直线平行,同位角相等9.如图所示,在图①中,Rt △OAB 绕其直角顶点0每次旋转90°,旋转3次得到右边的图形,在图②中,四边形OABC 绕0点每次旋转120°,旋转2次得到右边的图形.以下四个图形中,不能通过上述方式得到的是( )10.近似数5.60所表示的准确数的范围是( ) A .5.595至5.605之间B .5.50至5.70之间C .5.55至5.64之间D .5.600至5.605之间 11.下列各组量中具有相反意义的量是( ) A .向东行 4km 与向南行4 km B .队伍前进与队伍后退 C .6 个小人与 5 个大人 D .增长3%与减少2%二、填空题12.已知直角三角形的两条边长分别是方程214480x x -+=的两个根,则此三角形的第三边是_______ .13.在□ABCD 中,∠A :∠B :∠C=2:3:2,则∠D= .14.如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的21.。

2022年江苏省盐城市中考数学测试试题附解析

2022年江苏省盐城市中考数学测试试题附解析

2022年江苏省盐城市中考数学测试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,在平行四边形ABCD 中,CE ⊥AB ,E 为垂足.如果∠A=125°,则∠BCE=( ) A .55° B .35° C .25°D .30°2.在菱形ABCD 中,若∠A :∠B=2:1,则∠CAD 的平分线AE 与边CD 间的关系是( )A .相等B .互相垂直但边CD 不一定被AE 平分C .不垂直但边CD 被AE 平分 D .垂直且边CD 被AE 平分3.2b ≥中,二次根式的个数是( ) A .2 个 B .3 个 C .4 D .5 个 4.在x 轴上的点的横坐标是( )A .0B . 正数C .负数D . 实数5.不改变分式yx x 7.0213.1--的值,把它的分子、分母的系数化为整数,其结果正确的是( ) A .yx x 72113--B .yx x 721013--C .yx x 7201013--D .yx x 720113--6.下列方程中,解是2x =的是( ) A .2514x x =+B .1102x -=C .3(1)1x -=D .2x 51-=7.温度上升了3-℃后,又下降2℃,这一过程的温度变化是( ) A .上升1℃ B .上升5℃ C .下降1℃ D .下降5℃ 8.下列近似数中,含有3个有效数字的是( )A .5.430B .65.43010⨯C . 0.5430D .5.43万二、填空题9.10 张卡片分别写有 0 到 9 这十个数字,将它们放入口袋中,任意摸出一张,则摸到奇数的概率是 .10.在直角三角形ABC 中,∠A=090,AC=5,AB=12,那么tan B = .11.如图,铁道口栏杆的短臂长为1.2m ,长臂长为8m ,当短臂端点下降0.6m 时,长臂端点升高________m (杆的粗细忽略不计).12.已知函数3()2f xx=+,则(1)f= .13.已知A(1,n),B(b,-2).(1)若A、B关于x轴对称,则a= ,b= ;(2)若A、B关于y轴对称,则n= ,b= ;(3)若线段AB上x轴,则a= ,b= .14.一个几何体的主视图、左视图和俯视图都是正方形,那么这个几何体是;如果都是圆,那么这个几何体是.15.如图,DE∥BC,且∠ADE= 62°,∠DEC=112°,则∠B= ,∠C= .16.如图,AC、BC被AB所截的同旁内角是.17.看图填空.(A、0、B在一条直线上)(1)∠AOD= + =∠AOE- ;(2)∠BOE+∠EOC= ;(3)∠EOA-∠AOD= ;(4)∠AOC+ = 180°;(5)若0C平分∠AOD,0E平分∠BOD,则∠AOD=2 =2 .∠BOE= =12.18.若(a+2)2+│b-3│=0,则b a=________.19.如果 -22 元表示亏损 22 元,那么 45 元表示.三、解答题20.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:朝上的点数 1 2 3 4 5 6 出现的次数79682010(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么? (3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.21.在△ABC 中,∠C=90°,a+b=14,c=10,求cosA,ABC S .22.观察下列各图,填写表格:一边上的小圆圈数 1 2 3 45 小圆圈的总数13610 15(2)如果用 n 表示等边三角形一边上的小圆圈数,用 m 表示这个三角形中小圆圈的总数,那么m 和n 的关系是什么?是哪种函数关系?23.如图,已知,EF ⊥AB ,CD ⊥AB ,G 在AC 边上,DG ∥BC . 求证:∠1=∠2.21GFE D CB A24.国家规定“中小学生每天在校体育活动的时间不低于1 h”.为此,某市就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:0.5t<h; B组:0.51t≥ h≤< D组: 1.5h t hh t h≤< C组:1 1.5请根据上述信息解答下列问题:(1)C组的人数是;(2)本次调查数据的中位数落在组内;(3)若该辖区约有24000名初中孚至确估计其中达到国家规定体育活动时间的人约有多少?25.如图所示,□ABCD中,E,F分别为AD,BC的中点,AF与BE交于点G,DF与CE交于点H,则四边形EGFH是平行四边形吗?请说明理由.26.某校要从甲、乙两名跳远运动员中挑选一人参加全市比赛,在最近的l0次选拔赛中,他们的成绩(单位:cm)如下:甲:585,596,610,598, 612, 597,604,600,613,601;乙:613,618,580,574,618,593,585,590,598,604.(1)他们的平均成绩分别是多少?(2)甲、乙两人这l0次比赛成绩的方差分别是多少?(3)这两名运动员的运动成绩各有什么特点?(4)历届比赛表明,成绩达到5.96 m就很可能冠军,你认为为了夺冠应选谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10 m就能打破记录,那么你认为为了打破记录应选谁参加这项比赛?27.某商店销售一种衬衫,四月份的营业额为 5000 元,为了扩大销售,在五月份将每件衬衫按原价的 8 折销售,销售量比四月份增加了 40 件,营业额比四月份增加了600 元,求四月份每件衬衫的售价.28.某商场进了一批布,出售时要在进价的基础上加一定的利润,其数量x与售价y如下表:(1)(2)某日,该商场出售此种布的总价为2158元,问总共卖了多少米布?29.据报道,我省农作物秸杆的资源巨大,但合理利用量十分有限,2006年的利用率只有30%,大部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要使2008年的利用率提高到60%,求每年的增长率.(取2≈1.41)30.某商店以销售 1000 元为基准,超过 50 元记作+50 元,不足 30 元记作 -30 元,那么销售 1120 元、销售 860 元各记作什么?+ 220 元、-15 元各表示什么意思?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题 1. B2.D3.B4.D5.C6.B7.D8.D二、填空题 9.1210. 12511.412.113.(1)2,1;(2)-2,-l ;(3)≠-2,=114.正方体,球15.62°,68°16.∠A 和∠417.(1)∠AOC ,∠COD ,∠DOE (2)∠BOC (3)∠DOE (4)∠COB (5)∠AOC ,∠COD ,∠DOE ,∠BOD18.-819.盈利 45 元三、解答题 20.解:(1)“3点朝上”出现的频率是616010=; “5点朝上”出现的频率是201603=; (2)小颖的说法是错误的.这是因为,“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的频率最大.只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近.小红的判断是错误的,因为事件发生具有随机性,故“6点朝上”的次数不一定是100次. (3)列表如下:1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 567891011小红投掷的点数 小颖投掷 的点数67 8 9 10 11 12∴121(3)363P ==点数之和为的倍数. 21.cosA=53或54,ABC S ∆=24.22.(1)第 6 个图形中应有 21 个小圆圈 (2)123m n =++++,即(1)2n n m +=,是二次函数关系. 23.略24.(1)120人 (2)C (3)14400人25.证明四边形AFCE ,EBFD 是平行四边形,得AF ∥CE ,BE ∥DF ,即四边形EGFH 是平行四边形26.(1)601.6x =甲cm ,597.3x =乙cm ;(2)265S =甲.84cm 2,2221.41S =乙cm 2 ;(3)略; (4)为了夺冠,应选甲参赛,为了打破纪录,应选乙参赛27.50 元28.(1)8.3y x = (2)260 米29.解:设我省每年产出的农作物秸杆总量为a ,合理利用量的增长率是x ,由题意得: 30%a (1+x )2=60%a ,即(1+x )2=2∴x 1≈0.41,x 2≈-2.41(不合题意舍去),∴x ≈0.41 即我省每年秸秆合理利用量的增长率约为41% .30.+120 元、-140 元;1220 元、985 元。

2023年江苏省盐城市中考数学精选真题试卷附解析

2023年江苏省盐城市中考数学精选真题试卷附解析

2023年江苏省盐城市中考数学精选真题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列计算错误的是( )A .sin60° - sin30°= sin30°B .22045cos 451o sin +=C .00sin 60tan 60cos 60o =D .00301sin 30tan 30o cos = 2.如图,在△ABC 中,P 为 AB 上一点,在下列四个条件中,①∠ACP=∠B ;②∠APC=∠ACB ;③A 2AC AP AB =⋅;④AB CP AP CB ⋅=⋅,其中能满足△APC 和△ACB 相似的条件是( )A .①②④B .①③④C .③③④D .①②③3.下列说法正确的是( )A .平行四边形面积公式s ab =(a 、b 分别是一条边长和这条边上的高),S 与a 成反比例B .功率P UI =中,当 P 是非零常数时,U 与I 成反比例C .11y x =-中,y 与x 成反比例 D .12x y -=中,y 与x 成正比例 4.在等腰三角形ABC 中,∠C=90°,BC=2cm. 如果以AC 的中点0为旋转中心,将这个三角形旋转 180°,点B 落在点B ′处,那么点B ′与B 相距( )A 3cmB .3C 5D .25cm 5.若关于x 的分式方程311x m x x -=--有增根,则m 的值为( ) A .1m = B .2m =- C .0m = D .无法确定6.如图,在5×5方格中将(1)中的图形(阴影部分)平移后的位置如图(2)所示,•那么正确的平移方法是( )A .先向下移动1格,再向左移动1格B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动2格D .先向下移动2格,再向左移动1格二、填空题7.一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的面积是 cm 2. 8.如图所示,已知AB=AD ,AE=AC ,∠DAB=∠EAC ,请将下列说明△ACD ≌△AEB 的理由的过程补充完整.解:∵∠DAB=∠EAC(已知),∴∠DAB+ =∠EAC+ ,即 = .在△ACD 和△AEB 中AD=AB( ),= (已证),= (已知),∴△ACD ≌△AEB( ).9.必然事件发生的可能性的大小为 ,不可能事件发生的可能性的大小是 , 如果一个事件发生的可能性的大小是50%,那么这个事件是 事件.10.计算:(-15)10 ·510 =_______;(-3x) 2 ·(2xy 2 )2 = . 11.请选择一组,a b 的值,写出一个关于x 的形如2a b x =-的分式方程,使它的解是0x =,这样的分式方程可以是____________.12.抛掷两枚硬币,出现一正一反的概率 .13.已知三角形的两条边的长分别是3和5,第三条边的长为a ,则a 的长度在 和 之间.14.下列各图中,经过折叠恰好能够围成一个正方体的是 .(横线上填该图的 相应的代码)15.直角三角形的两条直角边长分别为 3cm 和4 cm ,则它的外接圆半径是 cm ,内切圆半径是 cm .16.x 与 2 的和不大于 4,用不等式表示为 ,它的解集为 .17.已知摄式温度(℃)与华式温度(℉)之间的转换关系是:华式温度=59×(华式温度-32).若华式温度是68℉,则摄式温度是℃.18.已知一个四边形的边长依次分别为a,b,c,d,且a2+b2+c2+d2=2ac+2bd,•则此四边形为.19.如图,AC 和 BD 是⊙O的两条互相垂直的直径,则四边形 ABCD 是.20.我们可以用下面的方法测出月球与地球的距离:在月圆时,把一个五分的硬币 (直径约为2.4 cm),放在离眼睛0约 2.6 m 的AB 处 (如图),正好把月亮遮住,已知月球的直径约为 3500 km,那么月球与地球的距离约为 km.(保留两个有效数字).21.已知圆锥的底面直径等于6,高等于4,则其母线长为.22.7公斤桃子的价钱等于1公斤苹果与 2公斤梨的价钱和;7公斤苹果的价钱等于10公斤梨与1公斤桃子的价钱和,则购买12公斤苹果所需的钱可以购买梨公斤.三、解答题23.如图,正方形的边长为 20,菱形的边长为5,它们相似吗?请说明理由.24.在如图的方格纸中,每个小正方形的边长都为l,△ABC与△A1B1C1构成的图形是中心对称图形.(1)画出此中心对称图形的对称中心0;(2)画出将△A1B1C1沿直线DE方向向上平移5格,得到△A2B2C2,那么△A2B2C2绕点C2顺时针方向旋转,至少要旋转多少度再能与△CC1C2重合?(直接写出答案)25.解不等式组2(1)31134x xx x-≤+⎧⎪+⎨<⎪⎩.26.某城市有一标志性雕塑;它的基座是一个正方体,在正方体的上面是一个球,而且球的直径与正方体的边长相等,请你根据描述,画出它的三视图.27.解下列方程组:(1)329 4100s ts t-=⎧⎨++=⎩(2)322522 435x y x y x y++++==;(3)2 36 y xx y=+⎧⎨+=⎩.28.解方程:(1)23455678x x x x-=-----;(2)16252736 x x x xx x x x+++++=+++++29.你能很快算出22005吗?为了解决这个问题,我们考查个位数为 5的自然数的平方,任意一个个位数为 5 的自然数可写成105n+,即求2n+的值(n 为自然数),试分析n= 1,n = 2,n =3,…,这些简单情况,(105)从中探索规律,并归纳、猜想出结论.(1)通过计算,探索规律:2⨯++,15225=可写成1001(11)252⨯+,=可写成1002(2+1)25256252⨯+,=可写成1003(3+1)25351225…2755625=可写成,2=可写成,857225…(2)从(1)的结果,归纳、猜想得2n+= .(105)(3)根据上面的归纳、猜想,请算出22005= .30.如图所示,画出△ABC的角平分线BD,AB边上的高CE,BC边上的中线AF.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.B4.D5.B6.D二、填空题7.68.∠BAC ,∠BAC ,∠DAC ,∠BAE ,已知,∠DAC ,∠BAE ,AC ,AE ,SAS 9.1,0,随机10.1 ,4436y x11.如212x-=-(答案不唯一)12.1213.2,814.c、f、g15.2.5,116.x+2≤4,x≤217.2018.平行四边形19.正方形20.3. 8×lO521.522.18三、解答题23.不相似,因为对应角不相等.24.(1)BB l,CC l的交点就是对称中心;(2)图略,△A2B2C2绕点C2顺时针方向至少旋转90°可与△CC1C2重合25.-3≤x<326.27.(1)16s t =-⎧⎨=-⎩ ;(2)1413113x y ⎧=⎪⎪⎨⎪=⎪⎩;(3)13x y =⎧⎨=⎩ 28.(1)3x =或132x =;(2)92x =- 29.(1)1007(71)25⨯++,1008(81)25⨯++;(2)100(1)25n n ++;(3)100200(2001)254020025⨯⨯++= 30.略。

2023年江苏省盐城市中考数学必修综合测试试题附解析

2023年江苏省盐城市中考数学必修综合测试试题附解析

2023年江苏省盐城市中考数学必修综合测试试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在△ABC 中,P 为 AB 上一点,在下列四个条件中,①∠ACP=∠B ;②∠APC=∠ACB ;③A 2AC AP AB =⋅;④AB CP AP CB ⋅=⋅,其中能满足△APC 和△ACB 相似的条件是( )A .①②④B .①③④C .③③④D .①②③2.关于二次函数247y x x =+-的最值,叙述正确的是( )A .当x=2 时,函数有最大值B .当 x=2时,函数有最小值C .当 x=-2 时,函数有最大值D .当 x= 一2 时,函数有最小值 3.判断四边形是菱形应满足的条件是( )A .对角线相等B .对角线互相垂直C .对角线互相平分D .对角线互相垂直平分4.一个人从A 点出发向北偏东60°方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC 等于( )A .135°B .l05°C .75°D .45° 5.一元一次不等式组x a x b >⎧⎨>⎩的解为x a >,且a b ≠,则a 与b 的关系是( ) A .a b > B .a b < C .0a b >> D .0a b <<6.如图,AD=BC=BA ,那么∠1与∠2之间的关系是( )A .∠l=2∠2B .2∠1+∠2=180°C .∠l+3∠2=180°D .3∠1-∠2=180°7. 如图,1l ∥2l ,将 AB 沿2l 向右平移 1.5 cm 后至 CD 位置,若AB=2,则 CD 等于( )A .1.5cmB .2 cmC .3.5 cmD .1.5 cm 或2 cm8.下列各组数中①⎩⎨⎧==22y x ;②⎩⎨⎧==12y x ;③⎩⎨⎧-==22y x ;④⎩⎨⎧==61y x ,是方程104=+y x 的解的有( )A .1组B .2组C .3组D .4组9.若2a b -=,1a c -=,则22(2)()a b c c a --+- =( ) A .10B .9C .2D .1 10.已如图是L 型钢条截面,它的面积是( ) A .ct lt + B .2()c t t lt ct lt t -+=+-C . 2()()2c t t l t t ct lt t -+-=+-D .2()()22l c t c t l t l c +++-+-=+二、填空题11.如图, 如果函数y=-x 与y=x4-的图像交于A 、B 两点, 过点A 作AC 垂直于y 轴, 垂足为点C, 则△BOC 的面积为___________.12.已知斜坡AB=12m,AB 的坡度3则斜坡AB 的高为_______ m.13.二次函数y =2x 2+bx +c 的顶点坐标为(1,2),则这个函数的解析式为 . y =2x 2-4x +414.如图,在□ABCD 中,对角线AC 和BD 相交于点O ,OE ⊥AB ,E 为垂足,已知AC=8cm ,∠CAB=30°,则OE= cm.15.已知某一次函数的图象经过点(-1,2),且函数y 的值随自变量x 减小,请写出一个符合上述条件的函数解析式: .16.x 的3倍与 1 的差不大于2与x 的和的一半,用不等式表示为 .17.如图分别是由若干个完全相同的小立方体组成的一个几何体的主视图和俯视图,则组成个几何体的小立方体的个数是 .18. 若|21||5|0x y x y -+++-=,则x = , y = .19.已知正方形的面积是2269y xy x ++ (x>0,y>0),利用分解因式,写出表示该正方形的边长的代数式 .20.一根长18米的铁丝围成一个长是宽的2倍的长方形,则长方形的面积为__________.21. 已知x 、y 互为相反数,且 2x+6+y=3x ,则x= .22. 观察下列等式: 3211=,332123+=,33321236++=,33332123410+++=,……想一想,等式左边各项幂的底数与右边幂的底数有何关系?猜一猜可引出什么规律?用等式将其规律表示出来 .23.某足协举办了一次足球比赛,记分规则为:胜一场积3分;平一场积l 分;负一场积0分.若甲队比赛了5场后共积7分,则甲队平 场.三、解答题24.如图,在一次小组讨论时,小亮发现:如果把□ABCD 的AB 边延长到E ,把CD 边延长到点F ,使BE=DF ,则AC 与EF 互相平分,请你证明这个结论.25.如图,已知BE=CF ,AB=CD ,∠B=∠C ,则AF=DE 吗?请说明理由.26.从1,2,3,4,5中任取两个数相加.求:(1)和为偶数的概率;(2)和为偶数的概率或和为奇数的概率;(3)和为奇数的概率.27.计算:(1) 22216946xy x y x xy÷- (2)22111x x x --+-28.计算:(1)()()a b a b ---;(2)(2)(2)ab ab -+--; (3)24(1)(1)(1)(1)22416x x x x -+++;(4)22008200720082006-⨯29.50 名学生搬桌椅,两人抬一张桌子,一人拿两把椅子,怎样分配人数,才能使一次搬运 的桌椅配套?(提示:1 张桌子配 1 把椅子)30.如图所示,将△ABC 绕点O 按逆时针方向旋转60°后,得到△DEF ,请画出△DEF .【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.D4.D5.A6.B7.B8.B9.A10.B二、填空题11.212.613.14.215.如1y x =-+(答案不唯一)16.131(2)2x x -≤+17. 4或518.3,219.3x+y20.1821.322.3333321234(1234)n n +++++=+++++23. 1或4三、解答题24.证△AED ≌△CFO 即可25.利用SAS 说明△ABF ≌△DCE 26.(1)25;(2)1;(3)3527.(1)2238x y -;(2)x-11. 28.(1)2275b a -;(2)224a b -;(3)81256x -;(4)2008 29.设x 人搬桌子,y 人搬椅子,则5022x y x y +=⎧⎪⎨=⎪⎩,∴4010x y =⎧⎨=⎩ 30.略。

江苏省盐城市2022年中考数学试卷(含答案)

江苏省盐城市2022年中考数学试卷(含答案)

江苏省盐城市2022年中考数学试卷一、单选题1.2022的倒数是( )A.2022B.-2022C.12022D.−120222.下列计算正确的是( )A.a+a2=a3B.(a2)3=a6C.a2⋅a3=a6D.a6÷a3=a2 3.下列四幅照片中,主体建筑的构图不对称的是( )A.B.C.D.4.盐城市图书馆现有馆藏纸质图书1600000余册.数据1600000用科学记数法表示为( )A.0.16×107B.1.6×107C.1.6×106D.16×1055.一组数据-2,0,3,1,-1的极差是( )A.2B.3C.4D.56.正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )A.强B.富C.美D.高7.小明将一块直角三角板摆放在直尺上,如图所示,则∠ABC与∠DEF的关系是( )A.互余B.互补C.同位角D.同旁内角8.“跳眼法”是指用手指和眼睛估测距离的方法步骤:第一步:水平举起右臂,大拇指紧直向上,大臂与身体垂直;第二步:闭上左眼,调整位置,使得右眼、大拇指、被测物体在一条直线上;第三步:闭上右眼,睁开左眼,此时看到被测物体出现在大拇指左侧,与大拇指指向的位置有一段横向距离,参照被测物体的大小,估算横向距离的长度;第四步:将横向距离乘以10(人的手臂长度与眼距的比值一般为10),得到的值约为被测物体离观测,点的距离值.如图是用“跳眼法”估测前方一辆汽车到观测点距离的示意图,该汽车的长度大约为4米,则汽车到观测点的距离约为( )A.40米B.60米C.80米D.100米二、填空题9.使x−1有意义的x的取值范围是 .10.已知反比例函数的图象过点(2,3),则该函数的解析式为 .11.分式方程x+12x−1=1的解为 .12.如图所示,电路图上有A,B,C三个开关和一个小灯泡,闭合开关C或者同时闭合开关A,B,都可使小灯泡发光.现任意闭合其中一个开关,则小灯泡发光的概率等于 13.如图,AB、AC是⊙O的弦,过点A的切线交CB的延长线于点D,若∠BAD=35°,则∠C= °.14.如图,在矩形ABCD中,AB=2BC=2,将线段AB绕点A按逆时针方向旋转,使得点B落在边CD 上的点B′处,线段AB扫过的面积为 .15.若点P(m,n)在二次函数y=x2+2x+2的图象上,且点P到y轴的距离小于2,则n的取值范围是 .16.《庄子▪天下篇》记载“一尺之锤,日取其半,万世不竭.”如图,直线l1:y=12x+1与y轴交于点A,过点A作x轴的平行线交直线l2:y=x于点O1,过点O1作y轴的平行线交直线l1于点A1,以此类推,令OA=a1,O1A1=a2,⋯,O n−1A n−1=a n,若a1+a2+⋯+a n≤S对任意大于1的整数n恒成立,则S的最小值为 .三、解答题17.|−3|+tan45°−(2−1)0.18.解不等式组:2x+1≥x+2,2x−1<12(x+4).19.先化简,再求值:(x+4)(x−4)+(x−3)2,其中x2−3x+1=0.20.某社区举行新冠疫情防控核酸检测大演练,卫生防疫部门在该社区设置了三个核酸检测点A、B、C,甲、乙两人任意选择一个检测点参加检测.求甲、乙两人不在同一检测点参加检测的概率.(用画树状图或列表的方法求解)21.小丽从甲地匀速步行去乙地,小华骑自行车从乙地匀速前往甲地,同时出发,两人离甲地的距离y(m)与出发时间x(min)之间的函数关系如图所示.(1)小丽步行的速度为 m/min;(2)当两人相遇时,求他们到甲地的距离.22.证明:垂直于弦AB的直径CD平分弦以及弦所对的两条弧.23.如图,在△ABC与△A′B′C′中,点D、D′分别在边BC、B′C′上,且△ACD∽△A′C′D′,若▲,则△ABD∽△A′B′D′.请从①BDCD =B′D′C′D′;②ABCD=A′B′C′D′;③∠BAD=∠B′A′D′这三个选项中选择一个作为条件(写序号),并加以证明.24.合理的膳食可以保证青少年体格和智力的正常发育.综合实践小组为了解某校学生膳食营养状况,从该校1380名学生中调查了100名学生的膳食情况,调查数据整理如下:中国营养学会推荐的三大营养素供能比参考值蛋白质10%~15%脂肪20%~30%碳水化合物50%~65%注:供能比为某物质提供的能量占人体所需总能量的百分比.(1)本次调查采用 的调查方法;(填“普查”或“抽样调查”)(2)通过对调查数据的计算,样本中的蛋白质平均供能比约为14.6%,请计算样本中的脂肪平均供能比和碳水化合物平均供能比;(3)结合以上的调查和计算,对照下表中的参考值,请你针对该校学生膳食状况存在的问题提一条建议.25.2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB、BC为机械臂,OA=1m,AB=5m,BC=2m,∠ABC=143°.机械臂端点C到工作台的距离CD=6m.(1)求A、C两点之间的距离;(2)求OD长.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,5≈2.24)26.【经典回顾】梅文鼎是我国清初著名的数学家,他在《勾股举隅》中给出多种证明勾股定理的方法图1是其中一种方法的示意图及部分辅助线.在△ABC中,∠ACB=90°,四边形ADEB、ACHI和BFGC分别是以Rt△ABC的三边为一边的正方形.延长IH和FG,交于点L,连接LC并延长交DE于点J,交AB于点K,延长DA交IL于点M.(1)证明:AD=LC;(2)证明:正方形ACHI的面积等于四边形ACLM的面积;(3)请利用(2)中的结论证明勾股定理.(4)【迁移拓展】如图2,四边形ACHI和BFGC分别是以△ABC的两边为一边的平行四边形,探索在AB下方是否存在平行四边形ADEB,使得该平行四边形的面积等于平行四边形ACHI、BFGC的面积之和.若存在,作出满足条件的平行四边形ADEB(保留适当的作图痕迹);若不存在,请说明理由.27.【发现问题】小明在练习簿的横线上取点O为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描出了同心圆与横线的一些交点,如图1所示,他发现这些点的位置有一定的规律.【提出问题】小明通过观察,提出猜想:按此步骤继续画圆描点,所描的点都在某二次函数图象上.(1)【分析问题】小明利用已学知识和经验,以圆心O为原点,过点O的横线所在直线为x轴,过点O且垂直于横线的直线为y轴,相邻横线的间距为一个单位长度,建立平面直角坐标系,如图2所示.当所描的点在半径为5的同心圆上时,其坐标为 .(2)【解决问题】请帮助小明验证他的猜想是否成立.(3)【深度思考】小明继续思考:设点P(0,m),m为正整数,以OP为直径画⊙M,是否存在所描的点在⊙M 上.若存在,求m的值;若不存在,说明理由.答案解析部分1.【答案】C2.【答案】B3.【答案】B4.【答案】C5.【答案】D6.【答案】D7.【答案】A8.【答案】C9.【答案】x≥110.【答案】y= 6x11.【答案】x=212.【答案】1313.【答案】3514.【答案】π315.【答案】1≤n<1016.【答案】217.【答案】解:|−3|+tan45°−(2−1)0=3+1−1 =3.18.【答案】解:2x+1≥x+2,2x−1<12(x+4)解不等式2x+1≥x+2,得x≥1,解不等式2x−1<12(x+4),得x<2,所以不等式组的解集是1≤x<219.【答案】解:原式=x2−16+x2−6x+9=2x2−6x−7.∵x2−3x+1=0,∴x2−3x=−1,原式=2(x2−3x)−7=2×(−1)−7=−920.【答案】解:画树状图如下:由图可知,共有9种等可能的结果,其中甲、乙两人不在同一检测点参加检测的结果有6种,故甲、乙两人不在同一检测点参加检测的概率为69=23.21.【答案】(1)80(2)解:解法1:小丽离甲地的距离y(m)与出发时间x(min)之间的函数表达式是y丽=80x( 0≤x≤30),小华离甲地的距离y(m)与出发时间x(min)之间的函数表达式是y华=−120x+2400(0≤x≤20 ),两人相遇即y丽=y华时,80x=−120x+2400,解得x=12,当x=12时,y丽=80x=960(m).答:两人相遇时离甲地的距离是960m.解法2:设小丽与小华经过t min相遇,由题意得80t+120t=2400,解得t=12,所以两人相遇时离甲地的距离是80×12=960m.答:两人相遇时离甲地的距离是960m.22.【答案】解:已知:如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为P.求证:PA=PB,AD=BD,AC=BC.证明:如图,连接OA、OB.因为OA=OB,OP⊥AB,所以PA=PB,∠AOD=∠BOD.所以AD=BD,∠AOC=∠BOC.所以AC=BC.23.【答案】解:若选①BDCD =B′D′C′D′;证明:∵△ACD∽△A′C′D′,∴∠ADC=∠A′D′C′,ADA′D′=CDC′D′,∴∠ADB=∠A′D′B′,∵BDCD=B′D′C′D′,∴BDB′D′=CDC′D′,∴ADA′D′=BDB′D′,又∠ADB=∠A′D′B′,∴△ABD∽△A′B′D′.选择②;BACD=B′A′C′D′,不能证明△ABD∽△A′B′D′.若选③;∠BAD=∠B′A′D′,证明:∵△ACD∽△A′C′D′,∴∠ADC=A′D′C′,∴∠ADB=∠A′D′B′,又∵∠BAD=∠B′A′D′,∴△ABD∽△A′B′D′.24.【答案】(1)抽样调查(2)解:样本中所有学生的脂肪平均供能比为35×36.6%+25×40.4%+40×39.2%35+25+40×100%=38.59%,样本中所有学生的碳水化合物平均供能比为35×48.0%+25×44.1%+40×47.5%35+25+40×100%=46.825%.答:样本中的脂肪平均供能比为38.59%,碳水化合物平均供能比为46.825%.(3)解:该校学生蛋白质平均供能比在合理的范围内,脂肪平均供能比高于参考值,碳水化合物供能比低于参考值,膳食不合理,营养搭配不均衡,建议增加碳水化合物的摄入量,减少脂肪的摄人量.(答案不唯一,建议合理即可)25.【答案】(1)解:如图2,连接AC,过点A作AH⊥BC,交CB的延长线于H.在Rt△ABH中,∠ABH=180°−∠ABC=37°,sin37°=AHAB,所以AH=AB⋅sin37°≈3m,cos37°=BHAB,所以BH=AB⋅cos37°≈4m,在Rt△ACH中,AH=3m,CH=BC+BH=6m,根据勾股定理得AC=CH2+AH2=35≈6.7m,答:A、C两点之间的距离约6.7m.(2)解:如图2,过点A作AG⊥DC,垂足为G,则四边形AGDO为矩形,GD=AO=1m,AG=OD,所以CG=CD−GD=5m,在Rt△ACG中,AG=35m,CG=5m,根据勾股定理得AG=AC2−CG2=25≈4.5m.∴OD=AG=4.5m.答:OD的长为4.5m.26.【答案】(1)证明:如图1,连接HG,∵四边形ACHI,ABED和BCGF是正方形,∴AC=CH,BC=CG,∠ACH=∠BCG=90°,AB=AD,∵∠ACB=90°,∴∠GCH=360°﹣90°﹣90°﹣90°=90°,∴∠GCH=∠ACB,∴△ACB≌△HCG(SAS),∴GH=AB=AD,∵∠GCH=∠CHI=∠CGL=90°,∴四边形CGLH是矩形,∴CL=GH,∴AD=LC;(2)证明:∵∠CAI=∠BAM=90°,∴∠BAC=∠MAI,∵AC=AI,∠ACB=∠I=90°,∴△ABC≌△AMI(ASA),由(1)知:△ACB≌△HCG,∴△AMI≌△HGC,∵四边形CGLH是矩形,∴S△CHG=S△CHL,∴S△AMI=S△CHL,∴正方形ACHI的面积等于四边形ACLM的面积;(3)证明:由正方形ADEB可得AB∥DE,又AD∥LC,所以四边形ADJK是平行四边形,由(2)知,四边形ACLM是平行四边形,由(1)知,AD=LC,所以S平行四边形ADJK=S平行四边形ACLM=S正方形ACHI,延长EB交LG于Q,同理有S平行四边形KJEB=S平行四边形CBQL=S正方形BFGC,所以S正方形ACHI+S正方形BFGC=S平行四边形ADJK+S平行四边形KJEB=S正方形ADEB.所以A C2+B C2=A B2.(4)解:如图为所求作的平行四边形ADEB.27.【答案】(1)(-3,4)或(3,4)(2)解:小明的猜想成立.解法1:如图,设半径为n的圆与直线y=n−1的交点为P(x,n−1).因为OP=n,所以x2+(n−1)2=n2,即x2=2n−1,所以n=12x2+12,所以y =n−1=12x 2−12上,小明的猜想成立.解法2:设半径为n 的圆与直线y =n−1交点为P (x ,n−1),因为OP =n ,所以x 2+(n−1)2=n 2,解得x =±2n−1,所以P (±2n−1,n−1).x =±2n−1,y =n−1,消去n ,得y =12x 2−12,∴点在抛物线y =12x 2−12上,小明的猜想成立.(3)解:存在所描的点在⊙M 上,理由:如图,设所描的点N (±2n−1,n−1)在⊙M 上,则MO =MN ,因为M (0,m 2),所以(m 2)2=(±2n−1)2+(n−1−m 2)2,整理得m =n 2n−1=n 2−1+1n−1=n +1+1n−1,,因为m ,n 都是正整数,所以只有n =2,m =4满足要求.因此,存在唯一满足要求的m ,其值是4.。

2024年江苏省盐城市中考数学试题(解析版)

2024年江苏省盐城市中考数学试题(解析版)

盐城市二○二四年初中毕业与升学考试数学试题注意事项:1.本次考试时间为120分钟,卷面总分为150分.考试形式为闭卷.2.本试卷共6页,在检查是否有漏印、重印或错印后再开始答题.3.所有试题必须作答在答题卡上规定的区域内,注意题号必须对应,否则不给分.4.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.有理数2024的相反数是()A.2024B.2024-C.12024D.12024-【答案】B【解析】【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024的相反数是2024-,故选:B .2.下列四幅图片中的主体事物,在现实运动中属于翻折的是()A.工作中的雨刮器B.移动中的黑板C.折叠中的纸片D.骑行中的自行车【答案】C【解析】【分析】本题考查了折叠,根据折叠的定义逐项判断即可求解,掌握折叠的定义是解题的关键.【详解】解:A 、工作中的雨刮器,属于旋转,不合题意;B 、移动中的黑板,属于平移,不合题意;C 、折叠中的纸片,属于翻折,符合题意;D 、骑行中的自行车,属于平移,不合题意;故选:C .3.下列运算正确的是()A.624a a a ÷= B.22a a -= C.326a a a ⋅= D.()235a a =【答案】A【解析】【分析】本题考查了同底数幂乘法,合并同类项,同底数幂除法,幂的乘方等知识点,熟知相关运算法则是解本题的关键.根据同底数幂乘法,合并同类项,同底数幂除法,幂的乘方等运算法则分别计算即可得出答案.【详解】解:A 、624a a a ÷=,正确,符合题意;B 、2a a a -=,错误,不符合题意;C 、325a a a ⋅=,错误,不符合题意;D 、()236a a =,错误,不符合题意;故选:A .4.盐城是江苏省第一产粮大市.2023年全市小麦总产量约2400000吨,数据2400000用科学记数法表示为()A.70.2410⨯ B.52410⨯ C.72.410⨯ D.62.410⨯【答案】D【解析】【分析】本题考查用科学记数法表示绝对值大于1的数,将2400000写成10n a ⨯的形式即可,其中110a ≤<,n 的值与小数点移动的位数相同.【详解】解:62400000 2.410=⨯,故选D .5.正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.湿B.地C.之D.都【答案】C【解析】【分析】本题主要考查了正方体相对两个面上的文字,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由此可解.【详解】解:由正方体表面展开图的特征可得:“盐”的对面是“之”,“地”的对面是“都”,“湿”的对面是“城”,故选C .6.小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为()A.25︒B.35︒C.45︒D.55︒【答案】B【解析】【分析】此题考查了平行线的性质,根据平行线的性质得到3155∠=∠=︒,再利用平角的定义即可求出2∠的度数.【详解】解:如图,∵155∠=︒,AB CD∴3155∠=∠=︒,∴21802335∠=︒-∠-∠=︒,故选:B7.矩形相邻两边长分别为、,设其面积为2cm S ,则S 在哪两个连续整数之间()A.1和2B.2和3C.3和4D.4和5【答案】C【解析】【分析】本题主要考查无理数的估算,二次根式的乘法,先计算出矩形的面积S ,再利用放缩法估算无理数大小即可.【详解】解:S ==,91016<<,∴<<,∴34<<,即S 在3和4之间,故选:C .8.甲、乙两家公司2019~2023年的利润统计图如下,比较这两家公司的利润增长情况()A.甲始终比乙快B.甲先比乙慢,后比乙快C.甲始终比乙慢D.甲先比乙快,后比乙慢【答案】A【解析】【分析】本题考查了折线统计图,根据折线统计图即可判断求解,看懂折线统计图是解题的关键.【详解】解:由折线统计图可知,甲公司2019~2021年利润增长50万元,2021~2023年利润增长70万元,乙公司2019~2021年利润增长20万元,2021~2023年利润增长20万元,∴甲始终比乙快,故选:A .二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9.若分式11x -有意义,则x 的取值范围是_________.【答案】1x ≠【解析】【分析】本题主要考查了分式有意义的条件,根据分式有意义分母不等于零,得出10x -≠,求出1x ≠即可.【详解】解:若分式11x -有意义,则10x -≠,∴1x ≠,故答案为:1x ≠.10.分解因式:x 2+2x +1=_______【答案】()21x +##()21x +【解析】【分析】本题中没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方和公式进行因式分解.【详解】解:x 2+2x +1=(x +1)2,故答案为:(x +1)2.【点睛】本题考查了公式法分解因式,熟记完全平方公式的结构是解题的关键.(1)三项式;(2)其中两项能化为两个数(整式)平方和的形式;(3)另一项为这两个数(整式)的积的2倍(或积的2倍的相反数).11.两个相似多边形的相似比为12∶,则它们的周长的比为______.【答案】12∶##12【解析】【分析】本题考查了相似多边形的性质,根据相似多边形周长之比等于相似比即可求解,掌握相似多边形的性质是解题的关键.【详解】解:∵两个相似多边形的相似比为12∶,∴它们的周长的比为12∶,故答案为:12∶.12.如图,ABC 是O 的内接三角形,40C ∠=︒,连接OA OB 、,则OAB ∠=________︒.【答案】50【解析】【分析】本题考查主要考查圆周角定理、等腰三角形的性质、三角形内角和定理,先根据圆周角定理计算出280AOB C ∠=∠=︒,再根据等边对等角得出OAB OBA ∠=∠,最后利用三角形内角和定理即可求出OAB ∠.【详解】解: 40C ∠=︒,∴280AOB C ∠=∠=︒,OA OB =,∴OAB OBA ∠=∠,180OAB OBA AOB ∠+∠+∠=︒,∴()()11180180805022OAB AOB ∠=︒-∠=⨯︒-︒=︒,故答案为:50.13.已知圆锥的底面圆半径为4,母线长为5,则圆锥的侧面积是______.【答案】20π【解析】【分析】结合题意,根据圆锥侧面积和底面圆半径、母线的关系式计算,即可得到答案.【详解】解:∵圆锥的底面圆半径为4,母线长为5∴圆锥的侧面积4520S ππ=⨯⨯=故答案为:20π.【点睛】本题考查了圆锥的知识,解题的关键是熟练掌握圆锥的性质,从而完成求解.14.中国古代数学著作《增删算法统宗》中记载的“绳索量竿”问题,大意是:现有一根竿子和一条绳索,用绳索去量竿子,绳索比竿子长5尺;若将绳索对折去量竿子,绳索就比竿子短5尺,问绳索、竿子各有多长?该问题中的竿子长为________尺.【答案】15【解析】【分析】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题关键.设绳索长x 尺,竿长y 尺,根据“用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺”,即可得出关于x y ,的二元一次方程组,此题得解.【详解】解:设绳索长x 尺,竿长y 尺,根据题意得:552x y x y =+⎧⎪⎨=-⎪⎩.解得:2015x y =⎧⎨=⎩故答案为15.15.如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m 的点P 处,测得教学楼底端点A 的俯角为37︒,再将无人机沿教学楼方向水平飞行26.6m 至点Q 处,测得教学楼顶端点B 的俯角为45︒,则教学楼AB 的高度约为________m .(精确到1m ,参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)【答案】17【解析】【分析】本题主要考查解直角三角形的实际应用,延长AB 交直线PQ 于点H ,先用三角函数解Rt PHA △求出PH ,进而求出QH ,再证QH BH =,最后根据AB AH BH =-即可求解.【详解】解:如图,延长AB 交直线PQ 于点H ,则90∠=︒PHA,由题意知30m AH =,在Rt PHA △中,tan AH PHA PH ∠=,即30tan 370.75PH︒=≈,解得40m PH =,∴()4026.613.4m QH PH PQ =-=-=,90∠=︒PHA ,45QHB ∠=︒,∴45QBH QHB ∠=∠=︒,∴13.4m QH BH ==,∴()3013.416.617m AB AH BH =-=-=≈,故答案为:17.16.如图,在ABC 中,90ACB ∠=︒,AC BC ==,点D 是AC 的中点,连接BD ,将BCD 绕点B 旋转,得到BEF .连接CF ,当CF AB ∥时,CF =________.【答案】2+2【解析】【分析】本题主要考查等腰直角三角形的性质,勾股定理,平行线的性质,全等三角形的性质的综合,掌握等腰直角三角形的性质,勾股定理,旋转的性质是解题的关键.根据等腰直角三角形的性质可得AB CD BD BF ,,,的值,作BG CF ⊥,根据平行线的性质可得BCG 是等腰直角三角形,可求出CG BG ,的长,在直角BFG 中,根据勾股定理可求出FG 的长度,由此即可求解.【详解】解:∵在ABC 中,90ACB ∠=︒,AC BC ==,∴45CAB CBA ∠=∠=︒,4AB ==,∵点D 是AC 的中点,∴12AD CD AC ===∴在Rt BCD 中,BD ==,∵将BCD 绕点B 旋转得到BEF ,∴BCD BEF ≌,∴BD BF ==,EF CD ==,BC BE ==如图所示,过BG CF ⊥于点G ,∵CF AB ,∴45FCB CBA ∠=∠=︒,∴BCG 是等腰直角三角形,且BC =,∴22222CG BG BC ===⨯=,在Rt BFG 中,FG ==∴2CF CG FG =+=+故答案为:2+三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.计算:()0214sin30π--++︒【答案】3【解析】【分析】此题考查了实数的混合运算,计算绝对值、零指数幂、代入特殊角三角函数值,再进行混合运算即可.【详解】解:()0214sin30π--++︒12142=-+⨯212=-+3=18.求不等式113x x +≥-的正整数解.【答案】1,2.【解析】【分析】本题考查了求一元一次不等式的解集以及正整数解,先求出不等式的解集,进而可得到不等式的正整数解,正确求出一元一次不等式的解集是解题的关键.【详解】解:去分母得,()131x x +≥-,去括号得,133x x +≥-,移项得,331x x -≥--,合并同类项得,24x -≥-,系数化为1得,2x ≤,∴不等式的正整数解为1,2.19.先化简,再求值:22391a a a a a---÷+,其中4a =.【答案】23a +;27【解析】【分析】题目主要考查分式的化简求值,先计算分式的除法运算,然后计算加减法,最后代入求值即可,熟练掌握运算法则是解题关键.【详解】解:22391a a a a a---÷+)3(1(3()1)3a a a a a a -++--=⨯113a a +=-+313a a a +--=+23a =+,当4a =时,原式22437==+.20.在“重走建军路,致敬新四军”红色研学活动中,学校建议间学们利用周末时间自主到以下三个基地开展研学活动.A .新四军纪念馆(主馆区);B .新四军重建军部旧址(泰山庙):C .新四军重建军部纪念塔(大铜马),小明和小丽各自随机选择一个基地作为本次研学活动的第一站.(1)小明选择基地A 的概率为________:(2)用画树状图或列表的方法,求小明和小丽选择相同基地的概率.【答案】(1)13(2)13【解析】【分析】本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.(1)直接利用概率公式可得答案.(2)列表可得出所有等可能的结果数以及小明和小丽选择相同基地的结果数,再利用概率公式可得出答案.【小问1详解】解:由题意得,小明选择基地A 的概率为13;故答案为:13【小问2详解】解:列表如下:AB C A(),A A (),A B (),A C B(),B A (),B B (),B C C (),C A (),C B (),C C 共有9种等可能的结果,其中小明和小丽选择到相同基地的结果有3种,∴小明和小丽选择相同基地的概率为3193=.21.已知:如图,点A 、B 、C 、D 在同一条直线上,AE BF ∥,AE BF =.若________,则AB CD =.请从①CE DF ∥;②CE DF =;③E F ∠=∠这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.【答案】①或③(答案不唯一),证明见解析【解析】【分析】题目主要考查全等三角形的判定和性质,①根据平行线的性质得出,A FBD D ECA ∠=∠∠=∠,再由全等三角形的判定和性质得出AC BD =,结合图形即可证明;②得不出相应的结论;③根据全等三角形的判定得出(SAS)AEC BFD ≌,结合图形即可证明;熟练掌握全等三角形的判定和性质是解题关键.【详解】解:选择①CE DF ∥;∵AE BF ∥,CE DF ∥,∴,A FBD D ECA ∠=∠∠=∠,∵AE BF =,∴(AAS)AEC BFD ≌ ,∴AC BD =,∴AC BC BD BC -=-,即AB CD =;选择②CE DF =;无法证明AEC BFD △≌△,无法得出AB CD =;选择③E F ∠=∠;∵AE BF ∥,∴A FBD ∠=∠,∵AE BF =,E F ∠=∠,∴()ASA AEC BFD ≌,∴AC BD =,∴AC BC BD BC -=-,即AB CD =;故答案为:①或③(答案不唯一)22.小明在草稿纸上画了某反比例函数在第二象限内的图像,并把矩形直尺放在上面,如图.请根据图中信息,求:(1)反比例函数表达式;(2)点C 坐标.【答案】(1)6y x=-(2)3,42⎛⎫- ⎪⎝⎭【解析】【分析】本题考查反比例函数、锐角三角函数:(1)设反比例函数表达式为k y x=,将点A 的坐标代入表达式求出k 值即可;(2)设点C 的坐标为6,m m ⎛⎫- ⎪⎝⎭,则CE m =-,6OE m=-,根据平行线的性质得CBE AOD ∠=∠,进而根据tan tan CBE AOD ∠=∠求出m 的值即可.【小问1详解】解:由图可知点A 的坐标为()3,2-,设反比例函数表达式为k y x =,将()3,2-代入,得:23k =-,解得6k =-,因此反比例函数表达式为6y x=-;【小问2详解】解:如图,作CE y ⊥轴于点E ,AD y ⊥轴于点D ,由图可得3AD =,2OD =,设点C 的坐标为6,m m ⎛⎫- ⎪⎝⎭,则CE m =-,6OE m=-,∴63BE OE OB m =-=--, 矩形直尺对边平行,∴CBE AOD ∠=∠,∴tan tan CBE AOD ∠=∠,∴CE AD BE OD =,即3623m m -=--,解得32m =-或6m =, 点C 在第二象限,∴32m =-,66432m -=-=-,∴点C 坐标为3,42⎛⎫- ⎪⎝⎭.23.如图,点C 在以AB 为直径的O 上,过点C 作O 的切线l ,过点A 作AD l ⊥,垂足为D ,连接AC BC 、.(1)求证:ABC ACD △△∽;(2)若5AC =,4CD =,求O 的半径.【答案】(1)见解析(2)256【解析】【分析】题目主要考查切线的性质,相似三角形的判定和性质及勾股定理解三角形,作出辅助线,综合运用这些知识点是解题关键.(1)连接OC ,根据题意得90OCD OCA ACD ∠∠∠=+=︒,90ACB ACO OCB ∠∠∠=+=︒,利用等量代换确定ACD ABC ∠∠=,再由相似三角形的判定即可证明;(2)先由勾股定理确定3AD =,然后利用相似三角形的性质求解即可.【小问1详解】证明:连接OC ,如图所示:∵CD 是O 的切线,点C 在以AB 为直径的O 上,∴90OCD OCA ACD ∠∠∠=+=︒,90ACB ACO OCB ∠∠∠=+=︒,∴ACD OCB ∠∠=,∵OC OB =,∴OBC OCB ∠∠=,∴ACD ABC ∠∠=,∵AD l ⊥,∴90ADC ∠=︒,∴ADC ACB ∠∠=,∴ABC ACD △△∽;【小问2详解】∵5AC =,4CD =,∴3AD ==,由(1)得ABC ACD △△∽,∴AB AC AC AD =即553AB =,∴253AB =,∴O 的半径为2525236÷=.24.阅读涵养心灵.某地区2023年9月就“初中生每天阅读时间”对七年级8000名学生进行了抽样调查(设每天阅读时间为h t ,调查问卷设置了四个时间选项:A .1t <;B .1 1.5t ≤<;C .1.52t ≤<;D .2t ≥),并根据调查结果制作了如图1所示的条形统计图.2023年9月该地区出台系列激励措施,力推学生阅读习惯养成.为了检测这些措施的效果,2023年12月该地区又对七年级学生进行了一次抽样调查,并根据调查结果制作了如图2所示的扇形统计图.9月份学生每天阅读时间条形统计图12月份学生每天阅读时间扇形统计图请根据提供的信息,解答下列问题.(1)2023年9月份抽样调查的样本容量为________,该地区七年级学生“每天阅读时间不少于1小时”的人数约为________人;(2)估算该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率;(精确到0.01%)(3)根据两次调查结果,对该地区出台相关激励措施的做法进行评价.【答案】(1)800;7200(2)5.56%(3)见解析【解析】【分析】题目主要考查条形统计图及扇形统计图综合问题,用样本估计总体等,结合统计图获取相关信息是解题关键.(1)根据条形统计图得出样本容量,然后用总人数乘以“每天阅读时间不少于1小时”的比例即可得出结果;(2)先求出9月份和12月份“每天阅读时间不少于1小时”的比例,然后求增长率即可;(3)根据增长率合理评价即可.【小问1详解】解:样本容量为:80320280120800+++=,该地区七年级学生“每天阅读时间不少于1小时”的人数约为:32028012080007200800++⨯=人,故答案为:800;7200;【小问2详解】320280120100%90%800++⨯=,12月份“每天阅读时间不少于1小时”的比例为:15%95%-=,设9月份学生和12月份学生样本均为x ,∴95%90%5%x x x -=,∴增长率为:5%100% 5.56%90%x x⨯=;【小问3详解】该地区出台相关激励措施有明显的作用,督促大部分学生养成良好的阅读习惯.25.如图1,E 、F 、G 、H 分别是平行四边形ABCD 各边的中点,连接AF CE 、交于点M ,连接AG 、CH 交于点N ,将四边形AMCN 称为平行四边形ABCD 的“中顶点四边形”.(1)求证:中顶点四边形AMCN 为平行四边形;(2)①如图2,连接AC BD 、交于点O ,可得M 、N 两点都在BD 上,当平行四边形ABCD 满足________时,中顶点四边形AMCN 是菱形;②如图3,已知矩形AMCN 为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)【答案】(1)见解析(2)①AC BD ⊥;②见解析.【解析】【分析】题目主要考查平行四边形及菱形的判定和性质,三角形重心的性质,理解题意,熟练掌握三角形重心的性质是解题关键.(1)根据平行四边形的性质,线段的中点平分线段,推出四边形AECG ,四边形AFCH 均为平行四边形,进而得到:,AM CN AN CM ∥∥,即可得证;(2)①根据菱形的性质结合图形即可得出结果;②连接AC ,作直线MN ,交于点O ,然后作2,2ND ON MB OB ==,然后连接AB BC CD DA 、、、即可得出点M 和N 分别为ABC ADC 、的重心,据此作图即可.【小问1详解】证明:∵ABCD Y ,∴,,,AB CD AD BC AB CD AD BC ==∥∥,∵点E 、F 、G 、H 分别是ABCD Y 各边的中点,∴11,22AE AB CD CG AE CG ===∥,∴四边形AECG 为平行四边形,同理可得:四边形AFCH 为平行四边形,∴,AM CN AN CM ∥∥,∴四边形AMCN 是平行四边形;【小问2详解】①当平行四边形ABCD 满足AC BD ⊥时,中顶点四边形AMCN 是菱形,由(1)得四边形AMCN 是平行四边形,∵AC BD ⊥,∴MN AC ⊥,∴中顶点四边形AMCN 是菱形,故答案为:AC BD ⊥;②如图所示,即为所求,连接AC ,作直线MN ,交于点O ,然后作2,2ND ON MB OM ==,然后连接AB BC CD DA 、、、即可,∴点M 和N 分别为ABC ADC 、的重心,符合题意;证明:矩形AMCN ,∴,AC MN OM ON ==,∵2,2ND ON MB OM ==,∴OB OD =,∴四边形ABCD 为平行四边形;分别延长CM AM AN CN 、、、交四边于点E 、F 、G 、H 如图所示:∵矩形AMCN ,∴AM CN ∥,MO NO =,由作图得BM MN =,∴MBF NBC ∽,∴12BF BM BC BN ==,∴点F 为BC 的中点,同理得:点E 为AB 的中点,点G 为DC 的中点,点H 为AD 的中点.26.请根据以下素材,完成探究任务.制定加工方案生产背景背景1◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:服装种类加工人数(人)每人每天加工量(件)平均每件获利(元)风y224雅x1正148探究任务任务1探寻变量关系求x、y之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w元,求w关于x的函数表达式.任务3拟定加工方案制定使每天总利润最大的加工方案.【答案】任务1:17033y x=-+;任务2:22723360(10)w x x x=-++>;任务3:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润【解析】【分析】题目主要考查一次函数及二次函数的应用,理解题意,根据二次函数的性质求解是解题关键.任务1:根据题意安排x 名工人加工“雅”服装,y 名工人加工“风”服装,得出加工“正”服装的有()70x y --人,然后利用“正”服装总件数和“风”服装相等,得出关系式即可得出结果;任务2:根据题意得:“雅”服装每天获利为:()100210x x ⎡⎤--⎣⎦,然后将2种服装的获利求和即可得出结果;任务3:根据任务2结果化为顶点式,然后结合题意,求解即可.【详解】解:任务1:根据题意安排70名工人加工一批夏季服装,∵安排x 名工人加工“雅”服装,y 名工人加工“风”服装,∴加工“正”服装的有()70x y --人,∵“正”服装总件数和“风”服装相等,∴()7012x y y --⨯=,整理得:17033y x =-+;任务2:根据题意得:“雅”服装每天获利为:()100210x x ⎡⎤--⎣⎦,∴()()2247048100210w y x y x x ⎡⎤=⨯+--⨯+--⎣⎦,整理得:()()()21611203222402120w x x x x =-++-++-+∴22723360(10)w x x x =-++>任务3:由任务2得()2227233602184008w x x x =-++=--+,∴当18x =时,获得最大利润,1705218333y =-⨯+=,∴18x ≠,∵开口向下,∴取17x =或19x =,当17x =时,335y =,不符合题意;当19x =时,17513y ==,符合题意;∴7034x y --=,综上:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润.27.发现问题小明买菠萝时发现,通常情况下,销售员都是先削去菠萝的皮,再斜着铲去菠萝的籽.提出问题销售员斜着铲去菠萝的籽,除了方便操作,是否还蕴含着什么数学道理呢?图1分析问题某菠萝可以近似看成圆柱体,若忽略籽的体积和铲去果肉的厚度与宽度,那么籽在侧面展开图上可以看成点,每个点表示不同的籽.该菠萝的籽在侧面展开图上呈交错规律排列,每行有n 个籽,每列有k 个籽,行上相邻两籽、列上相邻两籽的间距都为d (n ,k 均为正整数,3n k >≥,0d >),如图1所示.小明设计了如下三种铲籽方案.方案1:图2是横向铲籽示意图,每行铲的路径长为________,共铲________行,则铲除全部籽的路径总长为________;方案2:图3是纵向铲籽示意图,则铲除全部籽的路径总长为________;方案3:图4是销售员斜着铲籽示意图,写出该方案铲除全部籽的路径总长.解决问题在三个方案中,哪种方案铲籽路径总长最短?请写出比较过程,并对销售员的操作方法进行评价.【答案】分析问题:方案1:()1n d -;2k ;()21n dk -;方案2:()21k dn -;方案3:()212k nd ⨯-;解决问题:方案3路径最短,理由见解析【解析】【分析】分析问题:方案1:根据题意列出代数式即可求解;方案2:根据题意列出代数式即可求解;方案3:根据图得出斜着铲每两个点之间的距离为222=,根据题意得一共有2n 列,2k 行,斜着铲相当于有n 条线段长,同时有21k -个,即可得出总路径长;解决问题:利用作差法比较三种方案即可.题目主要考查列代数式,整式的加减运算,二次根式的应用,理解题意是解题关键.【详解】解:方案1:根据题意每行有n 个籽,行上相邻两籽的间距为d ,∴每行铲的路径长为()1n d -,∵每列有k 个籽,呈交错规律排列,∴相当于有2k 行,∴铲除全部籽的路径总长为()21n dk -,故答案为:()1n d -;2k ;()21n dk -;方案2:根据题意每列有k 个籽,列上相邻两籽的间距为d ,∴每列铲的路径长为()1k d -,∵每行有n 个籽,呈交错规律排列,,∴相当于有2n 列,∴铲除全部籽的路径总长为()21k dn -,故答案为:()21k dn -;方案3:由图得斜着铲每两个点之间的距离为222=,根据题意得一共有2n 列,2k 行,斜着铲相当于有n 条线段长,同时有21k -个,∴铲除全部籽的路径总长为:()212k nd ⨯-;解决问题由上得:()()()2121222220n dk k dn ndk dk ndk dn d n k ---=--+=->,∴方案1的路径总长大于方案2的路径总长;()()(21212222k dn k dn k dn ⎡--⨯-=-+⎢⎣⎦,∵3n k >≥,当3k =时,(2522324022⨯-+=->,()()2212102k dn k dn --⨯->,∴方案3铲籽路径总长最短,销售员的操作方法是选择最短的路径,减少对菠萝的损耗.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盐城市2004年初中毕业、升学统一考试数学试卷一、填空题(本大题10小题;每小题2分,计20分). 1. 3的倒数是____________. 2.213x y -的系数是_________. 3.分解因式224x y -=________. 4.函数y =x 的取值范围是 _______.5.已知ABC A B C '''△∽△,它们的相似比为2:3,那么它们的周长比是______. 6.在正比例函数3y x =中,y 随x 的增大而______(填“增大”或“减小”). 7.若直角三角形斜边长为6,则这个三角形斜边上的中线长为______.8.请写出你熟悉的两个无理数__________.9.若O 的半径为3,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是_________.10.如图,在O 的内接四边形ABCD 中,90BOD ∠=︒,则BCD ∠=________.二、选择题(本大题共8小题,每小题3分,计24分)下列各题给出的四个选项中只有一11A .55534a a a += B .222()ab a b -=-C 2=-D .428m m m ⋅=12. 已知:2:3a b =,那么():a b b +等于A .2:5B .5:2C .5:3D .3:5ABC O D13.解分式方程2231213x x x x -+=-,可设231xy x =-,则原方程可化为整式方程是 A .2210y y ++= B . 2210y y +-= C . 2210y y -+= D .2210y y --=14.下列命题中,假命题是A .平行四边形的对角线互相平分B .矩形的对角线相等C .等腰梯形的对角线相等D .菱形的对角线相等且互相平分 15.某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面积的一半,以下图中设计不合要求....的是16.若直线3y x m =+经过第一、三、四象限,则抛物线2()1y x m =-+的顶点必在 A .第一象限 B .第二象限 C .第三象限 D .第四象限17.一台机床在十天内生产的产品中,每天出现的次品个数依次为(单位:个)0,2,0,2,3,0,2,3,1,2.那么,这十天中次品个数的A .平均数是2B .众数是3C .中位数是1.5D .方差是1.25 18.如图是一个圆柱形木块,四边形ABB 1A 1是经过它的轴的剖面,设四边形ABB 1A 1的面积为S ,圆柱的侧面积为S 侧,则S 与S 侧的关系是A .13S S =侧B .2S S π=侧C .S S π=侧D .不能确定三、解答题(本大题4小题;计29分)19. (本题满分6分)计算:101()(2)|2π---+. 20. (本题满分7分)如图,甲、乙两楼相距36m ,高楼高度为30m ,自甲楼楼顶看乙楼楼顶的仰角为30︒,问乙楼有多高(结果保留根式)?A DC BA B 121. (本题满分8分)分别解不等式523(1)x x -<+和131722y y ->-,再根据它们的解集写出x 与y 的大小关系.22. (本题满分8分)如图,直角梯形ABCD 中,AB CD ∥,AB BC ⊥,对角线AC BD ⊥,垂足为E ,AD=BD ,过点E 作EF AB ∥交AD 于F . 求证:(1)AF=BE ;(2)AF 2=AE ·EC .四、解答题(本大题共8小题,计77分) 23.(本题满分9分)已知关于x 的一元二次方程221(2)204x m x m -++-=. (1) 当m 为何值时,这个方程有两个相等的实数根;(2) 如果这个方程的两个实数根x 1、x 2,满足221218x x +=,求m 的值.24. (本题满分9分)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (千帕)是气球体积V (米3)的反比例函数,其图象如图所示(千帕是一种压强单位). (1) 写出这个函数解析式;(2) 当气球内的体积为0.8立方米时,气球内的气压是多少千帕?(3) 当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?25. (本题满分8分)E A B D C F0.5 1 1.5 2 V (米)P (千帕如图,AB 是的O 直径,DF 切O 于点D ,BF DF ⊥,过点A 作AC BF ∥交BD 的延长线于点C .(1) 求证:ABC C ∠=∠;(2) 设CA 的延长线交O 于E ,BF 交O 于G ,若DG 的度数等于60︒,试简要说明点D 和点E 关于直线AB 对称的理由.26. (本题满分9 分)“国运兴衰,系于教育”.下图给出了我国从1998—2002年每年教育经费投入的情况. (1) 由图可见,1998—2002年的五年内,我国教育经费投入呈现出_______趋势. (2) 根据图中所给数据,求我国从1998年到2002年教育经费的年平均数. (3) 如果我国的教育经费从2002年的5480亿元,增加到2004年的7891亿元,那么这两年的教育经费平均年增长率为多少?(结果精确到0.01).27.(本题满分10分)已知抛物线2y ax bx c =++,经过点(2,1)、(-1,-8)、(0,-3).(1) 求这个抛物线的解析式;(2) 画出该抛物线的草图,并标出图象与x 轴交点的横坐标;(3) 观察你所画出的抛物线的草图,写出x 在什么范围内取值时,函数值y <0.x BC亿元1998 1999 2000 2001 2002 年份28.(本题满分11分)银河电器销售公司通过对某品牌空调市场销售情况的调查研究,预测从2004年1月份开始的6个月内,其前n 个月的销售总量..y (单位:百台)与销售时间n (单位:月)近似满足函数关系式21(3)4y n n =+(16n ≤≤,n 是整数)(2)试探求该公司第n 个月的空调销售台数w (单位:百台)关于月份n 的函数关系式. 29.(本题满分10分)如图①,E 为线段AB 上的一点,AB =4BE ,以AE 、BE 为直径在AB 的两侧作半圆,圆心分别为O 1、O 2,AC 、BD 分别是两半圆的切线,C 、D 为切点. (1) 求证:AC BD ;(2) 现将半圆O 2沿着线段BA 向点A 平行移动,如图②,此时半圆O 2的直径E B ''在线段AB 上,AC '是半圆O 2的切线,C '是切点,当AE AB'何值时,以A 、C ' 、O 2为顶点的三角形与1BDO △相似.30.(本题满分11分)如图①,四边形AEFG 与ABCD 都是正方形,它们的边长分别为a ,b (2b a≥),且点F在AD 上(以下问题的结果可用a 、b 的代数式表示). (1) 求DBF S △;(2) 把正方形AEFG 绕点A 按逆时针方向旋转45︒,得图②,求图②中的DBF S △; (3) 把正方形AEFG 绕点A 旋转任意角度,在旋转的过程中,DBF S △是否存在最大值、最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由.图①BB图②盐城市2004年初中毕业升学统一考试试卷数学参考答案一、填空题(本大题共10小题,每小题2分,计20分) 1.13; 2.13-; 3.(2)(2)x y x y +-; 4.1x ≥; 5.2:3 6.增大; 7.3; 8.(略); 9.相似; 10.135 二、选择题(本大题共8小题,每小题3分,计24分)三、解答题(本大题共4小题,计29分)19.解:原式=211-+……………………………4分 =0.…… ……………………………6分 20.解:如图所示,作AE CD ⊥,E 为垂足.则AE=BD =36m ,DE=AB =30m ………………2分 在Rt AEC △中,CE =AE tan CAE ∠=…5分30CD CE DE CE AB ∴=+=+=+…6分 答:乙楼高为(30+m.…………………………………7分 21.解:不等式523(1)x x -<+的解集为52x <;……………………………3分 不等式131722y y ->-的解集为4y >………………………………………………6分y x ∴>.………………………………………………………………………… 8分22.证法一:,,DF DEEF AB DA DB ∴=∥………………2分甲楼乙楼E ADC F 图①图②,,.DA DB DF DE AF BE =∴==………………4分证法二:DA=DB ,DAB DBA ∴∠=∠,……………1分 又,,,EF AB DEF DBA DFE DAB ∴∠=∠∠=∠∥DEF DFE ∴∠=∠. …………………………………………………………3分 ∴DE=DF ,∴AF=BE ……………………………4分(2),,AB BC BE AC BCE ABE ⊥⊥△∽△.……………………………6分CE BEBE AE ∴=',BE 2=AE ·CE ……………………………7分 AF=BE ,AF 2=AE ·CE. ……………………………8分 四、解答题(本大题共8小题,计77分) 23.(本题满分9分)解:(1)根据题意,得Δ221[(2)]41(2)04m m =-+-⨯⨯-=…………………………………2分 4m +12=0,解之得m =-3. ……………………………4分 (2)由根与系数的关系,得:x 1+x 2=m +2,212124x x m =-, ……………………………5分 22212121218,()218x x x x x x =∴+-=……………………………7分221(2)2(2)18.4m m +-⨯-=解之得m =2或m =-10. ……………………………8分而m =-10时,Δ<0,∴m =2. ……………………………9分 24.(本题满分9分)解:(1)根据题意,设所求面积解析式为 kp v=,…………………………… 1分 把A (1.5,64)代入,得k =96,………………………………………………… 3分 ∴所求函数解析式为96p v=.…………………………………………………4分 (2)当V =0.8时,得p =120(千帕). ……………………………6分 (3)解法一:由p =144,得9621443p ==.……………………………8分 气球内的气压大于144千帕时,气球将爆炸,144p ∴≤, 又由图象可看出,p 随V 的增大而减小,23V ≥(立方米). …………………………………………………………9分解法二:当气球内的气压大于144千帕时,气球将爆炸,144p ∴≤.……………………………8分96144V∴≤.…………………………………………………………9分 9621443p ∴=≥(立方米)25.(本题满分8分)(1)证法一,连结OD ,……………………………1分∵FD 是O 的切线,∴OD ⊥FD 。

相关文档
最新文档