第十章紫外可见分光光度法
紫外-可见吸收光谱 - 紫外-可见吸收光谱
2.生色团(发色团) 含有n→π*或π→π*的基团。 例:C=C;C=O;C=S;—N=N— 等
3.助色团 含非键电子的杂原子饱和基团。 例:—OH,—OR,—NH—,—NR2—,—X 4.红移(长移)、蓝移(短移): 由于化合物结构变化(共轭、引入助色团)或采用不同溶
剂后: 吸收峰向长波方向移动,叫红移 吸收峰向短波方向移动,叫蓝移
第一节 紫外-可见吸收光谱
5.增色效应、减色效应 增色效应:使吸收强度增加的效应 减色效应:使吸收强度减弱的效应
6.吸收带 吸收光谱中吸收峰的位置称做吸收带 εmax>104 → 强带 εmax<102 → 弱带
第一节 紫外-可见吸收光谱
四、吸收带类型和影响因素
(一)吸收带类型 • 1.R带:由含杂原子的不饱和基团的n →π*跃迁产生(C
分子中价电子(外层电子)吸收紫外-可见光区的电磁 辐射发生电子能级跃迁
(吸收能量=两个跃迁能级之差)
第一节 紫外-可见吸收光谱
二、紫外-可见吸收光谱的电子跃迁类型
1.有机化合物紫外-可见吸收光谱的电子跃迁类型 从有机物化学键的性质来看,与紫外-可见吸收光谱有关的
电子主要有三种,即形成单键的σ 电子,形成双键π 电子以及 未参与成键的n电子。
水
243 nm 305 nm
迁移
长移 短移
第一节 紫外-可见吸收光谱
第一节 紫外-可见吸收光谱
4. 体系pH的影响
OH OH
O
H+
苯酚在不同pH时的紫外吸收光 谱
=O;C=N;-N=N- )
• λmax≈ 300nm, max<100
• 溶剂极性↑,λmax↓ → 蓝移(短移) 2.K带:由共轭双键的π→ π*跃迁产生
第十章紫外可见分光光度法(A)
➢ 讨论:
E
A C l
1)E与(组分性质,温度,溶剂,λ)有关
当组分性质、温度,λ和溶剂一定,E一定
2)不同物质在同一波长下E可能不同(选择性吸收)
同一物质在不同波长下E一定不同
3)E↑,物质对光吸收能力↑, 定量测定灵敏度↑
→ 定性、定量依据
2.吸光系数两种表示法:
1)摩尔吸光系数ε:
在一定λ下,C=1mol/L,L=1cm时的吸光度
*核磁共振波谱法(NMR) 其它波谱法 *质谱法(MS)
第一节 光学分析概论
一、电磁辐射和电磁波谱 二、光学分析法及其分类 三、光谱法仪器——分光光度计
1. 光的基本性质 (电磁波的波粒二象性)
波动性 光的传播速度:
νλc ,σ λ1
V = c =
n
c -真空中光速 2.99792458×108m/s
(二)化学因素
• Beer定律适用的另一个前提:稀溶液 • 浓度过高会使C与A关系偏离定律
四、透光率的测量误差——ΔT
A lg T E C l C A 1 E l E l lg T
浓度的相对误差 C 0.434T C T lg T
✓ 影响测定结果的相对误差两个因素: T和ΔT ➢ ΔT影响因素:仪器噪音 1)暗噪音 2)讯号噪音
化学分析与仪器分析方法比较
化学分析:常量组分(>1%), Er : 0.1%~0.2%
准确度高
依据化学反应, 使用玻璃仪器
仪器分析:微量组分(<1%), Er : 1%~5% 灵敏度高 依据物理或物理化学性质, 需要特殊的仪器
例: 含Fe约0.05%的样品, 称0.2 g, 则m(Fe)≈0.1 mg
样品溶液 样品池 A样
仪器分析 10.1紫外可见分光光度法 图文
61-19
二、UV光谱的有关知识和概念
2、物质吸光的程度表达
辐射功率P:单位时间内所传输的能量, 光度法中用光强 I 代替。 透过率 T:透过光与入射光强度的比值 吸光度 A :
I T
I0
A lgT lg IO I
2020年9月13日星期日 上一内容 下一内容
61-20
3、UV吸收光谱——吸收曲线
镧系元素:f-f 跃迁
二、UV光谱的有关知识和概念
1、物质吸光的选择性
M h I0 M * It h
ΔΕ ΔΕe ΔΕv ΔΕr
分子轨道包括三种: 分子轨道能级的量子化:光吸收具有选择性 电子能级差:约为1~20ev(1250~60nm)
2020年9月13日星期日 上一内容 下一内容
一、分子轨道中的电子跃迁类型 二、UV光谱的常用概念 三、吸收带及其与分子结构的关系 四、影响吸收带的因素 五、物质对光的吸收与吸收曲线 五、朗伯-比尔定律
2020年9月13日星期日 上一内容 下一内容
61-3
练习:
下面五个电磁辐射区域
A:X射线区
B:红外区
C:无线电波
D:可见光区
E:紫外光区
请指出:
61-22
4、有关概念:
① 吸收带:吸收峰位置 ② 红移或长移 ③ 蓝移或短移 ④ 增色效应
减色效应
⑤ 强带 ε ≥104
弱带 ε ≤102
2020年9月13日星期日 上一内容 下一内容
61-23
⑥ 生色团(chromophore ):含π→π* 、 n →π* 等跃迁的基团,即能产生UV吸收的 基团
61-12
5、电荷迁移跃迁
Charge transfer transition
【免费下载】第十章 紫外 可见分光光度法
第十章紫外—可见分光光度法一、选择题1.所谓真空紫外区,所指的波长范围是( )。
A、200~400nmB、400~800nmC、1000nmD、100~200nm2.在紫外可见分光度计中,用于紫外光区的光源是()A、钨灯B、卤钨灯C、氘灯D、能斯特灯3.指出下列化合物中,哪个化合物的紫外吸收波长最大()A、CH3CH2CH3B、CH3CH2OHC、CH2=CHCH2CH=CH2D、CH3CH=CHCH=CHCH34.符合比耳定律的有色物质溶液稀释时,其最大吸收峰的波长位置()A、向长波方向移动B、不移动,但峰高值降低C、向短波方向移动D、不移动,但峰高值增大5.下列化合物中,同时有n→л﹡、л→л﹡、σ→σ﹡跃迁的化合物是()A、一氯甲烷B、丙酮C、l,3丁二烯D、甲醇6.双光束分光光计与单光束分光光计相比,其突出的优点是()A、扩大波长的应用范围B、可以采用快速响应的监测系统一C、可以抵消吸收池所带来的误差D、可以抵消因光源强度的变化而产生的误差7.某化合物入max(正己烷为溶剂)=329nm,入max(水为溶剂)= 305nm,该跃迁类型为()A、n→л﹡B、л→л﹡C、σ→σ﹡D、n→σ﹡8.丙酮在乙烷中的紫外吸收λmax=279nm,ε=14.8,此吸收峰由( )能级跃迁引起的。
A、n→л﹡B、л→л﹡C、n→σ*D、σ→σ*9.下列四种化合物中,在紫外光区出现两个吸收带的是()A、乙烯B、l,4一戊二烯C、1,3一丁二烯D、丙烯醛10.助色团对谱带的影响是使谱带()A、波长变长B、波长变短C、波长不变D、谱带蓝移11.某物质在给定波长下的摩尔吸光系数(ε)很大,则表明()A、物质对该波长光的吸收能力很强B、物质的摩尔浓度很大C、光通过物质溶液的光程长D、物质的摩尔质量很大12.符合比耳定律的溶液稀释时,其浓度、吸光度和最大吸收波长的关系为()A、减小,减小,减小B、减小,减小,不变C、减小,不变,减小D、减小,不变,增加13.下列叙述正确的是()A、透光率与浓度成线性关系B、一定条件下,吸光系数随波长变化而变化C、浓度相等的x,y两物质,在同一波长下,其吸光度定相等D、质量相等的x,y两物质,在同一波长下,其吸光系数一定相等14.吸光性物质的摩尔吸光系数与下列( )因素有关。
第十章 紫外可见分光光度法
如果用△ E电子,△ E振动以及△E转动表示各能级 差,则:
E电 E振 E转
能级差 E h h c
由分子中的电子能级、振动能级和转动能级跃迁产 生的光谱称分子吸收光谱。
2.分子吸收光谱的分类: 分子内运动涉及电子能级、振动能级和转动
能级三种跃迁能级,
E电 E振 E转
对应的波谱区范围如下:
吸收曲线与最大吸收波长 max
①同一种物质对不同波长光的吸光度 不同。如KMnO4在400nm吸收少, 在525nm吸收最大,吸光度最大处 对应的波长称为最大吸收波长λmax ②不同浓度的同一种物质,其吸收曲 线形状相似,λmax不变。而对于不同 物质,它们的吸收曲线形状和λmax 则不同。 ③吸收曲线可以提供物质的结构信息,
电子的基团。 例: C=C;C=O;C=N;—N=N— 注:当出现几个生色团共轭,则几个生色团所产生的
吸收带将消失,代之出现新的共轭吸收带,其波 长将比单个生色团的吸收波长长,强度也增强。
下面为某些常见生色团的吸收光谱
生色团 烯 炔 羧基 酰胺基 羰基 偶氮基 硝基 亚硝基 硝酸酯
溶剂 正庚烷 正庚烷 乙醇 水 正己烷 乙醇 异辛酯 乙醚
称最小吸收波长(λmin) 。
3.肩峰:在一个吸收峰旁边 产生的一个曲折。 4.末端吸收:只在图谱短波 呈现强吸收而不成峰形的
部分。
5. 生色团
所谓生色团,是指有机化合物分子结构中含有p -
p*和n-p*中跃迁的基团,即能在紫外-可见光范围内产 生吸收的原子团。 对有机化合物:主要为具有不饱和键和未成对
概述
一、紫外-可见分光光度法:是研究物质在紫外可见光区(200 ~ 800 nm)分子吸收光谱的分析方 法。
可见光区 400~760nm;紫外光区200~400nm。 二.紫外—可见分光光度法的特点 (1)灵敏度较高:灵敏度可达10-5~10-7g/mL (2)选择性较好:多组分共存溶液中,无需化学
《分析化学》第十章 紫外-可见分光光度法
第十章紫外-可见分光光度法- 经典习题1.钯(Pd)与硫代米蚩酮反应生成1:4的有色配位化合物,用1.00cm吸收池在520nm处测得浓度为0.200×10-6g/ml的Pd溶液的吸光度值为0.390,试求钯-硫代米蚩酮配合物的及ε值。
(钯-硫代米蚩酮配合物的分子量为106.4)解:2.取咖啡酸,在105°C干燥至恒重,精密称取10.00mg,加少量乙醇溶解,转移至200ml量瓶中,加水至刻度,取出5.00ml,置于50ml量瓶中,加6mol/L HCl 4ml,加水至刻度。
取此溶液于1cm石英吸收池中,在323nm处测得吸光度为0.463,已知咖啡酸=927.9 ,求咖啡酸的百分质量分数。
解:3.分别用0.5mol/L HCl 、0.5mol/L NaOH和pH4.00的邻苯二甲酸氢钾缓冲液配制某弱酸溶液,浓度均为含该弱酸0.001g/100ml。
在lmax=590nm处分别测出三者吸光度如下表。
求该弱酸的pKa值。
解一:在pH=4的缓冲溶液中,[HIn]和[In -]共存,则该弱酸在各溶液的分析浓度为C HIn+C In-,即0.001g/100ml。
因此在缓冲溶液中是两种型体混合物的吸收:A混=0.430=E HIn C HIn+E In-C In- (1)在碱性溶液中是In -的吸收:A In-=1.024=E In-(C HIn+C In-) (2)在酸性溶液中是HIn的吸收:A HIn=0.002=E HIn(C HIn+C In-) (3)(2),(3)式代入(1)得:C HIn/C In-=1.3879pKa=4+lg1.3879=4.14解二:由(2)、(3)式代入(1)式还可写成: (4)将代入(4),整理,取对数,得:式中A混为该弱酸在缓冲液中的吸光度;A HIn为该弱酸在酸性溶液中的吸光度;A In-为该弱酸在碱性溶液中的吸光度;pH为缓冲溶液的pH 值。
第十章 分光光度法
注:溶液的透光率T反映了物质对光的吸收程度, T越大表示它对光的吸收越弱;反之,T越小,表 示对光的吸收越强。
T 取值为0.0 % ~ 100.0 %
T
全部吸收
T = 0.0 %
全部透射 T = 100.0 %
2.吸光度: 为透光率的负 A lg I0 lg 1 = lgT
(四)吸光系数 1.定义(物理意义)
一定条件下,吸光物质在单位浓度及单位液层 厚度时的吸光度,叫这个物质的吸光系数。
2.两种表示方法
(1) 摩尔吸光系数( ε ):表示一定波长下,吸光物质的溶液
浓度为1mol/L,液层厚度为1cm时,溶液的吸光度。
(2)百分吸光系数(
E1% 1cm
):表示一定波长下,吸光物质的溶
黄 橙
红
/nm 颜色 400-450 紫
450-480 蓝 480-490 青蓝 490-500 青 500-560 绿 580-610 黄 610-650 橙 650-760 红
互补光 绿
黄 橙 红 紫 蓝 青蓝 青
物质的颜色与光的关系:
完全吸收
光谱示意 复合光
表观现象示意
完全透过
吸收黄色光
二.物质对光的选择性吸收
A. A~λ曲线
B. A~c曲线
C. A~V曲线
D. E~V曲线
4、紫外分光光度法中,为了使测定结果有较高 的灵敏度和准确度,入射光的波长应( )
A.最大吸收波长
B.最小吸收波长
检测器 作用:将光信号转换为电信号,并放大 光电管,光电倍增管
信号输出 表头、记录仪、屏幕、数字显示
第十章
1 光源
在紫外可见分光光度计中,常用的光源 有两类:热辐射光源和气体放电光源 热辐射光源适用350nm-800nm,用于可见 光区,如钨灯和卤钨灯;气体放电光源适 用150nm-400nm,用于紫外光区,如氢灯 和氘灯。
化学分析UV
a
O
a
b
CH3
O C CH C
CH3 CH3
b
例1:
安宫黄体酮和炔诺酮因共轭体系部分的结构相同,
所以它们的lmax=240nm,而E1%有差别分别为
408和571。
CH3
CO CH3 OCOCH3 CH3 H
CC CH3 OH H
HH O
光系数达1.1×104,反应灵敏,适用于微量铁的测定。 • 当铁为三价时,可用盐酸羟胺还原,反应式如下: • 2Fe3++2NH2OH·HCl→2Fe2++N2↑+4H++2H2O+2Cl• 反应在pH4.5~5的缓冲溶液中进行,含铁量在0.5~8
mg/L范围时,其浓度与吸光度符合Beer定律。
铁含量的测定
O CH3 C CH2 CH=CH-CH=CH2
• 下列化合物中,在近紫外光区中有两个 吸收带的物质是哪个?
• A.丙烯; B.丙烯醛; • C.1,3-丁二烯; D.丁烯
• 下面几个化合物中跃迁所需能量最大的 是( )
• A、1,4-戊二烯 • B、1,3-丁二烯 • C、1,3-环己二烯 • D、2,3-二甲基-1,3-丁二烯
一. 基本原理
CuSO4
KMnO4
Fe(SCN)3
(一)朗伯-比尔定律:
朗伯-比尔定律
透光度
(transmittance)
I0
I
T=I/I0
吸光度
(absorbance) A= -lgT
影响物质对光吸收程度的因素:
♪ 物质的本性 ♪ 入射光波长 ♪ 溶剂种类 ♪ 溶液温度 ♪ 溶液浓度 ♪ 光路长度
第十章 紫外-可见分光光度法
第十章 紫外—可见分光光度法一、选择题1.所谓真空紫外区,所指的波长范围是( )。
A 、200~400nmB 、400~800nmC 、1000nmD 、100~200nm2.在紫外可见分光度计中,用于紫外光区的光源是( )A 、钨灯B 、卤钨灯C 、氘灯D 、能斯特灯3.指出下列化合物中,哪个化合物的紫外吸收波长最大( )A 、CH 3CH 2CH 3B 、CH 3CH 2OHC 、 CH 2=CHCH 2CH =CH 2D 、 CH 3CH =CHCH =CHCH 34.符合比耳定律的有色物质溶液稀释时,其最大吸收峰的波长位置( )A 、向长波方向移动B 、不移动,但峰高值降低C 、向短波方向移动D 、不移动,但峰高值增大5.下列化合物中,同时有n→л﹡、л→л﹡、 σ→σ﹡跃迁的化合物是( )A 、一氯甲烷B 、丙酮C 、 l ,3丁二烯D 、甲醇6.双光束分光光计与单光束分光光计相比,其突出的优点是( )A 、扩大波长的应用范围B 、可以采用快速响应的监测系统一C 、可以抵消吸收池所带来的误差D 、可以抵消因光源强度的变化而产生的误差7.某化合物入max (正己烷为溶剂)= 329nm ,入max (水为溶剂)= 305nm ,该跃迁类型为( )A 、n→л﹡B 、л→л﹡C 、σ→σ﹡D 、 n→σ﹡8.丙酮在乙烷中的紫外吸收λmax =279nm ,ε=14.8,此吸收峰由( )能级跃迁引起的。
A 、n →л﹡B 、л→л﹡C 、n →σ*D 、σ→σ*9.下列四种化合物中,在紫外光区出现两个吸收带的是( )A 、乙烯B 、l ,4一戊二烯C 、1,3一丁二烯D 、丙烯醛10.助色团对谱带的影响是使谱带( )A 、波长变长B 、波长变短C 、波长不变D 、谱带蓝移11.某物质在给定波长下的摩尔吸光系数(ε)很大,则表明( )A 、物质对该波长光的吸收能力很强B 、物质的摩尔浓度很大C 、光通过物质溶液的光程长D 、物质的摩尔质量很大12.符合比耳定律的溶液稀释时,其浓度、吸光度和最大吸收波长的关系为( )A 、减小,减小,减小B 、减小,减小,不变C 、减小,不变,减小D 、减小,不变,增加13.下列叙述正确的是( )A 、透光率与浓度成线性关系B 、一定条件下,吸光系数随波长变化而变化C 、浓度相等的x ,y 两物质,在同一波长下,其吸光度定相等D 、质量相等的x ,y 两物质,在同一波长下,其吸光系数一定相等14.吸光性物质的摩尔吸光系数与下列( )因素有关。
紫外可见分光法
A Kcl
l: 吸收光程(液层厚度),cm。 c: 吸光物质浓度。 K: 吸光系数
注意
1.Lamber-Beer定律的适用条件(前提)
➢ 入射光为单色光
➢ 溶液是稀溶液
2.该定律适用于固体、液体和气体样品
3.在同一波长下,各组分吸光度具有加和性
吸收定律(标准曲线)与吸收光谱的区别
吸A 收 定 律
吸 A或 收 光 谱
C
一定,一般是在 max时测得
C一定时测得
第二节 紫外可见分光光度计
➢ 一、基本构造:五个单元组成
光源
0.575
单色器 吸收池 检测器 显示器
紫外-可见分光光度计组件
光源
氢灯,氘灯,150 ~ 400 nm; 卤钨灯,> 350 nm. 基本要求:光源强,能量分布均匀,稳定
第十章 紫外-可见分光光度法
第一节 紫外-可见分光光度法 的基本原理和概念
利用被测物质的分子对紫外-可见光具有 选择性吸收的特性而建立的分析方法。
电子能级 跃迁
紫外、可见吸收光谱 (λ: 200-760 nm)
10-200 nm:远紫外;200-400 nm:近紫外 400-760 nm:可见光
物质为什么会有颜色? 为什么不同的物质会呈现不同的颜色?
末端吸收
吸收峰
最大吸收
最小吸收 特征值→定性依肩据 峰
肩峰
末端吸收
分子吸收光谱的形状取决于分子的内部结构,不
同分子的内部结构不同,吸收光谱不同。因此,分子
吸收谷光谱是物质定性的依据。
在定量分析中,通过吸收光谱选择测定波长,一
第10章紫外—可见分光光度法2012
2 7 24 -
Cr2O72-、MnO4-的吸收光谱
17
6.生色团*
从广义来说,所谓生色团,是指 分子中可以吸收光子而产生电子跃迁 的原子基团。但是,人们通常将能吸 收紫外、可见光的原子团或结构系统 定义为生色团。
18
7. 助色团* 助色团是指带有非键电子对的基 团,如-OH、 -OR、 -NHR、-SH、Cl、-Br、-I等,它们本身不能吸收大 于200nm的光,当它们与生色团相连 时,会使生色团的吸收峰向长波方向 移动,并且增加其吸光度。
54
(三)分光光度计的校正
通常在实验室工作中,验收新仪器或 实验室使用过一段时间后都要进行波长校 正和吸光度校正。 1. 波长的校正 镨铷玻璃或钬玻璃都有若干特征的吸 收峰,可用来校正分光光度计的波长标尺, 前者用于可见光区,后者则对紫外和可见 光区都适用。
0.2
A
0
0
1
2
3
4
mg/mL
工作曲线
34
例如,重铬酸钾的水溶液有以下平衡:
Cr2O2-7 + H2O 2H+ + 2CrO2-4
若溶液稀释2倍,Cr2O2-7 离子浓 度不是减少2倍,而是减少明显地多 于2倍,结果偏离Beer定律,而产生 误差。
35
(二)光学因素 1. 非单色光(一定波长范围的光) 2. 杂散光(stray light) 不在谱带宽度范围内的与所需波 长相隔较远的光。 3. 散射光和反射光(透射光强度减 弱) 4. 非平行光 (光程差)
25
四、影响吸收带的因素
主要是分子中结构因素和测定条件 等多种因素的影响,它的核心是影响 分子中电子共轭结构。
26
紫外可见分光光度法
T与A的关系
T 100% 50% 25% 10% 1.0% 0.1% 0.01% 0.001% 0%
A 0 0.301 0.602 1.00 2.0 3.0 4.0
5.0
上述说明: T值为0%至100%内的任何值。 A值可以取任意的正数值。
入射光强度 I0
等 条件一定时, E 仅与吸收物质本身的性质有关, 与待测物浓度无关; (3)同一吸收物质在不同波长下的E 值是不同的。在最大 吸收波长λmax处的摩尔吸收系数E max表明了该 吸收物质最大限度的吸光能力,也反映了光度法 测定该物质可能达到的最大灵敏度。
(4)可作为定性鉴定的参数;
(5)物质的吸光能力的度量
? EK2带
B带 R带
苯乙酮的紫外吸收光谱
四、影响吸收带的因素
• 位阻影响 • 跨环效应
共轭系统共平面性↓→共轭效应↓ → max ↓(短移), ↓
• 溶剂效应 溶剂极性↑→ K带长移,R带短移
• pH影响
max 210.5nm,270nm
235nm,287nm
位阻影响
顺式
反式
二苯乙烯顺反异构体 的紫外吸收光谱
最大处对应的波长称为最大吸收波长λmax。 吸收曲线的形状、λmax及吸收强度等与分子 的结构密切相关。
在吸收曲线上,最大吸收峰所对应的是最大吸收波长 (λmax),为不同化合物的特征波长。吸收曲线的形状是物 质定性的主要依据,在定量分析中可提供测定波长,一般以灵 敏度较大的λmax为测定波长。
峰与峰之间的部位叫谷,该处对应波长为最小吸收波长。 在图谱短波端只呈现强吸收但不成峰的部分称为末端吸收 (end absorption)。
紫外可见光
紫 外
增色效应:使吸收强度增加的效应
可
减色效应:使吸收强度减弱的效应
见 吸
收
6.强带、弱带
光
谱
εmax>104 → 强带
的
εmax<102 → 弱带
常 用
概
念
三、吸收带及其与分子结构的关系
用吸收带说明吸收峰在紫外可见光谱中 的位置。 1.R带:由n →π*跃迁产生带 ✓ 化合物有含杂原子的不饱和基团:C=O; ✓ C=N、—N=N—、—NO、—NO2 产生 R带
移取10mL 稀至100mL 367测A 0.591 (已知E 764.0) 求i%
➢ 解:
Ci
A El
0.591 764
7.92 104
g
/100mL
7.92 106
g
/
mL
i% Ci 100% C样
7.92 106 2.0102 10
100% 99.0%
250 100
2.校正曲线法
含非键电子的杂原子饱和基团。 例:—OH,—OR,—NH—,—NR2—,—X)
4.红移(长移)、蓝移(短移或紫移): 由于化合物结构变化(共轭、引入助色团)
或采用不同溶剂后: 吸收峰向长波方向移动,叫红移 吸收峰向短波方向移动,叫蓝移
二、 紫 外 可 见 吸 收 光 谱 的 常 用 概 念
二、
5.增色效应、减色效应
➢暗噪音—与检测器或放大电路中电子元件和 线路结构的质量、工作状态等有关。与光讯 号无关。
设ΔT=0.5%
T=0.386,A=0.434S时,相对误差最小 A=0.2-0.7时,相对误差较小
➢讯号噪音——与光讯号有关
第二节 紫外分光光度计
仪器分析 课后习题答案 第十章 紫外-可见分光光度法课本习题答案
第十章 紫外-可见分光光度法13.卡巴克洛(安络血)的摩尔质量为236,将其配成每100ml 含0.4962mg 的溶液,盛于1cm 吸收池中,在λmax 为355nm 处测得A 值为0.557,求卡巴克洛(安络血)的%11cm E 及ε值。
解:1123104962.01557.03%11=⨯⨯=⨯=-c b A E cm 4%111065.211231023610⨯=⨯=⨯=cm E M ε 14.称取维生素C 0.05g 溶于100ml 的0.005mol/L 硫酸溶液中,再准确量取此溶液2.00ml 稀释至100ml ,取此溶液于1cm 吸收池中,在λmax 245nm 处测得A 值为0.551,求试样中维生素C 的百分质量分数。
(%11cm E 245nm=560) 解:ml g b E A C cm 100/04920.0501560551.050%11=⨯⨯=⨯⨯= %39.98%10005.00492.0=⨯=w 15.某试液用2.0cm 的吸收池测量时T =60%,若用1.0cm 、3.0cm 和4.0cm 吸收池测定时,透光率各是多少?解:ECl T A =-=lg1109.00.260.0lg lg =-=-=l T EC 当l =1.0cm 时,-lg T 1=0.1109×3=0.1109 T 1=77.46%当l =3.0cm 时,-lg T 2=0.1109×3=0.3327 T 2=46.48%当l =4.0cm 时,-lg T 3=0.1109×4=0.4436 T 3=36.00%16.有一标准Fe 3+溶液,浓度为6μg/ml ,其吸光度为0.304,而试样溶液在同一条件下测得吸光度为0.501,求试样溶液中Fe 3+的浓度。
解:212121C C l EC l EC A A == 07.106304.0501.01122=⨯=⨯=C A A C μg/ml 17.将2.481mg 的某碱(BOH )的苦味酸(HA )盐溶于100ml 乙醇中,在1cm 的吸收池中测得其380nm 处吸光度为0.598,已知苦味酸的摩尔质量为229,求该碱的摩尔质量。
第十章紫外-可见分光光度法习题答案-2012秋
第十章 紫外-可见分光光度法习 题 参考答案2. Lambert-Beer 定律的物理意义是什么?为什么说Beer 定律只适用于单色光?浓度C 与吸光度A 线性关系发生偏离的主要因素有哪些?答:Lambert-Beer 定律的物理意义是:当一束平行单色光垂直通过某溶液时,溶液的吸光度A 与吸光物质的浓度c 及液层厚度l 成正比。
因为物质对不同的单色光选择吸收,具有不同的吸收能力,即吸收系数不同,导致吸光度与物质浓度不成正比关系。
设被测物质对波长为λ1和λ1的两种光的吸光系数为E 1和E 2,经推导物质对这两种光的吸收度为:0201)(020112110logI I I I cl E A clE E +⋅+-=- 可见非单色光吸收强弱与物质的浓度关系不确定,只有E 1=E 2时吸光度与浓度的关系才符合比尔定律。
浓度C 与吸光度A 线性关系发生偏离的主要因素有:(1)化学因素:溶液中发生电离、酸碱反应、配位及缔合反应而改变吸光物质的浓度等导致偏离Beer 定律。
(2)光学因素:非单色光的影响,杂散光的影响及非平行光的影响。
(3)透光率测量误差:暗噪音与讯号噪音。
4.卡巴克洛的摩尔质量为236,将其配成每100ml 含0.4962mg 的溶液,盛于1cm 吸收池中,在λmax 为355nm 处测得A 值为0.557,试求其1%cm 1E 及ε值。
(1%cm 1E =1123,ε=2.65⨯104) 解:4%113%11%111065.21123102361011231104962.0557.0⨯=⨯===⨯⨯==∴=-cm cm cm E M Cl A E Cl E A ε5.称取维生素C 0.05g 溶于100ml 的0.005mol/L 硫酸溶液中,再准确量取此溶液2.00ml 稀释至100ml ,取此溶液于1cm 吸收池中,在λmax 245nm 处测得A 值为0.551,求试样中维生素C 的百分含量。
(完整版)10紫外-可见分光光度法习题参考答案
紫外-可见分光光度法思考题和习题1.名词解释:吸光度、透光率、吸光系数(摩尔吸光系数、百分吸光系数)、发色团、助色团、红移、蓝移。
吸光度:指光线通过溶液或某一物质前的入射光强度与该光线通过溶液或物质后的透射光强度比值的对数,用来衡量光被吸收程度的一个物理量。
吸光度用A表示。
透光率:透过透明或半透明体的光通量与其入射光通量的百分率。
吸光系数:单位浓度、单位厚度的吸光度摩尔吸光系数:一定波长下C为1mol/L ,l为1cm时的吸光度值百分吸光系数:一定波长下C为1%(w/v) ,l为1cm时的吸光度值发色团:分子中能吸收紫外或可见光的结构单元,含有非键轨道和n分子轨道的电子体系,能引起π→π*跃迁和n→ π*跃迁,助色团:一种能使生色团吸收峰向长波位移并增强其强度的官能团,如-OH、-NH3、-SH及一些卤族元素等。
这些基团中都含有孤对电子,它们能与生色团中n电子相互作用,使π→π*跃迁跃迁能量降低并引起吸收峰位移。
红移和蓝移:由于化合物结构变化(共轭、引入助色团取代基)或采用不同溶剂后,吸收峰位置向长波方向的移动,叫红移(长移);吸收峰位置向短波方向移动,叫蓝移(紫移,短移)2.什么叫选择吸收?它与物质的分子结构有什么关系?物质对不同波长的光吸收程度不同,往往对某一波长(或波段)的光表现出强烈的吸收。
这时称该物质对此波长(或波段)的光有选择性的吸收。
由于各种物质分子结构不同,从而对不同能量的光子有选择性吸收,吸收光子后产生的吸收光谱不同,利用物质的光谱可作为物质分析的依据。
3.电子跃迁有哪几种类型?跃迁所需的能量大小顺序如何?具有什么样结构的化合物产生紫外吸收光谱?紫外吸收光谱有何特征?电子跃迁类型有以下几种类型:σ→σ*跃迁,跃迁所需能量最大;n →σ*跃迁,跃迁所需能量较大,π→π*跃迁,跃迁所需能量较小;n→ π*跃迁,所需能量最低。
而电荷转移跃迁吸收峰可延伸至可见光区内,配位场跃迁的吸收峰也多在可见光区内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c
由分子中的电子能级、振动能级和转动能级跃迁产 生的光谱称分子吸收光谱。
2.分子吸收光谱的分类: 分子内运动涉及电子能级、振动能级和转动 能级三种跃迁能级,
E电 E振 E转
对应的波谱区范围如下:
∆E电 约为1~20eV λ为1240 ~ 60nm 紫外、可见光区 (电子) 100~800nm ∆E振 约为0.5~1eV λ为25 ~ 1.25㎛ (中)红外区 (振动)
2.5~50m
∆E转约为10-4~0.05eV λ为1.25cm~ 25㎛ (远)红外区 (转动) 50~1990m
若用一连续辐射的电磁波照射分子,将照
射前后光强度的变化转变为电信号(吸光
度 ) ,并记录下来,然后以波长λ为横坐标,
以吸光度 A为纵坐标,就可以得到光强度变化
对波长的关系曲线图——分子吸收光谱图。
练习1 例1.化合物CH2=CHOCH3,除有σ→σ*、 n→σ*、 n →π*跃迁外,还有_____类型的 跃迁。 2.物质的紫外-可见吸收光谱的产生是由于 ( ) (1) 分子的振动 (2) 分子的转动 (3) 原子核外层电子的跃迁 (4) 原子核内层电子的跃迁
s*
p*
n
p
s
4. np*跃迁 能量最小,λ 200~400nm(近紫外区)。 含杂原子不饱和基团如羰基(C= O ) 中的孤对电子向反键p轨道跃迁。 其特点是: 摩尔吸光系数小。εmax< 100, 是弱吸收带。
E
K E,B R
s*
p*
n
p
s
p -p*和n-p*两种跃迁的能量小,相
应波长出现在近紫外区甚至可见光区, 且对光的吸收强烈,是我们研究的重点。
仪器分析
第十章
紫外-可见分光光 度法
主要内容
概述 第一节 紫外-可见分光光度法的基本原理和 概念 第二节 紫外-可见分光光度计 第三节 紫外-可见分光光度法的应用
概述
• 分光光度法是物质分子对光的选择性吸 收而建立起来的分析方法。按物质吸收光 的波长不同,可分为可见分光光度法、紫 外分光光度法及红外分光光度法。
K E,B R
n
p
s
当外层电子吸收紫外或可见辐射后,就
从基态向激发态(反键轨道)跃迁。主要有四
种跃迁,所需能量ΔΕ大小顺序为 n→π* < π→π* < n→σ* < σ→σ*
s*
E
K E,B
R
p*
n
p
s
1、ss*跃迁
能量很高,λ <150nm(远紫外区)饱和烃 (甲烷,乙烷)中的—c—c—键属于这类 跃迁。
3.紫外-可见吸收光谱的产生 由于分子吸收紫外-可见光区的电磁辐射, 分子中电子能级的跃迁而产生。 (吸收能量=两个跃迁能级之差)
第一节 紫外-可见外—可见吸收光谱是分子中的价电子在不同的
分子轨道之间跃迁而产生的。
价电子: σ电子 → 饱和的σ键 π电子→ 不饱和的π键 n 电子→ 孤对电子(非成键的)
电子能级——电子绕原子核的运动; E=1~20eV 振动能级——原子在其平衡位置上的振动 E=0.05~1eV 转动能级——分子整体绕其重心的转动。 E=0.005~0.05eV
如果用△ E电子,△ E振动以及△E转动表示各能级 差,则:
E电 E振 E转
能级差 E h h
s
H
C H
O
p
n
轨道:电子围绕分子或原子运 动的几率分布。 轨道不同,电子所具有的能量 也不同。 分子轨道: σ成键轨道和σ *反键轨道 π成键轨道和π*反键轨道 n 非键轨道
s*
E
K
R
p*
E,B
n
p
s
成键轨道—反键轨道,非键轨道。它们的能 级高低为:σ <π <n <π *<σ *
s*
E
p*
甲烷:λmax=125 nm 乙烷:λmax=135 nm 因此该类化合物的 E 紫外-可见吸收光谱应用价值很小。
s*
K E,B R
p * n
p
s
2. ns*跃迁 能量较大,λ 150~250nm(远、近紫外区 之间 ) 含非键电子的饱和烃衍生物 (含N、O、S 和卤素等杂原子) 大多数吸收峰λmax小于200nm。 因此该类化合物的紫外-可见吸收光谱 应用价值也很小。
三、紫外—可见吸收光谱 (一)紫外—可见吸收光谱的产生: 1.分子吸收光谱 物质分子内部三种运动形式: (1)电子绕原子核的运动; (2)原子在其平衡位置附近的相对振动; (3)分子本身绕其重心的转动。
分子的总能量可以认为等于这三种运动能量 之和。即:
E分 E电 E振 E转
分子中各种不同运动状态都具有一定的能级, 具 有三种不同能级:
概述
一、紫外-可见分光光度法:是研究物质在紫外可见光区(200 ~ 800 nm)分子吸收光谱的分析方 法。 可见光区 400~760nm;紫外光区200~400nm。 二.紫外—可见分光光度法的特点 (1)灵敏度较高:灵敏度可达10-5~10-7g/mL (2)选择性较好:多组分共存溶液中,无需化学 分离即可测定 (3)准确度高:仪器设备较好,相对误差一般为 0.5% (4)用途广泛:既可定性分析,又可定量分析
吸收曲线与最大吸收波长 max
①同一种物质对不同波长光的吸光度
不同。如KMnO4在400nm吸收少, 在525nm吸收最大,吸光度最大处 对应的波长称为最大吸收波长λmax ②不同浓度的同一种物质,其吸收曲
线形状相似,λmax不变。而对于不同
物质,它们的吸收曲线形状和λmax 则不同。 ③吸收曲线可以提供物质的结构信息, 并作为物质定性分析的依据之一。
E
K E,B R
s*
p * n p
s
3. pp*跃迁 能量较小,λ~ 200nm (近紫外区) 不饱和基团(—C=C—,—C = O )体系 共轭, E更小,λ更大, 其特征是摩尔吸光系数 大,一般max104,为强吸收带。 随着共扼体系的增大或杂原子的取代, λmax向长波移动;
E
K E,B R
s*
E
p*
K E,B R
n
p
s
二、紫外—可见吸收光谱常用概念
1.吸收峰:曲线上吸光度最 大的地方,它所对应的波长 称最大吸收波长(λmax) 。 2.谷:峰与峰之间吸光度最 小的部位,它所对应的波长 称最小吸收波长(λmin) 。 3.肩峰:在一个吸收峰旁边 产生的一个曲折。 4.末端吸收:只在图谱短波 呈现强吸收而不成峰形的 部分。