生活中的圆周运动
生活中的圆周运动
N
员受到的地球引力近似等于他在地面测得的 体重mg) F
F万
四、离心运动
当F合=mw2r时,物体做匀速圆周运动 当F合< mw2r时,物体逐渐远离圆心运动 当F合=0时,物体沿切线方向飞出 当F合> mw2r时,物体做逐渐靠近圆心的运动
生活中的圆周运动
一、火车转弯问题(水平面的圆周运动)
1、内外轨道一样高
N
F
2、实际应用中的处理
N
G
向心力由外侧轨道对车 轮轮缘的挤压力F提供
G
向心力由重力G和支持 力N的合力提供
当轨道平面与水平面之间的夹角为θ,转弯 半径为R时,质量为m的火车行驶速度v0多 大轨道才不受挤压?
FN
θБайду номын сангаас
F合
G
θ
L
h
二、拱形桥
1.质量为m的汽车在拱形桥上以速度v行驶,若桥面的圆弧半径
为R,试画出汽车受力分析图,并求出汽车通过桥的最高点时对
桥的压力.汽车的重力与汽车对桥的压力谁大?V越大,压力如 何变化?
FN
mg
二、拱形桥
2.当汽车通过凹形桥最低点时,汽车对桥的压力比汽车 的重力大还是小呢? FN
mg
三、航天器中的失重现象
做圆周运动的物体,在所受合外力突然消失 或不足以提供圆周运动所需向心力时,就做逐渐 远离圆心的运动,这种运动就叫离心运动。
四、离心现象的应用与危害
应用
危害
生活中的圆周运动
水不能通过最高点,实际上小桶还没有到达最高点时水 水不能通过最高点, 就已经流出来了。 就已经流出来了。
4。离心现象 。
绳栓着小球做圆周运动时, 绳栓着小球做圆周运动时,小球所需的向心力由 绳的弹力提供。向心力F=mω2r,如果 增大, 增大, 绳的弹力提供。向心力 ,如果ω增大 也增大, 增大到一定程度 绳会被拉断, 增大到一定程度, 则F也增大,F增大到一定程度,绳会被拉断, 也增大 致使F=0,向心力消失,小球将沿切线方向飞出 致使 ,向心力消失, 而远离圆心运动。 而远离圆心运动。 同样, F小于它做圆 同样,若F小于它做圆 周运动的所需的向心力, 周运动的所需的向心力, 即F<mω2r,小球也要 , 沿一条曲线运动, 沿一条曲线运动,而且 离圆心越来越远。 离圆心越来越远。
B
)
A、作匀速圆周运动的物体,在所受合外力突然消失时,将 、作匀速圆周运动的物体,在所受合外力突然消失时, 沿圆周半径方向离开圆心 B、作匀速圆周运动的物体,在所受合外力突然消失时, 、作匀速圆周运动的物体,在所受合外力突然消失时, 将沿圆周切线方向离开圆心 C、作匀速圆周运动的物体,它自己会产生一个向心力, 、作匀速圆周运动的物体,它自己会产生一个向心力, 维持其作圆周运动 D、作离心运动的物体,是因为受到离心力作用的缘故 、作离心运动的物体,
离心现象的本质: 离心现象的本质: 合外力不足以提供物体作圆周运动 所需要的向心力
பைடு நூலகம்
“供不应求” 供不应求” 供不应求
离心现象事例
在实际中,有一些利用离心运动的机械, 在实际中,有一些利用离心运动的机械,这些机械叫做离心机 离心机械的种类很多,应用也很广。例如,离心干燥( 械。离心机械的种类很多,应用也很广。例如,离心干燥(脱 离心分离器,离心水泵。 水)器,离心分离器,离心水泵。
生活中的圆周运动(精品)
v 5 Fn = m = 8 N 10 r
轮缘与外轨间的相互作用力太大,铁轨 轮缘与外轨间的相互作用力太大, 和车轮极易受损! 和车轮极易受损!
2
4、为了减轻铁轨的受损程度,你能提出 为了减轻铁轨的受损程度, 一些可行的方案吗? 一些可行的方案吗? F
N
F
o
G
让重力和支持力的合力提供向心力,来减 让重力和支持力的合力提供向心力, 少外轨对轮缘的挤压。 少外轨对轮缘的挤压。
汽车转弯时的措施: 汽车转弯时的措施:
把转弯处的道路修成外高内低。 把转弯处的道路修成外高内低。
二、拱形桥 1、汽车静止在桥上与通过桥时的状态是否 相同? 相同? 2、汽车过凹桥时,在最低点时,车对凹桥 汽车过凹桥时,在最低点时, FN 的压力怎样? 的压力怎样?
v FN - G = m r
v FN = G + m r
5.解: 解 设物体的的质量为m, 设物体的的质量为 ,物体运动到圆轨道的最高点的 速度为v,受到圆轨道的压力为F 速度为 ,受到圆轨道的压力为 N。将物体在圆轨道最 高点的重力势能定为0,以开始滚下点点为初状态, 高点的重力势能定为 ,以开始滚下点点为初状态, 根据机械能守恒定律得 mg(h-2R)= m v2/2 - 根据牛顿运动定律得, 根据牛顿运动定律得, FN+mg= m v2/R
3.解:(1)汽车在桥顶部做圆周运动,重力 和支持 解:( )汽车在桥顶部做圆周运动,重力G和支持 的合力提供向心力, - 力FN的合力提供向心力,即 G-FN= m v2/r FN=G-m v2/r = 7440N 得汽车所受支持力 - 根据牛顿第三运动定律得, 根据牛顿第三运动定律得,汽车对桥顶的压力大小也 7440N。 是 。 (2)根据题意,汽车对桥顶没有压力时,即FN=0,对 )根据题意,汽车对桥顶没有压力时, , 应的速度为V, 应的速度为 ,v = gr = 22.1m=79.6Km/h。 。 3)汽车在桥顶做圆周运动,重力G和支持力 和支持力F (3)汽车在桥顶做圆周运动,重力G和支持力FN的合 力提供向心力, 力提供向心力, G-FN= m v2/r, 即 - , 汽车所受支持力 FN=G-m v2/r, - , 对于相同的行驶速度,拱桥圆弧半径越大, 对于相同的行驶速度,拱桥圆弧半径越大,桥面所受 压力越大,汽车行驶越安全。 压力越大,汽车行驶越安全。 (4)根据第二问的结果,对应的速度为 0, )根据第二问的结果,对应的速度为V v = gr 得V0=7.9Km/s
生活中的圆周运动
生活中的圆周运动在我们日常生活中,圆周运动是一种十分常见的现象。
无论是自然界中的现象,还是人类生活中的各种事物,都可以看到圆周运动的影子。
让我们来深入探讨一下生活中的圆周运动。
自然界中的圆周运动星星的轨道夜空中闪烁的星星并不是静止不动的,它们在天空中运动着。
这种运动有一个共同的规律,即围绕某个中心点做圆周运动。
例如,地球围绕太阳做公转,同时也自转,形成了一个巨大的圆周运动系统。
而地球上的月球则围绕地球做圆周运动,形成了月相的变化。
海洋的涡流海洋中也存在着各种形式的圆周运动。
海洋中的涡流就是其中之一。
涡流是由水流速度和方向的不同造成的,它们像是在海洋中画着一个个巨大的圆周轨迹,影响着海洋中的水文环境。
人类生活中的圆周运动车轮的旋转我们乘坐的各种交通工具中,车轮的旋转就是一种典型的圆周运动。
汽车、自行车、火车等交通工具的前进,都是依靠车轮围绕中心点做圆周运动产生的。
这种圆周运动使得交通工具能够稳定地前进。
摆动物体人类生活中还有很多摆动的物体,比如钟表的指针、吊坠、摇摆玩具等。
这些物体的运动往往也是圆周的。
它们依靠重力或者弹簧力等力的作用,围绕固定的轴心做圆周运动。
其他领域中的圆周运动除了自然界和人类生活中,圆周运动在其他领域也有广泛的应用。
比如天文学中的行星运动、机械工程中的机械零件旋转等,都是圆周运动的典型例子。
总的来说,生活中的圆周运动无处不在,它是自然规律的一种体现,也是人类活动的重要组成部分。
通过深入理解圆周运动的原理和规律,我们可以更好地认识和利用这一现象,为生活带来更多的便利和美好。
愿我们在生活中,能够更多地感受到圆周运动带来的神奇和奇妙!。
生活中的圆周运动
小结: 小结:
汽车对桥面的压力 超重失重状态
最高点
v N = G− m < G r
2
最低点
v N = G+ m > G r
2
用模拟实验验证分析
注意观察指针的偏转大小
举一反三
一辆卡车在丘陵地匀速行驶, 一辆卡车在丘陵地匀速行驶,地形如 所示,由于轮胎太旧 由于轮胎太旧,途中爆 图6-8-5所示 由于轮胎太旧 途中爆 胎,爆胎可能性最大的地段应是 爆胎可能性最大的地段应是
• 【学生活动】设计火车弯道 • 学生分组讨论,提出可行性方案
【最佳方案】 最佳方案】
外轨略高于内轨
实际应用中的处理: 实际应用中的处理:外轨比内轨高
FN
F
G
θ
【方案剖析】 方案剖析】
FN
解析: 解析: F合 = Fn
2
F合
v ∴ mg tan α = m R
火车转弯规定临界速度: 火车转弯规定临界速度: 临界速度
7、
生活中的圆周运动
实例
一、铁路的弯道
思考: 思考:
• 在平直轨道上匀 速行驶的火车, 速行驶的火车, 火车受几个力作 用?这几个力的 关系如何? 关系如何?那火 车转弯时情况会 有何不同呢? 有何不同呢? • 火车转弯时是在 做圆周运动, 做圆周运动,那 么是什么力提供 向心力? 向心力?
车轮的构造
火车车轮有突出的轮缘
——内外轨道一样高 铁路的弯道 ——内外轨道一样高
v2 =m r
F = F向心力
N
.
G
F
外轨对轮缘的弹力提供向心力
靠这种办 法得到的向 心力缺点是 什么? 什么?如何 解决这一实 际问题? 际问题?
生活中的圆周运动
人圆周运动
一个人在夜里走路,他 的家在山谷的另一边。他离 开一个樵夫的小屋,朝着山 谷走去,夜里大雪纷飞,看 不清四周的道路。他一直按 着自己认为正确的方向前 行,但很快就不知不觉地偏离了原来的路线,结果 又回到了那个樵夫的小屋。但他没有气馁,再次出 发,结果还是一样。他四次都朝那同一个方向穿过 山谷,可每次他都回到原来的那个小屋,仿佛有什 么魔力牵引着他似的。
(2)如果物体的向心力突然消失,则物体 的速度方向不再改变,由于惯性物体会沿着 此方向(即切线方向)并按此时的速度大小 飞出。这时 FN 0 。
(3)如果提供的外力小于物体做匀速圆周 运动所需要的向心力,虽然物体的速度方向 还要改变,但速度方向变化较慢,因此物体 偏离原来的圆周做离心运动,其轨迹为圆周 2 F mr 和切线间的某条线。这时 。
在游乐场里, 坐过上车惊险又 有趣,当乘客头 朝下高速飞行乘 客为什么不会从 车上栽下来呢? 这是因为设 计师们按照圆周运动的知识对过山车的安 全性进行了精心的设计。
一、铁路的弯道
在平直轨道上匀速行驶的火车,所受的合力为 0,而火车转弯时实际在做圆周运动,是什么力提 供的向心力呢?火车转弯时有一个规定的行驶速 度,按此速度行驶最安全,那么,规定火车以多 大的速度行驶?
在所受合力突然消失,或者不足以提
供圆周运动所需的向心力的情况下,
就做逐渐远离圆心的运动。这种运动
叫做离心运动。
2.物体做离心运动的条件:
F 合 0或F合 mr
2
说明:离心现象的解释
(1)向心力的作用效果是改变物体的运动 方向,如果它们受到的合外力恰好等于物体 的向心力,物体就做匀速圆周运动,此 2 时 F合 mr 。
(4)离心力的性质是惯性的表
生活中的圆周运动
2.宇航员在围绕地球做匀速圆周运动的空间站中处于完全 失重状态,下列说法正确的是( AC )
A.宇航员仍受重力的作用
B.宇航员受力平衡 C.宇航员受的重力等于所需的向心力 D.宇航员不受重力的作用
3.一轻杆一端固定一个质量为M的小球,以另一端O为圆 心,使小球在竖直面内做圆周运动,以下说法正确的是 ( ACD ) A.小球过最高点时,杆所受的弹力可以等于零
逐渐远离圆心的运动,叫做离心运动。
2.离心运动的应用与防止 离 心 甩 干 离 心 抛 掷
离 心 脱 水
离 心 分 离
1.一辆汽车匀速通过半径为R的凸形路面,关于汽车的受 力情况,下列说法正确的是( BC )
A.汽车对路面的压力大小不变,总是等于汽车的重力
B.汽车对路面的压力大小不断发生变化,总是小于汽车所受 重力 C.汽车的牵引力不发生变化 D.汽车的牵引力逐渐变小
设计?
实际铁路弯道是倾斜的,外轨高于内轨。原因是如果弯 道是水平的,仅靠轨道挤压产生的弹力提供向心力容易 损坏车轮与轨道。所以采取倾斜路面,让重力和支持力
的合力提供部分向心力的方法。
FN
F
mg
例2.当火车提速后,如何对旧的铁路弯道进行改造?内外 轨的高度差h如何确定?
v0 2 m mg tan r
B.小球过最高点时的最小速率为 gR
C.小球过最高点时,杆所受的力可以等于零也可以是压 力和拉力 D.小球过最高点时,速率可以接近零
4. (2012·梁山高一检测)如图所示,杂技演员在表演 “水流星”, 用长为1.6m轻绳的一端,系一个总质量为
0.5kg的盛水容器,以绳的另一端为圆心,在竖直平面内做
力条件是什么?
v2 2 必须有向心力作用 F m 或F m R或F mv R
生活中的圆周运动
v
gr 时,压力FN为零。处于
完全失重状态。
二、竖直面的圆周运动
完全失重
太空中的圆周运动
1、汽车静止在桥上与通过桥时的状态是否相同?
2、汽车过凹桥,在最低点时,车对凹桥的压力怎样?
v Fn FN G m r
v FN G m r
2
2
FN
v
G FN>G,即汽车对桥的压力大于其所受重力,处于超 重状态。
火车车轮结构
一、水平面的圆周运动 2、火车转弯:
问题:火车在水平轨道面上转弯,做圆周运动,所受力怎么样? 什么力充当向心力?
N
Fn N
一、水平面的圆周运动 2、火车转弯: 火车转弯 外轨略高于内轨
FN
F合
Fn F合
G
问题:若刚好合力提供向心力,此时最理想, 理想转弯速度 v=?
列车速度过快,造成翻车事故
力学是关于运动的科学,它的 任务是以完备而又简单的方式描述 自然界中发生的运动。
第五章
曲线运动
——基尔霍夫
8
生活中的圆周运动
生活中常见的圆周运动
一、水平面的圆周运动 1、汽车转弯:
f静
Fn f静
赛道的设计
FN
问题:若刚好合力提供 向心力,必须规定此时 的转弯速度 v ?
F合
G
一、水平面的圆周运动 2、火车转弯:
汽车过凸桥时,在最高点时,车对凸桥的压力又怎样?
v Fn G FN m r
v FN G m r
2
2
FNLeabharlann vGFN<G 即汽车对桥的压力小于其所受重力,处 于失重状态。
若汽车的运动速度变大,压力如何变化?
新人教版高中物理必修二第六章第四节《生活中的圆周运动》
心的距离保持不变。一旦向心力突然消失,物体就会沿切线方向
飞出去。
除了向心力突然消失这种情况外,在合力不足
以提供所需的向心力时,物体虽然不会沿切线飞
去,也会逐渐远离圆心(图 6.4-7)。
离心运动
这里描述的运动叫作离心运动。离心
运动有很多应用。例如,洗衣机脱水时
使汽车做圆周运动的向心力 F。鉴于向心加速度的方向是竖直向下
的,故合力为
F = G - FN
汽车过拱形桥
当汽车通过桥的最高点时,根据牛顿第二定律 F = ma,
有
F=
所以
2
m
G - FN = m
2
由此解出桥对车的支持力 FN = G - m
2
汽车对桥的压力 FN′与桥对汽车的支持力 FN 是一对作用力和反作
在铁路弯道处,稍微
留意一下,就能发现内、
外轨道的高度略有不同。
你能解释其中的原因吗?
火车转弯
车轮的构造
火车车轮有突出的轮缘
火车转弯
火车转弯时实际是在做圆周运动,因而具有向心加速度。是什么力
使它产生向心加速度?与汽车轮胎不同的是,火车的车轮上有突出的轮缘
如果铁路弯道的内外轨一样高,火车转弯时,外
火车转弯
汽车过拱形桥
汽车过拱形桥时的运动也可以看作圆周运动。质量为m 的汽车
在拱形桥上以速度 v 前进,设桥面的圆弧半径为 r,我们来分析汽
车通过桥的最高点时对桥的压力。
选汽车为研究对象。分析汽车所受的力,如果知道了桥对汽车
的支持力 FN,桥所受的压力也就知道了。
汽车过拱形桥
汽车在竖直方向受到重力 G 和桥的支持力 FN,它们的合力就是
生活中的圆周运动
生活中的圆周运动圆周运动是一种非常常见的运动形式,它在我们的日常生活中无时不在。
圆周运动是指物体在做一个圆形的运动,圆形的路径是被称为圆周,这个运动的性质和特点非常有趣,这篇文章将会围绕圆周运动展开,介绍一些我们日常生活中圆周运动的应用。
工业机器上的圆周运动做圆周运动的机器往往有一个能够旋转的部分,这个部分需要以稳定的速度旋转。
这种运动可以在工业机器上找到。
例如,汽车的发动机,它的活塞每一个上下运动就是一个圆周运动,而发动机的曲轴则完成了一个完整的圆周运动,从而将活塞的运动转换为转向轮的动力。
在机械工程中,圆锥齿轮和齿轮的设计常常涉及到圆周运动的速度和方向的控制。
在流水线工厂生产线上,各种机器的控制电机、伺服马达和开关也需要使用圆周运动来实现。
儿童乐园上的圆周运动在儿童乐园上,圆周运动也起到了非常大的作用。
这种运动是指将一个圆形结构转动起来,从而使小孩可以坐在圆形结构上摆动。
这种运动可以经常看到在露天游乐场上的旋转木马、回旋螺旋梯和旋转视角等游乐设施上。
圆周运动给人们带来的感觉是非常愉悦的,而且还能锻炼小孩的平衡感和协调能力。
运动员的圆周运动在许多体育项目中,运动员也需要以一定的速度、强度和频率进行圆周运动。
例如,田径运动员在跑步时会使用“弯道战术”,在圆形赛道的弯道处以稍微缓慢一些的速度跑,而在直道处以更快的速度跑,以此来实现最快的比赛成绩。
在手球、篮球和足球等室内外运动项目中,运动员经常需要在场地上绕圆形的轨道移动,跳跃和弯曲,从而打出配合和进攻的配合。
天文学中的圆周运动圆周运动在天文学中也扮演着非常重要的角色。
例如,地球在绕着太阳运动时,它的轨道就是一个圆周,绕着自己的轴旋转一周所需要的时间也是固定的。
太阳系中其他星球的运动轨迹也是类似的。
这些圆周运动的规律性对于天文学家来说非常重要,因为它能够帮助他们了解星球和行星的轨迹、运动速度和方向,这些都是研究天文学的重要基础。
总的来说,圆周运动是我们日常生活中非常常见的运动形式,它不仅存在于机械工程、儿童乐园和体育运动中,还存在于天文学研究中。
生活中的圆周运动
生活中的圆周运动圆周运动在我们日常生活中十分常见,无论是机械装置、自然界还是人体运动,都离不开它。
所谓圆周运动,就是物体沿着圆形轨迹运动的过程,如地球环绕太阳的公转、日出日落等等,下面我们将从多个方面介绍生活中的圆周运动。
首先是机械装置方面。
打开电风扇,扇叶迅速转动,形成一股持续的风。
这其中便涉及到了圆周运动,电机的转子沿着圆形轨道做匀速旋转,带动轴承旋转,轴承再带动扇叶旋转,最终形成风的效果。
同样的,喜欢骑自行车的人应该会知道,车轮也是一个圆周运动,骑车人踩踏着脚蹬使得齿轮转动,带动车轮也开始转动,完成一次圆周运动。
在汽车轮胎上也能看到同样的场景,油门踩下去,汽车四个轮子开始快速转动,形成前进的动力。
其次,是自然界中的圆周运动。
最为显著的,就是天体间的圆周运动。
例如地球在公转运动时,它沿着一个近似圆形的轨道围绕着太阳运动。
同时地球也在自转运动,因此地球的一天就是绕着自身轴线旋转一圈。
卫星也是一种常见的圆周运动,如我们的手机信号就是通过卫星信号来实现传递的。
此外,在日常生活中,我们还能看到一些个体动物的运动也和圆周运动相关。
如鱼在水中游动,其鱼鳃不断运动,形成一系列的圆周运动,以吸取氧气和排出二氧化碳。
还有蜻蜓在空中盘旋的场景,蜻蜓的翅膀以一定的节律做匀速转动,循环往复形成圆周运动,这样他们可以在空中滞留很长时间,以觅食或寻找配偶。
最后说说人体运动中的圆周运动。
体育运动中,许多动作也包含了圆周运动。
如乒乓球运动员发球时,球拍以一定速度进行圆周运动,以及拳击运动员练习搏击时,拳头沿着特定的轨迹进行圆周运动以造成打击,动作优雅婀娜。
健身操中也有很多圆周运动的练习动作,如旋转木马、大股腿等等。
总而言之,圆周运动是我们生活中不可缺少的一部分。
从机械装置、自然界到人体运动,它的影响无处不在。
通过对圆周运动的分析,我们可以深入了解事物的本质以及一些自然规律,这对于我们的生活和工作都是非常有帮助的。
生活中圆周运动
03
通过微积分可以计算圆周运动的轨矢量运算在处理复杂问题时的作用
描述圆周运动的物体的位置和速度
矢量运算可以用来描述圆周运动的物体的位置和速度,通过矢量的加法和减法可以得到物体在不 同时刻的位置和速度。
分析圆周运动的合成和分解
通过矢量运算可以分析圆周运动的合成和分解,如将复杂的圆周运动分解为简单的匀速直线运动 和匀变速直线运动的合成。
03
钟表、指南针等日常用品
钟表指针的旋转、指南针的指向都涉及圆周运动,这些日常用品的设计
和使用都离不开圆周运动原理。
促进科技发展,推动社会进步
航天器轨道设计
航天器的轨道设计需要精确计算和控制圆周运动的参数, 以确保航天器能够按照预定轨道稳定运行,这对于人类的 太空探索和科学研究具有重要意义。
精密机械制造
三角函数在圆周运动中应用
1 2
描述匀速圆周运动的物体的位置
三角函数可以用来描述匀速圆周运动的物体在某 个时刻的位置,通过角度和半径的关系,可以准 确地确定物体的坐标。
分析圆周运动的周期性
三角函数具有周期性,因此可以用来分析圆周运 动的周期性,如转速、周期、频率等。
3
计算向心加速度和向心力
在向心加速度和向心力的计算中,需要用到三角 函数的导数和积分,以及三角函数之间的关系, 如正弦定理、余弦定理等。
波动可以通过不同的介质进行传播,如固体、液体和气体。在传播过程中,波动会遵循一定的传播规 律,如反射、折射和衍射等。此外,波动的传播速度会受到介质性质的影响。
曲线运动在自然界和人类活动中的普遍性
自然界中的曲线运动
地球围绕太阳公转、月亮围绕地球旋转 、行星的自转等都是自然界中的曲线运 动现象。这些运动遵循着天体物理学的 规律,呈现出周期性和稳定性。
生活中的圆周运动
生活中的圆周运动1圆周运动课堂上这样定义圆周运动,它是指物体沿着圆周的运动,即物体运动的轨迹是圆的运动。
日常生活中,电风扇工作时叶片上的点、时钟指针的尖端、田径场弯道上的运动员等,都在做圆周运动。
科学研究中,大到地球围绕太阳的运动,小到电子围绕原子核的运动,均是用圆周运动的规律来研究。
圆周运动是以向心力为物体提供运动动力时所需要的加速度,向心力就是把运动物体拉向圆形轨迹的中心点,即改变物体运动速度的方向,也就是说正是因为向心力的存在,才迫使物体不在遵守牛顿第一定律惯性地进行直线运动。
物体作圆周运动必须满足两个条件,一是物体具有初始速度;二是物体受到一个大小不变、方向与物体运动速度方向始终垂直并且指向圆心,即存在向心力。
圆周运动分为变速圆周运动和匀速圆周运动,这里强调一点的是匀速圆周运动中速度的方向是不断变化的,即匀速圆周运动实际上是变速运动,匀速只是速率保持不变。
2圆周运动实例分析2.1火车弯道车转弯时是典型的圆周运动实例,我们知道火车的车轮上有突出的轮缘,如果铁路弯道的内外轨一样高,外侧车轮的轮缘挤压外轨。
使外轨发生弹性形变,外轨对轮缘的弹力就是火车转弯时作圆周运动所提供的的向心力。
但是,火车质量太大缘故,若内外轨高度一致,以此办法获得向心力会对轮缘和外轨间的相互作用力太大,铁轨和车轮极易受损。
因此,实际修建铁路时一般会使火车的内外轨有一定的高度差,利用重力和铁轨对物体的支持力的合力提供部分的向心力,以避免铁轨的损坏。
若设火车的轨道间距为L,两轨高度差为h,转弯时半径为r,行驶的火车质量为m,两轨所在平面与水平面之间的夹角为θ,则火车转弯时所需要的向心力F完全由重力mg和支持力FN的合力提供,由此达到这个限定速度就是火车转弯时为了避免铁轨磨损而规定的速度,只有转弯时小于这个速度时重力和支持力的合力大于火车所需的向心力,内轨向外轨方向挤压内侧车轮,以抵消多余部分的力使其合力等于向心力。
2.2公路弯道生活中的公路上转弯处常常把道路筑成外侧高、内侧地,一般呈现出单向横坡的形状,大家了解这其中的原因吗?汽车在公路上转弯时可视为圆周运动,转弯时所需的向心力是由地面对车轮的侧向静摩擦力来提供,但是由于不能使路面的粗糙程度增大从而增大摩擦力来提供向心力的缘故,人们也利用到了汽车的重力的一个分力,提供一定程度的向心力,从而使汽车顺利转弯,并且也有效保护公路的路面。
生活中的圆周运动(很全面)
G
生活中的圆周运动㈡
杂技水流星
v2 对杯中的水: mg N m r
当v gr 时,N 0
此时水恰好不流出
成功表演“水流星” 节目,需保证杯子在最高 点的线速度 gr v
N G
演示实验一:水流星
例1. 用长为L能够承受最大弹力为7mg的轻绳悬挂一个 质量为m的小球,从与O点等高的A点由静止释放,若 在O点正下方H处的P点定一个钉子,求H满足什么条 件能使小球绕P点在竖直平面内做完整的圆周运动。 (已知小球在任何一点的速率满足 1 mv 2 mg h ,其 2 中Δh为该点与A点的高度差)
O C P L A
H
B
演示实验二:钉子挡绳子
例1. 用长为L能够承受最大弹力为7mg的轻绳悬挂一个 质量为m的小球,从与O点等高的A点由静止释放,若 在O点正下方H处的P点定一个钉子,求H满足什么条 件能使小球绕P点在竖直平面内做完整的圆周运动。 (已知小球在任何一点的速率满足 1 mv 2 mg h ,其 2 中Δh为该点与A点的高度差)
FN
mg
v2
若汽车通过凹 桥的速度增大, 会出现什么情 况?
FN >mg
比较三种桥面受力的情况
v GN m r
2
N=G
v N G m r
2
思考题:
O
1. 在凸形桥的最高点, 汽车不会飞离桥面的条件是什么? 2. 一个小球在半圆形光滑轨道的最高点以初速度v0 滚下来,它是否能一直沿轨道运动下来?如果能, 试给出使小球一直沿轨道运动的v0的条件;如果 不能,试确定小球将在何处离开轨道?
N
v 在A点 : mg N A m R
2 A
A
N mg
生活中的圆周运动
第7节生活中的圆周运动1.火车转弯处,外轨略高于内轨,使得火车所受支持力和重力的合力提供向心力。
2.汽车过拱形桥时,在凸形桥的桥顶上,汽车对桥的压力小于汽车重力,汽车在桥顶的安全行驶速度小于gR ;汽车在凹形桥的最低点处,汽车对桥的压力大于汽车的重力。
3.绕地球做匀速圆周运动的航天器中,宇航员具有指向地心的向心加速度,处于失重状态。
4.做圆周运动的物体,当合外力突然消失或不足以提供向心力时, 物体将做离心运动。
1.铁路的弯道(1)火车在弯道上的运动特点:火车在弯道上运动时做圆周运动,因而具有向心加速度,由于其质量巨大,需要很大的向心力。
(2)转弯处内外轨一样高的缺点:如果转弯处内外轨一样高,则由外轨对轮缘的弹力提供向心力,这样铁轨和车轮极易受损。
(3)铁路弯道的特点: ①转弯处外轨略高于内轨。
②铁轨对火车的支持力不是竖直向上的,而是斜向弯道内侧。
③铁轨对火车的支持力与火车所受重力的合力指向轨道的圆心,它提供了火车做圆周运动的向心力。
2.拱形桥(1)向心力来源(最高点和最低点):汽车做圆周运动,重力和桥面的支持力的合力提供向心力。
(2)动力学关系:①如图5-7-1所示,汽车在凸形桥的最高点时,满足的关系为mg -F N =m v 2R ,F N =mg -m v 2R,由牛顿第三定律可知汽车对桥面的压力大小等于支持力,因此汽车在凸形桥上运动时,对桥的压力小于重力。
当 图5-7-1v =gR 时,其压力为零。
②如图5-7-2所示,汽车经过凹形桥的最低点时,F N-mg =m v 2R ,F N =mg +m v 2R,汽车对桥面的压力大小F N ′=F N 。
图5-7-2汽车过凹形桥时,对桥的压力大于重力。
3.航天器中的失重现象 (1)航天器在近地轨道的运动:①对于航天器,重力充当向心力, 满足的关系为mg =m v 2R ,航天器的速度v =gR 。
②对于航天员,由重力和座椅的支持力提供向心力,满足的关系为mg -F N =m v 2R 。
高中物理5.7生活中的圆周运动详解
高中物理5.7生活中的圆周运动详解1火车转弯问题(水平匀速圆周运动)在水平圆形轨道上面行驶的火车,如果内外轨道的高度完全一样,火车坐水平圆周运动的向心力就完全由外侧轨道对车轮缘的弹力来提供。
久而久之会造成外侧轨道的损坏,所以为了减轻铁轨和轮缘的损耗,人们常把外侧铁轨做得高一点,这样倾斜铁轨的弹力和重力的合力就可以很大程度地提供火车所需的向心力。
和火车转弯类似的是高速公路的转弯处也同样做成外侧高内侧低,是为了防止车轮和地面的摩擦力不够造成向外侧漂移。
如图所示,设火车内外轨道水平间距为L,高度差为h,转弯处轨道半径为R。
调整高度差使得火车所受重力和支持力的合力提供向心力:2“水流星”问题(竖直非匀速圆周运动)用一根细绳系着盛水的杯子,演员抡起绳子,使杯子在竖直面内做圆周运动。
以杯子中的水为研究对象受力分析,根据牛顿第二定律可知:3汽车过拱桥问题1. 汽车过凸形桥汽车在过凸形桥的最高点时,对它竖直方向做受力分析如图所示:根据牛顿第二定律可得2. 汽车过凹形桥汽车过凹形桥最低点时,对汽车竖直方向受力分析如图所示根据牛顿第二定律可得则支持力大于汽车的重力,汽车处于超重状态,FN随速度v的增大而增大。
4航天器中的失重现象绕地球做匀速圆周运动的航天器,其中的物体做圆周运动,所需的向心力由物体所受重力提供,因此航天器中的物体处于完全失状态。
5离心运动做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力时,就做逐渐远离圆心的运动,这种运动就叫离心运动。
1. 本质做圆周运动的物体,由于本身的惯性,总有沿着圆周切线飞出去的倾向。
2. 受力特点①当F=mωr2时,物体做匀速圆周运动;②当F=0时,物体沿切线方向飞出;③当F<mωr2时,物体逐渐远离圆心,做离心运动。
习题演练1. 宇航员在围绕地球做匀速圆周运动的空间站中处于完全失重状态,下列说法正确的是()A.宇航员仍受重力的作用B.宇航员受力平衡C.宇航员受的重力等于所需的向心力D.宇航员不受重力的作用2. 一辆卡车在丘陵地带匀速行驶,地形如图所示,由于轮胎太旧,爆胎可能性最大的地段应是( )A a处B b处C c处D d处习题解析1. AC2. D 在凹形路面处支持力大于重力,且FN-mg=mv2/r,因为v不变,R越小,FN越大,故在d处爆胎可能性最大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v临= gr vmin
讨论
v2 F (1)当v> gr时, N m mg r
(2)当v gr时, N 0 F
(3)当v gr时, 物做近心运动
轨道提供支 持力,绳子提 供拉力。
② 杆儿和双轨模型 当FN mg时 v
能过最高点的临界条件:
FN FN mg
v临界=0
讨论
当速度v > gr 时, 杆儿对小球是拉力;
物体做圆周 运动所需 要的向心力
当"供""需"平衡时,物体 做圆周运动。
υ2 Ffmax<m r
υ
Ff
汽车
② 高速转动的砂轮、飞轮等
高速转动的砂轮、飞轮等,都不得超过允许的最大转速,如果转 速过高,砂轮、飞轮内部分子间的作用力不足以提供所需的向心力 时,离心运动会便它们破裂,甚至酿成事故。为了防止事故的发生, 通常还要在砂轮和飞轮的外侧加装一个防护罩。
关于制作"棉花"糖的原理
汽车在水平地面上转弯是什么 力提供向心力的呢?
FN Ff
O
mg
汽车在水平路面上转弯所 需要的向心力来源:汽车侧 向所受的静摩擦力。
FN Ff
O
v 即:Fn F f m R
2
mg
当汽车转弯的半径一定时,汽车的速度v越大,所需 的向心力也越大,静摩擦力也越大,当静摩擦力为 最大静摩擦力时:
v Fn mg m v gR R
最高点A 的速度
重力、 绳的拉力
重力、杆的拉 力或支持力
重力、外管壁 的支持力或内 管壁的支持力
v A gL
vA 0
vA 0
练习:用钢管做成半径为R=0.5m的光滑圆 环(管径远小于R)竖直放置,一小球(可看作 质点,直径略小于管径)质量为m=0.2kg在环 内做圆周运动,求:小球通过最高点A时,下 列两种情况下球对管壁的作用力。 取 g=10m/s2 (1)A的速率为1.0m/s (2)A的速率为4.0m/s
A
mg FN2O
实例研究——失重现象
航天员在航天器中绕 地球做匀速圆周运动 时,航天只受地球引力, 引力为他提供了绕地 球做匀速圆周运动所 需的向心力F引=mv2/R, 所以处于失重状态。
mg=
2/R mv
1/2 由此可以得出v=(Rg)
在绕地球做匀速圆周运动的宇宙飞船中 的宇航员,除了地球引力外,还可能受到飞 船座舱对他的支持力FN。
②链球运动
在田径比赛中,链球项目就是得用 离心现象来实现投掷的。链球的投掷 是通过预摆和旋转来完成的,运动员 手持链球链条的一端,在链球高速旋 转时,突然松手,拉力消失,链就沿切线 方向飞出去。
③离心干燥器 把湿布块放在离心干燥器的金属网笼里,网笼转得比 较慢时,水滴跟物体的附着力 F足以提供所需要的向心力, 使水滴做圆周运动,当网笼转的比较快时,附着力 F 不足 以提供所需要的向心力,于是水滴做离心运动,穿过网孔, 飞到网笼外面。洗衣机的脱水筒也是利用离心运动把湿 衣服甩干的。
FN
v r F -FN m 过小时: r 外侧 内侧轨道与轮之间有弹力
mg
F
若火车车轮无轮缘,火车速度 过大或过小时将向哪侧运动? 过大时:火车向外侧运动 离心 向心
θ
内侧
过小时:火车向内侧运动
"供需"不平衡
列车速度过快,造成翻车事故
实例研究——汽车过桥
1、汽车过拱桥
质量为m 的汽车以恒定的速率v通过半径为 r的拱桥,如图所示,求汽车在桥顶时对路面 的压力是多大?
"供""需"是否平衡决定物体做何种运动
F拉>mω2r F拉=0 F拉 <mω2r
o
F拉=mω r
2
3、离心运动的应用和防止
(1)离心运动的应用 ①甩干雨伞上的水滴
在雨天,我们可以通过旋转雨伞 的方法甩干雨伞上的水滴,旋转时,当 转动快到一定的程度时,水滴和雨伞之 间的附着力满足不了水滴做圆周运动 所需的向心力,水滴就会做远离圆心的 运动而被甩出去。
解: 先求出杆的弹力为0的速率v0
mg=mv02/l v02=gl=5 v0=2.25 m/s
(1) v1=1m/s< v0 球应受到内壁向上 的支持力N1,受力如图示:
FN1 m A mg O
mg-FN1=mv12/l
得: FN1 =1.6 N
(2) v2=4m/s > v0 球应受到外壁向下的支持力N2 如图所示: m 则 mg+ FN2 =mv22/l 得 FN2 =4.4 N 由牛顿第三定律,球对管壁的作用力分别 为:(1)对内壁1.6N向下的压力;(2)对外壁 4.4N向上的压力。
v2 r
随着v的增大而增大,
但提供向心力的合力为静摩擦力 Ff ≤ Ffmax 当Ffmax < m
v2 r
时,产生离心现象。
2、合外力与向心力的关系
做匀速圆周运动的物体,由于惯性总有沿切线方向飞 去的倾向,在合外力突然消失或者不足以提供圆周运动所 需的向心力的情况下,做逐渐远离圆心的离心运动;当合 外力大于物体做圆周运动所需的向心力时,物体做离圆心 越来越近的向心运动;只有当合外力等于所需的向心力时, 物体才可能做匀速圆周运动。
它的内筒与洗衣机的脱 水筒相似,里面加入白砂糖, 加热使糖熔化成糖汁。内 筒高速旋转,黏稠的糖汁就 做离心运动,从内筒壁的小 孔飞散出去,成为丝状,到达 温度较低的外筒时,迅速冷 却凝固,变得纤细雪白,像一 团团棉花。
求解圆周运动问题的思路
(1)根据题意,确定物体做圆周运动 的平面、半径和圆心; (2)对物体进行受理分析,找出向心 力; F -F =F
O
Ff m "供需"不平衡,如何解决? R
代入数据可得:Ff=2.4×106N
但轨道提供的静摩擦力最大值:
mg
Ffmax=μmg=1.96×106N
最佳设计方案
火车以半径R=900 m转弯,火车质量 为8×105kg ,速度为30m/s,火车轨 距l=1.4 m,要使火车通过弯道时仅 受重力与轨道的支持力,轨道应该垫 的高度h?(θ较小时tanθ=sinθ) 解: F tan 由力的关系得:
当速度v < gr 时, 杆儿对小球是支持力;
v FN mg m r
2
2
当速度v = gr 时, 杆儿对小球无作用力。
v mg FN m r
FN=0
杆既可 以提供 拉力,也 可以提 供支持 力。
竖直平面内的变速圆周运动
绳m AO B Nhomakorabea杆
m A
L O B
圆管
mA R O B
模型图
L
m的受力 情况
v
F<mω2r
F
o
(2)离心运动的防止
① 在水平公路上行驶的汽车 转弯时
在水平公路上行驶的汽车,转弯时 所需的向心力是由车轮与路面的静摩 擦力提供的。如果转弯时速度过大,所 需向心力F大于最大静摩擦力Ffmax,汽 车将做离心运动而造成交通事故。因 此,在公路弯道处,车辆行驶不允许超 过规定的速度。
改进措施: (1)增大圆盘半径 (2)增加路面的粗糙程度 (3)增加路面高度差——外高内低 (4)最重要的一点:司机应该减速慢行!
实例研究——火车转弯
火车以半径R= 300m在水平轨道上转弯,火车质量 为8×105kg,速度为30m/s。铁轨与轮之间的动摩 擦因数μ=0.25。
FN
Ff 设向心力由轨道指向圆心的静摩擦 2 力提供 v
v G FN m r
2
G
v FN G m r
2
FN
FN = G
G
飞车走壁
摩托车飞车走壁, 请分析受力情况, F 解释现象。
N
F
mg
过 山 车
思考:过山车为什么在最高点也不会掉下来?
理论研究
① 绳和内轨模型
v2 最高点:FN mg m r
v
FN mg
v2 当FN=0时,mg m r
指向圆心 背离圆心 向心
(3)根据牛顿运动定律,列出运动方 2 2 程。 v 2 2
F指向圆心 -F背离圆心 =F向心 =m
或m r或m r r T
提供物体做圆 周运动的向心 力(受力分析)
v2 m r 2 F合 m r 2 m 2 r T
解:汽车通过桥顶时,受力如图:
由牛顿第二定律:
2
FN
F
mg
Ff r
v mg FN m r
v FN mg m r
2
O
2
失重 当汽车通过桥顶时的速度逐渐增 大时FN 和 FN′会怎样变化?
v 由牛顿第三定律: FN FN mg m r
你见过凹形桥吗?
泸 定 桥
拓展:质量为m的汽车以恒定的速率v通过半 径为r的凹形桥面,如图所示,求汽车在最低点 时对桥面的压力是多大?
mg
FN
F
v2 由向心力公式得: F m R
h
2
θ
mg
lv h 由几何关系得: sin h =0.14m l Rg
研究与讨论
若火车速度与设计速度不同会怎样?
需要轮缘提供额外的弹力满足向 2 v 2 心力的需求 F +FN m v 过大时: F 2 外侧轨道与轮之间有弹力 m r
2
某司机驾车在丽龙高速出口,通过水平转盘时出 了车祸。讨论其原因,交通部门有责任么?如果你 是公路的设计师,请提出你的道路改进措施?
转弯处的路面 内低外高!
FN
Ff
G
FN