随机过程-第五章 马尔可夫链
数据科学基础课件-第5章 随机游走与马尔可夫链
重复以上过程得到n个接受的样本z0,z1,...zn−1
24
Markov Chain Monte Carlo
基本思路:要得到给定概率分布P(x)的样本,利用马尔可
Weights Hidden Markov Model
2
Introduction
计算机科学的发展中,出现了一些领域独立的方 法,在处理各种领域的问题时,取得了很大成功
机器学习 马尔可夫链
3
马尔可夫与随机过程
安德烈·马尔可夫(Andrey Markov, 1856-1922),俄国数学家,主要研究领 域在概率和统计方面,开创了随机过程 这个新的领域。
pj(t) = ∑ipi(t-1)pij
10
long-term probability distribution
Long-term probability distribution(长期概率分布)
设P(t) 是t步随机游走后的顶点概率分布,则 Long-term probability distribution a(t) 定义为:
Stationary Distribution
平稳分布示例
初始概率分布:
社会学家经常把人按其经 济状况分成3类:下层、 中层、上层,分别用1,2,3 表示
前n代人的分布状况:
P:
13
细致平稳条件
带有边概率强连通图的随机游走平稳概率分布的 一种求法
如果分布π满足 对于任意x, y,
,则π
是马尔可夫链的平稳分布,该式称为细致平稳条件。
5马尔可夫链(精品PPT)
pij P( X n 1 j X n i ) P( f i, Yn 1 j ) P( f i, Y1 j )
二、切普曼-柯尔莫哥洛夫方程
1,随机矩阵 定义:称矩阵A=(aij)S×S为随机矩阵,若aij ≥0,且
i S , 有 aij 1
例5 Polya(波利亚)模型
罐中有b只黑球及r只红球,每次随机地取出一只后 把原球放回,并加入与抽出球同色的球c只,再第二次 随机地取球重复上面步骤进行下去,{Xn=i}表示第n回 摸球放回操作完成后,罐中有i只黑球这一事件,所以
i b r nc , i P X n 1 j X n i 1 , b r nc 0,
x
j i 1
( j i 1)!
dG x ,
j i 1, i 1 其它
Pij 0,
例3 G / M /1排队系统 来到时间间隔分布为G,服务时间分布为指数分布,参 数为 ,且与顾客到达过程独立。 Xn-----第n个顾客来到时见到系统中的顾客数(包括 该顾客),则{Xn,n≥1}是马尔可夫链。记
jS
显然马尔可夫链{Xn,n≥0}的一步转移概率矩阵P为 随机矩阵。 2,n步转移概率 定义:设{Xn,n≥0}是一马尔可夫链,称
n pij P X n m j X m i ,
n 0, i, j 0
为马尔可夫链{Xn,n≥0}的n步转移概率。记
i (n) P X n i ,
j ic j i else
这是一个非齐次的马尔可夫链,在传染病研究中有用。
下面的定理提供了一个非常有用的获得马尔可夫链的方 法,并可用于检验一随机过程是否为马尔可夫链。
随机过程-第五章-连续时间的马尔可夫链
第五章 连续时间的马尔可夫链5.1连续时间的马尔可夫链考虑取非负整数值的连续时间随机过程}.0),({≥t t X定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有})(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++=})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链.由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关.记(5.1)式条件概率一般形式为),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率.定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij =其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程.假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有},{}{t h P s h t s h P i i i >=>+>可见,随机变量i h 具有无记忆性,因此i h 服从指数分布.由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;(2) 当过程离开状态i 时,接着以概率ij p 进行状态j,1=∑≠ij ij p .上述性质也是我们构造连续时间马尔可夫链的一种方法.当∞=i v 时,称状态i 为瞬时状态,因为过程一旦进入此状态立即就离开.0=i v 时,称状态i 为吸收状态,因为过程一旦进入状态就永远不再离开了.尽管瞬时状态在理论上是可能的,但以后假设对一切i, ∞<≤i v 0.因此,实际上一个连续时间的马尔可夫链是一个这样的随机过程,它按照一个离散时间的马尔可夫链从一个状态转移到另一个状态,但在转移到下一个状态之前,它在各个状态停留的时间服从指数分布.此外在状态i 过程停留的时间与下一个到达的状态必须是相互独立的随机变量.因此下一个到达的状态依赖于i h ,那么过程处于状态i 已有多久的信息与一个状态的预报有关,这与马尔可夫性的假定相矛盾.定理5.1 齐次马尔可夫过程的转移概率具有下列性质:;0)1(≥ij p (2);1=∑∈ij Ij p(3) ∑∈=+Ik kj ik ij s p t p s t p )()()(.其中(3)式即为连续时间齐次马尔可夫链的切普曼—柯尔哥洛夫方程. 证明 只证(3).由全概率公式及马尔可夫性可得 ===+=+)})0()({)(i X j s t X P s t p ij =∑∈===+Ik i X k t X j s t X P })0()(,)({=})()({})0()({k t X j s t X P i X k t X P Ik ==+==∑∈∑∈=Ik kj ik s p t p )()(.对于转移概率)(t p ij ,一般还假定它满足:⎩⎨⎧≠==→.,0,1)(lim 0j i ji t p ij t(5.3)称(5.3)式为正则条件.正则条件说明,过程刚进入某状态不可能立即又跳跃到另一状态.这正好说明一个物理系统要在有限时间内发生限多次跳跃,从而消耗无穷多的能量这是不可能的.定义5.3 对于任 一0≥t 记 },)({)(j t X P t p j ==,},)0({)0(I j j X P p p j j ∈===分别称}{},),({,I j p I j t p j j ∈∈ 齐次马尔可夫过程的绝对概率分布和初始概率分布.定理5.2齐次马尔可夫过程的绝对概率及有限维概率分布具有下列性质: (1) ,0)(≥t p j (2),1)(=∑∈t p j Ij(3) )()(t p p t p ij Ii i j ∑∈=;(4) );()()(h p t p h t p ij Ii i j ∑∈=+(5)).()...(})(,...,)({112111211-∈--====-∑n n i i i i ii Ii i n n t t p t t p p p i t X i t X p n n例5.1试证明泊松过程}0),({≥t t X 为连续时间齐次马尔可夫链. 证明 先证泊松过程具有马尔可夫性,再证明齐次性.由泊松过程的定义 它是独立增量过程,且X(0)=0.11,...0+<<<n n t t t ,有})(,...,)()({1111n n n n i t X i t X i t X P ===++= ,.)0()()()({1111i X t X i i t X t X P n n n n =--==-++ =,111212)()(,...)()(---=--=-n n n n i i t X t X i i t X t X } = })()({11n n n n i i t X t X P -=-++ . 另一方面,因为})()({11n n n n i t X i t X P ==++=})0()()()({11n n n n n n i X t X i i t X t X P =--=-++ =})()({11n n n n i i t X t X P -=-++所以})(,...,)()({1111n n n n i t X i t X i t X P ===++=})()({11n n n n i t X i t X P ==++. 即泊松过程是一个连续时间马尔可夫过程.以下证明齐次性. 当i j ≥ 时,由泊松过程的定义})()({i s X j t s X P ==+= })()({i j s X t s X P -=-+=)!()(i j t eij t---λλ j<i.时,由于过程的增量只取非负整数,故,0),(=t s p ij 所以⎪⎩⎪⎨⎧<≥-==--i j ij i j t e t p t s p i j t ij ij ,0,)!()()(),(λλ, 即转移概率只与t 有关,泊松过程具有齐次性.5.2柯尔莫哥洛夫微分方程对于连续时间齐次马尔可夫链转移概率)(t p ij 的求解一般比较复杂.下面首先讨论)(t p ij 的可微性及)(t p ij 满足的柯尔莫哥洛夫微分程.引理5.1 设齐次马尔可夫过程满足正则性条件(5.3),则对于任意固定的)(,,t p I j i ij ∈是t 的一致连续函数.证明 设h>0,由定理5.1得)()()()()(t p t p h p t p h t p ij rj Ir ir ij ij -=-+∑∈)()()()()(t p t p h p t p h p ij ij ii rj ir ir -+=∑≠=)()](1[)()(t p h p t p h p ij ii rj ir ir --=∑≠故有)],(1[)()](1[)()(h p t p h p t p h t p ii ij ii ij ij --≥--=-+ ),(1)()()()()(h p h p t p h p t p h t p ii ir ir rj ir ir ij ij -=≤≤-+∑∑≠≠因此).(1)()(h p t p h t p ii ij ij -≤-+对于h<0,同样有).(1)()(h p t p h t p ii ij ij --≤-+ 综上所述得到).(1)()(h p t p h t p ii ij ij -≤-+ 由正则性条件知,0)()(lim 0=-+→t p h t p ij ij h 即)(t p ij 关于t 是一致连续的.以下我们恒设齐次马尔可夫过程满足正则性条件(5.3)式.定理5.3 设)(t p ij 是齐次马尔可夫过程的转移概率,则下列极限存在 (1);)(1lim 0∞≤==∆∆-→∆ii i ii t q v t t p (2).,)(lim 0j i q tt p ij ij t ≠∞<=∆∆→∆我们称ij q 为齐次马尔可夫过程从状态i 到状态j 的转移概率或跳跃强度.定理中的极限的概率意义为:在长为t ∆的时间区间内,过程从状态i 转移到另一其他状态的转移概率为)(1t p ii ∆-等于t q ii ∆加一个比t ∆高阶的无穷小量,而过程从状态i 转移到状态j 的转移概率为)(t p ij ∆等于t q ij ∆加一个比t ∆高阶的无穷小量. 推论 对有限齐次马尔可夫过程,有 ∞<=∑≠ij ij ii q q证明 由定理5.1 ,有)()(1,1)(t p t p t pij ij ii Ij ij∆=∆-=∆∑∑≠∈由于求和是在有限集中进行,故有.)(lim )(1lim 00∑∑≠≠→∆→∆=∆∆=∆∆-=ij ij ij i j t ii t ii q t t p t t p q (5.4)对于状态空间无限的齐次马尔可夫过程,一般只有 ∑≠≥ij ij ii q q .若连续时间齐次马尔可夫是具有有限状态空间I={0,1,2,…,n},则其转移速率构成以下形式的矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=nn n n n n q q q q q qq q q Q .....................11111000100 (5.5) 由(5.4)式知,Q 矩阵的每一行元素之和为0,对角线元素为负或0,其余.0,≥ij q 利用Q 矩阵可以推出任意时间间隔t 的转移概率所满足的方法组,从而可以求解转移概率.由切普曼---柯尔莫哥洛夫方程有 ),()()(t p h p h t p Ik kj ik ij ∑∈=+或等价地)()](1[)()()()(t p h p t p h p t p h t p ij ii kj ik ik ij ij --=-+∑≠两边除以h 后令0→h 取极限,应用定理5.3得到 )()()(lim )()(lim 00t p q t p hh p ht p h t p ij ii kj ik ik h ij ij h -=-+∑≠→→ (5.6) 假定在(5.6)式的右边可交换极限与求和,再运用定理5.3,于是得到以下结论: 定理5.4 (柯尔莫哥洛夫向后方程)假设,ii ik ik q q =∑≠则对一切i,j 及0≥t ,有,)()(ij ii ik kj ik ijp q t p q t p -='∑≠ (5.7) 证明 只要证明(5.6)式右边极限与求和可交换次序.现在对于任意固定的N,有≥∑≠→)()(inflim 0t p hh p kj ik ik h )()()(inf lim ,,0t p q t p h h p kj Nk i k ik kj Nk i k ik h ∑∑<≠<≠→= 因为上式对一切N 成立,所以)()()(inflim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≥ (5.8) 为了倒转不等式,注意对于N>i,由于,1)(≤t p kj 所以 ≤∑≠→)()(sup lim ,0t p hh p kj i k ik h ≤+≤∑∑≥<≠→])()()(sup[lim ,0Nk ik kj Nk i k ik h h h p t p h h p ≤--+≤∑∑<≠<≠→])()(1)()(sup[lim ,,0Nk i k ik ii kj Nk i k ik h h h p h h p t p h h p ,)(,,∑∑<≠<≠-+≤Nk i k ikii kj Nk i k ikqq t p q令∞→N ,由定理5.3和条件得)()()(sup lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≤. 上式连同(5.8)可得 )()()(lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→=.定理5.4中)(t p ij 满足的微分方程组以柯尔莫可洛夫向后方程著称.称它们为向后方程,是因为在计算时刻t+h 的状态的概率分布时我们对退后到时刻h 的状态取条件,即我们从)()(})0()({..})(,)0()({)(h p t p i X k h X P k h X i X j h t X P h t p ik Ik kj Ik ij ∑∑∈∈======+=+开始计算.对时刻t 的状态取条件,我们可以导出另一组方程,称为柯尔莫哥洛夫向前方程.可得),()()(h p t p h t p kj Ik ik ij ∑∈=+)()()()()(t p h p t p t p h t p ij kj Ik ik ij ij -=-+∑∈=)()](1[)()(t p h p h p t p ij jj kj jk ik --=∑≠,所以 )}.()(1)()({lim )()(lim 00t p h h p h h p t p ht p h t p ij jj kj jk ik h ij ij h --=-+∑≠→→假定我们能交换极限与求和,则由定理5.3便得到),()()(t p q q t p t p ij ii jk kj ik ij-='∑≠ 令人遗憾的是上述极限与求和的交换不是恒成立,所以上式并非总是成立.然而在大多数模型中----包括全部生灭过程与全部有限状态的模型,它们是成立的. 定理5.5(柯尔莫哥洛夫向前方程) 在适当的正则条件下,,)()()(jj ij kj ik ik ijq t p q t p t p -='∑≠ (5.9) 利用方程组(5.7)或(5.9)及初始条件 .,0)0(,1)0(j i p p ij ii ≠==我们可以解得)(t p ij .柯尔莫哥洛夫向后和向前方程虽然形式不同,但是可以证明它们所求得的解)(t p ij 是相同的.在实际应用中,当固定最后所处状态j,研究)(t p ij 时(i=0,1,2,…,n),采用向后方程比较方便;当固定状态i,研究)(t p ij 时(j=0,1,2,…,),则采用向前方程较方便.向后方程和向前方程可以写成矩阵形式),()(t QP t P =' (5.10) ,)()(Q t P t P =' (5.11) 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---= (222120121110)020100q q q q q qq q q Q ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=............ (222120121110)020100p p p p p pp p p P 这样,连续时间马尔可夫链的转移概率的求解问题就是矩阵微分方程的求解问题,其转移概率由其转移速率矩阵Q 决定.特别地,若Q 是一个有限维矩阵,则(5.10)和(5.11)的解为 .!)()(0∑∞===j jQtj Qt et P定理5.6 .齐次马尔可夫过程在t 时刻处于状态I j ∈的绝对概率)(t p j 满足下列方程:.)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' (5.12)证明 由定理5.2,有)()(t p p t p ij Ii i j ∑∈=t将向前方程(5.9)式两边乘以,i p 并对i 求和得.)())(()(kj jk ikiIi jj ijiIi ijIi iq t pp q t pp t p p ∑∑∑∑≠∈∈∈+-='故 .)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' .与离散马尔可夫链类似,我们讨论转移概率 )(t p ij 当 ∞→t 时的极限分布与平稳分布的有限性质.定义5.4 设)(t p ij 为连续时间马尔可夫链的转移概率,若存在时刻 21,t t ,使得 ,0)(1>t p ij ,0)(2>t p ij则称状态i 和j 是互通的.若所有状态都是互通的,则称此马尔可夫链为不可约的.定理5.7 设连续时间的马尔可夫是不可约的,则有下列性质:(1) 若它是正常返的,则极限)(lim t p ij t ∞→存在且等于.,0I j j ∈>π这里.,0I j j ∈>π是方程组1,==∑∑∈≠Ij j kj jk k jj j q q πππ (5.13)的唯一非负解.此时称.,0{I j j ∈>π是该过程的平稳分布,并且有 .)(lim j j t t p π=∞→ (2) 若它是零常返的或非常返的,则.,,0)(lim )(lim I j i t p t p j t ij t ∈==∞→∞→在实际问题中,有些问题可以用柯尔莫哥洛夫方程直接求解,有些问题虽然不能求解但是可以用方程(5.13)求解.例5.2 考虑两个状态的连续时间马尔可夫链,在转移到状态1之前链在状态0停留的时间是参数为λ的指数变量,而在回到状态0之前它停留在状态1的时间是参数为μ的指数变量,显然该链是一个齐次马尔可夫过程,其状态转移概率为 ),()(01h o h h p +=λ),()(10h o h h p +=μ由定理5.3知由柯尔莫哥洛夫向前方程得到)()()(000100t p t p t p λμ-='=,)()(00μμλ++-t p 其中最后一个等式来自).(1)(0001t p t p -=因为,1)0(00=p 由常数变易法得 ,)()(00t e t p μλμλλμλμ+-+++=若记,,00μλμμμλλλ+=+=则,)()(0000t e t p μλλμ+-+=类似地由向前方程)()()(010001t p t p t p μλ-=' ,)()(lim )(1lim 1001010011011q h p dhdhh p h h p q h h h ====-==→→μ,)()(lim )(1lim 0100101000000q h p dhdhh p h h p q h h h ====-==→→λ可解得 ,)()(0001t e t p μλλλ+--= 由对称性知,)()(0011t e t p μλμλ+-+= ,)()(0010t e t p μλμμ+--= 转移概率的极限为),(lim )(lim 10000t p t p t t ∞→∞→==μ),(lim )(lim 11001t p t p t t ∞→∞→==λ 由此可见,当∞→t 时, )(t p ij 的极限存在且与i 无关.定理5.6知,平稳分布为 0100,λπμπ== 若取初始分布为平稳分布,即,}0)0({00μ===p X P ,}1)0({01λ===p X P 则过程在时刻t 的绝对概率分布为 )()()(1010000t p p t p p t p +==0)(000)(00]1[][μμλμλμμλμλ=-+++-+-t t e e=0)(000)(00][]1[λμλλλμμλμλ=++-+-+-t t e e .例5.3 机器维修问题.设例5.2中状态0代表某机器正常工作状态1代表机器出故障.状态转移概率与例5.2相同,即在h 时间内,机器从正常工作变为出故障的概率为),()(01h o h h p +=λ在h 时间内,机器从有故障变为经修复后正常工作的概率为),()(10h o h h p +=μ试求在t=0时正常工作的机器,在t=5时为正常工作的概率. 解 由例5.2已求得该过程的Q 矩阵为⎪⎪⎭⎫⎝⎛--=μμλλQ .根据题意,要求机器最后所处的状态为正常工作,只需计算)(00t p 即可. 由例5.2知,)()(0000t e t p μλλμ+-+=,,00μλμμμλλλ+=+=故 ,)5(5)(0000μλλμ+-+=e p 因为P{X(0)=0}=1=,0p 所以)()()(1010101t p p t p p t p +=====)5()5(}0)5({0000p p p X P .)5(5)(0000μλλμ+-+=e p5.3 生灭过程连续时间马尔可夫链的一类重要特殊情形是生灭过程,它的特征是在很短的时间内,系统的状态只能从状态i 转移到状态i-1或i+1或保持不变,确切定义如下. 定义5.5 设齐次马尔可夫过程}0),({≥t t X 的状态空间为I={0,1,2,…},转移概率为)(t p ij ,如果,0),()(1,>+=+i i i i h o h h p λλ,0,0),()(01,=>+=-μμμi i i i h o h h p),()(1)(,h o h h p i i i i ++-=μλ则称 }0),({≥t t X 为生灭过程,i λ为出生率, i μ为死亡率.若,λλi i =μλμμ,(,i i =是正常数),则称}0),({≥t t X 为线性生灭过程. 若0≡i μ,则称}0),({≥t t X 为纯生过程. 若0≡i λ,则称}0),({≥t t X 为纯灭过程. 生灭过程可作如下概率解释:若以X(t)表示一个生物群体在t 时刻的大小,则在很短的时间h 内(不计高阶无穷小),群体变化有三种可能,状态由i 变到i+1,即增加一个个体,其概率为h i λ;.状态由i 变到i-1,即减少一个个体,.其概率为h i μ;群体大小保持不变,其概率为.)(1h i i μλ+-由定理5.3得到,0,)()(,0≥+=-==i h p dhd t q i i h ii ii μλ ⎩⎨⎧≥-=≥+====,1,1,,0,1,)()(0i i j i i j h p dh d t q ii h ij ij μλ ,2,0≥-=j i q ij故柯尔莫哥洛夫向前方程为.,),()()()()(1,11,1I j i t p t p t p t p j i j ij j j j i j ij∈++-='++--μμλλ 故柯尔莫哥洛夫向后方程为.,),()()()()(,11,I j i t p t p t p t p j i i ij j j j i i ij∈++-='+-λμλμ 因为上述方程组的求解较为困难,我们讨论其平稳分布.由(5.13)式,有 ,2),()(,≥-=j i h o h p j i,1100πμπλ=.1,)(1111≥+=+++--j j j j j j j j πμπλπμλ逐步递推得,0101πμλπ=…, ,11--=j jj j πμλπ 再利用11=∑∞=j j π,得平稳分布,11211100)......1(-∞=-∑+=j j j μμμλλλπ, 112111021110)......1(......-∞=--∑+=j jj j j j μμμλλλμμμλλλπ 例5.4 生灭过程例子M/M/S 排队系统.假设顾客按照参数为λ的泊松过程来到一个有s 个服务员的服务站,即相继来到之间的时间是均值为λ1的独立指数随机变量,每一个顾客一来到,如果有服务员空闲,则直接进行服务,否则此顾客加入排队系列.当一个服务员结束对一位顾客的服务时顾客就离开服务系统,排队中的下一顾客进入服务. 假定相继的服务时间是独立的指数随机变量,均值为μ1.如果我们以X(t)记时刻t 系统中的人数,则}0),({≥t t X 是生灭过程⎩⎨⎧>≤≤=,,,1,s n s s n n n μμμ .0,≥=n n λλM/M/s 排队系统中M 表示马尔可夫过程,s 代表s 个服务员.特别在M/M/1排队系统中,μμλλ==n n ,,若1<μλ,则由(5.14)可得 .0),1()()(1)(1≥-=+=∑∞=n n n nnn μλμλμλμλπ。
第5章 马尔可夫链PPT课件
状态.
精选PPT课件
18
马尔可夫链
一般,一个特定的参保人年理赔要求的次数是参数为λ 的泊松随机变量,那么此参保人相继的状态将构成一个马 尔可夫链,并具有转移概率
但昨天没下雨,那么明天下雨的概率为0.5;如果昨天下雨
但今天没下雨,那么明天下雨的概率为0.4;如果昨、今两
天都没下雨,那么明天下雨的概率为0.2.
假设在时间n的状态只依赖于在时间n-1是否下雨,那么
上述模型就不是一个马尔可夫链.
但是,当假定在任意时间的状态是由这天与前一天两者
的天气条件所决定时,上面的模型就可以转变为一个马尔
令Xn为第n天结束时的存货量,则
XSX-nYn-nY++n1+1=,1,
若Xn≥s, 若Xn<s.
构成的{Xn,n≥1}是Markov链.
例5.11 以Sn表示保险公司在时刻n的盈余,这里的时间以
适当的单位来计算(如天,月等), 初始盈余S0=x显然为
已知,但未来的盈余S1,S2,…却必须视为随机变量,增量
参保人的状态随着参保人要求理赔的次数而一年一年
地变化.低的状态对应于低的年保险金. 如果参保人在上
一年没有理赔要求,他的状态就将降低; 如果参保人在上
一年至少有一次理赔要求,他的状态一般会增加(可见,无
理赔是好的,并且会导致低保险金;而要求理赔是坏的,一
般会导致更高的保险金).
对于给定的一个好-坏系统, 以si(k)记一个在上一年 处在状态i,且在该年有k次理赔要求的参保人在下一年的
矩阵为
p11 p12 p13 p14
P=
p21 p22 p23 p24 0010
0001
例5.5(赌徒的破产或称带吸收壁的随机游动)系统的状态
第五章 连续时间马尔可夫链-随机过程
二、连续时间马尔可夫链的状态逗留时间和转移速率 命题 以 i 记过程在转移到另一状态之前停留在状态 i 的时 间,则对一切 s,t0 有 P{ i t s | i s} P{ i t } ,因此, 随机变量 i 是无记忆的必有指数分布,其参数设为 v i
证明: P{ i t s | i s}
P{T1 t } 1 e t
P{T1 T2 t } P{T1 T2 t | T1 x } e t dx
0 t
= (1 e 2 ( t x ) ) e x dx (1 e t )2
0
t
P{T1 T2 T3 t } P{T1 T2 T3 t | T1 T2 x }dFT1 T2 ( x )
i 1 n
其中 f 是密度函数(5.3.2)
e (t x) ,0 x t f ( x) 1 et 0, 其它
但因为(5.3.1)是 n 个密度为 f 的随机变量的子样 Y1,Y2,, Yn 的顺序统计量 Y(1),Y(2),, Y(n)的联合密度函数。于是得 命题 5.3.1 一个尤尔过程,其 X(0)=1,则给定 X(t)=n+1 时,出生时刻 S1,S2,, Sn 的分布如同取自密度为(5.3.2)的母体的容量为 n 的子 样 Y1,Y2,, Yn 的顺序统计量 Y(1),Y(2),, Y(n)的分布。
0 1 2 3
…Байду номын сангаас
n
n
2
3
… (n 1)
若对一切 n, n 0 (即若死亡是不可能的),则生灭过程称为纯 生过程,i 个个体开始的纯生过程,生长率为 n , n i 。
随机过程课件-马尔可夫链
对于不可约的马尔可夫链,其极限分 布是遍历的,即极限分布与初始状态 无关。
05
马尔可夫链的模拟与实现
随机数生成
伪随机数生成器
使用数学公式和种子值生成一系列近似 随机的数列。
VS
真随机数生成器
利用物理现象(如电路噪音)产生真正的 随机数。
马尔可夫链蒙特卡洛方法
采样分布
通过多次重复模拟马尔可夫链的路径来估计 某个事件的概率或某个参数的值。
收敛性
随着模拟次数的增加,估计值逐渐接近真实 值。
马尔可夫链在决策分析中的应用
要点一
决策树
要点二
强化学习
将马尔可夫链应用于决策分析中,帮助决策者评估不同策 略的风险和收益。
在强化学习中,马尔可夫链用于描述环境状态转移和奖励 函数。
06
马尔可夫链的扩展与改进
时齐马尔可夫链
定义
时齐马尔可夫链是指时间 参数为离散的马尔可夫链 ,其状态转移概率不随时 间而变化。
遍历性是马尔可夫链达到平稳分布的必要条件之一,也是判 断马尔可夫链是否具有唯一平稳分布的重要依据。
03
马尔可夫链的转移概率
转移概率的定义与性质
定义
马尔可夫链中,给定当前状态$i$,未来状态$j$在某个时间步长内发生的概率称为转移 概率,记作$P(i,j)$。
性质
转移概率具有非负性、归一性和时齐性。非负性指$P(i,j) geq 0$;归一性指对于每个 状态$i$,所有可能转移到该状态的转移概率之和为1,即$sum_{ j} P(i,j) = 1$;时齐性
周期性会影响马尔可夫链的平稳分来自的性质和计算。状态空间的分解
状态空间的分解是将状态空间划分为若干个子集,每个子集内的状态具有相似的 性质和转移概率。
刘次华 随机过程 第五章
1 1 2
i∈I
i
ij
(t )
i∈I
n−1i n
(t n − t n −1 )
5.1 连续时间马尔可夫链
例5.1 证明泊松过程{X(t), t≥0}为连续时间 齐次马尔可夫链。 证明:先证泊松过程的马尔可夫性。 证明: 泊松过程是独立增量过程,且X(0)=0,对 任意0<t1< t2<…< tn< tn+1有
j ≠i
1 − pii (∆t ) qii = lim = lim ∆t →0 ∆t →0 ∆t 注:一般而言qii
∑p
j ≠i
ij
(∆t )
∆t
= ∑ qij
j ≠i
∑q
j ≠i
ij
5.2 柯尔莫哥洛夫微分方程
若连续时间齐次马尔可夫链具有有限状态 空间I={0,1,2,…,n}, 则
⎛ − q00 ⎜ ⎜ q10 Q= ⎜ ⎜ ⎜ q ⎝ n0 q01 − q11 qn1 q0 n ⎞ ⎛ Q1 ⎞ ⎟ ⎜ ⎟ q1n ⎟ ⎜ Q2 ⎟ = ⎟ ⎜ ⎟ ⎟ ⎜ ⎟ ⎟ ⎜ ⎟ − qnn ⎠ ⎝ Qn ⎠
5.1 连续时间马尔可夫链
定义5.2 齐次转移概率 pij(s,t)=pij(t) (与起始时刻s无关,只与时间间隔t有关) 转移概率矩阵P(t)=(pij(t)) ,i,j∈I,t ≥0 命题:若τi为过程在状态转移之前停留在 命题: 状态i的时间,则对s, t≥0有 (1) P{τ i > s + t | τ i > s} = P{τ i > t} (2) τi 服从指数分布 证(1) 事实上
5.1 连续时间马尔可夫链
过程在状态转移之前处于状态i的时间τi服 从指数分布 Fτ i ( x ) = 1 − e − λi x F (1)当λi=+∞时, τ ( x ) = 1, P{τ i > x} = 1 − Fτ ( x ) = 0, 状态i的停留时间τi 超过x的概率为0, 则称状态i为瞬时状态; F (2)当λi=0时,τ ( x ) = 0, P{τ i > x} = 1 − Fτ ( x ) = 1, 状态i的停留时间τi 超过x的概率为1,则 称状态i为吸收状态。
随机过程课件-马尔可夫链
本课件将介绍随机过程中一种重要的模型——马尔可夫链。探讨马尔可夫链 的定义、特性、应用及改进方法,展望其未来发展。
什么是随机过程?
随机过程是一种数学模型,用于描述随机变量在时间上的演化。根据性质和分类不同,随机过程可分为多种类 型。
马尔可夫链的概念
定义
马尔可夫链是一种随机过程,具有马尔可夫性质,即未来状态仅与当前状态相关。
马尔可夫链的局限性和优缺点
马尔可夫链具有简单、易于实现的优点,但在某些情况下存在局限性。
马尔可夫链的未来发展方向
未来,马尔可夫链有望结合更多机器学习、深度学习技术,在更多领域得到应用和改进。
马尔可夫链的改进
局限性
马尔可夫链模型在某些情况下存 在局限性,如长期依赖性和大状 态空间问题。
改进方法
针对马尔可夫链的局限性,研究 者提出了多种改进方法,如隐马 尔可夫模型和条件随机场。
马尔可夫决策过程
马尔可夫决策过程是对马尔可夫 链进行扩展,引入了决策和奖励 机制,用于解决决策问题。
总结与展望
马尔可夫链的平稳分布
平稳分布是马尔可夫链在长期 运行后,状态分布稳定的概率 分布。
马尔可夫链的应用
1
模拟系统
2
马尔可夫链在模拟系统中用于模拟随机
事件和状态转移,如队列模型和流程模
3
型。
自然语言处理
马尔可夫链在自然语言处理中用于语言 模型、文本生成和机器翻译等。
金融领域
马尔可夫链在金融领域中用于风险评估、 投资组合优化和市场分析等。
特性
马尔可夫链具有无记忆性、状态空间有限、状态转移概率固定等特性。
状态转移图
马尔可夫链可用状态转移图表示,展示各状态之间的转移概率。
马尔可夫链
三.有限维概率分布 马尔可夫链{ X ( t ), t t
0
, t 1 , t 2 , }在初始时刻t 0 的概率
分布:
p j ( t 0 ) P { X ( t 0 ) j },
j 0 ,1, 2 ,
称为初始分布. 初始分布与转移概率完全地确定了马尔可夫链的 任何有限维分布.下面的定理二正是论述这一点. 不妨设齐次马尔可夫链的参数集和状态空间都是 非负整数集,那么有如下定理。
P { X ( k 1 ) j1 , X ( k 2 ) j 2 , , X ( k n ) j n }
p i ( 0 ) p ij1 1 p j1 j22
(k )
( k k1 )
p j n n1 j n n 1
(k k
)
i0
(13.9)
例6 在本节例5中,设初始时输入0和1的概率分别为 1/3和2/3,求第2、3、6步都传输出1的概率.
t 2 t n t n 1
和 S 内任意 n 1 个状态
j1 , j 2 , , j n , j n 1 , 如果条件概率
P { X ( t n 1 ) j n 1 | X ( t 1 ) j1 , X ( t 2 ) j 2 , , X ( t n ) j n }
二:马尔可夫链的分类 状态空间 S 是离散的(有限集或可列集),参数集 T 可为离散或连续的两类. 三:离散参数马尔可夫链 (1)转移概率 定义2 在离散参数马尔可夫链{ X ( t ), t 中,条件概率 P { X ( t
m 1
t 0 , t 1 , t 2 , , t n , }
1
随机过程Ch连续时间的马尔可夫链课件
由柯尔莫哥洛夫向前方程旳矩阵形式可得
例:设有一参数连续,状态离散的马尔可夫
过程X t,t 0,状态空间为I 1,2,, N,
当i j,时qij 1,i, j 1,2,, N,
当i 1,2,, N时,qii (N 1),求pij t 。
互通:i j i j,j i。 若所有状态都是互通的,则称此马尔可夫链 为不可约的。
定理5.7 设连续时间马尔可夫链是不可 约旳,则有下列性质:
(1)若它是正常返旳,则极限
lim
t
pij (t)
存在
且等于j >0,jI。这里j 是
jq jj kqkj ,
j 1
k j
jI
旳唯一非负解,此时称{j >0,jI}是该过
对任意0 t1 t2 tn tn1有
PX tn1 in1 / X t1 i1,, X tn in P{X tn1 X tn in1 in / X t1 X 0 i1,
X t2 X t1 i2 i1,, X tn X tn1 in in1} PX tn1 X tn in1 in
pii h 1 qiih oh
pij
h
qij h
oh
称qij 为齐次马尔可夫过程从状态i 到状态j 的转移
速率或跳跃强度,定理的概率含义为:在一个长
为h的时间区间内,从状态i 转移到其它状态的概率
为:1 pii h 等于 qiih o h ;而由状态i转移 到状态j的概率pij h 等于qij h o h 。
定理:设pij (t)是齐次马尔可夫过程的转移概率, 则下列极限存在:
dpij t
随机过程中的马尔可夫链
随机过程中的马尔可夫链随机过程是描述随机演化的数学模型。
其中,马尔可夫链是一种广泛应用于许多领域的随机过程。
马尔可夫链具有马尔可夫性质,即未来的演化仅依赖于当前状态,而与历史状态无关。
本文将介绍马尔可夫链的基本概念和特性,并探讨其在不同领域中的应用。
一、马尔可夫链的定义马尔可夫链是一个离散状态的随机过程,其转移概率只与当前状态有关,与历史状态无关。
具体而言,设S为状态空间,P为状态转移概率矩阵,则对于任意的状态i和j,转移概率满足条件P(i, j) ≥ 0,且对于任意的i,ΣP(i, j) = 1。
二、马尔可夫链的特性1. 马尔可夫性质:马尔可夫链的核心特性是马尔可夫性质,即未来的状态只与当前状态有关。
这一性质使得马尔可夫链具有一种"无记忆"的特点,使得其在很多问题中提供了简化假设的可能。
2. 连通性:如果对于任意的状态i和j,存在一系列状态k1, k2, ..., kn,使得从状态i出发,通过这些状态最终能够到达状态j,则称该马尔可夫链是连通的。
3. 遍历性:如果从任意一个状态出发,经过有限步骤,能够回到该状态,则称该马尔可夫链是遍历的。
4. 非周期性:如果从任意一个状态出发,经过有限步骤,能够回到该状态的概率为1,则称该马尔可夫链是非周期的。
三、马尔可夫链的应用1. 自然语言处理:马尔可夫链被广泛应用于自然语言处理领域,用于语言模型的建模。
通过分析文本数据中的词语之间的转移概率,可以生成具有一定连贯性的文本。
2. 金融市场:马尔可夫链在金融市场中的应用较为广泛。
通过分析过去的市场数据,可以构建马尔可夫链模型,预测未来的市场状态,用于投资决策和风险管理。
3. 生物信息学:马尔可夫链在DNA序列分析和蛋白质结构预测等生物信息学问题中得到了应用。
通过建立马尔可夫链模型,可以推断基因序列中的隐藏状态和转移概率,进而揭示生物系统的运作机制。
4. 推荐系统:马尔可夫链在推荐系统中也有一定的应用。
第五章 随机过程中的马尔可夫过程
p(k m) ij
(n)
p(k il
)
(n)
p(m lj
)
(n
k
),
i, j S,
n, k, m 0
l
或
P(km) (n) P(k) (n)P(m) (n k)
证明
2006年9月
p(k ij
m)
(n)
P{X
nk
m
j|
Xn
i}
P{U( X nk l), X nkm j | X n i} l
i
P( X 0 i)P( Xt1 i1 | X 0 i)P( X t2 i2 | X 0 i, X t1 i1)L i
• P( X tn in | X 0 i, X t1 i1, X t2 i2 ,L , X tn1 in1)
P( X 0 i)P( X t1 i1 | X 0 i)P( X t2 i2 | X 0 i)P( X tn in | X tn1 in1)
i
qi0
pt1 ii1
(0)
pt2 i1i2
t1
(t1
)L
p (t ) tn tn1
in1in
n1
i
2006年9月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
3) 绝对分布
称q(jn) P(Xn j), n 0, j S为马尔可夫链{Xn,n 0}的绝对分布。
2006年9月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
一种最简单的形式:
P{X (t1) i1, X (t2 ) i2,L , X (tn1) in1, X (tn ) in} P{X (t1) i1}P{X (t2) i2}L P{X (tn ) in}
随机过程第五章连续时间的马尔可夫链
第五章 连续时间的马尔可夫链5.1连续时间的马尔可夫链考虑取非负整数值的连续时间随机过程}.0),({≥t t X定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有})(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++=})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链.由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关.记(5.1)式条件概率一般形式为),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率. 定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij =其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程.假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有},{}{t h P s h t s h P i i i >=>+>可见,随机变量i h 具有无记忆性,因此i h 服从指数分布.由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布; (2) 当过程离开状态i 时,接着以概率ij p 进行状态j,1=∑≠ij ij p .上述性质也是我们构造连续时间马尔可夫链的一种方法.当∞=i v 时,称状态i 为瞬时状态,因为过程一旦进入此状态立即就离开.0=i v 时,称状态i 为吸收状态,因为过程一旦进入状态就永远不再离开了.尽管瞬时状态在理论上是可能的,但以后假设对一切i, ∞<≤i v 0.因此,实际上一个连续时间的马尔可夫链是一个这样的随机过程,它按照一个离散时间的马尔可夫链从一个状态转移到另一个状态,但在转移到下一个状态之前,它在各个状态停留的时间服从指数分布.此外在状态i 过程停留的时间与下一个到达的状态必须是相互独立的随机变量.因此下一个到达的状态依赖于i h ,那么过程处于状态i 已有多久的信息与一个状态的预报有关,这与马尔可夫性的假定相矛盾.定理5.1 齐次马尔可夫过程的转移概率具有下列性质: ;0)1(≥ij p (2);1=∑∈ij Ij p(3) ∑∈=+Ik kj ik ij s p t p s t p )()()(.其中(3)式即为连续时间齐次马尔可夫链的切普曼—柯尔哥洛夫方程.证明 只证(3).由全概率公式及马尔可夫性可得 ===+=+)})0()({)(i X j s t X P s t p ij =∑∈===+Ik i X k t X j s t X P })0()(,)({=})()({})0()({k t X j s t X P i X k t X P Ik ==+==∑∈∑∈=Ik kj ik s p t p )()(.对于转移概率)(t p ij ,一般还假定它满足: ⎩⎨⎧≠==→.,0,1)(lim 0j i ji t p ij t (5.3) 称(5.3)式为正则条件.正则条件说明,过程刚进入某状态不可能立即又跳跃到另一状态.这正好说明一个物理系统要在有限时间内发生限多次跳跃,从而消耗无穷多的能量这是不可能的.定义5.3 对于任 一0≥t 记 },)({)(j t X P t p j ==,},)0({)0(I j j X P p p j j ∈===分别称}{},),({,I j p I j t p j j ∈∈ 齐次马尔可夫过程的绝对概率分布和初始概率分布.定理5.2齐次马尔可夫过程的绝对概率及有限维概率分布具有下列性质: (1) ,0)(≥t p j (2),1)(=∑∈t p j Ij(3) )()(t p p t p ij Ii i j ∑∈=;(4) );()()(h p t p h t p ij Ii i j ∑∈=+(5)).()...(})(,...,)({112111211-∈--====-∑n n i i i i ii Ii i n n t t p t t p p p i t X i t X p n n例5.1试证明泊松过程}0),({≥t t X 为连续时间齐次马尔可夫链. 证明 先证泊松过程具有马尔可夫性,再证明齐次性.由泊松过程的定义 它是独立增量过程,且X(0)=0.11,...0+<<<n n t t t ,有})(,...,)()({1111n n n n i t X i t X i t X P ===++= ,.)0()()()({1111i X t X i i t X t X P n n n n =--==-++ =,111212)()(,...)()(---=--=-n n n n i i t X t X i i t X t X } = })()({11n n n n i i t X t X P -=-++ . 另一方面,因为})()({11n n n n i t X i t X P ==++=})0()()()({11n n n n n n i X t X i i t X t X P =--=-++ =})()({11n n n n i i t X t X P -=-++所以})(,...,)()({1111n n n n i t X i t X i t X P ===++=})()({11n n n n i t X i t X P ==++. 即泊松过程是一个连续时间马尔可夫过程.以下证明齐次性. 当i j ≥ 时,由泊松过程的定义})()({i s X j t s X P ==+= })()({i j s X t s X P -=-+=)!()(i j t eij t---λλ j<i.时,由于过程的增量只取非负整数,故,0),(=t s p ij 所以⎪⎩⎪⎨⎧<≥-==--i j ij i j t e t p t s p i j t ij ij ,0,)!()()(),(λλ, 即转移概率只与t 有关,泊松过程具有齐次性. 5.2柯尔莫哥洛夫微分方程对于连续时间齐次马尔可夫链转移概率)(t p ij 的求解一般比较复杂.下面首先讨论)(t p ij 的可微性及)(t p ij 满足的柯尔莫哥洛夫微分程.引理5.1 设齐次马尔可夫过程满足正则性条件(5.3),则对于任意固定的)(,,t p I j i ij ∈是t 的一致连续函数.证明 设h>0,由定理5.1得)()()()()(t p t p h p t p h t p ij rj Ir ir ij ij -=-+∑∈)()()()()(t p t p h p t p h p ij ij ii rj ir ir -+=∑≠=)()](1[)()(t p h p t p h p ij ii rj ir ir --=∑≠故有)],(1[)()](1[)()(h p t p h p t p h t p ii ij ii ij ij --≥--=-+ ),(1)()()()()(h p h p t p h p t p h t p ii ir ir rj ir ir ij ij -=≤≤-+∑∑≠≠因此).(1)()(h p t p h t p ii ij ij -≤-+对于h<0,同样有).(1)()(h p t p h t p ii ij ij --≤-+ 综上所述得到).(1)()(h p t p h t p ii ij ij -≤-+ 由正则性条件知,0)()(lim 0=-+→t p h t p ij ij h即)(t p ij 关于t 是一致连续的.以下我们恒设齐次马尔可夫过程满足正则性条件(5.3)式.定理5.3 设)(t p ij 是齐次马尔可夫过程的转移概率,则下列极限存在 (1);)(1lim 0∞≤==∆∆-→∆ii i ii t q v t t p (2).,)(lim 0j i q tt p ij ij t ≠∞<=∆∆→∆我们称ij q 为齐次马尔可夫过程从状态i 到状态j 的转移概率或跳跃强度.定理中的极限的概率意义为:在长为t ∆的时间区间内,过程从状态i 转移到另一其他状态的转移概率为)(1t p ii ∆-等于t q ii ∆加一个比t ∆高阶的无穷小量,而过程从状态i 转移到状态j 的转移概率为)(t p ij ∆等于t q ij ∆加一个比t ∆高阶的无穷小量. 推论 对有限齐次马尔可夫过程,有 ∞<=∑≠ij ij ii q q证明 由定理5.1 ,有)()(1,1)(t p t p t pij ij ii Ij ij∆=∆-=∆∑∑≠∈由于求和是在有限集中进行,故有.)(lim )(1lim 00∑∑≠≠→∆→∆=∆∆=∆∆-=ij ij ij i j t ii t ii q t t p t t p q (5.4)对于状态空间无限的齐次马尔可夫过程,一般只有 ∑≠≥ij ij ii q q .若连续时间齐次马尔可夫是具有有限状态空间I={0,1,2,…,n},则其转移速率构成以下形式的矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=nn n n n n q q q q q qq q q Q .....................11111000100 (5.5) 由(5.4)式知,Q 矩阵的每一行元素之和为0,对角线元素为负或0,其余.0,≥ij q 利用Q 矩阵可以推出任意时间间隔t 的转移概率所满足的方法组,从而可以求解转移概率.由切普曼---柯尔莫哥洛夫方程有 ),()()(t p h p h t p Ik kj ik ij ∑∈=+或等价地)()](1[)()()()(t p h p t p h p t p h t p ij ii kj ik ik ij ij --=-+∑≠两边除以h 后令0→h 取极限,应用定理5.3得到 )()()(lim )()(lim 00t p q t p hh p ht p h t p ij ii kj ik ik h ij ij h -=-+∑≠→→ (5.6) 假定在(5.6)式的右边可交换极限与求和,再运用定理5.3,于是得到以下结论: 定理5.4 (柯尔莫哥洛夫向后方程)假设,ii ik ik q q =∑≠则对一切i,j 及0≥t ,有,)()(ij ii ik kj ik ijp q t p q t p -='∑≠ (5.7) 证明 只要证明(5.6)式右边极限与求和可交换次序.现在对于任意固定的N,有 ≥∑≠→)()(inflim 0t p hh p kj ik ik h )()()(inf lim ,,0t p q t p h h p kj Nk i k ik kj Nk i k ik h ∑∑<≠<≠→= 因为上式对一切N 成立,所以)()()(inflim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≥ (5.8) 为了倒转不等式,注意对于N>i,由于,1)(≤t p kj 所以≤∑≠→)()(sup lim ,0t p hh p kj i k ik h ≤+≤∑∑≥<≠→])()()(sup[lim ,0Nk ik kj Nk i k ik h h h p t p h h p ≤--+≤∑∑<≠<≠→])()(1)()(sup[lim ,,0Nk i k ik ii kj Nk i k ik h h h p h h p t p h h p ,)(,,∑∑<≠<≠-+≤Nk i k ikii kj Nk i k ikqq t p q令∞→N ,由定理5.3和条件得 )()()(sup lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≤. 上式连同(5.8)可得 )()()(lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→=.定理5.4中)(t p ij 满足的微分方程组以柯尔莫可洛夫向后方程著称.称它们为向后方程,是因为在计算时刻t+h 的状态的概率分布时我们对退后到时刻h 的状态取条件,即我们从)()(})0()({..})(,)0()({)(h p t p i X k h X P k h X i X j h t X P h t p ik Ik kj Ik ij ∑∑∈∈======+=+开始计算.对时刻t 的状态取条件,我们可以导出另一组方程,称为柯尔莫哥洛夫向前方程.可得),()()(h p t p h t p kj Ik ik ij ∑∈=+)()()()()(t p h p t p t p h t p ij kj Ik ik ij ij -=-+∑∈=)()](1[)()(t p h p h p t p ij jj kj jk ik --=∑≠,所以 )}.()(1)()({lim )()(lim 00t p h h p h h p t p ht p h t p ij jj kj jk ik h ij ij h --=-+∑≠→→假定我们能交换极限与求和,则由定理5.3便得到),()()(t p q q t p t p ij ii jk kj ik ij-='∑≠ 令人遗憾的是上述极限与求和的交换不是恒成立,所以上式并非总是成立.然而在大多数模型中----包括全部生灭过程与全部有限状态的模型,它们是成立的. 定理5.5(柯尔莫哥洛夫向前方程) 在适当的正则条件下,,)()()(jj ij kj ik ik ijq t p q t p t p -='∑≠ (5.9) 利用方程组(5.7)或(5.9)及初始条件 .,0)0(,1)0(j i p p ij ii ≠==我们可以解得)(t p ij .柯尔莫哥洛夫向后和向前方程虽然形式不同,但是可以证明它们所求得的解)(t p ij 是相同的.在实际应用中,当固定最后所处状态j,研究)(t p ij 时(i=0,1,2,…,n),采用向后方程比较方便;当固定状态i,研究)(t p ij 时(j=0,1,2,…,),则采用向前方程较方便.向后方程和向前方程可以写成矩阵形式),()(t QP t P =' (5.10) ,)()(Q t P t P =' (5.11) 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---= (222120121110)020100q q q q q qq q q Q ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=............ (222120121110)020100p p p p p pp p p P 这样,连续时间马尔可夫链的转移概率的求解问题就是矩阵微分方程的求解问题,其转移概率由其转移速率矩阵Q 决定.特别地,若Q 是一个有限维矩阵,则(5.10)和(5.11)的解为 .!)()(0∑∞===j jQtj Qt et P定理5.6 .齐次马尔可夫过程在t 时刻处于状态I j ∈的绝对概率)(t p j 满足下列方程:.)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' (5.12)证明 由定理5.2,有)()(t p p t p ij Ii i j ∑∈=t将向前方程(5.9)式两边乘以,i p 并对i 求和得.)())(()(kj jk ikiIi jj ijiIi ijIi iq t pp q t pp t p p ∑∑∑∑≠∈∈∈+-='故 .)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' .与离散马尔可夫链类似,我们讨论转移概率 )(t p ij 当 ∞→t 时的极限分布与平稳分布的有限性质.定义5.4 设)(t p ij 为连续时间马尔可夫链的转移概率,若存在时刻 21,t t ,使得 ,0)(1>t p ij ,0)(2>t p ij则称状态i 和j 是互通的.若所有状态都是互通的,则称此马尔可夫链为不可约定理5.7 设连续时间的马尔可夫是不可约的,则有下列性质:(1) 若它是正常返的,则极限)(lim t p ij t ∞→存在且等于.,0I j j ∈>π这里.,0I j j ∈>π是方程组1,==∑∑∈≠Ij j kj jk k jj j q q πππ (5.13)的唯一非负解.此时称.,0{I j j ∈>π是该过程的平稳分布,并且有 .)(lim j j t t p π=∞→ (2) 若它是零常返的或非常返的,则.,,0)(lim )(lim I j i t p t p j t ij t ∈==∞→∞→在实际问题中,有些问题可以用柯尔莫哥洛夫方程直接求解,有些问题虽然不能求解但是可以用方程(5.13)求解.例5.2 考虑两个状态的连续时间马尔可夫链,在转移到状态1之前链在状态0停留的时间是参数为λ的指数变量,而在回到状态0之前它停留在状态1的时间是参数为μ的指数变量,显然该链是一个齐次马尔可夫过程,其状态转移概率为 ),()(01h o h h p +=λ),()(10h o h h p +=μ由定理5.3知,)()(lim )(1lim 1001010011011q h p dhdhh p h h p q h h h ====-==→→μ,)()(lim )(1lim 0100101000000q h p dhdhh p h h p q h h h ====-==→→λ由柯尔莫哥洛夫向前方程得到)()()(000100t p t p t p λμ-='=,)()(00μμλ++-t p 其中最后一个等式来自).(1)(0001t p t p -=因为,1)0(00=p 由常数变易法得 ,)()(00t e t p μλμλλμλμ+-+++=若记,,00μλμμμλλλ+=+=则,)()(0000t e t p μλλμ+-+=类似地由向前方程)()()(010001t p t p t p μλ-=' 可解得 ,)()(0001t e t p μλλλ+--= 由对称性知,)()(0011t e t p μλμλ+-+= ,)()(0010t e t p μλμμ+--= 转移概率的极限为),(lim )(lim 10000t p t p t t ∞→∞→==μ),(lim )(lim 11001t p t p t t ∞→∞→==λ 由此可见,当∞→t 时, )(t p ij 的极限存在且与i 无关.定理5.6知,平稳分布为 0100,λπμπ== 若取初始分布为平稳分布,即,}0)0({00μ===p X P ,}1)0({01λ===p X P 则过程在时刻t 的绝对概率分布为 )()()(1010000t p p t p p t p +==0)(000)(00]1[][μμλμλμμλμλ=-+++-+-t t e e=0)(000)(00][]1[λμλλλμμλμλ=++-+-+-t t e e .例5.3 机器维修问题.设例5.2中状态0代表某机器正常工作状态1代表机器出故障.状态转移概率与例5.2相同,即在h 时间内,机器从正常工作变为出故障的概率为),()(01h o h h p +=λ在h 时间内,机器从有故障变为经修复后正常工作的概率为),()(10h o h h p +=μ试求在t=0时正常工作的机器,在t=5时为正常工作的概率.解 由例5.2已求得该过程的Q 矩阵为⎪⎪⎭⎫⎝⎛--=μμλλQ .根据题意,要求机器最后所处的状态为正常工作,只需计算)(00t p 即可. 由例5.2知,)()(0000t e t p μλλμ+-+=,,00μλμμμλλλ+=+=故 ,)5(5)(0000μλλμ+-+=e p 因为P{X(0)=0}=1=,0p 所以====)5()5(}0)5({0000p p p X P .)5(5)(0000μλλμ+-+=e p 5.3 生灭过程连续时间马尔可夫链的一类重要特殊情形是生灭过程,它的特征是在很短的时间内,系统的状态只能从状态i 转移到状态i-1或i+1或保持不变,确切定义如下. 定义5.5 设齐次马尔可夫过程}0),({≥t t X 的状态空间为I={0,1,2,…},转移概率为)(t p ij ,如果,0),()(1,>+=+i i i i h o h h p λλ)()()(1010101t p p t p p t p +=,0,0),()(01,=>+=-μμμi i i i h o h h p ),()(1)(,h o h h p i i i i ++-=μλ则称 }0),({≥t t X 为生灭过程,i λ为出生率,i μ为死亡率.若,λλi i =μλμμ,(,i i =是正常数),则称}0),({≥t t X 为线性生灭过程.若0≡i μ,则称}0),({≥t t X 为纯生过程. 若0≡i λ,则称}0),({≥t t X 为纯灭过程. 生灭过程可作如下概率解释:若以X(t)表示一个生物群体在t 时刻的大小,则在很短的时间h 内(不计高阶无穷小),群体变化有三种可能,状态由i 变到i+1,即增加一个个体,其概率为h i λ;.状态由i 变到i-1,即减少一个个体,.其概率为h i μ;群体大小保持不变,其概率为.)(1h i i μλ+- 由定理5.3得到 ,0,)()(,0≥+=-==i h p dhdt q i i h ii ii μλ ⎩⎨⎧≥-=≥+====,1,1,,0,1,)()(0i i j i i j h p dh dt q i i h ij ij μλ,2,0≥-=j i q ij 故柯尔莫哥洛夫向前方程为.,),()()()()(1,11,1I j i t p t p t p t p j i j ij j j j i j ij∈++-='++--μμλλ 故柯尔莫哥洛夫向后方程为.,),()()()()(,11,I j i t p t p t p t p j i i ij j j j i i ij∈++-='+-λμλμ 因为上述方程组的求解较为困难,我们讨论其平稳分布.由(5.13)式,有 ,1100πμπλ=.1,)(1111≥+=+++--j j j j j j j j πμπλπμλ 逐步递推得,2),()(,≥-=j i h o h p j i,0101πμλπ=…, ,11--=j jj j πμλπ 再利用11=∑∞=j j π,得平稳分布,11211100)......1(-∞=-∑+=j jj μμμλλλπ,112111021110)......1(......-∞=--∑+=j jj j j j μμμλλλμμμλλλπ例5.4 生灭过程例子M/M/S 排队系统.假设顾客按照参数为λ的泊松过程来到一个有s 个服务员的服务站,即相继来到之间的时间是均值为λ1的独立指数随机变量,每一个顾客一来到,如果有服务员空闲,则直接进行服务,否则此顾客加入排队系列.当一个服务员结束对一位顾客的服务时顾客就离开服务系统,排队中的下一顾客进入服务. 假定相继的服务时间是独立的指数随机变量,均值为μ1.如果我们以X(t)记时刻t 系统中的人数,则}0),({≥t t X 是生灭过程⎩⎨⎧>≤≤=,,,1,s n s s n n n μμμ.0,≥=n n λλM/M/s 排队系统中M 表示马尔可夫过程,s 代表s 个服务员.特别在M/M/1排队系统中,μμλλ==n n ,,若1<μλ,则由(5.14)可得.0),1()()(1)(1≥-=+=∑∞=n n n nnn μλμλμλμλπ。
第5章 Markov链
������, ������ ∈ ������; ∀������ ∈ ������ 为随机矩阵 ,若 ������������������ ≥ 0(������, ������ ∈ ������) ,且对
定义 5.1.4 称矩阵 ������ = ������������������ ∀ ������ ∈ ������,有
0 0 0 0
11
5.1 基本概念
例 5.1.8 (Wright-Fisher 遗传模型)基因控制着生物的特征,它们是成 对出现的.控制同一特征的不同基因称为等位基因,记这对等位基因为 ������和������ , 分别称为显性的与隐性的.在一个总体中基因������和������ 出现的频率称为基因频率, 分别记为������和1 − ������. 设总体中的个体数为2������,每个个体的基因按基因������的基因频率的大小,在下 一代中转移成为基因 ������.即如果在第 ������ 代母体中基因������出现了 ������ 次,基因 ������ 出现了
6
5.1 基本概念
例 5.1.3 在任意给定的一天,加里的心情或者是快乐的(cheerful,C),或 者是一般的(so-so,S),或者是忧郁的(glum,G). 如果今天他是快乐的,则明天 他分别以概率 0.5,0.4,0.1 是 C,S,G.如果今天他感觉一般,则明天他分别 以概率 0.3,0.4,0.3 为 C,S,G.如果今天他是忧郁的,则明天他分别以概率 0.2,0.3,0.5 为 C,S,G. 以 ������������ 记加里在第 ������ 天的心情, 则 ������������ , ������ ≥ 0 是一个三个状态的马尔可夫链 (状态 0=C,状态 1=S,状态 2=G),具有转移概率矩阵 0.5 ������ = 0.3 0.2 0.4 0.4 0.3 0.1 0.3 0.5
随机过程第5讲(马尔科夫链定义和性质)课件
件的和事件, 如下图所示:
k
j
i
o
n
2021/6/29
nm
郑州大学信息工程学院
nmr t
14
• C-K方程是指(n)在n时处于状态i的条件下经过m+r步转移与
n+m+r时到达状态j,可以先在n时从状态i出发,经过m步于 n+m时到达某种中间状态k,再在n+m时从状态k出发经过r 步转移于n+m+r时到达最终状态j,而中间状态k要取遍整个 状态空间。 • C-K方程也可以用矩阵形式表示:
夫链,它的一步转移矩阵为 :
P
p00 p10
p01 p11
1 1
设=0.7, =0.4,则一步转移概率矩阵为
P
0.7 0.4
0.3 0.6
2021/6/29
郑州大学信息工程学院
18
则两步转移概率矩阵: 四步转移概率矩阵:
由此可知,今日有雨且第四日仍有雨的概率为:P00(4)=0.5749
2021/6/29
10
齐次马尔可夫链
• 定义:如果在马尔可夫链中 P{ξ(k 1) j/ξk i} pij
即从i状态转移到j状态的概率与k无关,则称这类马尔可 夫链为齐次马尔可夫链。 • 设P代表一步转移概率pij所组成的矩阵,且状态空间I由 状态0,1,2,…所组成,则
一步转移概率矩 阵P中每个元素为 非负,每行之和 均为1。
是如何到达i的完全无关。所以它是一个齐次马尔可夫链, 其状态空间为I: {…,-2,-1,0,1,2,…}, 而其一步转移概率 为:
2021/6/29
郑州大学信息工程学院
No.12-第5章-马尔可夫预测的基本原理
P(2)
0.76 0.72
p (1) 11
p (1) 21
p (1) 11
p (1) 11
p p (1) (1) 12 21
p p (1) (1) 22 21
p p (1) (1) 11 12
p p (1) (1) 21 12
p (1) 12
p (1) 22
p2 (1)
p2 (2) ?
p22
p2 (2) p1(1) p12 p2 (1) p22
P(2) ( p1(2)
p2 (2)) ( p1(1)
p2
(1))
p11 p21
p12
p22
P(1)P P(0)PP P(0)P2
[0.8
0.2]
0.76 0.72
以一个月为单位,经观察统计,知其从某个月份到下月份, 机床出现故障的概率为0.3。在这一段时间内,故障机床经维修 恢复到正常状态的概率为0.9。
p12=0.3
1
2
p21=0.9
0.7 P 0.9
两步状态转移概率:
0.3 0.1
即有 p11 0.7, p12 0.3, p21 0.9, p22 0.1
状态转移概率矩阵
状态
1
P
1 p11 2 p21
2
状态
1
p12
p22
1 0.8 2 0.6
2
0.2
0.4
例5.1 考察一台机床的运行状态。机床的运行存在正常和故
障两种状态 S 1, 2 。机床在运行中出现故障:1->2;处于故
随机过程第五章
显然,绝对分布与初始分布和n步转移概率有如下 关系:
( q(jn ) qi(0) pijn ) (0), n 0, i , j S i
或
q
( n)
q P (0)
( 0) ( n)
4.齐次马尔可夫链
定义 设{ X n , n 0} 是一马尔可夫链,如果其一步转移 概率 pij (n) 恒与起始时刻n无关,记为 pij , 则称
r0 q 0 P 0 0
p0 r q 0 0
0 p r 0 0
0 0 0 0 p 0
0 0 0
0 q r 0 0 qa
0 0 0 p ra
例5.3 设一个坛子中装有m个球,它们或是红色的, 或是黑色的,从坛子中随机的摸出一球,并换入一 个相反颜色的球。设经过n次摸球坛中黑球数为Xn,则 { X n , n 0}是以 S {0,1,, m} 为状态空间的齐次 马尔可夫链,其一步转移概率矩阵为
{ X n , n 0} 在n 时处于状态i的条件下经过k+m步转移
于n+k+m时到达状态j,可以先在n时从状态i出发, 经过k步于n+k时到达某种中间状态l,再在n+k时从状 态l出发经过m步转移于n+k+m时到达最终状态j,而 中间状态l要取遍整个状态空间。
定理 马尔可夫链的k 步转移概率由一步转移概率所 完全确定。
为系统首次到达状态j的时间,简称首达时. 当 {n n 1, X n j} 时,定义Tj
引理2
(1) fij(n) P{Tj n X 0 i} (2) fij P{Tj X 0 i}
(3) ij E[T j X 0 i] n fij( n )
随机过程第5章
第五章 离散参数Markov 链5.1 Markov 链的基本概念 1.Markov 链和转移概率矩阵 定义5-1考虑只取有限个或可数个值的随机过程{},0,1,2,nX n = .把过程所取可能值的全体称为它的状态空间,记之为E ,通常假{}0,1,2,E = .若n X i =就说“过程在时刻n 处于状态i ”.若对任意状态011,,,(,n 0)n i i i i j -≥ 及任意的有11111001(|,,,,)(|)n n n n n n n P X j X i X i X i X i P X j X i +--+======== 这样的随机过程称为Markov 链.假设每当过程处于状态i ,则在下一个时刻将处于状态j 的概率是固定的ijp ,即对任意时刻n ,有1(|)n nijP X j X i p +===,称过程具有齐次性.称矩阵00010201011121012j j i i i ij p p p p p p p p P p p p p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦是一步转移概率矩阵,简称为转移矩阵. 由ijp 的定义可知,这是一种带有平稳转移概率的Markov 链,也称作时间齐次Markov 链或简称时齐次Markov 链.我们研究的均为齐次马氏链.2.例题例5-1(直线上的随机游动)考虑在直线上整数点上运动的粒子,当它处于位置j 时,向右转移到j+1的概率为p ,而向左移动到j-1的概率为q=p-1,又设时刻0时粒子处在原点,即00X =.于是粒子在时刻n 所处的位置{}n X 就是一个Markov 链,且具有转移概率,1,10,jk p k j p q k j =+⎧⎪==-⎨⎪⎩其他当12p q ==时,称为简单对称随机游动.例5-6(排队模型)考虑顾客到服务台排队等候服务,在每个服务周期中只要服务台前有顾客在等待,就要对排队在队前的一位顾客提供服务,若服务台前无顾客时就不实施服务.设在第n 个服务周期中到达的顾客数为一随机变量n Y ,且序列{}nY 是独立同分布随机序列,即(),0,1,2,,n k P Y k p k === 且01k k p ∞==∑设n X 为服务周期n 开始时服务台前顾客数,则有11,1,0n n n n n n X Y X X Y X +-+≥⎧=⎨=⎩若若此时{},1nXn ≥为一Markov 链,其转移概率矩阵为01234012340123012000p p p p p p p p p p P p p p p p p p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦例5-8(生灭链)观察某种生物群体,以n X 表示在时刻n群体的数目,设为i 个数量单位,如在时刻n+1增生到i+1个数量单位的概率为i b ,减灭到i-1个数量单位的概率为i a ,保持不变的概率为1()i i i r a b =-+,则{},0nX n ≥为齐次马尔可夫链,{}0,1,2,E = ,其转移概率为,1,,1i ij i ib j i p r i ja j i =+⎧⎪==⎨⎪=-⎩ 0(0)a =,称此马尔可夫链为生灭链.3.定理5-1设随机过程{}nX 满足:(1)1(,)(1),n n n X f X n ξ-=≥其中:f E E E ⨯→,且n ξ取值在E 上; (2){},1nn ξ≥为独立同分布随机变量,且0X 与{},1n n ξ≥也相互独立,则{}n X 是Markov 链,而且其一步转移概率为,对于任意,i j E ∈,1((,))ij p P f i j ξ==证明:设1n ≥,由上面(1)、(2)可知,1n ξ+与12,,,nX X X 互相独立,所以有1110011100111001(|,,,)((,)|,,,)((,)|,,,)((,))n n n n n n n n n n n n n n P X j X i X i X i P f X j X i X i X i P f i j X i X i X i P f i j ξξξ+--+--+--+================同理111001(|,,,)(|)n n n n n n P X j X i X i X i P X j X i +--+=======即{}nX 是Markov 链,由时间齐次性,其一步转移概率为1((,))ij p P f i j ξ==于是定理5-1得证.4.定理5-2时齐次Markov 链{}nX 完全由其初始状态的概率分布0(),1,2,i p P X i i ===和其转移概率矩阵()ijP p =所确定.证明:对于任意12,,,n i i i E ∈ ,计算有限维联合分布,由概率的乘法公式及马氏性可知1001121001100111100111100111111001111(,,,)(,,,)(|,,,)(,,,)(|)(,,,)n n n nn n n n n n n n n n n n n n n n i i i i i i i i i P X i X i X i P X i X i X i P X i X i X i X i P X i X i X i P X i X i P X i X i X i p p p p p ------------======================定理5-2得证. 5.例题 例5-9(1)(二项过程的概念)设在每次试验中,事件A 发生的概率为(01)p p <<,独立地重复进行这项试验,以n Y 表示到第n 次为止事件A 发生的次数,则{},1,2,nY n = 是一个二项过程.说明:令n X 表示第n 次试验中事件A 发生的次数,则n X ~(0)1,(1),1,2,n n P X p P X p n ==-=== 且独立.(易知{},1nX n ≥为马氏过程)而1,1,2,n n Y X X n =++= 服从二项分布(,)B n p ,故称此{},1nY n ≥为二项过程.(2)二项过程具有独立平稳增量性. 证明:易知增量1n l n n n l Y Y X X +++-=++ ,1121n l k n l n l n l k Y Y X X ++++++++++-=++ ,等等相互独立;且~(,),1,2,n m n Y Y B m p n +-= ,即具有平稳性. 即{},1nY n ≥为一个独立平稳增量过程.(3)独立平稳增量过程为马氏过程.5.2 C-K 方程1.定理5-3 Chapman-Kolmogorov 方程 对任何整数,0m n ≥, 有()()()m n m n ijik kj k Epp p +∈=∑或()()()m n m n P P P +=⨯证明:这里只需要证明()(1)n n P PP -=成立,再依次递推即可证明本定理.(?)因为()0100100101010(1)(|)(,|)(|)(|,)(|)(|)(n ij n n k n k n k n ik kj k P P X j X i P X j X k X i P X k X i P X j X i X k P X k X i P X j X k p p ∞=∞=∞=∞-====================∑∑∑∑由马氏性)根据矩阵的乘法规则,知()(1)n n P PP -=.定理得证.注:定义m 步转移概率()(|)m ijn m n pP X j X i +===,()m ijp 表示给定时刻n 时,过程处于状态i ,间隔m 步之后过程在时刻n+m 转移到了状态j 的条件概率.还约定(0)1iip =,(0)0ijp =,i j ≠以()n ijp 表示第i 行、第j 列的元素矩阵()n P =(()n ijp ),称为Markov 链的n 步转移概率矩阵.2.例题(两状态Markov 链) 例5-10在重复独立贝努里(Bernoulli )试验中,每次试验有两种状态{}0,1E =,设{}nX 表示第n 次试验中出现的结果,且有(1),(0)1,1,2,n n P X p P X q p n =====-=其中01p <<,则{},1nX n ≥显然是独立同分布随机序列,从而它是Markov 链.于是经过计算有00100111,p p q p p p ====所以,一步转移概率矩阵为q p P qp ⎡⎤=⎢⎥⎣⎦而且有()n qp PP q p ⎡⎤==⎢⎥⎣⎦5.3 Markov 链的状态分类 1.互通 定义5-2称自状态i 可达状态j ,并记i j →,如果存在0n >,使()0n ijp >,称状态i 与j 互通(相同,互达),并记为i j ↔,如i j →且j i →2.定理5-4可达关系与互通关系都具有传递性,即如果i j →且j k →,则i k → 证:因为有i j →,j k →,所以存在1,1l m ≥≥,使()()0,0l m ij jk p p >>由C-K 方程()()()()()0l m l m l m ik is sk ij jk sp p p p p +=≥>∑这里1l m +≥,所以i k →成立.若将可达关系得证明正向进行,再反向进行,就可得出互通关系的传递性,证毕. 3.定义5-3 设{},1nXn ≥为齐次Markov 链,其状态空间为E 。
随机过程-第五章 马尔可夫链
0.95 0.02 0.02 0.01 0.3 0.6 0.06 0.04 P 0.2 0.1 0.7 0 0.2 0.2 0.1 0.5
P
jS
ij
1, i S 。则称该矩阵为随机矩阵。
显然,随机矩阵的各行元素之和都等于 1。
例 5.1 赌徒输光问题 :考虑一赌徒,在每局赌博中他以概率 p 赢得 1 元,以概率
q 1 p 输掉 1 元,假设各局赌博是相互独立的,赌徒开始有 i ( ቤተ መጻሕፍቲ ባይዱ i n )元,且他在赌
显然, Markov 链的统计特征由其初始分布 P{ X 0 i0 } 和转移概率 P{ X k i X k 1 ik 1} ( k 1, 2,, n )决定。
定义 5.3 时齐 Markov 链: 当 Markov 链的转移概率 P{ X n1 j X n i} 只与状态 i, j 有
m n m, n 0 使得 P ij 0, Pjk 0 ,利用 C-K 方程(1)可知
n n Pikm n Pirm Prk Pijm Pjk 0 rS
K 类似地可以证明存在 K 0 使得 Pki 0 。
称互通的两个状态属于同一个类,且由命题 5.1 可知,任何一个状态不能同时属于两个 不同的类,即任意两个不同的类不相交。 思考:对例 5.1 中的赌徒问题的状态分类? 定义 5.7 可约:若 Markov 链只存在一个类,则称它为不可约的;否则称为可约的。 在不可约的 Markov 链中,一切状态都是彼此互通的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故 P20 P{ X 4 0 X 0 2}
4
例 5.3 广告效益的推算 P82
某种鲜奶 A 改变了广告方式, 经调查发现买 A 种鲜奶及另外三种鲜奶 B,C,D 的顾客每两 个月的平均转换率(假设市场只有此四种鲜奶)如下:
A A,95%; B, 2%; C , 2%; D,1% B A,30%; B, 60%; C , 6%; D, 4% C A, 20%; B,10%; C , 70%; D, 0% D A, 20%; B, 20%; C ,10%; D,50%
解:根据题设要求求解 P 20 P{ X 4 0 X 0 2} 。首先写出一步转移矩阵
1 1 2 P 0 0
0 0 1 2 0
0 1 2 0 0
0 0 1 2 1 44
利用 C-K 方程(2)的方法得到
-3-
P (4)
1 0 0 0 5 1 0 5 8 16 16 P4 5 1 5 0 16 8 16 0 0 0 1
赖于现在的状态,这称为 Markov 性。
定义 5.2 转移概率:定义 5.1 中的条件概率 P{ X n1 j X n i} 代表处于状态 i 的过程
下一步转移到状态 j 的概率,称为 Markov 链 { X n , n 0,1, 2,} 的一步转移概率,简称为转 移概率。 注:一般情况下,转移概率 P{ X n1 j X n i} 与状态 i, j 及时刻 n 有关。 注:由定义 5.1 中的概率方程可进一步推导得到如下方程
P
jS
ij
1, i S 。
以 P 记转移概率 Pij 的矩阵,则有
P00 P P 10 P20
P01 P 11 P21
P02 P 12 P22
定义 5.4 随机矩阵 :若一矩阵中的元素满足两条性质: (1) P (2 ) ij 0, i, j S ;
显然, Markov 链的统计特征由其初始分布 P{ X 0 i0 } 和转移概率 P{ X k i X k 1 ik 1} ( k 1, 2,, n )决定。
定义 5.3 时齐 Markov 链: 当 Markov 链的转移概率 P{ X n1 j X n i} 只与状态 i, j 有
(2)证明: (2)是(1)的矩阵形式。由(2)的结论可推得
P( n) P P( n1) Pn
例 5.2 赌徒输光问题(例 5.1) :设例 5.1 中赌徒从 2 元赌金开始赌博, n 3 (即当赌
金为 0 或 3 元时停止赌博) ,pq
4
1 。求他经过 4 次赌博之后输光的概率。 2
假设当前四种鲜奶的市场份额为 (vA , vB , vC , vD ) (25%,30%,35%,10%) , 试求半年后 鲜奶的市场份额。 解:根据题设首先可写出一步转移概率矩阵
0.95 0.02 0.02 0.01 0.3 0.6 0.06 0.04 P 0.2 0.1 0.7 0 0.2 0.2 0.1 0.5
P{X n1 j X n i, X n1 in1 ,, X1 i1 , X 0 i0 } P{X n1 j X n i}
这样的随机过程称为 Markov 链。概率方程可解释为,对 Markov 链,给定过去的状态
X 0 , X1 ,, X n1 及现在的状态 X n ,将来的状态 X n 1 的条件分布与过去的状态独立,只依
m n
-5-
n n Piim n Pikm Pki Pijm Pji 0 kS
对所有使得 Pjj 0 的 s ,有
s
ns ns s n s n Piim s n Pikm Pki Pijm Pji Pijm Pjk Pki Pijm Pjj Pji 0 kS kS
金为 0(输光)或为 n 元时停止。 这一过程的状态为 S {0,1, 2,, n} ,其转移概率
P00 Pnn 1, Pi ,i 1 p, Pi ,i 1 q, i 1, 2, n 1
1 0 0 0 0 0 0 q 0 p 0 0 0 q 0 0 P 0 0 p 0 0 0 q 0 p 0 0 0 0 0 0 1 ( n 1)( n 1)
定义 5.5 n 步转移概率: 定义 n 步转移概率 Pij 为处于状态 i 的过程经过 n 次转移后处于
状态 j 的概率,即
n
Pijn P{X mn j X m i}, i, j S , m 0, n 1
-2-
0 相应地, n 步转移概率矩阵记为 P ( n ) 。其中, P ij P ij ;且规定 P ij
kS kS
P{ X m n j X m k , X 0 i}P{ X m k X 0 i}
Markov链的定义 n Pikm Pkj kS
P{ X m n j , X m k , X 0 i} P{ X m k , X 0 i} P{ X 0 i} P{ X m k , X 0 i}
利用 C-K 方程计算得到半年后的转移概率矩阵
P (3)
0.8894 0.60175 3 P 0.4834 0.5009
0.0182 0.04355 0.1388 0.36584 0.01196 0.2134 0.14264 0.14306 0.0458 0.2559 0.0466 0.0988
结合市场份额 可进一步计算得到半年后的鲜奶市场份额
' P(3) (0.624,0.15814,0.183318,0.034542)
对比半年前后的市场份额可发现,A 种鲜奶的广告效益明显。
5.2 状态分类及性质
n 定义 5.6 互通: 若存在 n 0 使得 P 则称状态 i 可达状态 j( i, j S ) , 记为 i j ; ij 0 ,
为空集,则称 i 的周期为无穷大。 注:不是对于所有的 kd , k 1, 2,都有 P ii 0 。
kd
例 5.4 考察 Markov 链的周期
7 5
6 1
9
2 4
3
8
如图所示,由状态 1 出发再回到状态 1 的可能步长为(4,6,8,10,…) ,它的最大公 约数为 2。尽管从状态 1 出发经 2 步并不能回到状态 1,但我们仍然称 2 是状态 1 的周期。 命题 5.2 若状态 i, j 属于同一类,则 d (i) d ( j ) 。 证明:由类的定义可知 i j ,即存在 m, n 0 使得 P ij 0, Pji 0 ,则
第五章 马尔可夫链
有一类随机过程,它具备所谓的 “无后效性” (Markov 性) , 即要确定过程将来的状态, 知道它此时刻的情况就足够了, 并不需要对它以往状况的认识, 这类过程称为 Markov 过程。 Markov 过程的两类基本类型包括离散时间 Markov 链和连续时间 Markov 链。 注:以下几节我们首先讨论的离散时间 Markov 链,简称 Markov 链。
m n m, n 0 使得 P ij 0, Pjk 0 ,利用 C-K 方程(1)可知
n n Pikm n Pirm Prk Pijm Pjk 0 rS
K 类似地可以证明存在 K 0 使得 Pki 0 。
称互通的两个状态属于同一个类,且由命题 5.1 可知,任何一个状态不能同时属于两个 不同的类,即任意两个不同的类不相交。 思考:对例 5.1 中的赌徒问题的状态分类? 定义 5.7 可约:若 Markov 链只存在一个类,则称它为不可约的;否则称为可约的。 在不可约的 Markov 链中,一切状态都是彼此互通的。
若同时有状态 j i ,则称两种状态是互通的,记为 i j 。
命题 5.1 互通是一种等价关系,即
-4-
(1)自返性, i i ; (2)对称性, i j ,则 j i ; (3)传递性, i j, j k ,则 i k 。 证明: (1 ) (2)可从互通的定义直接得到。为证明(3) ,假设 i j, j k ,则存在
关,而与时刻 n 无关时,称 Markov 链为时齐的,并记 P ij P{ X n 1 j X n i} ;否则,说
-1-
就称之为非时齐的。 注:本课程的讨论仅限于时齐 Markov 链,并简称为 Markov 链。 转移概率 Pij 的性质: (1) P ij 0, i, j S ; (2)
( m n )
P( m ) P( n )
P{ X m n j , X 0 i} P{ X 0 i}
(1)证明:
Pijm n P{ X m n j X 0 i}
全概率公式
பைடு நூலகம்
kS
P{ X m n j , X m k , X 0 i} P{ X 0 i}
P
jS
ij
1, i S 。则称该矩阵为随机矩阵。
显然,随机矩阵的各行元素之和都等于 1。
例 5.1 赌徒输光问题 :考虑一赌徒,在每局赌博中他以概率 p 赢得 1 元,以概率
q 1 p 输掉 1 元,假设各局赌博是相互独立的,赌徒开始有 i ( 0 i n )元,且他在赌
5.1 基本概念
定义 5.1 Markov 链:随机过程 { X n , n 0,1, 2,} 称为 Markov 链,若它只取有限或可
列个值 E0 , E1 , E2 , ,这个可能取值的集合将以非负整数集 {0,1, 2,} 来表示。{0,1, 2,} 或其子集记为 S ,称为过程的状态空间。若 X n i ,就说过程在时刻 n 时刻处于状态 i ,假 设每当过程处于状态 i ,则在下一时刻将处于状态 j 的概率是固定的 Pij 。对任意的 n 0 及 一切状态 i0 , i 1 ,, in1 , i, j 有