第十章 压杆稳定

合集下载

第10章压杆稳定

第10章压杆稳定
9
这表明用低碳钢Q235制成的压杆,仅在柔度≥100时, 才能应用欧拉公式计算其临界应力或临界力,常用材料柔度
可查表。
第十章
四、中小柔度杆的临界应力
压杆稳定
10.2 临界力的确定
对于不能应用欧拉公式计算临界应力的压杆,即压杆内 的工作应力大于比例极限但小于屈服极限时,可应用在实验 基础上建立的经验公式。常见经验公式有直线公式和抛物线
公式。其中,直线公式为
cr a b a s cr a b s b a s s s p
b
抛物线公式为:
cr a1 b1
2
第十章
压杆稳定
10.3 压杆稳定的计算与校核
前面的讨论表明,对各种柔度的压杆,总可以用欧拉公
稳定安全因素
10.3 压杆稳定的计算与校核
nst
一般要大于强度安全因素。这是因
为一些难以避免的因素,如杆件的初弯曲、压力偏心、材料 不均匀和支座缺陷等,都严重影响压杆的稳定,降低了临界
压力。而同样这些因素,对杆件强度的影响不象对稳定那么
严重。关于稳定安全因素 中查到。
nst
一般可以在设计手册或规范
第十章
F Fcr ,
撤消横向干扰力后杆件能够恢复到 原来的直线平衡状态(图10–2b),
则原有的平衡状态是稳定平衡状态;
第十章
压杆稳定性的概念:
压杆稳定
10.1 压杆的稳定概念
当轴向压力增大到一定值
F Fcr
时,撤消横向干扰力后杆件不能再恢复到 原来的直线平衡状态(图10–2c),则原
有的平衡状态是不稳定平衡状态。 会进一
10.1 压杆的稳定概念
如果小球受到微小干扰而稍微偏离它原有的平衡位置, 当干扰消除以后,它不但不能回到原有的平衡位置,而且 继续离去,那么原有的平衡状态称为不稳定平衡状态, 如图c 所示。

材料力学 第十章 压杆稳定问题

材料力学 第十章 压杆稳定问题

由杆,B处内力偶
MB Fcraq1 , q1
由梁,B处转角
MB Fcr a
q2

MBl 3EI
q1 B
MB MBl Fcra 3EI
3EI Fcr al
q2 C
l
Page21
第十章 压杆稳定问题
作业
10-2b,4,5,8
Page22
第十章 压杆稳定问题
§10-3 两端非铰支细长压杆的临界载荷
稳定平衡
b. F k l
临界(随遇)平衡
c. F k l
不稳定平衡
Fcr kl 临界载荷
F
k l
F 驱动力矩 k l 恢复力矩
Page 5
第十章 压杆稳定问题
(3)受压弹性杆受微干扰
F Fcr 稳定平衡 压杆在微弯位置不能平衡,要恢复直线
F >Fcr 不稳定平衡 压杆微弯位置不能平衡,要继续弯曲,导致失稳
(

w)
令 k2 F
EI
d 2w dx2

k
2w

k
2
l
l
FM w
x
F B
F

B F
Page24
第十章 压杆稳定问题
d 2w dx2

k2w

k 2
F
w

通解:
A
x
B
w Asinkx Bcoskx
l
考虑位移边界条件:
x 0, w 0,
B
x 0, q dw 0
Page31
第十章 压杆稳定问题
二、类比法确定临界载荷
l

压杆·稳定性

压杆·稳定性

=
2 ,因为 h>b ,则 I y
=
hb3 12
< bh3 12
=
Iz ,由式(10.3)得
Pcr
=
π 2 EI (μl)2
=
π2
× (200 ×103
MPa) × ( 1 × 40 mm × (20 12
(2 ×1000 mm)2
mm)3 ) ≈13200
N
= 13.2
kN
10.2.2 临界应力
当压杆受临界压力作用而维持其不稳定直线平衡时,横截面上的压应力仍然可按轴向压
10.3.2 临界应力经验公式与临界应力总图
在工程实际中,常见压杆的柔度λ 往往小于 λp ,即 λ<λp ,这样的压杆横截面上的应力 已超过材料的比例极限,属于弹塑性稳定问题。这类压杆的临界应力可通过解析方法求得, 但通常采用经验公式进行计算。常见的经验公式有直线公式与抛物线公式等,这里仅介绍直 线公式。把临界应力 σcr 与柔度λ 表示为下列直线关系称为直线公式。
式中,λ 称为压杆的柔度或长细比,为无量纲量,它综合反映了压杆的长度、约束形式及截 面几何性质对临界应力的影响。于是,式(10.4)中的临界应力可以改写为
·219·
材料力学
σ cr
=
π2E λ2
式(10.6)是欧拉公式(10.3)的另一种表达形式,两者并无实质性差别。
(10.6)
10.3 欧拉公式的适用范围·临界应力总图·直线公式
2
≤σ
p

λ≥π E σp
(10.7)

于是条件式(10.7),可以写成
λP = π
E σp
(10.8)
λ ≥ λp
(10.9)

压杆稳定PPT课件

压杆稳定PPT课件
E20G0P , a设计要求的强度安全系数 n2,
稳定安全系数 nst3。试求容许荷载 P 的值。
A 2m
C 3m
P
B
h3.5m
D
35
解:1)由平衡条件可得
A
P NCD
2.5
2m
C 3m
D
2)按强度条件确定 [P]
P
B
h3.5m
N CD σ A σ n sπ 4 (D 2 d 2) 3K 40 N
Q
解:一、分析受力
1500
500
取CBD横梁研究
A
N Cr
A
Cr
A 2E 2
2m
46K9N
D
C 3m
P
B
h3.5m
稳定条件
Pcr P
nst
[N]NCr15K6 N nst
[N] [P] 62.5KN
2.5
38Leabharlann 2mC 3mPB
h3.5m
D
[P] = 62.5KN
39
例:托架,AB杆是圆管,外径D=50mm,内径d=40mm, 两端为球铰,材料为A3钢,E=206GPa,p=100。若规定 nst=3,试确定许可荷载Q。
4
实际上,当压力不到 40N 时,钢尺就被压弯。可见, 钢尺的承载能力并不取决轴向压缩的抗压刚度, 而是与 受压时变弯 有关。
5
稳定平衡与不稳定平衡的概念 当 P小于某一临界值Pcr,撤去横向力后,杆的轴线将 恢复其原来的直线平衡形态,压杆在直线形态下的
平衡是 稳定平衡。
6
P Q
PPcr
P
PPcr
2E cr 2 2. 中 长 杆 ( s p ), 用 经 验 公 式

第十章压杆稳定ppt课件

第十章压杆稳定ppt课件

2E 0.56 S
②s < 时: cr s
临界应力的特点
•它的实质: 象强度中的比例极限、屈服极限类似,除以 安全因数就是稳定中的应力极限
•同作为常数的比例极限、屈服极限不同,变化 的临界应力依赖压杆自身因素而变
例102 截面为 120mm200mm 的矩形 木柱,长l=7m,材料的弹性模量E = 10GPa,
Fcr
2 EImin
l2
此公式的应用条件:
•理想压杆
•线弹性范围内
•两端为球铰支座
§10-3 不同杆端约束下细长压杆 临界力的欧拉公式
其它端约束情况,分析思路与两端铰支的相同, 并得出了临界力公式
Fcr
2 EImin (l)2
即压杆临界力欧拉公式的一般形式
—长度系数(或约束系数) l—相当长度
•求临界力有两种途径:实验测定及理论计算。
•实验以及理论计算表明:压杆的临界力,与压杆 两端的支承情况有关,与压杆材料性质有关,与 压杆横截面的几何尺寸形状有关,也与压杆的长 度有关。
压杆一般称为柱,压杆的稳定也称为柱的稳 定,压杆的失稳现象是在纵向力作用下,使 杆产生突然弯曲的,在纵向力作用下的弯曲, 称为纵弯曲。
AB杆 l
1
i
l
1.5 cos30
1.732m
i
I A
D4 d4 4 64 D2 d2
D2 d 2 16mm 4

1 1.7 3 2 1 03
16
108 P
AB为大柔度杆
Fcr
2EI
l 2
118kN
n
Fcr FN
118 26.6
4.42 nst
3
AB杆满足稳定性要求

材料力学第十章 压杆稳定性问题2

材料力学第十章 压杆稳定性问题2
在求Pcr 及 cr的基础上,进行稳定性校核。 的基础上 进行稳定性校核
Pcr P Pcr nst
nst 为稳定安全系数, 为稳定安全系数 一般大于强度安全系数 般大于强度安全系数。 由于初曲率、载荷偏差、材料不均匀、有钉子孔 等 都会降低 Pcr 。而且柔度越大,影响越大。 等,都会降低 而且柔度越大 影响越大
S
cr
max
若 P ,图中CD段选欧拉公式 若 S P ,图中 图中BC段选经验公式 若 S ,图中AB段按强度计算,即 cr
何斌
s
Page 13
Q235钢制成的矩形截面杆,两端约束以及所承受的载 荷如图示 荷如图示((a)为正视图(b)为俯视图),在AB两处为销钉 为 视图 为俯视图 在 两处为销钉 连接。若已知L=2300mm,b=40mm,h=60mm。材料的弹性模 量E=205GPa。试求此杆的临界载荷。 正视图平面弯曲截面z绕轴 正视图平面弯曲截面z 转动;俯视图平面弯曲截 面绕y 面绕 y轴转动。 轴转动 正视图:
2 对中长杆由于 cr与 P , s b 有关 2. 强度越高, cr也越高 3 对短粗杆:强度问题 3. 对短粗杆 强度问题
何斌
P

时才适用
2E P 2
2E P
E
P
P
欧拉公式适用于 P
Page 6
材料力学
第十章 压杆稳定问题
10.4 临界应力和长细比 细长杆 中长杆和短粗杆 细长杆、中长杆和短粗杆
1.细长杆: ① P 的压杆称为细长杆。 的压杆称为细长杆 ② 此类压杆只发生了弹性失稳 ③ 稳定计算:欧拉公式 稳定计算 欧拉公式
何斌

材料力学第十章压杆稳定

材料力学第十章压杆稳定


π2

200 103 108 (2 2500 )2
10 4
N

85187N
85.19kN
10-3 欧拉公式的适用范围及经验公式
1、临界应力与柔度
将临界压力除以压杆的横截面面积A,就可以得到与临界压力
对应的应力为
cr

Fcr A

π2EI
(l)2 A
cr即为临界应力。
利用惯性半径 i 和惯性矩 I 的关系:
但在已经导出 两端铰支压杆的临 界压力公式之后, 便可以用比较简单 的方法,得到其他 约束条件下的临界 力。
l 2l
F
F 一端固定,一端自由,
长为l 的的压杆的挠曲线
和两端铰支,长为2l的
压杆的挠曲线的上半部
分相同。则临界压力:
Fcr

π 2 EI (2l)2
2、其它支承情况下细长压杆的临界力
利用同样的方法得到: 两端固定的压杆的临界压力为:
F
Fcr

π 2 EI
( l ) 2
π2 200 103 48 10 4 N (2 2500 )2
b z
l h
37860N 37.86kN
y
若 h b 60mm
Iy

Iz

bh3 12

60 4 12
mm
108 10 4 mm
Fcr

π 2 EI
( l ) 2
1、计算s, p
p
π2E
p
π2 210109 280106
86
查表优质碳钢的 a、b
s
a s
b

材料力学课件 第十章压杆稳定

材料力学课件 第十章压杆稳定

sinkL0
kn P
L EI
临界力 Pcr 是微弯下的最小压力,故,只能取n=1 ;且 杆将绕惯性矩最小的轴弯曲。
Pcr
2
EImin L2
14
Pcr
2
EImin L2
二、此公式的应用条件:
两端铰支压杆临界力的欧拉公式
1.理想压杆; 2.线弹性范围内; 3.两端为球铰支座。
三、其它支承情况下,压杆临界力的欧拉公式
29
我国钢结构柱子曲线
二、 受压构件的稳定公式
利用最大强度准则确定出轴心受压构件的临界应力 cr ,引入抗力分项系数 R ,则轴心受压构件的稳定计算公式如下:
N cr cr f y f A R R fy
f :钢材的强度设计值
(10.24)
30
例6
如图所示,两端简支,长度l 5m 的压杆由两根槽钢组成,若限定两个槽钢腹板
Iy [73.3 (51.8)2 21.95]2 2176.5cm4
33
若失稳将仍会在 xoy平面内,有
imin iz
Iz A
1732.4 6.28cm 43.9
max
l imin
500 79.6 6.28
查表得2 0.733
此时3 与3 已经很接近,按两个 16a 槽钢计算压杆的许可压力,有
20
[例3] 求下列细长压杆的临界力。
y y
x
z
z
h
L1
L2
解:①绕
y 轴,两端铰支:
=1.0,
I
y
b3h 12
,
②绕 z 轴,左端固定,右端铰支:
b
Pcry
2EI L22
y
=0.7,

材料力学 第10章 压杆稳定

材料力学 第10章 压杆稳定
Fcr (2l )2
μ=2
欧拉临界压力公式 :
Fcr
2 EI (l )2
应用欧拉公式时,应注意以下两点:
1、欧拉公式只适用于线弹性范围,即只适用于弹性稳定问题
2、 I 为压杆失稳发生弯曲时,截面对其中性轴的惯性矩。
对于各个方向约束相同的情形(例如球铰约束),I 取截面的 最小惯性矩,即 I=Imin;
Fcr
2 EI (l )2
压杆临界压力欧拉公式的一般形式
E——材料的弹性模量;
—长度系数(或约束系数),反映了杆端支承对临界载
荷的影响。
压杆临界力与外
l—压杆的计算长度或相当长度。 力有关吗??
l—压杆的实际长度。
I—压杆失稳发生弯曲时,截面对其中性轴的惯性矩。
适用条件:1.理想压杆;2.线弹性范围内
第10章 压杆稳定
第10章 压杆稳定
§10.1 §10.2 §10.3 §10.4 §10.5 §10.6
工程中的压杆稳定问题 理解
压杆稳定性概念 掌握
细长压杆临界压力的欧拉公式 掌握
压杆的临界应力 掌握
压杆的稳定性计算
掌握
提高压杆稳定性的措施
了解
关键术语
压杆,稳定性,屈曲,稳定失效,临界压力Fcr, 柔度λ(长细比),计算长度μl
重点 1、细长压杆临界压力的欧拉公式 2、压杆的临界应力 3、压杆临界载荷的欧拉公式的适用条件 4、压杆稳定性设计
难点 1、压杆临界压力的计算 2、压杆稳定性设计
§10.1 工程中的压杆稳定问题
构件的承载能力:
①强度 ②刚度 ③稳定性
工程中有些构件 具有足够的强度、刚 度,却不一定能安全 可靠地工作。
F
30mm

第十章 压杆稳定

第十章 压杆稳定
(1)计算压杆的柔度
> (所以是大柔度杆,可应用欧拉公式)
(2)计算截面的惯性矩
由前述可知,该压杆必在xy平面内失稳,故计算惯性矩
(3)计算临界力
查表10—1得μ= 2,因此临界力为
图10.3
二、当截面改为b = h =30mm时
(1)计算压杆的柔度

(所以是大柔度杆,可应用欧拉公式)
(2)计算截面的惯性矩
代入欧拉公式,可得
从以上两种情况分析,其横截面面积相等,支承条件也相同,但是,计算得到的临界力后者大于前者。可见在材料用量相同的条件下,选择恰当的截面形式可以提高细长压杆的临界力。
例10.2图10.4所示为两端铰支的圆形截面受压杆,用Q235钢制成,材料的弹性模量E=200Gpa,屈服点应力σs=240MPa, ,直径d=40mm,试分别计算下面二种情况下压杆的临界力:
0.627
0.546
0.462
1.000
0.971
0.932
0.883
0.822
0.751
0.668
0.575
0.470
0.370
0.300
110
120
130
140
150
160
170
180
190
200
0.536
0.466
0.401
0.349
0.306
0.272
0.243
0.218
0.197
0.180
(10.6)
式中 是有关的常数,不同材料数值不同。对Q235钢、16锰钢,
对Q235钢:
(MPa)
对16锰钢: (MPa)
2、临界应力总图
综合压杆按照其柔度的不同,可以分为二类,并分别由不同的计算公式计算其临界应力。当λ≥λc时,压杆为细长杆(大柔度杆),其临界应力用欧拉公式

第十章:压杆稳定

第十章:压杆稳定

按各种支承情况下压杆临界力的欧拉公式算出压杆横截面
上的应力为
Fcr π 2 EI σcr A ( l )2 A
压杆稳定
令 i
I 则 A l 令 i
则有
Fcr 2 E I 2E cr 2 2 A ( l ) A ( l i)
σcr
π E
2
2
i 为压杆横截面对中性轴的惯性半径.
2.其它支座条件下的欧拉公式
Fcr
Fcr
l
Fcr
Fcr
l/4 2l l/2 l l
l
0.7l
l
l/4
2 EI Fcr 2 l
Fcr EI ( 2l ) 2
2
0.3l
2 EI Fcr (l / 2) 2
2 EI Fcr (0.7l )2
欧拉公式
π EI Fcr ( l )2
所以连杆的临界压力为134.6kN.
xz面:约束情况为两端固定=0.5,I=Iy,l=0.88m x
F
880
l
z
F
压杆稳定
§10-3 临界应力的欧拉公式
一、临界应力与压杆柔度
1. 欧拉公式临界应力 压杆受临界力Fcr作用而仍在直线平衡形态下维持不稳定平 衡时,横截面上的压应力可按 = F/A 计算.
不稳定平衡
稳定平衡
压杆稳定
(2)压杆的平衡状态
F< FF < Fcr cr cr. F≥Fcr
稳定的
不稳定的
压杆稳定
稳定问题与强度问题的区别
压杆 强度问题 稳定问题
平衡状态 应力
平衡方程 极限承载能力
直线平衡状态不变
达到限值 变形前的形状、尺寸 实验确定

压杆的稳定性问题

压杆的稳定性问题
柔度是影响压杆承载能力的综合指标,
i I A
——惯性半径
Iz Aiz2, Iy Aiy2.
cr 压杆容易失稳
10.3.2 三类不同压杆的区分
压杆的分类 1 大柔度杆
2 中柔度杆 3 小柔度杆
P
Fcr
π2 EI
(l )2
S P
σcrab
S
σcrσs
10.3.3 三类压杆的临界应力公式
l
i
l
d
200
4
P π
E 97
σP
由于 > P,所以前面用欧拉公式进行试算是正确的,
10.6 结论与讨论
10.6.1 稳定性计算的重要性
1 选用优质钢材并不能提高细长压杆的稳定性,
2 可以提高中、小柔度杆的临界力,
10.6.2 影响承载能力的因素Fcr
Fcr
Fcr
0.5l
压杆约束愈强,其 稳定性愈好,
10.3.4 临界应力总图
小柔度杆 短粗压杆 只需进行强度计算,
cr s
FN
A
s(s)
临界应力总图:临界应力与柔度之间的变化关系图,
cr
S
cr a b ——直线型经验公式
P
粗短杆 中柔度杆
o
s
cr
2E 2
大柔度杆
P
细长压杆。 l
i
粗短杆 中长杆 细长杆
细长杆—发生弹性屈曲 p 中长杆—发生弹塑性屈曲 s < p 粗短杆—不发生屈曲,而发生屈服 < s
l
0.5l
l
0.5l
Fcr a)
Fcr b)
c)
10.6.3、提高压杆承载能力的主要途径

材料力学-10-压杆的稳定问题

材料力学-10-压杆的稳定问题
其中a和b为与材料有关的常数,单位为MPa (P247) 。
10.3 长细比与压杆分类
表10-1 常用工程材料的a和b数值 (P247)
10.3 长细比与压杆分类
3、粗短杆
——不发生屈曲,而发生屈服
s
对于粗短杆,临界应力即为材料的屈服应力:
cr s
三、 临界应力总图与P、s值的确定
π EI FPcr 2 l
10.2 细长压杆的临界荷载 欧拉公式
3.两端固定
同理
M C 0, M D 0
D
FPcr
C
π EI 2 0.5l
2
π EI FPcr 2 l
2
10.2 细长压杆的临界荷载 欧拉公式
两端铰支 =1.0
一端自由, 一端固定 =2.0
一端铰支, 一端固定 =0.7
因为
1.3a
l 1 l 2 l 3
π 2 EI l 2
a
(1)
(2)
(3)
又 故
FPcr
FPcr1 FPcr2 FPcr3
(1)杆承受的压力最小,最先失稳; (3)杆承受的压力最大,最稳定。
10.2 细长压杆的临界荷载 欧拉公式
例题 2
P
c
a\2
已知:图示压杆EI ,且 杆在B支承处不能转动。 求:临界压力。
A
π 2 EI 0.5a 2
第10章 压杆的稳定问题
10.3 长细比与压杆分类
10.3 长细比与压杆分类
一、 临界应力与长细比的概念
欧拉公式应用于线弹性范围
FPcr cr p A
σcr——临界应力(critical stress); σp——材料的比例极限。 能否在计算临界荷载之前,预先判断压杆是否 发生弹性屈曲?

第10章 压杆稳定

第10章 压杆稳定

第10章压杆稳定学习目标:1.了解失稳的概念、压杆稳定条件及其实用计算;2.理解压杆的临界应力总图;3.掌握用欧拉公司计算压杆的临界荷载与临界应力。

对承受轴向压力的细长杆,杆内的应力在没有达到材料的许用应力时,就可能在任意外界的扰动下发生突然弯曲甚至导致破坏,致使杆件或由之组成的结构丧失正常功能,此时杆件的破坏不是由于强度不够引起的,这类问题就是压杆稳定问题。

本章主要从压杆稳定的基本概念、不同支撑条件下的临界力、欧拉公式的适用条件以及提高压杆稳定性的措施方面加以介绍。

第一节压杆稳定的概念在研究受压直杆时,往往认为破坏原因是由于强度不够造成的,即当横截面上的正应力达到材料的极限应力时,杆才会发生破坏。

实验表明对于粗而短的压杆是正确的;但对于细长的压杆,情况并非如此。

细长压杆的破坏并不是由于强度不够,而是由于杆件丧失了保持直线平衡状态的稳定性造成的。

这类破坏称为压杆丧失稳定性破坏,简称失稳。

一、问题的提出工程结构中的压杆如果失稳,往往会引起严重的事故。

例如1907年加拿大魁北克圣劳伦斯河上长达548m的大铁桥,在施工时由于两根压杆失稳而引起倒塌,造成数十人死亡。

1909年,汉堡一个大型储气罐由于其支架中的一根压杆失稳而引起的倒塌。

这种细长压杆突然破坏,就其性质而言,与强度问题完全不同,杆件招致丧失稳定破坏的压力比招致强度不足破坏的压力要少得多,同时其失稳破坏是突然性,必须防范在先。

因而,对细长压杆必须进行稳定性的计算。

二、平衡状态的稳定性压杆受压后,杆件仍保持平衡的情况称为平衡状态。

压杆受压失稳后,其变形仍保持在弹性范围内的称为弹性稳定问题。

如图110-所示,两端铰支的细长压杆,当受到轴向压力时,如果是所用材料、几何形状等无缺陷的理想直杆,则杆受力后仍将保持直线形状。

当轴向压力较小时,如果给杆一个侧向干扰使其稍微弯曲,则当干扰去掉后,杆仍会恢复原来的直线形状,说明压杆处于稳定的平衡状态(如图)-所示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 压杆稳定
学时分配:共6学时
主要内容:两端铰支细长压杆的临界压力,杆端约束的影响,压杆的长度系数μ,临界应力欧拉公式的适用范围;临界应力总图、直线型经验公式λσb a cr -=,使用安全系数
法进行压杆稳定校核。

$10.1压杆稳定的概念
1.压杆稳定
若处于平衡的构件,当受到一微小的干扰力后,构件偏离原平衡位置,而干扰力解除以后,又能恢复到原平衡状态时,这种平衡称为稳定平衡。

2.临界压力
当轴向压力大于一定数值时,杆件有一微小弯曲,一侧加一微小干扰且有一变形。

任一微小挠力去除后,杆件不能恢复到原直线平衡位置,则称原平衡位置是不稳定的,此压力的极限值为临界压力。

由稳定平衡过渡到不稳定平衡的压力 的临界值称为临界压力(或临界力),用
τ
c P 表示。

3.曲屈
受压杆在某一平衡位置受任意微小挠动,转变到其它平衡位置的过程叫屈曲或失稳。

$10.2细长压杆临界压力的欧拉公式
1.两端铰支压杆的临界力
选取如图所示坐标系xOy 。

距原点为x 的任意截面的挠度为v 。

于是有
Pv M -=
2.挠曲线近似微分方程:
将其代入弹性挠曲线近似微分方程,则得
()Pv x M EIv -==''
令 EI P k =
2
则有
0'2''=+v k v
该微分方程的通解为
kx B kx A v cos sin +=
c r c r
式中A 、B ——积分常数,可由边界条件确定 压杆为球铰支座提供的边界条件为
0=x 和l x =时,0=v
将其代入通解式,可解得
0=B ,0sin =kl A
上式中,若A=0,则0=v ;即压杆各处挠度均为零,杆仍然保持直线状态,这与压杆处于微小弯曲的前提相矛盾。

因此,只有
0sin =kl
满足条件的kl 值为
πn kl =),2,1,0(Λ=n
则有
l n k π=
于是,压力P 为
2222
l EI
n EI k P π=
=
1=n 得到杆件保持微小弯曲压力-临界压力τc P 于是可得临界压力为
2
2l EI P c πτ= 此式是由瑞士科学家欧拉(L. Euler )于1744年提出的,故也称为两端铰支细长压杆的
欧拉公式。

此公式的应用条件:理想压杆;线弹性范围内;两端为球铰支座。

$10.3其他条件下压杆的临界压力
欧拉公式的普遍形式为
22)(l EI P cr μπ=
式中μ称为长度系数,它表示杆端约束对临界压力影响,随杆端约束而异。

l μ表示把压杆折算成相当于两端铰支压杆时的长度,称为相当长度。

两端铰支,1=μ;一端固定另一端自由2=μ;两端固定,2
1=μ;一端固定令一
端铰支,7.0=μ。

例:试由一端固定,一端简支的细长压杆的挠曲线的微分方程,导出临界压力。

解:
由挠曲线的微分方程可得
EI x l R v EI P EI
M dx v d )
(22-+-==
方程的通解为
()x l EIk R
kx C kx C v -+
+=2
21sin cos 固定支座的边界条件是
0=x 时,0=v ,
0=dx dv
l x =时,0=v ,
0=dx
dv
边界条件带入上面各式得
0,0sin cos ,02
22121=-=+=+
EIk
R kC kl C kl C l EIk R C 解得
kl kl =tan
作出正切曲线,与从坐标画出的45º斜直线相交,交点的横坐标为
()22
/493.4l EI P cr =
弯矩为零的C 点的横坐标l k
x c 3.0352
.1≈=
$10.4 压杆的稳定校核
1.压杆的许用压力
[]st
cr n P P =
[]P 为许可压力;st n 为工作安全系数。

2.压杆的稳定条件
[]P P ≤
例 平面磨床液压传动装置示意图。

活塞直径mm D 65=,油压MPa p 2.1=。

活塞杆长度mm l 1250=,材料为35钢,MPa P 220=σ,GPa E 210=,6=τs n 。

试确定活塞杆的直径。

解:
(1)轴向压力
()N p D P 3980102.110654
4
62
32=⨯⨯⨯=
=

π
(2)临界压力
N P n P st cr 2390039806=⨯==
(3)确定活塞杆直径
由()
N l EI
P cr 239002
2==μπ得出m d 025.0≈ (4)计算活塞杆柔度
2004
025
.025
.11=⨯=
=
i
l
μλ
对35号钢,9710220102106
9
221=⨯⨯⨯==
πσπλP E 因为1λλ〉,满足欧拉公式的条件。

活塞杆。

相关文档
最新文档