随机抽样课件

合集下载

随机抽样 完整版PPT课件

随机抽样 完整版PPT课件
复习回顾
1. 学过的随机抽样方法?
简单随机抽样 系统抽样 分层抽样
抽签法 随机数表法
2. 三种抽样方法的比较
类 别 共同点 各自特点
Байду номын сангаас
联 系 适 用范 围
简单
从总体中
总体个
随 机 ( 1 ) 抽 样 逐个抽取 抽 样 过程中每个
数较少
系统 抽样
个体被抽到 的可能性相 等 (2)每次
将总体均分成 几部分,按预 先制定的规则
用的方法依次是( ) B
A.分层抽样,系统抽样 B.分层抽样,简单随机抽样
C.系统抽样,分层抽样 D.简单随机抽样,分层抽样
变式练习:
一个总体中1000个个体编号为0,1,2,3, …999,并 依次将其分为10个小组,组号为0,1,2, …,9,要用 系统抽样方法抽取一个容量为10的样本,规定如果第0 组随机抽取的号码为x,那么依次错位地抽取后面各组 的号码,即第K组中抽取的号码的后两位数为 x+33k的后 两位数。 (1)当x=24时,写出所抽取样本的10个号码; (2)若所抽取样本的10个号码中有一个的后两位数是87, 求x的取值范围。
在起始部分 样时采用简 随机抽样
总体个 数较多
抽出个体后 在各部分抽取
不再将它放
分层抽样时 总体由差
分 层 回,即不放 将总体分成 采用简单随 异明显的
抽 样 回抽样
几层,分层 机抽样或系 几部分组
进行抽取 统抽样

变式练习:
某公司在甲乙丙丁死各地区分别有150个、120个、180个、 150个销售点,公司为了调查产品销售情况,需从这600个 销售点抽取一个容量为100的样本,记这项调查为①;在 丙地区中有20个特大型销售点中抽取7个调查其销售收入 售后服务等情况,记这项调查为②,则完成这两项调查采

《简单随机抽样》教学课件(共20张PPT)

《简单随机抽样》教学课件(共20张PPT)
同一种抽样方法,每次抽样得到的数据也可能不同.
方当法调一 查.的2对0象名个数同较少学,的调查调容易查进行,时,发我们现一有般采1用6普人查的是方式因进行为。没有吃早餐而去买零食。由此
怎么样得到咱班骑自行车上学的人数呢?
还 不有同其的他 抽推抽 样样 方断调 法查 ,,的 所方 得我法到校吗 的? 样8本0可%能的不同学; 生在家不吃早餐。”
般采用普查的方式进行。但当调查的结果对调查对象具
有破坏性或者会产生一定的危害性时,通常采用抽样调 查。
2.当调查对象的个数较多,调查不易进行时,我们 常采用抽样调查的方式进行调查。当调查的结果有特别 要求时,或调查的结果有特殊意义时,仍须采用普查的 方式进行。
情境引入
为了解本校学生暑假期间参加体育活动的情况,学 校准备抽取一部分学生进行调查,你认为按下面的调查 方法取得的结果能反映全校学生的一般情况吗?如果不 能反映,应当如何改进调查方法?
方法1:调查学校田径队的30名同学; 方法2:调查每个班的男同学;
方法3:从每班抽取1名同学进行调查;
方法4:选取每个班中的一半学生进行调查。
请同学自由讨论,并发表自己的看法。
情境引入
方法一. 选取的样本是田径队的同学,他们暑假 中体育活动多;
方法二. 只调查男同学,没调查女同学;
方法三. 选取的样本容量太小; 方法四. 选取的容量太大,需要花费较多的时间和 人力.
1.了解并掌握:普查、抽样调查、总体、样本、个体这些基本概念;
1由. 此推断本,我中校8没0%的有学生被在家不重吃早复餐。抽取的个体,便于进行有关的分析和计算。
当调查对象的个数较多,调查不易进行时,我们常采用抽样调查的方式进行调查。
2.它每一次抽取时总体中的每个个体有相同的抽取机 只调查男同学,没调查女同学;

9.1.1简单随机抽样第1课时课件(人教版)

9.1.1简单随机抽样第1课时课件(人教版)
9.1.1 简单随机抽样 第1课时
学习目标
新课讲授
课堂总结
1.正确理解总体、个体、样本、普查、抽样调查的概念
2.理解简单随机抽样的概念,掌握抽签法和随机数法的 一般步骤
学习目标
新课讲授
课堂总结
知识点1:统计的相关概念及抽样的必要性
在现实生活中,我们经常会接触到各种统计数据.
统计学是通过收集数据和分析数据来认识未知现象的一门科学. 为解决问题奠定基础
说明:如果生成的随机数有重复,即同一编号多次被抽到,可以剔除重 复的编号并重新产生随机数,直到产生不同的编号个数等于样本数.
学习目标
新课讲授
课堂总结
随机数的产生
1.用随机实验生成随机数
准备10个大小质地一样的小球,小球上分别写上数字0,1,2,…9,放 在不透明的盒子中, 当编号是三位的时候,有放回抽取3次,抽前充分搅拌,第一、二、三 次号作摸到数字分别作为百、十、个位数.
如果抽取是放回的,叫做放回简单随机抽样; 如果抽取是不放回的,称为不放回简单随机抽样. 效率更高
通过简单随机抽样获得的样本称为简单随机样本. 如没特殊说明,本章所称简单随机抽样指不放回简单随机抽样.
学习目标
新课讲授
课堂总结
例1 下面的抽样方法是简单随机抽样吗?为什么? (1)从无数个个体中抽取20个个体作为样本;× 总体的个数不是有限的 (2)从50台冰箱中一次性抽取5台冰箱进行质量检查;× 不是逐个抽取 (3)某班有40名同学,指定个子最高的5名同学参加学校组织的篮 球赛; × 不是等可能抽样 (4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无 放回地抽出6个号签. √
问题:一家家具厂要为树人中学高一年级制作课桌椅,他们事先想了解全体高 一年级学生的平均身高,以便设定可调节课桌椅的标准高度.已知树人中学高一 年级有712名学生,如果要通过简单随机抽样的方法调查高一年级学生的平均 身高,应该怎样抽取样本?

抽样调查第2章简单随机抽样ppt课件

抽样调查第2章简单随机抽样ppt课件
记录样本
将读取到的随机数对应的个体作为样本,并记录其编号。
计算机模拟法
编号
选择随机数生成器
设置参数
生成随机数
筛选样本
将总体的个体编号,并将 编号数据输入计算机。
在计算机中选择一个合适 的随机数生成器。
根据需要设置随机数生成 器的参数,如生成随机数 的范围、数量等。
使用随机数生成器生成 一定数量的随机数。
详细记录每个被抽中样本的信息和特征,如 姓名、性别、年龄、职业等。
处理异常情况
保密原则
如遇到无法联系或拒绝接受调查的样本,需 按照预先设定的方案进行处理,如替换或重 新抽取等。
在整个抽样过程中,需严格遵守保密原则, 确保被调查者的隐私不被泄露。
05
数据分析与结果解读
数据整理与初步分析
1 2
数据来源与采集方式
根据生成的随机数,从总 体中筛选出对应的个体作 为样本,并记录其编号。 如果需要,还可以对样本 进行进一步的处理和分析。
03
样本容量确定与误差控制
样本容量确定原则及方法
原则
在满足调查精度和可靠性的前提下, 尽可能减少样本容量,以节约成本和 提高效率。
方法
根据总体大小、总体方差、调查精度要 求等因素,采用适当的统计公式或经验 法则来确定样本容量。
01
介绍点估计和区间估计的概念、方法和应用场景,并比较其优
缺点。
假设检验的基本原理
02
阐述假设检验的基本原理和步骤,包括原假设和备择假设的设
定、检验统计量的选择、显著性水平的确定等。
常用统计检验方法
03
介绍常用的统计检验方法,如t检验、F检验、卡方检验等,并
说明其应用场景和注意事项。

211简单随机抽样(三种抽样方法)ppt课件

211简单随机抽样(三种抽样方法)ppt课件

确定抽取的样本量n,通常要求n远小 于N,且n和N都是已知的;
对样本进行必要的检查和调整,确保 样本的代表性。
简单随机抽样优缺点
优点
简单易行,样本具有较好的代表性,能够客观地反映总体情况;每个单位被抽 中的概率相等,保证了抽样的公正性;
缺点
当总体容量N较大时,样本的抽取比较困难;需要对总体中的所有单位进行编 号,工作量较大;如果总体中单位特征差异较大,简单随机抽样可能导致样本 的偏差。
整群抽样
将总体分成若干群,随机抽取部 分群,对抽中群进行全面调查。
优点
便于组织和管理,节省人力物力。
缺点
抽样误差可能较大,样本代表性可 能较差。
抽样方法选择依据
研究目的
明确研究目的和需求, 选择最合适的抽样方法

总体特征
了解总体的分布、异质 性等特征,以便选择合
适的抽样方法。
资源限制
考虑时间、人力、物力 等资源限制,选择可行
分层抽样步骤
确定分层变量
选择能够反映总体个体差异的变量作为分层 变量。
确定各层的样本量
根据各层的权重、样本量分配比例等因素, 确定各层的样本量。
对总体进行分层
根据分层变量的取值范围,将总体分成若干 个互不重叠的层。
在各层内进行随机抽样
在各层内分别采用简单随机抽样、系统抽样 等方法抽取样本。
分层抽样优缺点及适用场景
02
03
简单随机抽样
每个样本被选中的概率相 等,完全随机。
优点
简单易行,无偏性,一致 性。
缺点
可能产生较大抽样误差, 样本分布可能不均匀。
三种抽样方法比较
分层抽样
将总体分成若干层,每层 内进行简单随机抽样。

9.1.1 简单随机抽样课件ppt

9.1.1 简单随机抽样课件ppt
么如何进行抽样呢?
知识点拨
知识点一、全面调查、抽样调查及抽样方法
1.全面调查和抽样调查
调查方式 全面调查
对每一个调查对象都进行调
定义
查的方法,称为全面调查,又称
普查
抽样调查
根据一定目的,从总体中抽取一
部分个体进行调查,并以此为依
据对总体的情况作出估计和推
断的调查方法,称为抽样调查
调查方式 全面调查
2023
人教版普通高中教科书·数学
第九章
9.1.1 简单随机抽样
必修
第二册




01
课前篇 自主预习
02
课堂篇 探究学习
课标阐释
1.了解全面调查与抽样调查的异同.(数
学抽象)
2.理解抽样调查的目的和基本要求.(数
学抽象)
3.掌握简单随机抽样中的抽签法、随
机数法的一般步骤.(逻辑推理)
4.了解总体均值、样本均值的定义和
提示为了使每个号签被抽取的可能性相等,保证抽样的公平性.
微练习
判断下列说法是否正确,正确的在后面的括号内画“√”,错误的画“×”.
(1)抽签法和随机数法都是不放回抽样.( √ )
(2)抽签法抽签时,先抽签的人占便宜.( × )
(3)生成随机数的方式多种多样,可以用随机试验生成随机数,也可用计算
器、数学软件、统计软件生成随机数.( √ )
解 第一步,将36个居民小区进行编号,分别为01,02,03,…,36.
第二步,将36个号码分别写在相同的纸片上,揉成团,子里,充分搅匀,依次抽取7个号签,并记
录上面的号码.
第四步,与这7个号码对应的居民小区就是要抽取的样本.
角度2 随机数法的应用

《随机抽样》课件

《随机抽样》课件
探讨了为什么随机抽样是确保数据准确性和代表性的必要步骤。
随机抽样的类型
1 简单随机抽样
解释了简单随机抽样的 概念和应用场景。
2 分层抽样
介绍了分层抽样的原理 和适用条件。
3 系统抽样
探讨了系统抽样的方法 和在实际研究中的应用。随机抽样的方法如何进行简单随机 抽样
详细介绍了进行简单随机抽 样的步骤和注意事项。
随机抽样的应用
市场调研中的应用
展示了如何利用随机抽样进行 市场调研和消费者洞察。
人口普查中的应用
说明了随机抽样在人口普查中 的作用和意义。
医学研究中的应用
介绍了随机抽样在医学研究中 的重要性和实践案例。
结束语
1 总结随机抽样的重要性
总结了随机抽样在数据分析和研究中的关键作用。
2 强调使用随机抽样的正确姿势
《随机抽样》PPT课件
随机抽样作为一个重要的统计学概念,对于数据分析和研究具有至关重要的 作用。本课程将介绍随机抽样的各种类型、方法、误差及其应用,帮助大家 正确理解和应用随机抽样。
导言
随机抽样的概念
解释了随机抽样的定义和基本原理。
随机抽样的作用
介绍了随机抽样在统计学和数据分析中的重要性。
为什么需要进行随机抽样
提醒大家在实践中正确使用和解读随机抽样结果。
3 对未来应用随机抽样提出展望
展望了随机抽样在未来数据科学和研究领域的发展方向。
如何进行分层抽样
提供了分层抽样的具体方法 和实施细节。
如何进行系统抽样
讲解了系统抽样的步骤和常 见问题。
随机抽样的误差和检验
1
随机抽样误差的含义
阐述了随机抽样误差的定义和影响因素。
2
如何检验随机抽样是否有效

简单随机抽样ppt课件

简单随机抽样ppt课件

2.下列抽样方法是简单随机抽样的有
.(填序号)
(1)从无限多个个体中抽取100个个体作为样本.
(2)从20个零件中逐个抽取3个进行质量检验.
(3)从班上50名同学中选数学成绩最好的2名同学参加数学竞赛.
(4)某班45名同学,指定个子最高的5名同学参加学校组织的某项活动.
(5)中国福利彩票30选7,得到7个彩票中奖号码.
本题中将学生编号都设定成了三位数,我们还可以利用计算机产生若干个0~9范 围内的随机数,然后结合编号特点进行读取,若编号为两位数,则两位两位地读取, 若编号为三位数,则三位三位地读取.
[跟踪训练]
总体由编号为1,2,…,99,100的100个个体组成.现用随机数法选取60个个体,利
用电子表格软件产生的若干个1~100范围内的整数随机数的开始部分数据如下所示,
m/s)的数据如下:

27
38
30
37
35
31

35
29
40
34
30
36
分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数并判断选谁参加比赛比较
合适? 解: y 甲=27+38+30+6 37+35+31=33(m/s),
y 乙=35+29+40+6 34+30+36=34(m/s).
因为 y 甲< y 乙,故选乙参加比赛较合适.
则选出来的第5个个体的编号为________.
8
44
2
17
8
31
57
4
55
6
88
77
74
47
7
21
76
33
50
63
解析:生成的随机数中落在编号1~100范围内的有8,44,2,17,8(重复,舍弃),

简单随机抽样 PPT优秀课件

简单随机抽样 PPT优秀课件

• ● 一个不注意小事情的人,永远不会成功大事业。──卡耐基 • ● 一个能思考的人,才真是一个力量无边的人。──巴尔扎克 • ● 一个人的价值,应当看他贡献了什么,而不应当看他取得了什么。 • ──爱因斯坦 • ● 一个人的价值在于他的才华,而不在他的衣饰。 ──雨果 • ● 一个人追求的目标越高,他的才力就发展得越快,对社会就越有
地理课件:/kejian/dili/
历史课件:/kejian/lish i/
的方法叫做简单随机抽样
2.要判断一锅汤的味道需要把整锅 汤都喝完吗?应该怎样判断?
将锅里的汤“搅拌均匀”,品尝一小 勺就知道汤的味道,这是一个简单随 机抽样问题,对这种抽样方法,我们 从理论上作些分析.
为了了解本校学生暑假期间 参加体育活动的情况,学校 准备抽取一部分学生进行调 查,你认为按下面的调查方 法取得的结果能反映全校学 生的一般情况吗?如果不能 反映,应当如何进行调查方 法?
方法1:调查学校田径队的30名同学;
选取的样本是学校田径队,他们的 暑假活动较多
方法2:调查每个班的男同学;
只调查男同学,没有调查女同学
课本90页习题4.2
梦想的力量 当我充满自信地,朝着梦想的方向迈进
并且毫不畏惧地,过着我理想中的生活 成功,会在不期然间忽然降临!
有了坚定的意志,就等于给双脚添了一对翅膀。 一个人的价值在于他的才华,而不在他的衣饰。 生活就像海洋,只有意志坚强的人,才能到达彼岸。 读一切好的书,就是和许多高尚的人说话。 最聪明的人是最不愿浪费时间的人。
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/

简单随机抽样-课件

简单随机抽样-课件
第二步:将50名同学的编号分别写在一张小纸条上, 并揉成小球,制成号签;
第三步:将得到的号签放在一个不透明的容器中,搅 拌均匀;
第四步:从容器中逐个抽取5个号签,并记录上面的 编号,如2,11,26,19,45;对应编号的同 学去开会;
随机数表法的步骤如下:
第一步:将50件产品编号,可以编为00,01,02,……49;
例:利用抽签法从15名学生中抽取5名同学去开会。
抽签的步骤如下:
第一步:给15名同学编号,号码为1,2,……15;
第二步:将15名同学的编号分别写在一张小纸条上, 并揉成小球,制成号签;
第三步:将得到的号签放在一个不透明的容器中,搅 拌均匀;
第四步:从容器中逐个抽取5个号签,并记录上面的 编号,对应编号的同学去开会;
二、选择题
1、简单随机抽样的结果: D
A、由抽样方式决定
B、由随机性决定
C、由人为因素决定
D、由计算方法决定
2、从10个篮球中任意取一个检验其质量,则抽样为:A
A、简单随机抽样
B、系统抽样
C、分层抽样
D、有放回抽样
三、填空题
1、从65名同学中抽出20人考察他们的学习成绩, 在这次抽样中样本为( 20名同学 ),样 本容量为( 20 );
演练反馈:从20名学生中抽取5名同学去开会。
抽签法的步骤如下:
第一步:给20名同学编号,号码为1,2,……20;
第二步:将20名同学的编号分别写在一张小纸条上, 并揉成小球,制成号签;
第三步:将得到的号签放在一个不透明的容器中,搅 拌均匀;
第四步:从容器中逐个抽取5个号签,并记录上面的 编号,对应编号的同学去开会;
15 65 85 58 96 90 60 24 52 52 57 56 68 42 66 85 87 47 70 01 25 45 35 20 14 01 25 45 86 93 57 48 56 35 87 45 32 56 82 54 56 68 97 80 12 01 02 50 80 95

9.1.2分层随机抽样课件(人教版)

9.1.2分层随机抽样课件(人教版)

学习目标
新课讲授
课堂总结
思考:对男生、女生分别进行简单随机抽样,样本量在男生、女生中应 如何分配?
男生人数 男生样本量=
×总样本量
全体学生人数
女生人数 女生样本量=
×总样本量
全体学生人数
无论是男生还是女生, 每个学生被抽到的可 能性相等.
n男=
326 50 23 712
n女=
386 50 27 712
i 1
Xi
Yi
i 1
MX
NY
M
X
N
Y
M N
MN MN MN
m
n
xi
i 1
i 1
yi
mx ny
m
x
n
y
mn
mn mn mn
学习目标
新课讲授
课堂总结
由于用第一层的样本平均数 x 可以估计第1层的总体平均数 X ,第二
层的样本平均数 y 可以估计第2层的总体平均数 Y ,
因此可以用 M
M N
问题2:如何计算总体平均数?
通过计算得出男生和女生身高的样本平均数分别为170.6,160.6.
总体平均数 170.6326 160.6386 165.2,
712
学习目标
新课讲授
课堂总结
一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且 仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总 体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样.
9.1.2 分层随机抽样
学习目标
新课讲授
课堂总结
1.了解分层随机抽样的特点、适用范围及必要性
2.掌握各层样本量比例分配的方法和分层随机抽样的样本 均值

随机抽样ppt课件44页PPT

随机抽样ppt课件44页PPT

庭、95户低收入家庭中选出100户调查社会购买力
的某项指标;
②从某中学的15名艺术特长生中选出3人调查学习
负担情况.
宜采用的抽样方法依次为
()
A.①随机抽样法,②系统抽样法
B.①分层抽样法,②随机抽样法
C.①系统抽样法,②分层抽样法
D.①②都用分层抽样法
解析 ①中总体由差异明显的几部分构成,宜采用 分层抽样法,②中总体中的个体数较少,宜采用简 单随机抽样法. 答案 B
2009应届毕业生报名的18名志愿者中,选取6人组 成志愿小组.请用抽签法和随机数法设计抽样方案. 思维启迪 考虑到总体中个体数较少,利用抽签法 或随机数法均可容易获取样本.须按这两种抽样方 法的操作步骤进行.抽签法应“编号、制签、搅匀、 抽取”;随机数法应“编号、确定起始数、读数、 取得样本”.
解 抽签法: 第一步:将18名志愿者编号,编号为1,2,3,…, 18; 第二步:将18个号码分别写在18张外形完全相同的 纸条上,并揉成团,制成号签; 第三步:将18个号签放入一个不透明的盒子里,充 分搅匀; 第四步:从盒子中逐个抽取6个号签,并记录上面的 编号; 第五步:所得号码对应的志愿者,就是志愿小组的 成员.
一个容量为n的样本,样本中A型号产品有16件, 那么此样本的容量n= 80 . 解析 设分别抽取B、C型号产品m1,m2件, 则由分层抽样的特点可知 2 3 5 ,
16 m1 m2 ∴m1=24,m2=40,∴n=16+m1+m2=80.
题型分类 深度剖析
题型一 简单随机抽样 【例1】某大学为了支援我国西部教育事业,决定从
3.(2009·陕西文,5)某单位共有老、中、青职工
430人,其中有青年职工160人,中年职工人数是

简单随机抽样 课件

简单随机抽样  课件

n
分个体,以获得整数间隔k.
答案:(1)√ (2)√ (3)√ (4)√
实施系统抽样的具体方法和步骤
某校高中三年级的295名学生已经编号为 1,2,…,295,为了了解学生的学习情况,要按1∶5的 比例抽取一个样本,用系统抽样的方法进行抽取,并写 出过程.
分析:按1∶5比例抽取样本确定样本容量,再按 系统抽样的步骤进行,关键是确定第1段的编号.
实施简单随机抽样的具体方法和步骤
某车间工人加工一种轴100件,为了了解这 种轴的直径,要从中抽取10件轴在同一条件下测量,如 何采用简单随机抽样的方法抽取样本?
解析:简单随机抽样一般采用两种方法:抽签法和 随机数表法.
法一:(抽签法)将100件轴编号为1,2,…,100,并 做好大小、形状相同的号签,分别写上这100个数,将 这些号签放在一起,进行均匀搅拌,接着连续抽取10个 号签,然后测量这个10个号签对应的轴的直径.
简单随机抽样和系统抽样
基础梳理
1.简单随机抽样定义:一般地,设一个总体含有N个 个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如 果每次抽取时总体内的各个个体被抽到的机会都相等,就 把这种抽样方法叫做简单随机抽样.
2.抽签法的定义:抽签法就是把总体中的N个个体编 号,把号码写在号签上,将号签放在一个容器中,搅拌均 匀后,每次从中抽取一个号签,连续抽取n次,就得到一个 容量为n的样本.
对简单随机抽样的理解
判断下列关于简单随机抽样的描述的正误: (1)简单随机抽样要求被抽取的样本的总体个数N是 有限的. (2)简单随机样本数n小于等于样本总体的个数N. (3)简单随机样本是从总体中逐个抽取的. (4)简单随机抽样是一种不放回的抽样. (5)简单随机抽样的每个个体入样的可能性均为n/N. 答案:(1)√ (2)√ (3)√ (4)√ (5)√

9.1.2分层随机抽样 课件(人教版)

9.1.2分层随机抽样 课件(人教版)
4.要从其中有50个红球的1000个球中,采用按颜色分 层抽样的方法抽取100个进行分析,则应抽取红球的
个数为( A )
A.5 B.10 C.20 D.45
5.A公司有职工代表120人,B公司有职工代表100人, 现因A,B两公司合并,需用分层抽样的方法在这两 个公司的职工代表中选取11人作为企业资产评估监
2.某林场有树苗 30 000 棵,其中松树苗 4 000 棵.为调查树苗
的生长情况,采用分层随机抽样的方法抽取一个容量为 150
的样本,则样本中松树苗的数量为( )0
D.15
解析:样本中松树苗为
4
000×
150 30 000

4
000× 2010 =
20(棵). 答案:C
3.某公司有大量客户,且不同年龄段客户对其服务的评价有 较大差异.为了解客户的评价,该公司准备进行抽样调查, 可供选择的抽样方法有简单随机抽样和分层随机抽样,则 最合适的抽样方法是________.
三、易错防范题 5.某企业三月中旬生产 A,B,C 三种产品共 3 000 件,根据
分层随机抽样的结果,企业统计员制作了如下的统计表格:
由于不小心,表格中 A、C 两种产品的有关数据已被污染 看不清楚了,统计员只记得 A 产品的样本容量比 C 产品的 样本容量多 10,根据以上信息,求 C 产品的数量的件数.
3.某校有足球、篮球、排球三个兴趣小组,共有成 员120人,其中足球、篮球、排球兴趣小组的成员 分别有40人、60人、20人.现用分层抽样的方法 从这三个兴趣小组中抽取24人来调查活动开展情 况,则在足球兴趣小组中应抽取的人数8 为______
注:本来每层的个体数量之比=样本中每层的个体数量之比
学以致用:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

它是一种不放回抽样;
不回性
它是一种等概率抽样. 等率性
25
练习:
C 1. 下列抽取样本的方式是属于简单随机抽样的是( )
①从无限多个个体中抽取100个个体作样本;
②盒子里有80个零件,从中选出5个零件进行质量检验,在抽样操 作时,从中任意拿出一个零件进行质量检验后,再把它放回盒 子里;
③从8台电脑中不放回的随机抽取2台进行质量检验(假设8台电脑 已编好号,对编号随机抽取)
特点是:有限性,逐个性,不回性,等率性 2.简单随机抽样的方法: 抽签法 随机数表法
29
课堂小测 1、下面的抽样方法是简单随机抽样吗?
(1)某班45名同学,指定个子最高的5名同学参加
学校组织的某项活动;
(2)从20个零件中一次性抽出3个进行质量检验;
(3)一儿童从玩具箱中的20件玩具中随意拿出一
件来玩,玩后放回再拿下一件,连续玩了5件。


将51个号签搅拌均匀

随机从中抽出10个签
对号码一致的学生检查
结束
15
抽签法的一般步骤:
(总体个数N,样本容量n)
(1)将总体中的N个个体编号(号 码从1到N);
(2)将这N个号码写在形状、大小相 同的号签上;
(3)将号签放在同一箱中,并搅拌均 匀;
(4)从箱中每次抽出1个号签,并记 录其编号,连续抽出n次; (5)将总体中与抽到的号签编号一致 的n个个体取出。
3:为了了解全校240名学生的身高情况,从中抽
取40名学生进行测量,下列说法正确的是( D )
A.总体是240
B、个体是每一个学生
C、样本是40名学生 D、样本容量是40
27
通过本节的学习你有 什么收获呢?
28
课后小结
1.简单随机抽样的概念
一般地,设一个总体的个体数为N,如果通过逐个 抽取的方法从中抽取一个样本,且每次抽取时各个个体 被抽到的概率相等,就称这样的抽样为简单随机抽样。
A.① B.② C.③
D.以上都不对
四个特点:①总体个数有限;②逐个抽取; ③不放回;④每个个体机会均等,与先后 无关。
26
2:某市为了了解本市13850名高中毕业生的数 学毕业会考的情况,要从中抽取500名进行数 据分析,那么这次考察的总体数为1_3_8__5_0_,样 本容量是_5_0_0_.
15000
从总体中取出的一部分个体的集体 叫做这个总体的一个样本。
样本中的个体的数目叫做样本 的容量。
12
总体的概念 把所要考察的对象的全体叫做总体.
个体的概念 总体中的每一个考察对象叫做个体. 样本的概念
从总体中所抽取的一部分个体叫 做总体的一个样本.
样本容量的概念 样本中所含个体的数目叫做样本
搅匀
(4)从箱中每次抽出1个号签,并记
抽签
录其编号,连续抽出n次;
(5)将总体中与抽到的号签编号一致
取出个体
的n个个体取出。
抽签法的特征
结束
适用范围:总体的个体数不多时.优点:简单易行 17
实验(一)
调查本班同学对数学和语文科目的学习兴趣, 请每一位同学准备一张小纸条,写上自己喜 爱的科目。
实验结果是什么呢?大家 更喜欢哪个科目呢?
第三步,从选定的数7开始向右读(读数的方向也可以是 向左、向上、向下等),得到一个三位数785,由于785< 799,说明号码785在总体内,将它取出;继续向右读,得到 916,由于916>799,将它去掉,按照这种方法继续向右读, 又取出567,199,507,…,依次下去,直到样本的60个号码 全部取出,这样我们就得到一个容量为60的样本. 22
随机数法抽取样本的步骤: ①将总体中的所有个体编号(每个 号码位数一致); ②在随机数表中任选一个数作为开始; ③从选定的数开始按一定方向读下去,得到的数 码若不在编号中,则跳过;若在编号中则取出, 得到的数码若在前面已经取出,也跳过。如此进 行下去,直到取满为止; ④根据选定的号码抽取样本。
23
的容量.
13Байду номын сангаас
实例一
为了了解高一(5)班51名同 学的视力情况,从中抽取10名同 学进行检查。
请问:(1)此例中总体、个体、样本、样本容 量分别是什么?
(2)如何抽取呢?
抽签法
14
为了了解高一(5)班51名同学的视力情况,从中抽
取10名同学进行检查。 开始
51名同学从1到51编号
制作1到51个号签
随机数表的制作方法:
抽签法,抛掷骰子法和计算机生成法.
20
随 机 数 表
教材103页
21
第一步,先将800袋牛奶编号,可以编为000,001,…, 799 . 第二步,在随机数表中任选一个数,例如选出第8行 第7列的数7.
(为了便于说明,下面摘取了附表1的第6行至第10行).
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28
2:为了测量所加工一批零件的长度,抽测了其中200个
零件,在这个问题中,200个零件的长度是( )
A、总体
B、总体的容量
C、总体的一个样本 D、样本容量
3.对于简单随机抽样,每个个体每次被抽到的机会都
_______.
30
练习册
作业
随堂训练 1 2 3 课时作业(九)
31
再见
32
1
统计学是干什么的?
• 现代社会是信息化的社会,人们常常 需要收集数据,根据所获得的数据提 取有价值的信息,作出合理的决策。 统计是研究如何合理收集、整理、分 析数据的学科,它可以为人们制定决 策提供依据。
2
3
4
5
6
7
思考
你知道这些数据是怎么来的吗? 怎么调查? 是对考察对象进行全面调查还是抽 样调查?
小实验
用随机数表法重复前面的实验,看 看实验结果是否相同。
24
简单随机抽样
一般地,设一个总体的个体数为N,如果通过 逐个不放回抽取的方法从中抽取n个个体作为样本, 且每个体被抽到的概率相等,就称这样的抽样方 法为简单随机抽样。
简单随机抽样的特点:
它的总体个数有限的;
有限性
它是逐个地进行抽取; 逐个性
18
实 例二
• 假设我们要考察某公司生产的500克袋 • 装牛奶的质量是否达标,现从800袋牛奶 • 中抽取60袋进行检验,如何抽取?
用抽签法还可行吗?
19
一个有效的办法是制作一个表,其中的每 个数都是用随机方法产生的,这样的表称
随 为随机数表. 机 于是我们只要按一定规则到随机数表中 数 选取号码就可以了,这样的抽样方法叫做 表 随机数表法. 法
8
灯泡厂要了解生产的灯泡的使用寿 命,怎样获得相关数据呢?需要将 所有灯泡逐一测试吗?
9
统计的基本思想方法是什么?
• 统计的基本思想方法是用样本估计总体, 即当总体数量很大或检测过程具有一定的 破坏性时,不直接去研究总体,而是通过 从总体中抽取一个样本,根据样本的情况 去估计总体的相应情况。
• 如何进行合理的抽样呢?
开始
51名同学从1到51编号 制作1到51个号签
将51个号签搅拌均匀
随机从中抽出10个签 对号码一致的学生检查
结束
16
抽签法的一般步骤:
(总体个数N,样本容量n)
开始
(1)将总体中的N个个体编号(号码从 1到N);
(2)将这N个号码写在形状、大小相 同的号签上;
编号 制签
(3)将号签放在同一箱中,并搅拌均 匀;
10
简单随机抽样
弘文中学 高二数学组
11
基本概念
要了解全国高中生的视力情况,在全国抽取了这15所中学 的全部高中生15000人进行视力测试。考察对象是什么?
全国高中生的视力
在统计中,我们把所要考察的对象的 全体叫做总体
全国每位高中学生的 视力情况。
把组成总体的每一个考察的对象叫 做个体
这15000名学生的视力情 况又组成一个集体
相关文档
最新文档