选修4-4曲线极坐标方程-教案

合集下载

人教课标版高中数学选修4-4《简单曲线的极坐标方程》教案-新版

人教课标版高中数学选修4-4《简单曲线的极坐标方程》教案-新版

1.3 简单曲线的极坐标方程一、教学目标 (一)核心素养通过这节课学习,了解极坐标方程的意义、能在极坐标系中给出简单曲线的方程,体会极坐标下方程与直角坐标系下曲线方程的互化,培养学生归纳类比推理、逻辑推理能力. (二)学习目标1.通过实例,了解极坐标方程的意义,了解曲线的极坐标方程的求法. 2.掌握特殊情形的直线与圆的极坐标方程.3.能进行曲线的极坐标方程与直角坐标方程的互化,体会在用方程刻画平面图形时选择适当坐标系的意义. (三)学习重点1.掌握特殊情形的直线与圆的极坐标方程. 2.进行曲线的极坐标方程与直角坐标方程的互化. (四)学习难点1.求曲线的极坐标方程.2.对不同位置的直线和圆的极坐标方程的理解. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第12页至第15页,填空:一般地,在极坐标系中,如果平面曲线C 上任意一点的极坐标中至少有一个满足方程 0),(=θρf ,并且坐标适合方程0),(=θρf 的点都在曲线C 上,那么方程0),(=θρf 叫做曲线C 的极坐标方程. 2.预习自测(1)下列点不在曲线θρcos =上的是( )A.)3,21(πB.)32,21(π-C.)3,21(π-D.)32,21(π-【知识点】极坐标方程【解题过程】将选项中点一一代入验证可得选项D 不满足方程 【思路点拨】由极坐标方程定义可得 【答案】D .(2)极坐标系中,圆心在极点,半径为2的圆的极坐标方程为( ) A.2=ρ B .4=ρ C.2cos =θρD.1sin =θρ【知识点】极坐标方程【解题过程】任取圆上一点的极坐标为),(θρ,依题意R ∈=θρ,2,所以选A 【思路点拨】根据题意寻找θρ,的等量关系式 【答案】A .(3)将下列曲线的直角坐标方程化为极坐标方程: ①射线)0(3≤=x x y ;②圆0222=++x y x . 【知识点】直角坐标方程与极坐标方程互化【解题过程】①因为=x θρcos ,=y θρsin 代入可得3tan ,cos 3sin ==θθθ 又因为0≤x ,所以射线在第三象限,故取θ=4π3(ρ≥0 )②将=x θρcos ,=y θρsin 代入0222=++x y x ,整理得θρcos 2-= 【思路点拨】利用极坐标与直角坐标互化可得 【答案】①θ=4π3(ρ≥0 ) ②θρcos 2-=.(4)极坐标系下,直线2)4cos(=-πθρ与圆ρ=2的公共点个数是 .【知识点】极坐标方程、直线与圆的位置关系【解题过程】直线方程ρcos )4(πθ-=2,即)sin 22cos 22(θθρ+=2,所以直角坐标方程为x +y -2=0.圆的方程ρ=2,即ρ2=2,所以直角坐标方程为x 2+y 2=2. 因为圆心到直线的距离为d =|0+0-2|2=2=r ,所以直线与圆相切,即公共点个数是1.【思路点拨】将问题转化为平面直角坐标系中的问题处理 【答案】 1 (二)课堂设计 1.知识回顾(1)极坐标系的建立:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系内一点的极坐标的规定:设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.一般地,不作特殊说明时,我们认为0≥ρ,θ可取任意实数.(3)把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的单位长度.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,则:=x θρcos , =y θρsin=2ρ22y x +, =θtan )0(≠x xy2.问题探究探究一 结合实例,类比认识极坐标方程★ ●活动① 类比推理概念在平面直角坐标系中,平面曲线C 可以用方程0),(=y x f 表示.曲线与方程满足如下关系:(1)曲线C 上点的坐标都是方程0),(=y x f 的解; (2)以方程0),(=y x f 的解为坐标的点都在曲线C 上.那么,在极坐标系中,平面曲线是否可以用方程0),(=θρf 表示呢?我们先看一个例子 半径为a 的圆的圆心坐标为)0,(a C ,你能用一个等式表示圆上任意一点的极坐标),(θρ满足的条件吗?类比直角坐标方程的求解过程,我们先建立极坐标系,如右图所示,设圆经过极点O ,圆与极轴的另一个交点为A ,则a OA 2=,设),(θρM 为圆上除A O ,以外的任意一点,则AM OM ⊥,所以在AMO Rt ∆中,MOA OA OM ∠=cos ,即θρcos 2a =.经验证,点)0,2(),2,0(a A O π的坐标满足上式.于是上述等式为圆上任意一点的极坐标),(θρ满足的条件,反之,坐标适合上述等式的点都在这个圆上.所以我们类比直角坐标方程可以得到极坐标方程的定义,即:一般地,在极坐标系中,如果平面曲线C 上任意一点的极坐标中至少有一个满足方程0),(=θρf ,并且坐标适合方程0),(=θρf 的点都在曲线C 上,那么方程0),(=θρf 叫做曲线C 的极坐标方程.由于平面上点的极坐标的表示形式不惟一,即一条曲线上点的极坐标有多组表示形式,所以我们这里要求至少有一组能满足极坐标方程.则这个点在曲线上.【设计意图】利用类比的思想,从熟悉的概念得到新的数学概念,体会概念的提炼、抽象过程. ●活动② 归纳梳理、理解提升分析上述实例,你能得出求解极坐标方程的一般步骤吗?求曲线的极坐标方程的方法和步骤与求直角坐标方程的步骤类似,就是把曲线看作适合某种条件的点的集合或轨迹.将已知条件用曲线上的点的极坐标θρ,的关系式0),(=θρf 表示出来,就得到曲线的极坐标方程,具体如下:(1)建立适当的极坐标系,设),(θρM 是曲线上任意一点.(2)连接OM ,根据几何条件建立关于极径ρ和极角θ之间的关系式. (3)将列出的关系式进行整理,化简,得出曲线的极坐标方程.(4)检验并确认所得方程即为所求.若方程的推导过程正确,化简过程都是同解变形,证明可以省略.【设计意图】通过实例类比总结方法,培养学生数学抽象、归类整理意识. 探究二 探究直线的极坐标方程 ●活动 互动交流、初步实践组织课堂讨论:结合极坐标方程的定义及求解极坐标方程的步骤,我们动手求解:直线l 经过极点,从极轴到直线l 的角为3π的直线的极坐标方程.M如右图,以极点O 为分界点,直线l 上的点的极坐标分成射线,OM 射线M O '两个部分,射线OM 上任意一点的极角都为3π,所以射线OM 的极坐标方程为:)0(3≥=ρπθ;而射线M O '上任意一点的极角都是34π,所以射线M O '的极坐标方程为:)0(34≥=ρπθ 综上:直线l 的极坐标方程可以用)0(3≥=ρπθ和)0(34≥=ρπθ表示现在产生一个问题:能否用一个方程来表示呢?我们定义:若0<ρ,则0>-ρ,我们规定点),(θρM 与),(θρ-P 关于极点对称.这样就可以将ρ的取值范围推广到全体实数.于是在允许R ∈ρ,那么上述直线l 的极坐标方程就可以写为: )(3R ∈=ρπθ或)(34R ∈=ρπθ 【设计意图】得到特殊直线的极坐标方程,加深对极坐标方程内涵与外延的理解,突破重点. 探究三 探究极坐标方程与直角坐标方程的联系★▲ ●活动① 巩固理解,加深认识在学习了极坐标方程及求解步骤后,动手做一做:在极坐标系中,圆心为)4,1(πA ,半径为1的圆的极坐标方程是多少呢?如右图所示,设),(θρP 为圆上任一点,当P A O ,,三点不共线是,在OPA ∆中利用余弦定理可得222)4cos(2AP OAOP OP OA =--+πθ1)4cos(212=--+∴πθρρ即 )4cos(2πθρ-=当P A O ,,三点共线时,点P 的坐标为)43,0(π或)4,2(π,这两点的坐标满足上式,所以上式为所求的圆的极坐标方程.在找平面曲线的极坐标方程时,就要找极径ρ和极角θ之间的关系式,常用解三角形(正弦定理,余弦定理)的知识以及利用三角形的面积相等来建立ρ、θ之间的关系.【设计意图】巩固极坐标方程的求解,同时为极坐标方程与直角坐标方程的转化作准备. ●活动② 强化提升、灵活应用),(θρPO根据上节的直角坐标与极坐标的互化,先把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的单位长度.,然后先求直角坐标系下的圆的方程;即由于圆心在极坐标系下为)4,1(πA ,则在直角坐标系下圆心)22,22(A ,半径1=r ,所以圆的直角坐标方程为:1)22()22(22=-+-y x ,整理得:y x y x 2222+=+,因为=x θρcos , =y θρsin ,代入直角坐标方程得)4cos(2sin 2cos 22πθρθρθρρ-=+=化简得: )4cos(2πθρ-= 【设计意图】掌握极坐标方程与直角坐标方程的转化,进一步认识极坐标系. 活动③ 巩固基础,检查反馈 例1 极坐标方程2πρ=表示( )A .直线B .射线C .圆D .椭圆 【知识点】曲线与极坐标方程.【解题过程】44,222222ππρπρ=+∴=∴=y x ,所以曲线表示的是圆. 【思路点拨】通过转化为直角坐标方程来判断. 【答案】C同类训练 极坐标方程)(21sin R ∈=ρθ表示的曲线是( ) A .两条相交直线 B .两条射线 C .一条直线 D .一条射线 【知识点】曲线与极坐标方程. 【解题过程】∵sin θ=21,∴)(26Z k k ∈+=ππθ或)(265Z k k ∈+=ππθ,又∵R ∈ρ,∴)(21sin R ∈=ρθ表示两条相交直线. 【思路点拨】通过极坐标方程来判断. 【答案】A例2 把下列直角坐标方程化成极坐标方程.(1)0132=--y x (2)0222=++y y x (3)1022=-y x【知识点】直角坐标方程化成极坐标方程.【解题过程】(1)由=x θρcos ,=y θρsin ,代入直角坐标方程0132=--y x 得,01sin 3cos 2=--θρθρ,即01)sin 3cos 2(=--θθρ(2)由上同理可得:θρsin 2-= (3)102cos 2=θρ 【思路点拨】利用直角坐标与极坐标互化公式求解.【答案】(1)01)sin 3cos 2(=--θθρ;(2)θρsin 2-=;(3)102cos 2=θρ同类训练 把下列极坐标方程化为直角坐标方程. (1) 2sin =θρ (2) θθρsin 4cos 2-= 【知识点】直角坐标方程与极坐标方程互化.【解题过程】(1)由=x θρcos , =y θρsin ,代入极坐标方程2sin =θρ得,2=y ,即02=-y (2)由θθρsin 4cos 2-=,等式两边同乘以ρ得θρθρρsin 4cos 22-=,所以y x y x 4222-=+,即:5)2()1(22=++-y x【思路点拨】极坐标方程化为直角坐标方程要通过变形,构造形如θρsin ,θρcos ,2ρ的形式,进行整体代换.【答案】(1)02=-y ; (2)5)2()1(22=++-y x .【设计意图】巩固极坐标方程的求解、判断以及直角坐标方程与极坐标方程的互化. ●活动4 强化提升、灵活应用例3 已知直线的极坐标方程为22)4sin(=+πθρ,求点)47,2(πA 到这条直线的距离.【知识点】极坐标与直角坐标互化、点到直线的距离.【解题过程】以极点为直角坐标原点,极轴为x 轴正半轴建立平面直角坐标系,直线的极坐标方程22)4sin(=+πθρ化为直角坐标方程,得:1=+y x .把点A 的极坐标)47,2(π化为直角坐标,得:)2,2(-在平面直角坐标系下,由点到直线的距离公式,得点A 到直线的距离222122=--=d ,所以点)47,2(πA 到直线22)4sin(=+πθρ的距离为22. 【思路点拨】把极坐标问题转化为直角坐标系中问题. 【答案】22. 同类训练 求极点到直线2)cos (sin =-θθρ的距离. 【知识点】极坐标与直角坐标互化、点到直线的距离.【解题过程】以极点为直角坐标原点,极轴为x 轴正半轴建立平面直角坐标系,直线的极坐标方程2)cos (sin =-θθρ化为直角坐标方程,得:2=-x y . 把极点的极坐标)0,0(化为直角坐标,得:)0,0(在平面直角坐标系下,由点到直线的距离公式,得点A 到直线的距离22200=--=d ,所以极点到直线2)cos (sin =-θθρ的距离为2. 【思路点拨】把极坐标问题转化为直角坐标系中问题. 【答案】2. 3.课堂总结 知识梳理(1)一般地,在极坐标系中,如果平面曲线C 上任意一点的极坐标中至少有一个满足方程0),(=θρf ,并且坐标适合方程0),(=θρf 的点都在曲线C 上,那么方程0),(=θρf 叫做曲线C 的极坐标方程.(2)求曲线的极坐标方程的一般步骤:①建立适当的极坐标系,设),(θρM 是曲线上任意一点.②连接OM ,根据几何条件建立关于极径ρ和极角θ之间的关系式. ③将列出的关系式进行整理,化简,得出曲线的极坐标方程.④检验并确认所得方程即为所求.若方程的推导过程正确,化简过程都是同解变形,证明可以省略.(3)若0<ρ,则0>-ρ,我们规定点),(θρM 与),(θρ-P 关于极点对称. 重难点归纳(1)求解平面曲线的极坐标方程时,就要找极径ρ和极角θ之间的关系式,常用解三角形(正弦定理,余弦定理)的知识以及利用三角形的面积相等来建立ρ、θ之间的关系.(2)极坐标方程化为直角坐标方程要通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须保持同解,因此应注意对变形过程的检验. (三)课后作业 基础型 自主突破1.经过极点,从极轴到直线l 的夹角是4π的直线l 的极坐标方程是( )A .)0(4≥=ρπθ B .4πρ=C .)0(4>=ρπθ D .)(4R ∈=ρπθ【知识点】极坐标方程.【解题过程】将直线l 画在极坐标系中,易得选项D 正确. 【思路点拨】根据根据图像进行判断. 【答案】D .2.直线33x -y =0的极坐标方程(限定ρ≥0)是( ) A .θ=π6 B .θ=76π C .θ=π6和θ=76πD .θ=56π【知识点】极坐标方程与直角坐标方程互化. 【解题过程】由33x -y =0,得33ρcos θ-ρsin θ=0,即tan θ=33,∴θ=π6和θ=76π.又ρ≥0,因此直线的方程可以用θ=π6和θ=76π表示 【思路点拨】极坐标方程与直角坐标方程互化. 【答案】C3.极坐标方程cos θ(ρ≥0)表示的曲线是( ).A .余弦曲线B .两条相交直线C .两条射线D .一条射线 【知识点】极坐标方程的求解.【解题过程】∵cos θ,∴θ=4π±+2k π(k ∈Z ).又∵ρ≥0,∴cos θ表示两条射线. 【思路点拨】利用三角函数图像可得. 【答案】C .4.圆的极坐标方程ρ=cos θ-2sin θ对应的直角坐标方程为( )A.45)1()21(22=+++y xB.45)1()21(22=++-y xC.45)1()21(22=-+-y xD.45)1()21(22=-++y x【知识点】极坐标方程与直角坐标方程互化.【解题过程】θρθρρθθρsin 2cos ,sin 2cos 2-=∴-= ,所以y x y x 222-=+即45)1()21(22=++-y x ,所以选B.【思路点拨】利用极坐标与直角坐标互化公式求解. 【答案】B .5.极坐标系内,点)2,1(π到直线ρcos θ=2的距离是________.【知识点】极坐标与直角坐标的转化.【解题过程】点)2,1(π的直角坐标为(0,1),直线ρcos θ=2的直角坐标方程为x =2,故点(0,1)到直线x =2的距离是d =2.【思路点拨】极坐标问题转化为直角坐标问题来求解. 【答案】2.6.在极坐标系中,A ,B 分别是直线3ρcos θ-4ρsin θ+5=0和圆ρ=2cos θ上的动点,则A ,B 两点之间距离的最小值是________.【知识点】直线与圆的极坐标方程、点到直线的距离. 【数学思想】分类讨论思想.【解题过程】:由题意,得直线的平面直角坐标方程为3x -4y +5=0,圆的普通方程为(x -1)2+y 2=1,则圆心(1,0)到直线的距离d =|3×1-4×0+5|32+42=85,所以A ,B 两点之间距离的最小值为d -r =85-1=35.【思路点拨】极坐标问题转化为直角坐标问题来求解. 【答案】 35. 能力型 师生共研7.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( )A.)2,1(πB.)23,1(π C .)0,1(D .),1(π【知识点】极坐标与直角坐标互化、圆的标准方程.【解题过程】由ρ=-2sin θ得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y ,化成标准方程为x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为)23,1(π. 【思路点拨】极坐标问题转化为直角坐标问题来求解. 【答案】B .8.在直角坐标系xOy 中,以O 为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为1)3cos(=-πθρ,M ,N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 【知识点】极坐标与直角坐标互化、极坐标方程.【解题过程】 (1)由1)3cos(=-πθρ,得1)sin 23cos 21(=+θθρ又x =ρcos θ,y =ρsin θ,∴曲线C 的直角坐标方程为x 2+32y =1, 即x +3y -2=0.当θ=0时,ρ=2,∴点M (2,0). 当θ=π2时,ρ=233,∴点N )2,332(π.(2)由(1)知,M 点的坐标(2,0),点N 的坐标)332,0(. 又P 为MN 的中点, ∴点P )33,1(,则点P 的极坐标为)6,332(π. 所以直线OP 的极坐标方程为θ=π6(ρ∈R ). 【思路点拨】把极坐标化为直角坐标求解. 【答案】(1)M (2,0),N )2,332(π;(2) θ=π6(ρ∈R ) 探究型 多维突破9.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程为22)4cos(=-πθρ,曲线C 的极坐标方程为),2(sin 4⎥⎦⎤⎢⎣⎡∈=ππθθρ,求直线l 与曲线C 的交点的极坐标.【知识点】极坐标方程的应用. 【数学思想】分类讨论的思想.【解题过程】由⎪⎩⎪⎨⎧=-=22)4cos(sin 4πθρθρ 得:1sin cos sin 2=+θθθ,即:θθθ2cos cos sin = (1)当0cos =θ时,即2πθ=时,4=ρ(2)当0cos ≠θ时,即2πθ≠时,此时θθcos sin =,即⎥⎦⎤⎢⎣⎡∈=ππθθ,21tan ,所以不成立. 交点极坐标为)2,4(π【思路点拨】类比直角坐标系,联立方程组求解.【答案】)2,4(π.10.已知椭圆的中心在坐标原点O ,椭圆的方程为:12222=+b y a x ,B A ,分别为椭圆上的两点,且OB OA ⊥. (1)求证:2211OB OA +为定值;(2)求AOB ∆面积的最大值和最小值.【知识点】极坐标方程的应用.【解题过程】将椭圆的直角坐标方程化为极坐标方程得(ρcos θ)2a 2+(ρsin θ)2b 2=1,即ρ2=a 2b 2b 2cos 2θ+a 2cos 2 θ,由于OA ⊥OB ,可设A (ρ1,θ1),B ⎝ ⎛⎭⎪⎫ρ2,θ1+π2,则ρ21=a 2b 2b 2cos 2 θ1+a 2sin 2 θ1,ρ22=a 2b 2b 2sin 2 θ1+a 2cos 2 θ1.于是1|OA |2+1|OB |2=1ρ21+1ρ22=b 2cos 2θ1+a 2sin 2 θ1+b 2sin 2 θ1+a 2cos 2θ1a 2b 2=a 2+b 2a 2b 2.所以1|OA |2+1|OB |2为定值.(2)解析:依题意得到S △AOB =12|OA ||OB |=12ρ1ρ2= 12·a 2b 2(b 2cos 2θ1+a 2sin 2θ1)(b 2sin 2θ1+a 2cos 2θ1)=12·a 2b 2(a 2-b 2)2sin 22θ14+a 2b 2,当且仅当sin 22θ1=1,S △AOB 有最小值为a 2b 2a 2+b 2;当sin 22θ1=0,S △AOB 有最大值为ab 2. 【思路点拨】由于涉及到长度,所以将椭圆直角坐标方程转化为极坐标方程求解.【答案】(1)1|OA |2+1|OB |2=a 2+b 2a 2b 2;(2)S △AOB 有最小值为a 2b 2a 2+b 2,S △AOB有最大值为ab2. 自助餐1.过点)4,2(πA 且平行于极轴的直线的极坐标方程是( )A .2sin =θρB .2sin =θρC .2cos =θρD .2cos =θρ【知识点】极坐标方程的求解.【解题过程】如图所示,如图所示,在直线l 上任意取点M (ρ,θ)(ρ≥0),过Mx 轴于H .⎭⎪⎫2,π4,在直线l 上任意取点),(θρM ,过M 作x MH ⊥轴于H ,)4,2(πA 24sin 2==∴πMH ,,sin sin Rt OMH MH OM θρθ∴∆=∴=,所以,选B【思路点拨】利用根据所给的几何条件,寻找θρ,的关系式. 【答案】B .2.极坐标方程分别是ρ=cos θ和ρ=sin θ的两个圆的圆心距是( ) A.22B.2C.1D.2 【知识点】极坐标与直角坐标互化、两圆的关系.【解题过程】:将方程化为直角坐标方程.因为ρ不恒为零,可以用ρ分别乘方程两边,得ρ2=ρcos θ和ρ2=ρsin θ.∴x 2+y 2=x 和x 2+y 2=y .它们的圆心分别是(21,0)、(0,21),圆心距是22.【思路点拨】先化为直角坐标方程,在按直角坐标求解. 【答案】A .3.在极坐标系中,曲线C :ρ=2sin θ上的两点A ,B 对应的极角分别为2π3,π3,则弦长|AB |=________.【知识点】极坐标与直角坐标互化、两点间的距离. 【解题过程】A ,B 两点的极坐标分别为)3,3(),32,3(ππ,化为直角坐标为)23,23(),23,23(-.故3)2323()2323(22=-+--=AB 【思路点拨】先化为直角坐标方程,在按直角坐标求解. 【答案】3.4.曲线θ=0,θ=π3(ρ≥0)和ρ=4所围成图形的面积是__________. 【知识点】极坐标与直角坐标的互化、扇形的面积. 【数学思想】数形结合的思想【解题过程】将极坐标方程化为直角坐标系下的方程,分别为射线)0(3,0≥==x x y y ,圆1622=+y x ,他们围成的是一个圆心角为3πθ=,半径为4=r 的扇形,所以38212πθ==r S . 【思路点拨】先化为直角坐标方程,再在直角坐标系中画出相应的图形可得.【答案】38π. 5.把下列直角坐标方程与极坐标方程进行互化:(1)x 2+(y -2)2=4; (2)ρ=9(sin θ+cos θ); (3)ρ=4;【知识点】极坐标与直角坐标互化.【解题过程】(1)∵x 2+(y -2)2=4,∴x 2+y 2=4y ,代入x =ρcos θ,y =ρsin θ得ρ2-4ρsin θ=0,即ρ=4sin θ.(2)∵ρ=9(sin θ+cos θ),∴ρ2=9ρ(sin θ+cos θ), ∴x 2+y 2=9x +9y ,即281)29()29(22=-+-y x(3)∵ρ=4,∴ρ2=42,∴x 2+y 2=16.【思路点拨】用公式x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2进行直角坐标方程与极坐标方程的互化即可.【答案】(1)ρ=4sin θ;(2)281)29()29(22=-+-y x ;(3)x 2+y 2=16.6.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程; (2)若直线C 3的极坐标为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积 【知识点】极坐标与直角坐标互化、三角形的面积.【解题过程】:(1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.【思路点拨】根据极坐标与直角坐标互化公式求解,且把两圆画在极坐标系中,利用ρ的几何意义求三角形的面积.【答案】(1)C 1 ρcos θ=-2,C 2 ρ2-2ρcos θ-4ρsin θ+4=0;(2)12.。

高二数学选修4-4教案04圆锥曲线的统一极坐标方程

高二数学选修4-4教案04圆锥曲线的统一极坐标方程

圆锥曲线的统一极坐标方程教学目标掌握三种圆锥曲线的统一极坐标方程,了解统一方程中常数的几何意义.会根据已知条件求三种圆锥曲线的极坐标方程,能根据圆锥曲线的统一极坐标方程进行有关计算.通过建立三种二次曲线的统一极坐标方程,对学生进行辩证统一的思想教育.教学重点:圆锥曲线统一的极坐标方程,会根据条件求出圆锥曲线的统一极坐标方程.教学难点:运用圆锥曲线统一的极坐标方程解决有关计算问题.教学疑点:双曲线左支所对应的θ范围,双曲线的渐近线的极坐标方程.活动设计:1.活动:思考、问答、讨论.2.教具:尺规、挂图.教学过程:一、问题引入大家已经学过,椭圆、双曲线、抛物线有两种几何定义,其中,第二定义把三种圆锥曲线统一起来了,请回忆后说出三种圆锥曲线的第二定义.学生1答:列定点F(焦点)的距离与列定直线l(准线)的距离比是一个常数e(离心e∈(0,1)时椭圆,e∈(1,f∞)时双曲线,e=1时抛物线.二、数学构建建立统一方程在极坐标系中,同样可以根据圆锥曲线的几何定义,求出曲线的极坐标方程.过F作FK⊥l于K,以F为极点,KF延长线为极轴,建立极坐标系.设M(ρ,θ)是曲线上任一点,连MF,作MA⊥l于A,MB⊥l于B(如图3-24).|FK|=常数,设为p.∵|MA|=|BK|=|KF|+|FB|,∴|MA|=p+ρcosθ.这就是圆锥曲线统一的极坐标方程.三、知识理解对圆锥曲线的统一极坐标方程,请思考讨论并深入了解下述几个要点:(1)必须以双曲线右焦点和椭圆的左焦点为极点,Ox轴方向向右,尚若Ox方向向左,其方程如何?(讨论后)学生2答:无需重新求方程,只须两个极坐标系Ox与Ox′之间的坐标关系作坐标转换(图3-25).(2)根据统一的极坐标方程,由几何条件求出e、p后即可写出曲线的极坐标方程,这要明确e、p的几何意义分别是离心率和焦准距(ep为有关几何量e,p,a,b,c?(讨论后)学生3答:此式为统一极坐标方程的标准式得到一个二元一次方程组,使问题的计算得以简化.e∈(0,1)时,表椭圆.e=1时,表抛物线.e∈(1,+∞)时,表双曲线.但注意到,e>1时,1-ecosθ≤0关于θ有解,而ep>0,这样ρ<0,甚至无意义.前面学过,通常情况下,ρ≥0,这就似乎出现矛盾,如何解决这一矛盾?(讨论后)学生4答:(如图3-26)上面推导统一方程过程中,当m在左支时,|MA|=|BK|=此时方程与右支的情况不同.这时,若设θ=θ′+π,ρ′=-ρ,上述推导与分析实际上是:若射线OP与双曲线有两个交点;当视θ=∠xOP时,则ρ>0(∵cosθ<0),此时所表点是右支上的点;当视θ=∠xOP-π时,则ρ<0,此时所表点是左支上的点.综上知,e>1时,统一极坐标方程所表双曲线情况是:若ρ>0,即1-ecosθ>0,则表右支;若ρ<0,即1-ecosθ<0,则表左支;取θ∈[0,2π),则θ范围所对曲线如下:线左支;条渐近线.如图3-27所示,只有掌握这一对应关系,才能在有关计算中不会造成混乱和错误.四、应用举例线交椭圆于M、N两点,设∠F2F1M=θ(0≤θ<π),求θ的值,使|MN|等于短轴长.解:以F1为极点,F1F2为极轴建立极坐标系椭圆的极坐标方程为设M(ρ1,θ)、N(ρ2,θ+π),则五、课堂小结(1)三种圆锥曲线的统一极坐标方程,常数的几何意义.(2)曲线的极坐标方程求法,根据极坐标方程确定a、b、c的注意点及进行有关计算.(3)双曲线左、右支所对的ρ及θ的范围.六、布置作业1.第二教材.2.选择题:线方程是(C) A .ρcosθ=1 B .ρcosθ=2(2)椭圆、双曲线、抛物线三条曲线的焦点是极点(椭圆左焦点和双曲线右焦点),它们的图形如图3-28所示,则图中编号为①、②、③的曲线应分别是(D).A .椭圆、双曲线、抛物线B .抛物线、椭圆、双曲线C .椭圆、抛物线、双曲线D .双曲线、抛物线、椭圆双曲线θρcos 5115-=的两渐近线的夹角是 。

新人教选修4-4教案极坐标系--简单曲线的极坐标方程

新人教选修4-4教案极坐标系--简单曲线的极坐标方程

三、简单曲线的极坐标方程 【基础知识导学】1、极坐标方程的定义:在极坐标系中,如果平面曲线C 上任一点的极坐标中至少有一个满足方程0),(=θρf ,并且坐标适合方程0),(=θρf 的点都在曲线C 上,那么方程0),(=θρf 叫做曲线C 的极坐标方程。

1. 直线与圆的极坐标方程① 过极点,与极轴成α角的直线极坐标议程为αθραθtan tan )(=∈=或R②以极点为圆心半径等于r 的圆的极坐标方程为 r =ρ【知识迷航指南】 例1求(1)过点)4,2(πA 平行于极轴的直线。

(2)过点)3,3(πA 且和极轴成43π角的直线。

解(1)如图,在直线l 上任取一点),(θρM ,因为)4,2(πA ,所以|MH|=224sin=⋅π在直角三角形MOH 中|MH|=|OM|sin θ即2sin =θρ,所以过点)4,2(πA 平行于极轴的直线为2sin =θρ。

(2)如图 ,设M ),(θρ为直线l 上一点。

)3,3(πA , OA =3,3π=∠AOBx由已知43π=∠MBx ,所以125343πππ=-=∠OAB ,所以127125πππ=-=∠OAM 又θπθ-=-∠=∠43MBx OMA 在∆MOA 中,根据正弦定理得 127sin)43sin(3πρθπ=- 又426)34sin(127sin+=+=πππ 将)43sin(θπ-展开化简可得23233)cos (sin +=+θθρ 所以过)3,3(πA 且和极轴成43π角的直线为:23233)cos (sin +=+θθρ〔点评〕求曲线方程,关键是找出曲线上点满足的几何条件。

将它用坐标表示。

再通过代数变换进行化简。

例2(1)求以C(4,0)为圆心,半径等于4的圆的极坐标方程。

(2)从极点O 作圆C 的弦ON ,求ON 的中点M 的轨迹方程。

解:(1)设),(θρp 为圆C 上任意一点。

圆C 交极轴于另一点A 。

由已知 OA =8 在直角∆AOD 中θcos OA OD =,即 θρcos 8=, 这就是圆C 的方程。

1.极坐标系-湘教版选修4-4教案

1.极坐标系-湘教版选修4-4教案

1.极坐标系-湘教版选修4-4教案一、教学目标1.会利用极坐标系描述平面内的点和曲线;2.掌握直角坐标系和极坐标系的相互转化方法;3.理解常见曲线的极坐标方程;4.熟练掌握曲线的参数方程和极坐标方程的相互转化方法。

二、教学内容1. 极坐标系1.极坐标系的定义;2.极坐标系的画法;3.极坐标系与直角坐标系的相互转化;4.极坐标系中点的坐标表示。

2. 常见曲线的极坐标方程1.极坐标方程的基本概念;2.直线的极坐标方程;3.圆的极坐标方程;4.伯努利双曲线的极坐标方程;5.阿基米德螺线的极坐标方程;6.网格线的极坐标方程。

3. 曲线的参数方程和极坐标方程的相互转化1.曲线的参数方程的概念;2.曲线的参数方程与极坐标方程的相互转化方法;3.利用参数方程和极坐标方程求曲线的长度和面积。

三、教学重点和难点教学重点:1.掌握如何利用极坐标系描述平面内的点和曲线;2.熟悉常见曲线的极坐标方程。

教学难点:1.极坐标系与直角坐标系的相互转化;2.曲线的参数方程和极坐标方程的相互转化方法;3.利用参数方程和极坐标方程求曲线的长度和面积。

四、教学过程1. 极坐标系1.介绍极坐标系的定义和画法;2.说明极坐标系中点的坐标表示;3.操作演示极坐标系与直角坐标系的相互转化方法;4.练习题。

2. 常见曲线的极坐标方程1.介绍极坐标方程的基本概念;2.列举常见曲线的极坐标方程和性质;3.操作演示如何求解常见曲线的极坐标方程;4.练习题。

3. 曲线的参数方程和极坐标方程的相互转化1.介绍曲线参数方程的概念;2.操作演示如何将曲线参数方程转换为极坐标方程;3.操作演示如何将极坐标方程转换为曲线参数方程;4.练习题。

五、教学方法本节课教学采用讲解和操作演示相结合的教学方法,同时适当加入互动环节以及举一反三的辅助拓展。

六、教学评价与反思本节课教学评价:教学目标达成,教学过程清晰易懂,教学方法多种多样,学生积极参与课堂互动,达到了预期效果。

高中数学新人教版B版精品教案《人教版B高中数学选修4-4:坐标系与参数方程 1.3 曲线的极坐标方程》

高中数学新人教版B版精品教案《人教版B高中数学选修4-4:坐标系与参数方程 1.3 曲线的极坐标方程》

教学设计247(1,)(1,)(1,)(1,)6334ππππ,,,曲线的极坐标方程的方法和步骤过程与方法:1通过生活中的实例感受各种曲线在生活中的存在; 2通过动手操作,让学生直观认知一些极坐标方程的图像3在解决问题的过程中,培养类比推理能力,创新能力,分析归纳能力,体会数形结合的数学思想在解决曲线与方程问题中的应用,通过合作探究和动手操作等方式经历观察、比较、尝试和反思的探索知识的历程。

情感态度价值观:1通过学习体会这部分知识与高中数学其它内容的联系,感受数学的整体性2通过对方程图像的探究,培养学生动手试验,大胆创新的科学素养,在此过程中体味数学的美丽和魅力;3通过课内外知识的介绍,开阔眼界,能够理解数学知识在现实生活中的广泛应用。

五、教学重难点分析及解决措施1重点:1认识常见极坐标方程的图像,2会求几种特殊位置的直线的极坐标方程。

2难点:作极坐标方程的图像 解决措施:1教师引导学生有目标地思考、探究问题,通过讨论、交流,在教师指导下得出正确结论; 2在引课环节,让学生观看视频,认识曲线在生活中处处存在;3在作图环节,借助于图形计算器直观认知图像,教师鼓励学生大胆猜想,尝试,自编方程作图,从中体味方程对图像的影响;并上传到屏幕上与大家分享,满足成就感;4在当堂自测环节,通过手持图形计算器将每个学生的答案上传,便于教师及时掌握反馈信息,有利于下一步有针对性的教学。

六、教学媒体设计 教学中将视频、1(0)ρθπ=≤<ρθ=1sin()3ρπθ=-4cos ρθ=843cos ρθ=-6cos 2ρθ=4π(,)M ρθ满足的几何条件;4、根据几何条件建立关于,ρθ的方程,并化简;5、检验并确认所得的方程即为所求。

教师帮助学生回顾相关知识,学生回顾,比较,生成系统的解题方法。

求曲线的极坐标方程并不要求学生掌握,这里将比较简单常用的方法介绍给学生,让学生能够结合三角函数而进一步理解极坐标的几何意义,运用数形结合的思想解决问题。

【精品教学设计】高二数学(人教版)选修4-4教案:《第7节 常用曲线的极坐标方程》教案

【精品教学设计】高二数学(人教版)选修4-4教案:《第7节 常用曲线的极坐标方程》教案

第7节:常用曲线的极坐标方程(2)教学目的:知识目标:进一步学习在极坐标系求曲线方程能力目标:求出并掌握圆锥曲线的极坐标方程教学重点:圆锥曲线极坐标方程的统一形式教学难点:方程中字母的几何意义授课类型:新授课教学模式:启发、诱导发现教学.教具:多媒体、实物投影仪教学过程:一、复习引入:问题情境情境1:直线与圆在极坐标系下都有确定的方程,我们熟悉的圆锥曲线呢?情境2:按通常情况化直角坐标方程为极坐标方程会得到让人满意的结果吗?学生回顾:1.求曲线方程的方程的步骤2.两种坐标互化前提和公式3.圆锥曲线统一定义二、讲解新课:1、圆锥曲线的统一方程设定点的距离为P,求到定点到定点和定直线的距离之比为常数e的点的轨迹的极坐标方程。

分析:①建系②设点③列出等式④用极坐标ρ、θ表示上述等式,并化简得极坐标方程说明:⑴为便于表示距离,取F为极点,垂直于定直线l的方向为极轴的正方向。

⑵e表示离心率,P表示焦点到准线距离。

2、例题讲解例1.2003年10月15—17日,我国自主研制的神舟五号载人航天飞船成功发射并按预定方案安全、准确的返回地球,它的运行轨道先是以地球中心为一个焦点的椭圆,椭圆的近地点(离地面最近的点)和远地点(离地面最远的点)距离地面分别为200km和350km,然后进入距地面约343km的圆形轨道。

若地球半径取6378km,试写出神舟五号航天飞船运行的椭圆轨道的极坐标方程。

例2.求证:过抛物线的焦点的弦被焦点分成的两部分的倒数和为常数。

变式训练设P 、Q 是双曲线)0(12222b a by a x <<=-上的两点,若OQ OP ⊥。

求证:22||1||1OQ OP +为定值;三、巩固与练习已知抛物线x y 42=的焦点为F 。

(1)以F 为极点,x 轴正方向为极轴的正方向,写出此抛物线的极坐标方程;(2)过取F 作直线l 交抛物线于A 、B 两点,若|AB |=16,运用抛物线的极坐标方程,求直线l 的倾斜角。

高中数学新苏教版精品教案《苏教版高中数学选修4-4 4.2.2 常见曲线的极坐标方程》8

高中数学新苏教版精品教案《苏教版高中数学选修4-4 4.2.2 常见曲线的极坐标方程》8

课题:曲线的极坐标方程(一)【教学目标】一、课标要求1 了解极坐标方程的意义;2 掌握直线和圆的极坐标方程;3 能够根据极坐标方程研究有关数学问题二、核心扫描1 求曲线的极坐标方程(重点)2 建立直线的极坐标方程,理解直线极坐标方程的不唯一性(难点)。

【教学模式】启发、诱导发现教学【教学教程】一、复习回顾1.极坐标是如何建立的?2.极坐标系内一点的极坐标是如何规定的?3.曲线与方程的关系(在直角坐标系中)二、新授(一)曲线的极坐标方程的定义思考:⑴如何求曲线的极坐标方程?⑵在直角坐标系中,求曲线方程的步骤有哪些?三、例题讲解题型一:特殊位置的直线的极坐标方程A a a ,且垂直于极轴的直线的极坐标方程例1 求过点(,0)(0)变式:求过点,(0)2B a a π⎛⎫> ⎪⎝⎭,且平行于极轴的直线的极坐标方程练习:1 求过极点、倾角为4π的射线的极坐标方程2 求过极点、倾角为54π的射线的极坐标方程3 求过极点、倾角为4π的直线的极坐标方程题型二:一般直线的极坐标方程例题2 设点P 的坐标为00(,)ρθ,直线过点P 且与极轴所成的角为α,求直线的极坐标方程变式练习:设点A 的极坐标为(,0)A a ,直线过点A 且与极轴所成的角为α,求的极坐标方程【总结反思】求直线的极坐标方程的方法和步骤四、课堂检测按下列条件写出直线的极坐标方程 ⑴经过极点,且倾斜角为6π的直线; ⑵经过点2,4A π⎛⎫ ⎪⎝⎭,且垂直于极轴的直线; ⑶经过点3,3A π⎛⎫- ⎪⎝⎭,且平行于极轴的直线; ⑷经过点(4,0)C ,且倾角是34π的直线五、课堂小结本节课主要学习了以下内容:1 如何求直线的极坐标方程;2 极坐标系中的曲线与方程的关系和直线中曲线与方程的关系是一致的;3 掌握求直线方程的方法和步骤。

六、布置作业作业纸1~5。

人教版高中数学选修4-4教案【第5节】曲线的极坐标方程的意义

人教版高中数学选修4-4教案【第5节】曲线的极坐标方程的意义

第 5 节:曲线的极坐标方程的意义教课目标:知识目标:掌握极坐标方程的意义。

能力目标:能在极坐标中给出简单图形的极坐标方程。

教课要点:极坐标方程的意义。

教课难点:求简单图形的极坐标方程。

讲课种类:新讲课教课模式:启迪、引诱发现教课.教具:多媒体、实物投影仪教课过程:一、复习引入:问题情境1、直角坐标系成立能够描绘点的地点,极坐标也有相同作用?2、直角坐标系的成立能够求曲线的方程,极坐标系的成立能否能够求曲线方程?学生回首1、直角坐标系和极坐标系中如何描绘点的地点?2、曲线的方程和方程的曲线(直角坐标系中)定义?3、求曲线方程的步骤?二、解说新课:1、引例:以极点O 为圆心 5 为半径的圆上随意一点极径为 5,反过来,极径为 5 的点都在这个圆上。

所以,以极点为圆心, 5 为半径的圆能够用方程 5 来表示。

2、发问:曲线上的点的坐标都知足这个方程吗?3、定义:一般地,在极坐标系中,假如平面曲线上 C 上随意一点的极坐标中起码有一个满足方程 f ( , ) 0 ,而且坐标合适方程 f ( , ) 0 的点都在曲线 C 上,那么方程 f ( , ) 0 称为曲线C的极坐标方程,曲线C称为这个极坐标方程的曲线。

4、求曲线的极坐标方程:例 1.求经过点A(3,0) 且与极轴垂直的直线l 的极坐标方程。

变式训练:已知点P 的极坐标为(1,) ,那么过点P 且垂直于极轴的直线极坐标方程。

例 2.求圆心在A(3,0) 且过极点的圆A的极坐标方程。

变式训练:求圆心在A(3, ) 且过极点的圆 A 的极坐标方程。

2例 3.( 1)化在直角坐标方程x2y 28 y0 为极坐标方程,( 2)化极坐标方程 6 cos() 为直角坐标方程。

3三、稳固与练习直角方程与极坐标方程互化2( 1)cos(2)tan四、小结:本节课学习了以下内容:1.极坐标方程的定义;2.如何求曲线的极坐标方程。

五、课后作业:。

高中数学选修4-4全套教案(PDF)

高中数学选修4-4全套教案(PDF)

高中数学选修4-4全套教案第一讲坐标系一平面直角坐标系课题:1、平面直角坐标系教学目的:知识与技能:回顾在平面直角坐标系中刻画点的位置的方法能力与与方法:体会坐标系的作用情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

教学重点:体会直角坐标系的作用教学难点:能够建立适当的直角坐标系,解决数学问题授课类型:新授课教学模式:启发、诱导发现教学.教具:多媒体、实物投影仪教学过程:一、复习引入:情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。

要出现正确的背景图案,需要缺点不同的画布所在的位置。

问题1:如何刻画一个几何图形的位置?问题2:如何创建坐标系?二、学生活动学生回顾刻画一个几何图形的位置,需要设定一个参照系1、数轴它使直线上任一点P都可以由惟一的实数x确定2、平面直角坐标系在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。

它使平面上任一点P都可以由惟一的实数对(x,y)确定3、空间直角坐标系在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。

它使空间上任一点P 都可以由惟一的实数对(x,y,z)确定三、讲解新课:1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置2、确定点的位置就是求出这个点在设定的坐标系中的坐标四、数学运用例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

*变式训练如何通过它们到点O 的距离以及它们相对于点O 的方位来刻画,即用”距离和方向”确定点的位置?例2已知B 村位于A 村的正西方1公里处,原计划经过B 村沿着北偏东600的方向设一条地下管线m.但在A 村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W 周围100米范围划为禁区.试问:埋设地下管线m 的计划需要修改吗?*变式训练1.一炮弹在某处爆炸,在A 处听到爆炸的时间比在B 处晚2s,已知A 、B 两地相距800米,并且此时的声速为340m/s,求曲线的方程2.在面积为1的PMN ∆中,2tan ,21tan -=∠=∠MNP PMN ,建立适当的坐标系,求以M ,N 为焦点并过点P 的椭圆方程例3已知Q (a,b ),分别按下列条件求出P 的坐标(1)P 是点Q 关于点M (m,n )的对称点(2)P 是点Q 关于直线l:x-y+4=0的对称点(Q 不在直线1上)*变式训练用两种以上的方法证明:三角形的三条高线交于一点。

人教新课标版数学高二人教A选修4-4教案 1.3简单曲线的极坐标方程

人教新课标版数学高二人教A选修4-4教案 1.3简单曲线的极坐标方程

三简单曲线的极坐标方程课标解读1.了解极坐标方程的意义,了解曲线的极坐标方程的求法.2.会进行曲线的极坐标方程与直角坐标方程的互化;了解简单图形(如过极点的直线、过极点或圆心在极点的圆)表示的极坐标方程.3.能够运用直线和圆的极坐标方程解决问题.1.曲线与方程的关系在平面直角坐标系中,平面曲线C可以用方程f(x,y)=0表示.曲线与方程满足如下关系:(1)曲线C上点的坐标都是方程f(x,y)=0的解;(2)以方程f(x,y)=0的解为坐标的点都在曲线C上.2.曲线的极坐标方程一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.3.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为r的圆ρ=r(0≤θ<2π)圆心为(r,0),半径为r的圆ρ=2r cos_θ(-π2≤θ≤π2)圆心为(r,π2),半径为r的圆ρ=2r sin_θ(0≤θ<π)过极点,倾斜角为α的直线θ=α或θ=α+π过点(a,0),与极轴垂直的直线ρcos_θ=a(-π2<θ<π2) 过点(a ,π2),与极轴平行的直线ρsin_θ=a (0<θ<π)1.曲线的极坐标方程是否惟一?【提示】 由于平面上点的极坐标的表示形式不惟一,所以曲线上的点的极坐标有多种表示,曲线的极坐标方程不惟一.2.如何求圆心为C (ρ1,θ1),半径为r 的圆的极坐标方程?【提示】 如图所示,设圆C 上的任意一点为M (ρ,θ),且O 、C 、M 三点不共线,不妨以如图所示情况加以说明,在△OCM 中,由余弦定理得|OM |2+|OC |2-2|OM |·|OC |·cos ∠=|CM |2,∴ρ2+ρ21-2ρρ1cos(θ-θ1)=r 2,可以检验,当O 、C 、M 三点共线时的点M 的坐标也适合上式,当θ<θ1时也满足该式,所以半径为r ,圆心在C (ρ1,θ1)的圆的极坐标方程为ρ2+ρ21-2ρρ1cos(θ-θ1)-r 2=0.圆的极坐标方程求圆心在C (2,3π2)处并且过极点的圆的极坐标方程,并判断点(-2,sin 5π6)是否在这个圆上.【思路探究】 解答本题先设圆上任意一点M (ρ,θ),建立等式转化为ρ,θ的方程,化简可得,并检验特殊点.【自主解答】如图,由题意知,圆经过极点O ,OA 为其一条直径,设M (ρ,θ)为圆上除点O ,A 以外的任意一点,则|OA |=2r ,连接AM ,则OM ⊥MA .在Rt △OAM 中,|OM |=|OA |cos ∠AOM , 即ρ=2r cos(3π2-θ),∴ρ=-4sin θ,经验证,点O (0,0),A (4,3π2)的坐标满足上式.∴满足条件的圆的极坐标方程为ρ=-4sin θ. ∵sin5π6=12, ∴ρ=-4sin θ=-4sin 5π6=-2,∴点(-2,sin 5π6)在此圆上.1.求曲线的极坐标方程通常有以下五个步骤:①建立适当的极坐标系(本题无需建);②在曲线上任取一点M (ρ,θ);③根据曲线上的点所满足的条件写出等式;④用极坐标(ρ,θ)表示上述等式,并化简得曲线的极坐标方程;⑤证明所得的方程是曲线的极坐标方程.(一般只要对特殊点加以检验即可).2.求曲线的极坐标方程,关键是找出曲线上的点满足的几何条件,并进行坐标表示.(2012·江西高考)曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.【解析】 直角坐标方程x 2+y 2-2x =0可化为x 2+y 2=2x ,将ρ2=x 2+y 2,x =ρcos θ代入整理得ρ=2cos θ.【答案】ρ=2cos θ直线或射线的极坐标方程求过点A(1,0),且倾斜角为π4的直线的极坐标方程.【思路探究】画出草图―→设点M(ρ,θ)是直线上的任意一点―→建立关于ρ,θ的方程――→化简检验【自主解答】法一设M(ρ,θ)为直线上除点A以外的任意一点.则∠xAM=π4,∠OAM=3π4,∠OMA=π4-θ.在△OAM中,由正弦定理得|OM|sin∠OAM=|OA|sin∠OMA,即ρsin3π4=1sin(π4-θ),故ρsin(π4-θ)=22,即ρ(sinπ4cos θ-cosπ4sin θ)=22,化简得ρ(cos θ-sin θ)=1,经检验点A(1,0)的坐标适合上述方程,所以满足条件的直线的极坐标方程为ρ(cos θ-sin θ)=1,其中,0≤θ<π4,ρ≥0和5π4<θ<2π,ρ≥0.法二以极点O为直角坐标原点,极轴为x轴,建立平面直角坐标系xOy.∵直线的斜率k =tan π4=1,∴过点A (1,0)的直线方程为y =x -1.将y =ρsin θ,x =ρcos θ代入上式,得ρsin θ=ρcos θ-1, ∴ρ(cos θ-sin θ)=1,其中,0≤θ<π4,ρ≥0和5π4<θ<2π,ρ≥0.法一通过运用正弦定理解三角形建立了动点M 所满足的等式,从而集中条件建立了以ρ,θ为未知数的方程;法二先求出直线的直角坐标方程,然后通过直角坐标向极坐标的转化公式间接得解,过渡自然,视角新颖,不仅优化了思维方式,而且简化了解题过程.若本例中条件不变,如何求以A 为端点且在极轴上方的射线的极坐标方程? 【解】 由题意,设M (ρ,θ)为射线上任意一点, 根据例题可知,ρsin(π4-θ)=22,化简得ρ(cos θ-sin θ)=1.经检验点A (1,0)的坐标适合上述方程.因此,以A 为端点且在极轴上方的射线的极坐标方程为ρ(cos θ-sin θ)=1(其中ρ≥0,0≤θ<π4).极坐标方程与直角坐标方程的互化若曲线C 的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴的正半轴建立直角坐标系.(1)求曲线C 的直角坐标方程;(2)若直线ρsin(θ-π4)=0与曲线C 相交于A 、B ,求|AB |.【思路探究】 利用极坐标化为直角坐标的公式将直线和圆的极坐标方程化为直角坐标方程求解.【自主解答】 (1)因为⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,所以ρ2=x 2+y 2,由ρ=2sin θ+4cos θ,得ρ2=2ρsin θ+4ρcos θ ∴x 2+y 2-4x -2y =0,即(x -2)2+(y -1)2=5. (2)由ρsin(θ-π4)=0,得ρ(22sin θ-22cos θ)=0, 即ρsin θ-ρcos θ=0,∴x -y =0. 由于圆(x -2)2+(y -1)2=5的半径为r =5,圆心(2,1)到直线x -y =0的距离为d =|2-1|2=12, ∴|AB |=2r 2-d 2=3 2.1.直角坐标方程化为极坐标方程,只需把公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程要通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须保持同解,因此应注意对变形过程的检验.2.对方程进行合理变形,并注重公式的正向、逆向与变形使用.(2013·北京高考)在极坐标系中,点(2,π6)到直线ρsin θ=2的距离等于________.【解析】 极坐标系中点(2,π6)对应的直角坐标为(3,1).极坐标系中直线ρsin θ=2对应直角坐标系中直线y =2.故所求距离为1.【答案】 1极坐标方程的应用上取一点P ,使|OM |·|OP |=12.(1)求点P的轨迹方程;(2)设R为l上的任意一点,试求|RP|的最小值.【思路探究】建立点P的极坐标方程,完成直角坐标与极坐标方程的互化,根据直线与圆的位置关系,数形结合求|RP|的最小值.【自主解答】(1)设动点P的极坐标为(ρ,θ),M的极坐标为(ρ0,θ),则ρρ0=12.∵ρ0cos θ=4,∴ρ=3cos θ即为所求的轨迹方程.(2)将ρ=3cos θ化为直角坐标方程,得x2+y2=3x,即(x-32)2+y2=(32)2,知P的轨迹是以(32,0)为圆心,半径为32的圆.直线l的直角坐标方程是x=4.结合图形易得|RP|的最小值为1.1.用极坐标法可使几何中的一些问题得出很直接、简单的解法.当然,因为建系的不同,曲线的极坐标方程也会不同.2.解题时关键是极坐标要选取适当,这样可以简化运算过程,转化为直角坐标时也容易一些.过极点O作圆C:ρ=8cos θ的弦ON,求ON的中点M的轨迹方程.【解】法一如图,圆心C(4,0),半径r=|OC|=4,连接CM.∵M为弦ON的中点,∴CM⊥ON,故M在以OC为直径的圆上.所以,动点M的轨迹方程是ρ=4cos θ.法二设M点的坐标是(ρ,θ),N(ρ1,θ1).N 点在圆ρ=8cos θ上,∴ρ1=8cos θ1. ① ∵M 是ON 的中点,∴⎩⎪⎨⎪⎧ρ1=2ρ,θ1=θ,将它代入①式得2ρ=8cos θ, 故M 的轨迹方程是ρ=4cos θ.(教材第15页习题1.3,第5题)已知直线的极坐标方程为ρsin(θ+π4)=22,求点A (2,74π)到这条直线的距离.(2013·安徽高考)在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为( )A .θ=0(ρ∈R )和ρcos θ=2B .θ=π2(ρ∈R )和ρcos θ=2C .θ=π2(ρ∈R )和ρcos θ=1D .θ=0(ρ∈R )和ρcos θ=1【命题意图】 考查极坐标方程与直角坐标方程之间的转化,圆的方程及其切线的求解.通过极坐标方程和直角坐标方程之间的转化考查了知识的转化能力、运算求解能力和转化应用意识.【解析】 由ρ=2cos θ,得ρ2=2ρcos θ,化为直角坐标方程为x 2+y 2-2x =0,即(x -1)2+y 2=1,其垂直于极轴的两条切线方程为x =0和x =2,相应的极坐标方程为θ=π2(ρ∈R )和ρcos θ=2.【答案】B1.(2013·安阳质检)下列点不在曲线ρ=cos θ上的是( ) A .(12,π3) B .(-12,2π3)C .(12,-π3)D .(12,-2π3)【解析】 点(12,-23π)的极坐标满足ρ=12,θ=-23π,且ρ≠cos θ=cos(-23π)=-12.【答案】 D2.圆心在(1,0)且过极点的圆的极坐标方程为( ) A .ρ=1 B .ρ=cos θ C .ρ=2cos θ D .ρ=2sin θ【解析】 圆的直角坐标方程是(x -1)2+y 2=1,将x =ρcos θ,y =ρsin θ代入上式,整理得,ρ=2cos θ,即为此圆的极坐标方程.【答案】 C3.极坐标方程(ρ-1)(θ-π)=0(ρ≥0)表示的图形是( ) A .两个圆 B .两条直线 C .一个圆和一条射线 D .一条直线和一条射线【解析】 由题设,得ρ=1,或θ=π, ρ=1表示圆,θ=π(ρ≥0)表示一条射线. 【答案】 C4.已知曲线C 1,C 2的极坐标方程分别为ρcos θ=3,ρ=4cos θ(ρ≥0,0≤θ<π2),则曲线C 1与C 2交点的极坐标为________.【解析】 由ρcos θ=3,ρ=4cos θ,得4cos 2 θ=3. 又0≤θ<π2,则cos θ>0.∴cos θ=32,θ=π6,故ρ=2 3. ∴两曲线交点的极坐标为(23,π6).【答案】 (23,π6)(时间40分钟,满分60分)一、选择题(每小题5分,共20分)1.极坐标方程ρ=cos(π4-θ)表示的曲线是( )A .双曲线B .椭圆C .抛物线D .圆【解析】 ρ=cos(π4-θ)=cos π4cos θ+sin π4sin θ=22cos θ+22sin θ,∴ρ2=22ρcos θ+22ρsin θ,即x 2+y 2=22x +22y . 化简整理,得(x -24)2+(y -24)2=14,表示圆. 【答案】 D2.(2013·三门峡质检)过极点倾斜角为π3的直线的极坐标方程可以为( )A .θ=π3B .θ=π3,ρ≥0C .θ=4π3,ρ≥0D .θ=π3和θ=4π3,ρ≥0【解析】 以极点O 为端点,所求直线上的点的极坐标分成两条射线. ∵两条射线的极坐标方程为θ=π3和θ=43π.∴直线的极坐标方程为θ=π3和θ=43π(ρ≥0).【答案】 D3.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( ) A .(1,π2) B .(1,-π2)C .(1,0)D .(1,π)【解析】 由ρ=-2sin θ得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y ,化成标准方程为x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为(1,-π2).【答案】 B4.在极坐标系中与圆ρ=4sin θ相切的一条直线的方程为( )A .ρcos θ=12B .ρcos θ=2C .ρ=4sin(θ+π3)D .ρ=4sin(θ-π3) 【解析】 极坐标方程ρ=4sin θ化为ρ2=4ρsin θ,即x 2+y 2=4y ,即x 2+(y -2)2=4. 由所给的选项中ρcos θ=2知,x =2为其对应的直角坐标方程,该直线与圆相切.【答案】 B二、填空题(每小题5分,共10分)5.(2013·鹤壁调研)点Q 是圆ρ=4cos θ上的一点,当Q 在圆上移动时,OQ (O 是极点)中点P 的轨迹的极坐标方程是________.【解析】 ρ=4cos θ是以(2,0)为圆心,半径为2的圆,则P 的轨迹是以(1,0)为圆心,半径为1的圆,所以极坐标方程是ρ=2cos θ.【答案】 ρ=2cos θ6.(2012·安徽高考)在极坐标系中,圆ρ=4sin θ的圆心到直线θ=π6(ρ∈R )的距离是________.【解析】 极坐标系中的圆ρ=4sin θ转化为平面直角坐标系中的一般方程为:x 2+y 2=4y ,即x 2+(y -2)2=4,其圆心为(0,2),直线θ=π6转化为平面直角坐标系中的方程为y =33x ,即3x -3y =0.∴圆心(0,2)到直线3x -3y =0的距离为|0-3×2|3+9= 3. 【答案】 3三、解答题(每小题10分,共30分) 7.(2012·江苏高考)在极坐标系中,已知圆C 经过点P (2,π4),圆心为直线ρsin(θ-π3)=-32与极轴的交点,求圆C 的极坐标方程. 【解】 在ρsin(θ-π3)=-32中,令θ=0,得ρ=1, 所以圆C 的圆心坐标为(1,0),因为圆C 经过点P (2,π4), 所以圆C 的半径PC =(2)2+12-2×1×2cos π4=1,于是圆C 过极点, 所以圆C 的极坐标方程为ρ=2cos θ.8.在直角坐标系xOy 中,以O 为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos(θ-π3)=1,M ,N 分别为C 与x 轴,y 轴的交点. (1)写出C 的直角坐标方程,并求M ,N 的极坐标;(2)设MN 的中点为P ,求直线OP 的极坐标方程.【解】 (1)由ρcos(θ-π3)=1, 得ρ(12cos θ+32sin θ)=1. 又x =ρcos θ,y =ρsin θ.∴曲线C 的直角坐标方程为x 2+32y =1, 即x +3y -2=0.当θ=0时,ρ=2,∴点M (2,0).当θ=π2时,ρ=233,∴点N (233,π2). (2)由(1)知,M 点的坐标(2,0),点N 的坐标(0,233). 又P 为MN 的中点,∴点P (1,33),则点P 的极坐标为(233,π6). 所以直线OP 的极坐标方程为θ=π6(ρ∈R ). 9.在极坐标系中,P 是曲线ρ=12sin θ上的一动点,Q 是曲线ρ=12cos(θ-π6)上的动点,试求|PQ |的最大值.【解】 ∵ρ=12sin θ,∴ρ2=12ρsin θ,∴x 2+y 2-12y =0,即x 2+(y -6)2=36.又∵ρ=12cos(θ-π6), ∴ρ2=12ρ(cos θcos π6+sin θsin π6), ∴x 2+y 2-63x -6y =0,∴(x -33)2+(y -3)2=36.∴|PQ |max =6+6+(33)2+32=18.教师备选10.(2012·大连模拟)在极坐标系中,O 为极点,已知圆C 的圆心为(2,π3),半径r =1,P 在圆C 上运动。

苏教版高二数学选修4-4 曲线的极坐标方程 学案

苏教版高二数学选修4-4 曲线的极坐标方程 学案

4.2 曲线的极坐标方程1.极坐标方程与曲线在极坐标系中,曲线可以用含有ρ,θ这两个变量的方程φ(ρ,θ)=0来表示.如果曲线C 上的点与一个二元方程φ(ρ,θ)=0建立了如下关系:(1)曲线C 上的每个点的极坐标中至少有一组(ρ,θ)满足方程φ(ρ,θ)=0; (2)极坐标满足方程φ(ρ,θ)=0的点都在曲线C 上.那么方程φ(ρ,θ)=0叫作曲线C 的极坐标方程,曲线C 叫作极坐标方程φ(ρ,θ)=0的曲线.2.直线的极坐标方程直线l 经过极点,倾斜角为α,则直线l 的极坐标方程是θ=α(ρ∈R ). 3.圆的极坐标方程(1)圆心在极点,半径为r 的圆的极坐标方程是ρ=r ;(2)圆心在(a,0)(a >0),半径为a 的圆的极坐标方程是ρ=2a cos θ. 预习交流1.求曲线的极坐标方程的步骤是什么?提示:(1)建立适当的极坐标系,设P (ρ,θ)是曲线上的任意一点;(2)由曲线上的点所满足的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式f (ρ,θ)=0;(3)将列出的关系式f (ρ,θ)=0进行整理,化简,得出曲线的极坐标方程;(4)证明所得的方程就是曲线的极坐标方程,若方程的推导过程正确,化简过程都是同解变形,这一证明可以省略.2.直角坐标与极坐标互化时的注意事项有哪些? 提示:(1)两组公式是在三个条件规定下得到的;(2)由直角坐标求极坐标时,理论上不是唯一的,但一般约定只在规定范围内求值; (3)由直角坐标方程化为极坐标方程,最后要化简;(4)由极坐标方程化为直角坐标方程时要注意变形的等价性,通常总要用ρ去乘方程的两端.一、极坐标方程和直角坐标方程的互化将下列式子进行直角坐标方程与极坐标方程之间的互化. (1)x 2+y 2=4;(2)(x -1)2+(y +2)2=4;(3)ρ=3cos θ;(4)ρ=cos ⎝⎛⎭⎫θ-π4. 解:(1)将x =ρcos θ,y =ρsin θ代入x 2+y 2=4得(ρcos θ)2+(ρsin θ)2=4,即ρ2=4. (2)将(x -1)2+(y +2)2=4展开得x 2-2x +y 2+4y =-1.将x =ρcos θ,y =ρsin θ代入x 2-2x +y 2+4y =-1,得(ρcos θ)2-2ρcos θ+(ρsin θ)2+4ρsin θ=-1,化简,得ρ2-2ρcos θ+4ρsin θ+1=0.(3)因为ρ=3cos θ,所以ρ2=3ρcos θ,即x 2+y 2=3x .(4)由ρ=cos ⎝⎛⎭⎫θ-π4=cos θcos π4+sin θsin π4=22cos θ+22sin θ. 整理,得ρ2=22ρcos θ+22ρsin θ,即x 2+y 2=22x +22y ,即x 2-22x +y 2-22y =0.化圆的直角坐标方程x 2+y 2-2ax =0(a ≠0)为极坐标方程.解:将x =ρcos θ,y =ρsin θ代入x 2+y 2-2ax =0得ρ2cos 2θ+ρ2sin 2θ-2aρcos θ=0,即ρ=2a cos θ(a ≠0).所以所求极坐标方程为ρ=2a cos θ(a ≠0).极坐标系和直角坐标系都是用一对有序实数来确定平面上点的位置的方法,都是研究平面图形的重要工具.在进行极坐标方程与直角坐标方程互化时,除了正确使用互化公式外,还要注意变形的等价性.二、求直线的极坐标方程设P ⎝⎛⎭⎫2,π4,直线l 过P 点且倾斜角为3π4,求直线l 的极坐标方程. 思路分析:设M (ρ,θ)(ρ≥0)是直线l 上除P 点外的任意一点,极点为O ,构造三角形求OM .解:如图所示,设M (ρ,θ)(ρ≥0)为直线l 上除P 点外的任意一点,极点为O ,连接OM ,OP ,该直线交Ox 于点A ,则有|OM |=ρ,|OP |=2,π4MOP θ∠=-,π2OPM ∠=, 所以|OM |cos ∠MOP =|OP |,即πcos 24ρθ-=,即πcos 24ρθ⎛⎫-= ⎪⎝⎭,显然点P 也在这条直线上. 故所求直线的极坐标方程为πcos 24ρθ⎛⎫-= ⎪⎝⎭.求过点A (2,0),并且垂直于极轴的直线的方程.解:如图,设M (ρ,θ)为直线上除A (2,0)外的任意一点,连接OM ,则△AOM 为直角三角形,并且∠AOM =θ,|OA |=2,|OM |=ρ,∴|OM |cos θ=|OA |,即ρcos θ=2.显然当ρ=2,θ=0时,也满足方程ρcos θ=2, ∴所求直线的极坐标方程为ρcos θ=2.在极坐标系中,求直线的极坐标方程的一般方法为:设M (ρ,θ)为直线上任意一点,极点为O ,连接OM ,构造出含有OM 的三角形,再找出我们需求的ρ与θ的关系,即为直线的极坐标方程.也可以先求出直角坐标方程,再化为极坐标方程.三、求圆的极坐标方程求以C (4,0)为圆心,半径等于4的圆的极坐标方程.解:如图所示,由题设可知,这个圆经过极点,圆心在极轴上,设圆与极轴的另一个交点是A ,在圆上任取一点P (ρ,θ),连接OP ,P A ,在Rt △OP A 中,|OA |=8,|OP |=ρ,∠AOP =θ, ∴|OA |·cos θ=ρ,即8cos θ=ρ,即ρ=8cos θ就是圆C 的极坐标方程.从极点O 作圆C :ρ=8cos θ的弦ON ,求ON 的中点M 的轨迹方程并把它化为直角坐标方程.解:方法一:如图,圆C 的圆心C (4,0),半径r =|OC |=4,连接CM.∵M 为弦ON 的中点,∴CM ⊥ON ,故M 在以OC 为直径的圆上. ∴动点M 的轨迹方程是ρ=4cos θ. ∵ρ2=4ρcos θ,∴x 2+y 2=4x ,故(x -2)2+y 2=4为所求的直角坐标方程. 方法二:设M 点的坐标是(ρ,θ),N (ρ1,θ1). N 点在圆ρ=8cos θ上,∴ρ1=8cos θ1(*).∵M 是ON 的中点, ∴112,,ρρθθ=⎧⎨=⎩将它代入(*)式得2ρ=8cos θ,故M 的轨迹方程是ρ=4cos θ. ∵ρ2=4ρcos θ,∴x 2+y 2=4x ,故(x -2)2+y 2=4为所求的直角坐标方程.在极坐标系中,求圆的极坐标方程时,关键是找出曲线上的点满足的关系,将它用坐标表示并化简,得到ρ和θ的关系,即为所求极坐标方程.1.在极坐标系中,过点M ⎝⎛⎭⎫2,π2,且平行于极轴的直线的极坐标方程是__________. 答案:ρsin θ=2(ρ≥0)解析:如图,设P (ρ,θ)(ρ≥0)为所求直线上任意一点,在Rt △OMP 中,()πcos 202ρθρ⎛⎫-=≥ ⎪⎝⎭,即ρsin θ=2(ρ≥0).2.极坐标方程cos θ=22(ρ≥0)表示的曲线是__________. 答案:两条射线y =±x (x ≥0)解析:∵cos θ=22,∴ρcos θ=22ρ.两边平方,得x 2=12(x 2+y 2),即y =±x .又∵ρ≥0,∴ρcos θ=x ≥0. ∴y =±x (x ≥0)表示两条射线.3.在极坐标系中,圆心在点⎝⎛⎭⎫a ,π2(a >0)处,且过极点的圆的极坐标方程是__________. 答案:ρ=2a sin θ(0≤θ≤π) 解析:如图所示,圆与射线OP 的交点为π2,2P a ⎛⎫⎪⎝⎭,在圆上任取一点M (ρ,θ),连接OM 和MP ,则有OM ⊥MP ,在Rt △MOP 中,由Rt △MOP 的边角关系可得π2cos 2sin 2a a ρθθ⎛⎫=-= ⎪⎝⎭(0≤θ≤π).4.直角坐标方程x 2+(y -2)2=4化为极坐标方程为__________. 答案:ρ=4sin θ 解析:x 2+(y -2)2=4可化为x 2+y 2=4y ,把x =ρcos θ,y =ρsin θ代入,得(ρcos θ)2+(ρsin θ)2=4ρsin θ,化简得ρ=4sin θ.5.从原点O 引直线交直线2x +4y -1=0于点M ,P 为射线OM 上一点,已知|OP |·|OM |=1.求P 点的轨迹的极坐标方程.解:以O 为极点,x 轴正方向为极轴建立极坐标系,直线2x +4y -1=0的方程可化为2ρcos θ+4ρsin θ-1=0,设M (ρ0,θ0),P (ρ,θ),则2ρ0cos θ0+4ρ0sin θ0-1=0.由⎩⎪⎨⎪⎧θ=θ0,ρ0·ρ=1,知⎩⎪⎨⎪⎧θ0=θ,ρ0=1ρ. 代入2ρ0cos θ0+4ρ0sin θ0-1=0,得2×1ρcos θ+4×1ρsin θ-1=0,整理,得ρ=2cos θ+4sin θ.所以P 点的轨迹的极坐标方程为ρ=2cos θ+4sin θ.。

【公开课教案】选修4-4第一讲三、简单曲线的极坐标方程(第一课时)圆的极坐标方程

【公开课教案】选修4-4第一讲三、简单曲线的极坐标方程(第一课时)圆的极坐标方程

选修4-4第一讲三、简单曲线的极坐标方程(第一课时)圆的极坐标方程一、学情分析:学生在学习本节内容之前,已经在必修2中学习了圆的直角坐标方程与选修2-1中曲线与方程的内容.因此,学生完全有能力通过类比的方法,在与教师的共同研究探讨下,学好本节课的内容.唯一有点困难的地方就是:学生如何适应从直角坐标系下用x,y表示圆的方程到极坐标系下用ρ,θ表示圆的方程.二、教材分析:本节课是人教版普通高中课程标准实验教科书(数学)选修4-4第一章第三节第一课时内容,它是在学习了必修2圆的直角坐标方程与选修2-1曲线与方程的基础上,来进一步地研究探讨圆的方程另一种表达方式,是高中数学的重要基础内容,考查内容出现在高考卷的最后一题,分值占5分,是学生的重要得分点.同时,通过本节内容的学习,能够让学生系统的掌握高中数学的其中两种重要坐标系:直角坐标系与极坐标,是培养学生逻辑推理,数学建模,数学运算等核心素养的重要课程.三、教学目标:1.知识与技能:(1)知道极坐标方程的定义.(2)会求圆的极坐标方程,并理解求极坐标方程的一般步骤.2.过程与方法:通过类比直角坐标系中求曲线方程的方法,引入在极坐标系中求圆的极坐标方程.3.情感、态度与价值观:利用直角坐标系与极坐标系求曲线方程的优劣比较,培养学生灵活运用所学知识,解决实际问题的能力.四、核心素养:本节主要培养学生逻辑推理,数学建模,数学运算等能力.五、教学重难点:1.重点:会求圆的极坐标方程.2.难点:领会求圆的极坐标方程的方法步骤,通过实例的应用与分析突破难点.六、教学过程:1.引入新课:在选修2-1中我们学习了:在平面直角坐标系中,曲线C 可以用方程f(x,y)=0 来表示.那么,在极坐标系中,平面曲线是否可以用方程f(ρ,θ)=0表示呢?2.新课讲解:本节课我们就来学习一下简单曲线之一:圆的极坐标方程.已知圆O的半径为r ,建立怎样的极坐标系,可以使圆的极坐标方程更简单?如图,半径为r 的圆的圆心坐标为C(r,0)(r >0).你能用一个等式表示圆上任意一点 的极坐标(ρ,θ)满足的条件吗?在求曲线极坐标方程时,关键是找出曲线上的点满足的几何条件,将它用坐标(ρ,θ)表示,再通过代数变换进行化简。

选修4-4极坐标与参数方程教学案1

选修4-4极坐标与参数方程教学案1

4.1 坐标系基础知识1.平面直角坐标系的建立:在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。

2.空间直角坐标系的建立:在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。

3.极坐标系的建立:在平面上取一个定点O,自点O引一条射线OX,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。

(其中O称为极点,射线OX称为极轴。

)设M是平面上的任一点,ρ表示OM的长度,θ表示以ρθ射线OX为始边,射线OM为终边所成的角。

那么有序数对(,)称为点M的极坐标。

其中ρ称为极径,θ称为极角。

说出下图中各点的极坐标A()B()C()D()E()F()G()①平面上一点的极坐标是否唯一?②若不唯一,那有多少种表示方法?③坐标不唯一是由谁引起的?③不同的极坐标是否可以写出统一表达式P7约定:极点的极坐标是ρ=0,θ可以取任意角。

4.直角坐标与极坐标的互化以直角坐标系的O为极点,x轴正半轴为极轴,且在两坐标系中取相同的单位长度平面内的任一点P的直角坐标极坐标分别为ρθ,则(x,y)和(,)x=2ρ=y=tanθ=题型练习1.已知⎪⎭⎫⎝⎛-3,5πM ,下列所给出的不能表示点的坐标的是 A .⎪⎭⎫⎝⎛-3,5π B .⎪⎭⎫ ⎝⎛34,5π C .⎪⎭⎫ ⎝⎛-32,5π D .⎪⎭⎫ ⎝⎛--35,5π 2.点()3,1-P ,则它的极坐标是 A .⎪⎭⎫ ⎝⎛3,2π B .⎪⎭⎫ ⎝⎛34,2π C .⎪⎭⎫ ⎝⎛-3,2π D .⎪⎭⎫⎝⎛-34,2π 3.已知点()0,0,43,2,2,2O B A ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--ππ则ABO ∆为 A 、正三角形 B 、直角三角形 C 、锐角等腰三角形 D 、直角等腰三角形4.已知△ABC 的三边a,b,c 满足2225b c a +=,BE,CF 分别为边AC,CF 上的中线,建立适当的平面直角坐标系,探究BE 与CF 的位置关系。

人教课标实验A版-选修4—4-第一讲 坐标系-三 简单曲线的极坐标方程公开课

人教课标实验A版-选修4—4-第一讲 坐标系-三 简单曲线的极坐标方程公开课

《曲线的极坐标方程与直角坐标方程的互化》教学设计一、教学目的知识目标:掌握极坐标系中直线和圆的方程,会进行曲线的极坐标方程与直角坐标方程的互化.能力目标:巩固求曲线方程的方法和步骤、会进行曲线的极坐标方程与直角坐标方程的互化.德育目标:通过观察、探索、发现的创造性过程,培养创新意识.二、教学重难点会进行曲线的极坐标方程与直角坐标方程的互化.教学难点:寻找关于ρ,θ的等式.三、教学方法启发、诱导发现教学.四、教学过程(一)复习引入问题情境:情境1:3cos =θρ , 5=ρ, 2=θρsis , πθ43=分别表示什么曲线?情境2:上述方程分别表示了直线与圆,把这些直线与圆一般化,它们的方程分别是什么?我们知道,同一条曲线在不同的坐标系中,会有不同的方程.为了研究问题方便,有时需要把在一种坐标系中的方程化为在另一种坐标系中的方程.根据点的直角坐标与极坐标互化关系式,曲线方程两种形式的互化便可以顺利完成.(二)题目探析,体会感受过程,归纳总结1.基础巩固导练(1)已知点P 的极坐标是(1,π),则过点P 且垂直极轴的直线极坐标方程是 .(2)在极坐标系中,曲线)3sin(4πθρ-=一条对称轴的极坐标方程 . (3)在极坐标中,若过点(3,0)且与极轴垂直的直线交曲线θρcos 4=于A 、B 两点.则|AB |= .(4)已知三点A (5,2π),B (-8,π611),C (3,π67),则ΔABC 形状为 . (5)已知某圆的极坐标方程为:ρ2 –42ρcon (θ-π/4)+6=0则:A .圆的普通方程 ;B .圆上所有点(x ,y )中xy 的最大值和最小值分别为 、 .(1)ρcosθ= -1;(2)56πθ=;(3)(4)等边三角形;(5) (x -2)2+(y -2)2=2; 2.例题精讲例1.【课本P 15页例10】将下列曲线的极坐标方程化为直角坐标方程.(1)ρcosθsin 2-ρθ-=0; (2)cos 0ρ-θ=; (3)2cos 216θ=ρ 学生练习,教师准对问题讲评.反思归纳:曲线的极坐标方程化为直角坐标方程的方法.例2.【课本P 15页例11】将曲线的直角坐标方程化为极坐标方程. 反思归纳:曲线的极坐标方程化为直角坐标方程的方法.(三)强化巩固导练学生练习课本P 17页练习题中2、3、5(四)小结本节课学习了以下内容:1.求曲线的极坐标方程,就是建立以ρ,θ为变量的方程;类似于直角坐标系中的x ,y ;2.求直线和圆的极坐标方程的基本步骤.3.要会熟练地进行曲线的极坐标方程与直角坐标方程的互化.(五)作业课本P 18页A 组5、6、10 B 组中2 课外练习(1)化在直角坐标方程0822=-+y y x 为极坐标方程,(2)化极坐标方程)3cos(6πθρ-= 为直角坐标方程.。

选修4-4曲线极坐标方程-教案

选修4-4曲线极坐标方程-教案

选修4-4曲线极坐标方程-教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN简单曲线的极坐标方程【教学目标】1.掌握极坐标方程的意义2.能在极坐标中求直线和圆的极坐标方程3.通过观察圆的极坐标方程的推导过程,体会圆的极坐标方程的简介美【重难点分析】教学重点:直线和圆的极坐标方程的求法教学难点:对不同位置的直线和圆的极坐标方程的理解【教学方法】引导发现、讲授【教学过程】1.导入问题设置1、直角坐标系中怎样描述点的位置?2、曲线的方程和方程的曲线(直角坐标系中)定义怎样?3、直角坐标系的建立可以求曲线的方程;极坐标系的建立是否可以求曲线方程?2、极坐标方程的概念引例如图,在极坐标系下半径为a的圆的圆心坐标为(a,0)(a>0),你能用一个等式表示圆上任意一点,的极坐标(ρ,θ)满足的条件?[解] 设M (ρ,θ)是圆上O 、A 以外的任意一点,连接AM ,则有,OM=OAcos θ,所以,ρ=2acos θ.[思考] 曲线上的点的坐标都满足这个方程吗?定义:一般地,在极坐标中,如果一条曲线C 上任意一点的极坐标中至少有一个满足方程0),(=θρf ,并且坐标适合0),(=θρf 的点都在曲线C 上,那么这个方程称为这条曲线C 的极坐标方程,这条曲线C 称为这个极坐标方程的曲线。

[注] 1.定义中的所涉及到的两个方面.2.极坐标系下求曲线方程的步骤:Step1找到曲线上点满足的几何条件;Step2 几何条件坐标化;Step3 化简.例1 已知圆O 的半径为r,建立怎样的坐标系,可以使圆的极坐标方程更简单?[分析] 建系;设点M (ρ,θ);列式OM =r , 即:ρ=r.[思考] 和直角坐标方程222r y x =+相比较,此方程有哪些优点?[变式练习] 求下列圆的极坐标方程(1)中心在C(a ,0),半径为a ;(2)中心在(a,π/2),半径为a ;答案:(1)ρ=2acos θ (2) ρ=2asin θ例2.(备选)(1)化在直角坐标方程0822=-+y y x 为极坐标方程,(2)化极坐标方程)3cos(6πθρ-= 为直角坐标方程。

1[1].2《极坐标系--简单曲线的极坐标方程》教案(新人教选修4-4)

1[1].2《极坐标系--简单曲线的极坐标方程》教案(新人教选修4-4)

三、简单曲线的极坐标方程 【基础知识导学】1、极坐标方程的定义:在极坐标系中,如果平面曲线C 上任一点的极坐标中至少有一个满足方程0),(=θρf ,并且坐标适合方程0),(=θρf 的点都在曲线C 上,那么方程0),(=θρf 叫做曲线C 的极坐标方程。

1. 直线与圆的极坐标方程① 过极点,与极轴成α角的直线极坐标议程为αθραθtan tan )(=∈=或R ②以极点为圆心半径等于r 的圆的极坐标方程为 r =ρ 【知识迷航指南】例1求(1)过点)4,2(πA 平行于极轴的直线。

(2)过点)3,3(πA 且和极轴成43π角的直线。

解(1)如图,在直线l 上任取一点),(θρM ,因为)4,2(πA ,所以|MH|=224sin =⋅π在直角三角形MOH 中|MH|=|OM|sin θ即2sin =θρ,所以过点)4,2(πA 平行于极轴的直线为2sin =θρ。

(2)如图 ,设M ),(θρ为直线l 上一点。

)3,3(πA , OA =3,3π=∠AOB xO由已知43π=∠MBx ,所以125343πππ=-=∠OAB ,所以127125πππ=-=∠OAM又θπθ-=-∠=∠43MBx OMA 在∆MOA 中,根据正弦定理得127sin)43sin(3πρθπ=- 又426)34sin(127sin +=+=πππ将)43sin(θπ-展开化简可得23233)cos (sin +=+θθρ所以过)3,3(πA 且和极轴成43π角的直线为:23233)cos (sin +=+θθρ 〔点评〕求曲线方程,关键是找出曲线上点满足的几何条件。

将它用坐标表示。

再通过代数变换进行化简。

例2(1)求以C(4,0)为圆心,半径等于4的圆的极坐标方程。

(2)从极点O 作圆C 的弦ON ,求ON 的中点M 的轨迹方程。

解:(1)设),(θρp 为圆C 上任意一点。

圆C 交极轴于另一点A 。

由已知 OA =8 在直角∆AOD 中θcos OA OD =,即 θρcos 8=, 这就是圆C 的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单曲线的极坐标方程
【教学目标】
1.掌握极坐标方程的意义
2.能在极坐标中求直线和圆的极坐标方程
3.通过观察圆的极坐标方程的推导过程,体会圆的极坐标方程的简介美
【重难点分析】
;
教学重点:直线和圆的极坐标方程的求法
教学难点:对不同位置的直线和圆的极坐标方程的理解
【教学方法】
引导发现、讲授
【教学过程】
1.导入
问题设置
1、直角坐标系中怎样描述点的位置
#
2、曲线的方程和方程的曲线(直角坐标系中)定义怎样
3、直角坐标系的建立可以求曲线的方程;极坐标系的建立是否可以求
曲线方程
2、极坐标方程的概念
引例如图,在极坐标系下半径为a的圆的圆心坐标为(a,0)(a>0),你能用一个等式表示圆上任意一点,的极坐标(,)满足的条件
:
[解] 设M (,)是圆上O、A以外的任意一点,连接AM,则有,
OM=OAcosθ,所以,ρ=2acosθ.
[思考] 曲线上的点的坐标都满足这个方程吗
定义:一般地,在极坐标中,如果一条曲线C上任意一点的极坐标中至少有一个满足方程
)
,
(=
θ
ρ
f,并且坐标适合0
)
,
(=
θ
ρ
f的点都在曲线C上,那么这个方程称为这条
曲线C的极坐标方程,这条曲线C称为这个极坐标方程的曲线。

[注] 1.定义中的所涉及到的两个方面.
2.极坐标系下求曲线方程的步骤:
Step1找到曲线上点满足的几何条件;
Step2 几何条件坐标化;
$
Step3 化简.
例1 已知圆O的半径为r,建立怎样的坐标系,可以使圆的极坐标方程更简单
[分析]建系;设点M(ρ,θ);列式OM=r,即:ρ=r.
)
[思考] 和直角坐标方程2
2
2r
y
x=
+相比较,此方程有哪些优点
[变式练习] 求下列圆的极坐标方程
(1)中心在C(a,0),半径为a;
(2)中心在(a,/2),半径为a;
答案:(1)=2acos (2) =2asin
例2.(备选)(1)化在直角坐标方程0
8
2
2=
-
+y
y
x为极坐标方程,
&
(2)化极坐标方程)
3
cos(
6
π
θ
ρ-
=为直角坐标方程。

3、直线的极坐标方程
例3.求过极点,倾角为/4,
π的射线的极坐标方程。


例4、求经过点)0,(a A )0(>a ,且与极轴垂直的直线l 的极坐标方程.
l
ρ
θ
[分析] 设动点的极坐标抓住几何图形特征建立关系式。

:
[变式训练]
已知点P 的极坐标为),1(π,那么过点P 且垂直于极轴的直线极坐标方程。

答案:cos 1ρθ=-
例4、若直线l 经过11(,)M ρθ且极轴到此直线的角为α,求直线l 的极坐标方程。

[分析] 设动点的极坐标,在三角形OAM 中利用正弦定理可解.
,(,)OP M l P ρθ解:连接设为直线上除点外的任意一点,
||||sin sin OM OP OPM OMP
=∠∠, 11,()OPA OPM αθπαθ∠=-∴∠=--
.
又,故得OMP αθ∠=-
11sin[()]sin()
ρρπαθαθ=--- [归纳] 以上题目均为求直线的极坐标方程,方法是设动点的极坐标,抓住几何图形 O M ~ x
特征建立与的关系式。

[练习]课本P15习题中第2题的(1)、(2)
4.小结
1.如何求直线和圆的极坐标方程;
2.极坐标系中曲线与方程的关系;

3.掌握求直线和圆的极坐标方程的方法和步骤。

5.作业
课本P15页习题第2题(3)、(4);第3题(2)、(4);第4题(2)、(4)【板书】
【教学反思】简单曲线的极坐标方程
1.圆的极坐标方程例1
2.》
3.直线的极坐标方程例2。

相关文档
最新文档