概率论与数理统计期中自测题
概率论与数理统计期中试题(一)
概率论与数理统计期中试题(一)《概率论与数理统计》期中试题(一)姓名班级学号成绩一、填空题(每小题4分,共12分)1.设事件仅发生一个的概率为0.3,且,则至少有一个不发生的概率为__________.2.设随机变量服从泊松分布,且,则______.3.设随机变量在区间上服从均匀分布,则随机变量在区间内的概率密度为_________.二、单项选择题(每小题4分,共16分)1.设为三个事件,且相互独立,则以下结论中不正确的是(A)若,则与也独立. (B)若,则与也独立.(C)若,则与也独立.(D)若,则与也独立. ()2.设随机变量的分布函数为,则的值为(A). (B). (C). (D). ()3.设随机变量和不相关,则下列结论中正确的是(A)与独立. (B).(C). (D).4.设离散型随机变量和的联合概率分布为若独立,则的值为(A). (A). (C)(D). ()三、(12分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设为途中遇到红灯的次数,求的分布列、分布函数、数学期望和方差.五、(12分)设二维随机变量在区域上服从均匀分布. 求关于的边缘概率密度;六、(12分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标和纵坐标相互独立,且均服从分布. 求(1)命中环形区域的概率;(2)命中点到目标中心距离的数学期望.七、(12分)设, 求的概率密度.Y X0200.10.2010.30.050.120.1500.1八、(12分)已知离散型随机向量的概率分布为求.。
2022概率统计期中考试卷
2022概率统计期中考试卷《概率论与数理统计》期中考试试卷一、选择题(每小题4分,共24分)1.P(A)1/4P(B)1/2A.B相互独立,则P(AB)().A)1/2B)1/4C)1/8D)5/8 2D某DY1,E某EY0,2.设随机变量某,Y相互独立,则E某(Y)1()A.3B.2C.1D.63.随机事件A、B互斥,且P(A)0,P(B)0,则()A.P(B/A)0B.P(A/B)P(A)C.P(A/B)0D.P(AB)P(A)P(B)4.设甲、乙进行象棋比赛,考虑事件A{。
甲胜乙负},则A()A.{甲负乙胜}B.{甲乙平局}C.{甲负}D.{甲负或平局}5.设A1,A2,,An相互独立,P(Ak)pkk1,,n,则n个事件都发生的概率为().nnA.piB.pi(1pj)C.1(1pj)D.pii1i1j1j16.设事件A和B满足PBA1,则有().nnA.A是必然事件B.PBA0C.ABD.AB二、填空题(每小题5分,共30分)1.设对于事件A,B,C有PAPBPCPAC1,PABPBC0,41,则A,B,C三事件中至少有1个发生的概率为.82.设D某DY2,某与Y的相关系数1,则3D(某Y)_____________.3.设随机变量某服从二项分布B(n,p),且E某3,D某2.1,则n____,P____.14.设随机变量(某,Y)具有D某9,DY4,某y,则D(某3Y4)____.63A5.设离散型随机变量的分布律为P{某k}k(k1,2,),则A____.26.一批产品共100件,其中95件是合格品,5件是次品,现从中任取3件,则这3件中有次品的概率为___________.三、解答题(第1小题6分,其余每小题10分,共46分)111,P(B),P(AB),求P(AB),P(AB),P(AB).4222.某射击小组共有20名选手,其中一级射手4人,二级射手8人,三级射手7人,四级射手1人。
最新概率论与数理统计期中考试试题1
概率论与数理统计期中考试试题1一.选择题(每题4分,共20分)1.设,,A B C 为三个随机事件,,,A B C 中至少有一个发生,正确的表示是( ) A. ABC B. ABC C. AB C D. A B C2.一个袋子中有5个红球,3个白球,2个黑球,现任取三个球恰为一红,一白,一黑的概率为 ( ) A.12 B. 14 C. 13 D. 153.设,A B 为随机事件,()0.5,()0.6,(|)0.8P A P B P B A ===,则()P AB =( )A .0.7 B. 0.8 C. 0.6 D. 0.44. 一电话总机每分钟收到呼唤的次数服从参数为2的泊松分布,则某一分钟恰有4次呼唤的概率为( )A.423e - B. 223e - C. 212e - D. 312e - 5.若连续性随机变量2(,)X N μσ,则X Z μσ-= ( )A .2(,)ZN μσ B. 2(0,)Z N σ C. (0,1)ZN D. (1,0)Z N二. 填空题(每题4分,共20分)6. 已知1()2P A =,且,A B 互不相容,则()P AB =7. 老张今年年初买了一份为期一年的保险,保险公司赔付情况如下:若投保人在投保后一年内因意外死亡,则公司赔付30万元;若投保人因其他原因死亡,则公司赔付10万元;若投保人在投保期末生存,则公司无需付给任何费用。
若投保人在一年内因意外死亡的概率为0.0002,因其他原因死亡的概率为0.0050,则保险公司赔付金额为0元的概率为 8. 设连续性随机变量X 具有分布函数0,1()ln ,11,x F x x x e x e <⎧⎪=≤<⎨⎪≥⎩则概率密度函数()f x = 9. 设连续型随机变量2(3,2)XN ,则{}2<5P X ≤=(注: (1)=0.8413,(0.5)=0.6915φφ)10. 设离散型随机变量X 的分布律为10120.20.30.10.4X-⎛⎫ ⎪⎝⎭,则2(1)Y X =-的分布律为三.解答题(每题8分,共48分)11. 将9名新生随机地平均分配到两个班级中去,这9名新生中有3名是优秀生。
概率论与数理统计自测试卷及答案
概率论与数理统计自测试卷一一、填空题(每题3分,共15分)1、已知随机变量X 服从参数为2的泊松(Poisson )分布,且随机变量22-=X Z ,则()=Z E ____________.2、设A 、B 是随机事件,()7.0=A P ,()3.0=-B A P ,则()=AB P3、设二维随机变量()Y X ,的分布列为若X 与Y 相互独立,则βα、的值分别为 。
4、设 ()()()4, 1, ,0.6D X D Y R X Y ===,则 ()D X Y -=___ _5、设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()ni i X μσ=-∑服从__________分布.二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】 (A)11a ab -+-; (B) (1)()(1)a a a b a b -++-; (C) a a b +; (D) 2a ab ⎛⎫ ⎪+⎝⎭. 2、设事件A 与B 互不相容,且()0≠A P ,()0≠B P ,则下面结论正确的是【 】(A) A 与B 互不相容; (B)()0>A B P ; (C) ()()()B P A P AB P =; (D)()()A P B A P =.3、设两个相互独立的随机变量X 与Y 分别服从正态分布()1,0N 和()1,1N ,则【 】(A)()210=≤+Y X P ; (B) ()211=≤+Y X P ; (C)()210=≤-Y X P ; (D)()211=≤-Y X P 。
4、 如果Y X ,满足()Y X D Y X D -=+)(,则必有【 】(A )X 与Y 独立;(B )X 与Y 不相关;(C )0=DY ;(D )0=DX5、设相互独立的两个随机变量X 与Y 具有同一分布律,且X 的分布律为YX1 2 31 61 91 181 231α β则随机变量()Y X Z ,max =的分布律为【 】(A)()()211,210====z P z P ; (B) ()()01,10====z P z P ; (C) ()()431,410====z P z P ;(D) ()()411,430====z P z P 。
《概率论与数理统计》期中考试试题汇总,DOC
《概率论与数理统计》期中考试试题(一)一、选择题(本题共6小题,每小题2分,共12分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )A .A 1A 2B .21A AC .21A AD .21A A2345C 68.将3个球放入5个盒子中,则3个盒子中各有一球的概率为=________.9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是=.10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度2f Y (y )=________.11.设二维随机变量(X ,Y )的概率密度f (x ,y )=⎩⎨⎧≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59⎛⎫ ⎪⎝⎭,则相关系数,X Y ρ=________. 13.二维随机变量(X ,Y )(1,3,16,25,0.5)N -,则X ;Z X Y =-+.(-1,31),(2,0),且取这些值的概率依次为61,a ,121,125. 求(1)a =?并写出(X ,Y )的分布律;(2)(X ,Y )关于X ,Y 的边缘分布律;问X ,Y 是否独立;(3){0}P X Y +<;(4)1X Y =的条件分布律;(5)相关系数,X Y ρ18.(8分)设测量距离时产生的随机误差X ~N (0,102)(单位:m),现作三次独立测量,记Y 为三次测量中误差绝对值大于19.6的次数,已知Φ(1.96)=0.975.(1)求每次测量中误差绝对值大于19.6的概率p ;(2)问Y 服从何种分布,并写出其分布律;求E (Y ).1取出的3件中恰有一件次品的概率为( )A .601B .457C .51D .157 2.下列选项不正确的是()A .互为对立的事件一定互斥B .互为独立的事件不一定互斥C .互为独立的随机变量一定是不相关的D .不相关的随机变量一定是独立的3.某种电子元件的使用寿命X (单位:小时)的概率密度为42100,100;()0,100,x p x x x ⎧≥⎪=⎨⎪<⎩任取一只电子元件,则它的使用寿命在150小时以内的概率为( )A .41B .31C .21D .32 4.若随机变量,X Y 不相关,则下列等式中不成立的是.A5A 6A 79.设随机变量X ~E (1),且21Y X =-,则Y 的概率密度f Y (y )=________.10.设随机变量X ~B (4,32),则{}1P X <=___________. 11.已知随机变量X 的分布函数为0,6;6(),66121,6,x x F x x x ≤-⎧⎪+⎪=-<<⎨⎪≥⎪⎩,则X 的概率密度p (x )=______________.12.设二维随机变量(,)X Y 的协方差矩阵是90.60.625⎛⎫⎪⎝⎭,则相关系数,X Y ρ=________. 13.二维随机变量(X ,Y )(2,3,9,16,0.4)N -,则X;Z X Y =-+. 14.随机变量X 的概率密度函数为,0()0,0x X e x f x x -⎧>=⎨≤⎩,Y 的概率密度函数为1,12()3Y y f y ⎧-<<⎪=⎨,,X Y 相互独立,且Z X Y =+的概率密度函数为()z f z = 试求:(1)常数α,β;(2)(X ,Y )关于X ,Y 的边缘分布律;问X ,Y 是6否独立;(3)X 的分布函数F(x);(4){1}P X Y +<;(5)1X Y =的条件分布律;(6)相关系数,X Y ρ18.(8分)设顾客在某银行窗口等待服务的时间X (单位:分钟)具有概率密度()3103x e x p x -⎧>⎪=⎨,;某顾客在窗口等待服务,若超过9分钟,他就离视机,厂方获得利润50万元,但如果因销售不出而积压在仓库里,则每一万台需支付库存费10万元,问29寸彩色电视机的年产量应定为多少台,才能使厂方的平均收益最大?《概率论与数理统计》期中试卷试题(五)一、选择题(共5题,每题2分,共计12分)1.下列选项正确的是()A.互为对立事件一定是互不相容的B.互为独立的事件一定是互不相容的C.互为独立的随机变量一定是不相关的 D.不相关的随机变量不二、填空题:(每小题2分,共18分)7.同时扔4枚均匀硬币,则至多有一枚硬币正面向上的概率为________.8.将3个球放入6个盒子中,则3个盒子中各有一球的概率为=________.89.从a 个白球和b 个黑球中不放回的任取3次球,第3次取的黑球的概率是=.10.公共汽车站每隔5分钟有一辆汽车到站,乘客到站的时刻是任意的,则一个乘客候车时间不超过3分钟的概率为 (1,2,9,16,0)N -;2Z X =-. 率密度函数51,050,0x e x x ->≤的概率密,(,)X Y 相互独立,且X Y +的概率密度函数为(z f 在某区域有一架飞机,雷达以99%的概率探测到并报警。
《概率论与数理统计》期中考试(B卷)
概率论与数理统计
期中考试 B 卷
《概率论与数理统计》期中考试(B卷)
序号:_____ 学号:____ 姓名:_____ 成绩:_____
3 1 1. (7分)某医院用某种新药医治流感,对病人进行试验,其中 的病人服此药, 的病人 4 4 不服此药,5天后有70%的病人痊愈,已知不服药的病人5天后10%有的可以治愈。 (1). 求该药的治愈率; (2). 若某病人5天后痊愈求他是服此药而痊愈的概率。 解:(1)设A = {病人服药} B = {病人痊愈}. 因 ¯ ) = P(A)P( B|A) + P(A ¯ )( BA ¯ ) = 3 × P( B|A) + 1 × 0.1 = 0.9. P( B) = P(AB) + P(AB 4 4 故该药的自愈率为P( B|A) = 0.9.′ P(AB) 27 (2)P(A| B) = = . P( B) 28 2. (10分)已知随机变量X ∼ U (−2, 5), (1). 试求方程4t2 + 4Xt + X + 2 = 0有实根的概率; (2). 求Y = |X |的概率密度。 1 7 , −2 < x < 5, 解:(1) 由已知, fX ( x) = 0, 其他 P(方程有实根) = P(判别式▽ = P{16X 2 − 16X + 2 = P{X 2} + P{X 0) 得分____ 得分____
在区域0 < y < 1, −y < x < y 内, f ( x, y) = fX ( x) fY (y), · · · · · · 1′ 因此X 与Y 不相互独立. (2)
1 P{X ≤ 1 ,Y ≥ 2 } 5 1 1 2 = . P{Y ≥ |X ≤ } = 1 2 2 7 P{ X ≤ 2 }
概率论与数理统计自测题
, 概率论与数理统计自测题(含答案,先自己做再对照)一、单项选择题1.设A 与B 互为对立事件,且P 〔A 〕>0,P 〔B 〕>0,那么以下各式中错误的选项是......〔 〕 A .0)|(=B A P B .P 〔B |A 〕=0 C .P 〔AB 〕=0D .P 〔A ∪B 〕=12.设A ,B 为两个随机事件,且P 〔AB 〕>0,那么P 〔A|AB 〕=〔 〕 A .P 〔A 〕 B .P 〔AB 〕 C .P 〔A|B 〕 D .13.设随机变量X 在区间[2,4]上服从均匀分布,那么P{2<X<3}=〔 〕 A .P{3.5<X<4.5} B .P{1.5<X<2.5} C .P{2.5<X<3.5} D .P{4.5<X<5.5} 4.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>,1,0;1,2x x x c 那么常数c 等于〔 〕A .-1B .21-C .21D .1 5.设二维随机变量〔X ,Y 〕的分布律为那么A .0.3 B .0.5 C .0.7 D .0.86.设随机变量X 服从参数为2的指数分布,那么以下各项中正确的选项是〔 〕 A .E 〔X 〕=0.5,D 〔X 〕=0.25 B .E 〔X 〕=2,D 〔X 〕=2 C .E 〔X 〕=0.5,D 〔X 〕=0.5 D .E 〔X 〕=2,D 〔X 〕=47.设随机变量X 服从参数为3的泊松分布,Y~B 〔8,31〕,且X ,Y 相互独立,那么D 〔X-3Y-4〕=〔 〕A .-13B .15C .19D .238.D 〔X 〕=1,D 〔Y 〕=25,ρXY =0.4,那么D 〔X-Y 〕=〔 〕 A .6 B .22 C .30 D .469.在假设检验问题中,犯第一类错误的概率α的意义是〔 〕 A .在H 0不成立的条件下,经检验H 0被拒绝的概率 B .在H 0不成立的条件下,经检验H 0被承受的概率 C .在H 0成立的条件下,经检验H 0被拒绝的概率 D .在H 0成立的条件下,经检验H 0被承受的概率10.设总体X 服从[0,2θ]上的均匀分布〔θ>0〕,x 1, x 2, …, x n 是来自该总体的样本,x 为样本均值,那么θ的矩估计θˆ=〔 〕A .x 2B .xC .2xD .x 21 1A 2.D 3.C4.D5.A6.A7.C8.B9.C10.B二、填空题11.设事件A 与B 互不相容,P 〔A 〕=0.2,P 〔B 〕=0.3,那么P 〔B A ⋃〕=____________. 12.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,那么这两颗棋子是不同色的概率为____________.13.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,那么飞机至少被击中一炮的概率为____________.14.20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,那么第二次取到的是正品的概率为____________. 15.设随机变量X~N 〔1,4〕,标准正态分布函数值Φ〔1〕=0.8413,为使P{X<a}<0.8413,那么常数a<____________.16.抛一枚均匀硬币5次,记正面向上的次数为X ,那么P{X ≥1}=____________. 17.随机变量X 的所有可能取值为0和x ,且P{X=0}=0.3,E 〔X 〕=1,那么x=____________. 18.设随机变量X 的分布律为那么D 〔X 〕=____________.19.设随机变量X 服从参数为3的指数分布,那么D 〔2X+1〕=____________. 20.设二维随机变量〔X ,Y 〕的概率密度为f (x, y)=⎩⎨⎧≤≤≤≤,,0;10,10,1其他y x那么P{X ≤21}=____________. 21.设二维随机变量〔X ,Y 〕的概率密度为 ⎪⎩⎪⎨⎧>>=+-,,0;0,0,),()(其他y x ey x f y x 那么当y>0时,〔X ,Y 〕关于Y 的边缘概率密度f Y (y )= ____________.25.设总体X~N 〔μ,σ2〕,x 1,x 2,x 3为来自X 的样本,那么当常数a=____________时,3212141ˆx ax x ++=μ是未知参数μ的无偏估计. 11. 0.5 12. 351813.0.7 14. 0.9 15. 3 16.323117.71018.1 19.9420.2121. ye - 25. 41三、计算题26.设二维随机变量〔X ,Y 〕的分布律为 试问:X 与Y 是否相互独立?为什么?因为对一切i,j 有}{}P{},P{j i j i Y Y P X X Y Y X X =⋅====所以X ,Y 独立。
张广亮概率论与数理统计期中测试试卷答案.doc
经济与管理学院2012/2013学年(一)学期试卷《概率论与数理统计》期中测试试卷答案专业________ 年级 _____ 班级_姓名_____ 学号题号—二三四五六七八九十总分得分一、填空题(每小题3分,共15分):1、设A、B 为随机事件,P (A)=0.5 , P(B)=0.6, P(B|A)=0.8 .则P(BU/!)= 0. 73 0 < x < 丨2、设随机变量X的密度函数为/(x) = ^X’,设r表示对X的10次独0,具匕立观察中事件<! X S 出现的次数,则= 2) = O.24^C?o(|)2(|y3、设£(;0 =仏£>(;0 = /?,则£(X2) = “2+/?。
4、三人独立的破译一个密码,他们能译出密码的概率分别为1/5、1/4、1/3,此密码能被译出的概率是_ 0.6 __________ 。
5、设随机变量f的密度函数为/?(x) = Ce_2v,x〉0,則常数C的值为 2 。
二、选择题(每小题3分,共15分):1、从一个由五男生和二女生组成的学习小组屮随机地抽出三个人,则“抽出的三人中至少有一个是男学生”的事件为(C)(A)随机事件(B)不可能事件(C)必然事件(D)偶然事件2、设随机变量《服从正态分布的yv(o,i),其密度函数为炉(%),则炉(o)= (A )3、若每次试验的成功率为(0 < /? < 1),则在3次重复试验中至少失败一次的概率为(B )(A)(l —厂)3(B) 1-p3(C) 3(1 —p) (D) (1 —/))3+p(l —/?)2+p2(l —p).4、甲乙进行乒乓球比赛,一局甲的胜率大于二分之一。
对乙而言,下列哪种赛制较有利(A )(A)三局两胜(B)五局三胜(C)七局四胜(D)九局五胜5、设事件A与B互不相容,= = 则尸(25)= (A )(A) 1 —(“ + /?)(B) 2 — 6/ — /? (C) (1 — 6/)(1—b)(I)) 1 —ab三、(8分)已知男人中有5%是色盲,女人中有0.25%是色盲.今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 解:rdA :挑选出的人是男人;B :挑选出的人是色盲. 取{A ,为样本空间的划分. 由w 叶斯公式:馴娜)_ _P(B | A)P(A) + P {B | A)P(A)0.05x0.5_ 0.05x0.5 + 0.0025x0.5四、(8分)某种动物由出生算起活20岁以上的概率为0.8,活到25岁以上的概 率为0.4,如果现在有一个20岁的这种动物,问它能活到25岁以上的概率是多 少?五、(9分)一个机床冇三分之一的时间加工零件A,其余时间加工零件B,加工 零件A 吋,停机的概率吋0.3,加工零件B 时,停机的概率是0.4,求这个机床 停机吋正在生产零件A 的概率.解:设A 表示生产零件A ,B 表示生产零件B ,C 表示机床停机,由题意可得 勝謂= 0.4P(C|A)P(A)P(C\A)P(A)-hP(C\B)P(B) 常数A; (2) PfX<\}; (3) X 的数学期望£(X)和方差解:由密度函数的归一性得1 = f Ar(l - x)dx = A 丄,故 A = 6 Jo6P{ X < 1 / = J f( x )dx = £ 6x( 1 - x )dx = (3%2 - 2x 3) |r=, = 1= 20/21设A 表示“能活20岁以上”的事件,B 表示“能活25岁以上”的事件,则P(B|A) = P(AB)尸⑷因为 p(A) = 0.8,P(B) = 0.4, P(AB) = P(B),所以 P(B|A) =P(A8)_0A_l P(A)0i~2由贝叶斯公式得=0.4 + 04!六、(15分)设随机变量X 的密度函数为/(x) =Ax(l - x),0,0 < x < 1 其它£(X) = £x6x(l-x)t/x = 0.5 D(X) =J>26X (1-^A -0.25 = 0.05七、(20分)一种电子管的使用寿命X (单位:小吋)的概率密度函数为设某种仪器中装有5个这种工作相互独立的电子管,求: (1) 使用最初1500小时没有一个电子管损坏的概率; (2) 这段时间内至少有两个电子管损坏的概率。
概率论与数理统计试题期中考试-答案
概率论与数理统计课程期中考试考试时间:90分钟姓名:班级:学号:一、单项选择题(本大题共有5个小题,每小题4分,共20分)1,设..~(100,0.1)R V X B,1..~()2R V Yπ,且X和Y相互独立,令72+-=YXZ,则D(Z)=(D )。
A:7 B:8 C:10 D:11 2,若P(A)=1/2,P(B|A)=1/3,则P(AB)=( B )A:1/2 B: 1/3 C: 5/6 D:1/63,设X的概率密度函数为30()xke xf x-⎧>=⎨⎩其它,则=k( C )A:1/3 B:1/9 C: 3 D: 94, 如果X,Y为两个随机变量,满足COV(X,Y)=0,下列命题中正确的是( A )。
A:X,Y不相关B:X,Y相互独立C:D(XY) =D(X)+D(Y) D:D(X-Y) =D(X)-D(Y)5,在8片药中有4片是安慰剂,从中任取3片,则取到2片是安慰剂的概率为( B )A:1/4 B :3/7 C:1/2 D:6/7二、填空题(本大题共有6个小题,每空2分,共20分)4 A,B为两个随机事件,若P(A)=0.4,P(B)=0.6,P(B A)=0.2.则P(AB)= 0.4 ,P(AB)= 0.25 甲乙两人独立射击,击中目标的概率分别为0.8,0.7,现在两人同时射击同一目标,则目标被击中的概率为 0.946.若某产品平均数量为73,均方差为7,利用切比雪夫不等式估计数量在52~94之间的概率为 8/97.在8件产品中有2件次品。
从中随机抽取2次,每次抽取一件,做不放回抽取。
则两次都是正品的概率为 15/28 抽取的产品分别有一正品和一件次品的概率为 3/7 ,第二次取出的产品为次品的概率为 1/48若X~N(2,1),Y~U[1,4],X,Y互相独立,则E(X+2Y-XY+2)= 4 ,D(X-2Y+3)=49 设D(X)=D(Y)=2,0.3XY ρ=,则D(X-Y)= 2.8三、解答题(本大题共有3个小题,共32分)10(7分)病树主人外出,委托邻居浇水。
2023-2024学年第一学期概率统计期中测试卷
2023-2024第一学期概率论与数理统计期中测试题班级:学号:姓名:第一部分:选择题,每小题3分,共10小题,共30分.1.设B A ⊂,且0)(>A P ,则以下错误的是().A.)()(B P B A P =⋃B.)()(A P AB P =C.1)|(=A B PD.)()()(B P A P B A P -=-2.设)2,1(~-N X ,则X 的密度函数为().A.4)1(221--x eπB.2)1(221+-x eπC.2)1(2221+-x e πD.4)1(221+-x eπ3.设连续型随机变量的概率密度函数与分布函数为,与)()(x F x f 则正确的是().A.1)(0≤≤x f B.)(}{x F x X P == C.)(}{x F x X P =≤ D.)(}{x f x X P ==4.设X 是一随机变量,则下列各式中正确的是().A.)(4)25(X D X D =-B.)(25)25(X D X D -=-C.)(25)25(X D X D +=- D.)(4)25(X D X D -=-5.已知(X,Y)的概率密度为),(y x f ,则关于Y 的边缘密度为().A.⎰+∞∞-dyy x f ),( B.⎰+∞∞-dxy x f ),( C.⎰+∞∞-dxy x xf ),( D.⎰+∞∞-dyy x yf ),(6.已知随机变量X 与Y 相互独立,且),2,0(~),1,0(~U Y U X 则=<}{Y X P ().A.41B.83 C.43 D.857.下列式子中成立的是().A.)()()(Y E X E Y X E +=+B.)()()(Y D X D Y X D +=+C.)()()(Y D X D XY D = D.)()()(Y E X E XY E =8.设随机变量X 的概率密度)(x f 满足)1()1(x f x f -=+,且⎰=206.0)(dx x f ,则}0{<X P 为().A.53 B.32 C.51 D.549.)1,1(~N X ,概率密度函数为)(x f ,分布函数为)(x F ,则().A.5.0)0()0(=≥=≤X P X PB.),(),()(+∞-∞∈-=x x F x FC.5.0)2()2(=>=<X P X P D.5.0)1()1(=>=≤X P X P 10.设随机变量12200,,,X X X 相互独立且服从同一分布,()3,()5E X D X ==,令12200Y X X X =+++ ,由中心极限定理知Y 近似服从()(A )(600,25)N (B )(3,5)N (C )(600,1000)N (D )(1000,600)N 第二部分:填空题,每小题6分,共3小题,共18分.1.甲乙两人独立射击,击中目标的概率分别为0.8,0.7,现在两人同时射击同一个目标,则目标被击中的概率为.2.随机变量X 服从参数为1的泊松分布,则==))((X D X P .3.设随机变量X 的分布律为,...2,1,0,!)(2===-k e k c k X P 则=c .4.已知随机变量X 只取-1,0,1,2四个数值,对应的概率为cc c c 162,85,43,21,则c=.5.设二维随机变量) , (Y X 的联合分布律为则(2)E X Y +=6.设随机变量~(0.5)X b 10,,则2(2)E X =第三部分:计算题,每小题7分,共4小题,共28分.1.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他, ,0.10 )(x x A x f 试求:(1)A 的值;(2)X 的分布函数;(3))41161(<<X P .YX -10100.10.20.110.30.10.22.已知二维随机变量(X,Y)的联合概率密度为⎩⎨⎧≤≤≤≤+=其他,0,0,10),(2),(y x y y x y x f 试求:(1)X 与Y 的边缘概率密度,并判定X 与Y 是否独立;(2)}1{≥+Y X P .3.设随机变量X 在区间(1,2)上服从均匀分布,(1)写出X 的概率密度函数;(2)求XeY 3=的概率密度函数)(y f Y .4.设二维随机变量(,)X Y 的概率密度为,0,(,)0,,y xe x y f x y -⎧<<=⎨⎩其它求随机变量Z X Y =+的概率密度.四、综合应用题(共3个小题,每个小题8分,共24分)1.某地区居民的肝癌发病率为0.0004,先用甲胎蛋白法进行普查.医学研究表明,化验结果是存有错误的.已知患有肝癌的人其化验结果99%呈阳性(有病),而没患肝癌的人其化验结果99.9%呈阴性(无病).现某人的检查结果呈阳性,问他真的患肝癌的概率是多少?2.对于一名学生来说,来参加家长会的家长人数是一个随机变量.设一名学生无家长、1名家长、2名家长来参加会议的概率分别为0.05、0.8、0.15.若学校共有400名学生,设各学生参加会议的家长数相互独立,且服从同一分布.求有一名家长来参加会议的学生数不多于336的概率.(已知9772.0)2(=Φ)3.一工厂生产的某种设备的寿命X (以年计)服从以14为参数的指数分布,工厂规定,出售的设备若在一年之内损坏可予以调换,若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元,求该厂出售一台设备净赢利的数学期望。
概率论与数理统计期中考试试题
概率论与数理统计期中考试试题1一.选择题(每题 4 分,共 20 分)1. 设A, B,C为三个随机事件,A, B, C 中至少有一个发生,正确的表示是()A.ABCB.ABCC. A B CD. A B C2.一个袋子中有 5 个红球, 3 个白球, 2 个黑球,现任取三个球恰为一红,一白,一黑的概率为()A.1B.11D.1 24C.533.设 A, B 为随机事件, P( A)0.5, P( B)0.6, P( B | A) 0.8 ,则 P( A B)()A. 0.7 B. 0.8 C. 0.6 D. 0.44.一电话总机每分钟收到呼唤的次数服从参数为 2 的泊松分布,则某一分钟恰有 4 次呼唤的概率为()A. 2 e4B. 2 e2C. 1 e2D. 1 e333225.若连续性随机变量X N ( ,2),则Z X()A.Z N ( , 2 ) B. Z N (0, 2) C. Z N (0,1) D.Z N (1,0)二 . 填空题(每题 4 分,共 20 分)6.已知 P( A)1P( AB),且 A, B 互不相容,则27.老张今年年初买了一份为期一年的保险,保险公司赔付情况如下:若投保人在投保后一年内因意外死亡,则公司赔付30 万元;若投保人因其他原因死亡,则公司赔付10 万元;若投保人在投保期末生存,则公司无需付给任何费用。
若投保人在一年内因意外死亡的概率为 0.0002 ,因其他原因死亡的概率为0.0050 ,则保险公司赔付金额为0 元的概率为8. 设连续性随机变量X 具有分布函数0, x1F (x)ln x,1x e1, x e则概率密度函数 f ( x)9.设连续型随机变量X N (3,22 ) ,则P 2<X5(注 : (1)=0.8413,(0.5)=0.6915 )10.设离散型随机变量X 的分布律为 X1012,则 Y( X 1)2的分布0.20.30.10.4律为三.解答题(每题8 分,共 48 分)11.将9名新生随机地平均分配到两个班级中去,这9 名新生中有 3 名是优秀生。
《概率论与数理统计》期中考试试题汇总
系数 X ,Y
18.(8 分) 设测量距离时产生的随机误差 X~N(0,102)(单位:m),现作三次独 立测量,记 Y 为三次测量中误差绝对值大于 19.6 的次数,已知Φ(1.96)=0.975.
(1)求每次测量中误差绝对值大于 19.6 的概率 p; (2)问 Y 服从何种分布,并写出其分布律;求 E(Y).
fY
( y)
1
2
, 1
y
1 , (X ,Y )
相互独立,且
Z
X
Y
的概率密度函数为
fz (z)
0, others
15. 设 随 机 变 量 X , E(X ) 3, D(X ) 1 , 则 应 用 切 比 雪 夫 不 等 式 估 计 得 3
P{| X 3|1}
三、计算题(本题共 5 小题,共 70 分)
2
D. 2
3
4.若随机变量 X ,Y 不相关,则下列等式中不成立的是
.
A. D(X Y ) DX DY
B. Cov(X ,Y ) 0
C. E(XY ) EX EY
D. D(XY ) DX DY
5.设随机变量 X 与 Y 相互独立,X 服从参数 1 为的泊松分布,Y~B(6,1 ),则 D(X-Y)=( )
pY ( y) , X 与 Y 是否独立;(4) 概率 P{Y X} , (5)求 Z X Y 的概率密度; (6)相关系数 X ,Y
20.(10 分)假定暑假市场上对冰淇淋的需求量是随机变量 X 盒,它服从区间[200, 400]上的均匀分布,设每售出一盒冰淇淋可为小店挣得 1 元,但假如销售不出而 屯积于冰箱,则每盒赔 3 元。问小店应组织多少货源,才能使平均收益最大?
概率论期中测试答案
概率论与数理统计期中测试答案一、 单项选择题1.当事件A 、B 同时发生时,事件C 必发生,则( B )(A) ()()()1-+≤B P A P C P (B) ()()()1-+≥B P A P C P (C) ()()AB P C P = (D) ()()B A P C P ⋃=2.设随机变量X 的概率密度是()x f ,则下列函数中一定可以作为概率密度的是( )(A) ()x f 2 (B) ()x f 2 (C) ()x f - (D) ()x f 3.设1{0,0}5P X Y ≥≥=,2{0}{0}5P X P Y ≥=≥=,则{max{,}0}P X Y ≥=( )(A)15 (B) 25 (C) 35 (D) 454.设,X Y 相互独立,X 服从()0,2上的均匀分布,Y 的概率密度函数为,0()0,0y Y e y f y y -⎧≥=⎨<⎩,则{}1P X Y +≥=( )(A) 11e -- (B) 21e -- (C) 212e -- (D) 110.5e -- 二 填空题1 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P 1/e .2 设和ξη是两个相互独立且均服从正态分布N (0,21)的随机变量,则=-|)(|ηξE3 设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式有≤≥+}6|{|Y X P 1/12.4 设平面区域D 由曲线所围成及直线2,1,01e x x y xy ====,二维随机变量(X ,Y )在区域D 上服从均匀分布,则(X ,Y )关于X 的边缘概率密度在x =2处的值为1/4。
三 计算题1、自动包装机把白色和淡黄色的乒乓球混装入盒子,每盒装12只,已知每盒内装有的白球的个数是等可能的。
为检查某一盒子内装有白球的数量,从盒中任取一球发现是白球,求此盒中装的全是白球的概率。
《概率论与数理统计》期中考试试习题汇总
欢迎阅读《概率论与数理统计》期中考试试题(一)一、选择题(本题共6小题,每小题2分,共12分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )A .A 1A 2B .21A AC .21A AD .21A A2.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( ) A .p 223.已知A .0 4率为(A .0.25A C 6.A .1- 7.8.将39.从a 10.11.12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59⎛⎫⎪⎝⎭,则相关系数,X Y ρ= ________.13. 二维随机变量(X ,Y )(1,3,16,25,0.5)N -,则X;Z X Y=-+ .14. 随机变量X 的概率密度函数为51,0()50,0x X e x f x x -⎧>⎪=⎨⎪≤⎩,Y 的概率密度函数为1,11()20,Y y f y others ⎧-<<⎪=⎨⎪⎩,(,)X Y相互独立,且Z X Y =+的概率密度函数为()z f z =15. 设随机变量X , 1()3,()3E X D X ==,则应用切比雪夫不等式估计得{|3|1}P X -≥≤三、计算题(本题共5小题,共70分)16.(8分)某物品成箱出售,每箱20件,假设各箱含0,1和2件次品的概率分别是0.7,0.2和0.1,顾客在购买时,售货员随机取出一箱,顾客开箱任取4件检查,若无次品,顾客则买下该箱物品,否则退货.试求:(1) 顾客买下该箱物品的概率;(2) 现顾客买下该箱物品,问该箱物品确实17.(20求(1)a (3){P X Y +18.(8为三次(1)(2)19.(24求: (1) ;(4) 概率{P Y 20.(101.一批产品共10件,其中有2件次品,从这批产品中任取3件,则取出的3件中恰有一件次品的概率为( ) A .601 B .457 C .51 D .157 2.下列选项不正确的是( ) A .互为对立的事件一定互斥B .互为独立的事件不一定互斥C .互为独立的随机变量一定是不相关的D .不相关的随机变量一定是独立的3.某种电子元件的使用寿命X (单位:小时)的概率密度为2100,100;()0,100,x p x x x ⎧≥⎪=⎨⎪<⎩ 任取一只电子元件,则它的使用寿命在150小时以内的概率为( ) A .41 B .31 C .21 D .324.若随机变量,X Y 不相关,则下列等式中不成立的是 . A .DY DX Y X D +=+)( B. 0),(=Y X Cov C. (E 5.A .1-6.则常数x A .7.8. 将29. 10. 11. 已密度p (x 12.13. 二维随机变量(X ,Y )(2,3,9,16,0.4)N -,则X;Z X Y=-+ .14. 随机变量X 的概率密度函数为,0()0,0x X e x f x x -⎧>=⎨≤⎩,Y 的概率密度函数为1,12()30,Y y f y others⎧-<<⎪=⎨⎪⎩,,X Y 相互独立,且Z X Y =+的概率密度函数为()z f z =15. 设随机变量X,1()1,()3E X D X==,则应用切比雪夫不等式估计得{13}P X-<<≥三、计算题(本大题共5小题,共70分)16.(8分)据市场调查显示,月人均收入低于1万元,1至3万元,以及高于3万元的家庭在今后五年内有购置家用高级小轿车意向的概率分别为 0.1,0.2 和 0.7.假定今后五年内家庭月人均收入X 服从正态分布N (2, 0.82 ).试求:(1) 求今后五年内家庭有购置高级小轿车意向的概率;(2) 若已知某家庭在今后五年内有购置高级小轿车意向,求该家庭月人均收入在1至3万元的概率.17(1),Y)关问X,Y)相关18{X>9}(1)X Y的条件概率密度函数;(5)相关系数,X Yρ20.(10分)设市场上每年对某厂生产的29寸彩色电视机的需求量是随机变量X(单位:万台),它均匀分布于[10,20].每出售一万台电视机,厂方获得利润50万元,但如果因销售不出而积压在仓库里,则每一万台需支付库存费10万元,问29寸彩色电视机的年产量应定为多少台,才能使厂方的平均收益最大?《概率论与数理统计》期中试卷试题(五)一、选择题(共5题,每题2分,共计12分)1.下列选项正确的是()A .互为对立事件一定是互不相容的B .互为独立的事件一定是互不相容的C .互为独立的随机变量一定是不相关的D .不相关的随机变量不一定是独立的2. 设事件B A ,两个事件,111(),(),()2310P A P B P AB ===,则()P A B = 。
概率论与数理统计自测题50题
概率论与数理统计自测题50题(如果看不清请自己调整版面06 10 4)1. 设随机试验E 对应的样本空间为S 。
与其任何事件不相容的事件为 , 而与其任何事件相互独立的事件为 ;设有P (A|B )=1, 则A 、B 两事件的关系为 ;设E 为等可能型试验,且S 包含10个样本点,则按古典概率的定义其任一基本事件发生的概率为 。
2. 随机事件A 与B 互不相容,且P (A )>P (B )>0,则()A . P(A)=1-P(B)B .P(AB)=P(A)P(B)C .P(A ∪B)=1D .1AB P )=( 3.设A ,B 为随机事件,P (B )>0,P (A|B )=1,则必有()A . P(A ∪B)=P (A )B .B A ⊃C .P (A )=P (B )D .P (AB )=P (A ) 4.将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为()A .2242 B .2412C C C .24A 2! D .4!2!5.某人连续向一目标射击,每次命中目标的概率为3/4,他连续射击直到命中为止,则射击次数为3的概率是A .343)(B .41432⨯)(C .43412⨯)(D .22441C )( 6.已知随机变量X 的概率密度为fx(x),令Y =-2X ,则Y 的概率密度(y)f Y 为A .2f (-2y)xB .x y f (-)2C .1y -f (-)x22D .x1y f (-)227.如果函数{x , a x b f(x)0 , x a x b ≤≤=<>或,是某连续随机变量X 的概率密度,则区间[a,b]可以是A .[0,1]B .[0.2]C .[20,]D .[1,2] 8.设二维随机向量(X ,Y则P {X =0}=A . 1/12B .2/12C .4/12D .5/12 9.下列各函数中是随机变量分布函数的为A .+∞<<∞+=x ,x 11(x)21-F B .20, x 0F (x)x,x 01x⎛≤= >⎝+ C .+∞<<∞=x ,-e (x)F -x 3 D .+∞<<∞+=x arctgx,-2143(x)F 4π10.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )=A . 3B .6C .10D .1211.设φ(x )为标准正态分布函数,{i 1A X i 1,2,,1000,A == ,事件发生; 事件不发生;,且P(A)=0.8,X1,X2,…,X100相互独立。
概率论与数理统计期中与期末测试题
概率论与数理统计期中测试题1:一、填空题(共 30 分,每空2分):1.事件C B A ,,中至少有一个发生可表示为 ,三个事件都发生可表示为 ,都不发生可表示为 .2.设()4.0=A P ,()3.0=B P ,()4.0=B A P ,则()=B A P .3.一袋中有10个球,其中3个黑球,7个白球. 每次从中任取一球,直到第3次才取到黑球的概率为 ,至少取3次才能取到黑球的概率为 .4.设随机变量X 的分布函数()⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=31318.0114.010x x x x x F ,则X 的分布列为 .5.进行10次独立重复射击,设X 表示命中目标的次数,若每次射击命中目标的概率都是4.0,则X 服从 分布,其数学期望为 ,方差为 .6.设连续型随机变量()λe X ~,)0(>λ,则=k 时,{}412=>k X P .7.已知随机变量()2~P X ,则102-=X Y 的数学期望=EY ,方差=DY .8. 已知随机变量X 的概率密度函数为()⎩⎨⎧>-<≤≤-=2,202225.0x x x x f ,则X 服从 分布,设随机变量12+=X Y ,则=EY .二、选择题(共10 分,每小题 2 分)1.设事件B A ,互不相容,且()()0,0>>B P A P ,则有 ( ) (A )()0>A B P (B )()()A P B A P =(C )()0=B A P (D )()()()B P A P AB P =2.设()x F 1与()x F 2分别为任意两个随机变量的分布函数,令()()()x bF x aF x F 21+=,则下列各组数中能使()x F 成为某随机变量的分布函数的有( )(A )52,53==b a (B )32,32==b a (C )21,23==b a (D )23,21==b a3.设随机变量X 的概率密度函数为()x f ,且()()x f x f =-,()x F 是X 的分布函数,则对任意实数a ,有( ) (A )()()dx x f a F a⎰-=-01 (B) ()()dx x f a F a ⎰-=-021(C) ()()a F a F =- (D) ()()12-=-a F a F4.如果随机变量X 的概率密度函数为()⎪⎩⎪⎨⎧<≤-<≤=其他,021,210,x x x x x f ;则{}=≤5.1X P ( ) (A )()⎰⎰-+5.1112dx x xdx (B )()⎰-5.112dx x (C )()⎰-5.111dx x (D )()⎰∞--5.12dx x5.设()2,~σμNX ,且3=EX ,1=DX ,()x 0Φ为标准正态分布的分布函数,则{}=≤≤-11X P ( )(A )()1120-Φ (B )()()2400Φ-Φ (C )()()2400-Φ--Φ (D )()()4200Φ-Φ三、计算题(共 50 分,每小题 10 分)1.城乡超市销售一批照相机共10台,其中有3台次品,其余均为正品,某顾客去选购时,超市已售出2台,该顾客从剩下的8台中任意选购一台,求该顾客购到正品的概率。
概率论与数理统计自测题50题
概率论与数理统计自测题50题(成都信息工程学院暑期重修)1. 设随机试验E 对应的样本空间为S 。
与其任何事件不相容的事件为 , 而与其任何事件相互独立的事件为 ;设有P (A|B )=1, 则A 、B 两事件的关系为 ;设E 为等可能型试验,且S 包含10个样本点,则按古典概率的定义其任一基本事件发生的概率为 。
2. 随机事件A 与B 互不相容,且P (A )>P (B )>0,则A . P(A)=1-P(B)B .P(AB)=P(A)P(B)C .P(A ∪B)=1D .1AB P )=(3.设A ,B 为随机事件,P (B )>0,P (A|B )=1,则必有A . P(A ∪B)=P (A )B .B A ⊃C .P (A )=P (B )D .P (AB )=P (A )4.将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为A .2242B .2412C C C .24A 2! D .4!2!5.某人连续向一目标射击,每次命中目标的概率为3/4,他连续射击直到命中为止,则射击次数为3的概率是A .343)(B .41432⨯)(C .43412⨯)(D .22441C )( 6.已知随机变量X 的概率密度为fx(x),令Y =-2X ,则Y 的概率密度(y)f Y 为A .2f (-2y)xB .x y f (-)2C .1y -f (-)x 22D .x 1y f (-)227.如果函数{x , a x bf(x)0 , x a x b ≤≤=<>或是某连续随机变量X 的概率密度,则区间[a,b]可以是A .[0,1]B .[0.2]C .[20,]D .[1,2]8.下列各函数中是随机变量分布函数的为 A .+∞<<∞+=x ,x 11(x)21-F B .20, x 0F (x)x ,x 01x⎛ ≤= >⎝+C .+∞<<∞=x ,-e (x )F -x 3D .+∞<<∞+=x arctgx,-2143(x)F 4π 9.设二维随机向量(X ,Y )的联合分布列为则P {X =0}=A . 1/12B .2/12C .4/12D .5/1210.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )=A . 3B .6C .10D .1211.设φ(x )为标准正态分布函数,{i 1A X i 1,2,,1000,A ==L ,事件发生; 事件不发生;,且P(A)=0.8,X 1,X 2,…,X 100相互独立。
蚌埠学院2023-2024学年第一学期《概率论与数理统计》期中考试试题
试卷 共1页 蚌埠学院2023—2024学年第一学期 《概率论与数理统计》期中考试试题注意事项:1、适用班级:2、本试卷共1页。
满分100分。
3、考试时间间:100分钟4、考试方式:闭卷一、单项选择题(每小题3分,共15分)1. 设,A B 为事件,且A B ⊂,则下列式子一定正确的是( ) A. ()()P AB P A =; B. ()()P AB P B =;C. ()()P BA P A =;D. ()()()P A B P A P B -=- 2. 设[2]~,12X U ,则(8)P X >=( )A .0.8B .0.4C .0.6D .0.53.()arctan (),X F x A B x x B =+∞<<+∞=设的分布函数-则系数( ).A .12 B .1 C .1π D .2π4、对于任意随机变量Y X ,,若)()()(Y E X E XY E =,则( ).A .Y X ,不相关 B. Y X ,不独立 C. Y X ,一定独立 D. Y X ,一定相关5、设随机变量X 与Y 相互独立,()()~1,2,~1,1,X N Y N 则随机变量2Z X Y =-的 分布为A. (1,8)NB. (3,5)NC. (1,3)ND. (1,9)N二、填空题(每小题3分,共15分)1.若~(5,4)()(),X N P X C P X C C >=<=若则 .2. 设有10件产品,其中有1件次品,今从中任取出1件为次品的概率是 .3.设X ~),(p n B 为二项分布,且() 1.6E X =,() 1.28D X =,则n =__________. 4.已知()3,21XY D X Y X ρ==-则= . 5.设111(),(|),(|)432P A P B A P A B ===,则=⋃)(B A P .三、计算题(第1、2每小题15分,第3小题20分;共50分) 1.设随机变量X 的分布律为求(1) ()E X ; (2) 2(2)E X X +, (3) ()D X .2.设随机变量X 的概率密度为1,02()0,Ax x f x +≤≤⎧=⎨⎩其他 ,求:(1) A ; (3){}1.5 2.5P X <<; (2)X 的分布函数()F x . 3.设二维随机变量(,)X Y 的联合密度函数为23,0,0(,)0,x y Ce x y f x y --⎧≥≥=⎨⎩其它求(1)常数C ;(2){}01,02P X Y <<<<;(3)边缘密度函数(),()X Y f x f y ; (4)判断X 与Y 的独立性。
概率论与数理统计学习自测练习8
3.281 3.276 3.278 3.286 3.279 3.278 3.284 3.279 3.280 3.279
假设直径长度服从正态分布,大修后直径长度的方差不变,在显著性水平α = 0.05 下,问
产品的规格是否有变化?
3. 某车间生产铜丝.生产一向比较稳定,其折断力服从正态分布,今从产品中随机地 抽取 10 根检验折断力,得数据如下(单位:kg):
H0 :σ 2 ≤ C ,显著性水平α = 0.05 ,则下列说法中正确的是(
)
(A)如果生产正常,则检验结果也认为生产是正常的概率等于 0.95 (B)如果生产不正常,则检验结果也认为生产是不正常的概率等于 0.95 (C)如果检验结果认为生产正常,则生产确实正常的概率等于 0.95 (D)如果检验结果认为生产不正常,则生产确实不正常的概率等于 0.95
(5)设总体 X 服从正态分布 N (µ,σ 2 ) , µ 为未知参数,样本 X1, X 2 ,L, X n 的方差
2
PDF created with pdfFactory trial version
为 S 2 ,对于待检验假设 H0 :σ ≥ 2 ; H1 :σ < 2 ,关于显著性水平α 的拒绝域是( )
自测练习题 B
1. 选择题(在题中所给的 4 个选项中只有一项是正确的,把正确答案的代号填到题后 的括号中)
(1)在假设检验中,设 H0 是待检验的原假设,则犯第一类错误指的是(
)
(A) H0 为真时接受 H0
(B) H0 不真时接受 H0
(C) H0 不真时拒绝 H0
(D) H0 为真时拒绝 H0
3
PDF created with pdfFactory trial version
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率统计期中自测题 一、选择题
1.设,A B 是任意两个概率不为零的互不相容事件,则必有( )。
A. ()()()P AB P A P B = B.A 与B 互逆 C. A 与B 互不相容 D. ()()P A B P A -=
2.设,A B 为两个随机事件,且()0,(|)1P B P A B >=,则有( )。
A. ()()P A B P A > B. ()()P A B P B > C. ()()P A B P A = D. ()()P A B P B =
3.若两个事件A 与B 同时发生的概率()0P AB =,则( )。
A. AB 是不可能事件 B. A 与B 为互不相容事件 C. A 与B 为互逆事件 D. AB 不一定是不可能事件
4.两封信随机地投入四个邮筒,求前两个邮筒内没有信的概率为( )。
A .22242/4C ⋅
B .222/4
C .242/2
D .2
2442/2C ⋅
5.已知()0.6P A =,()0.7P B =,则()P AB 的最大值和最小值分别为( )。
A .0.6和0.3
B .1和0.6
C .0.7和0.6
D .1和0.3
6.设随机变量X 的概率密度函数为201()0
x
x f x <<⎧=⎨
⎩其他
,则X 的分布函数为( )。
A .2
01
()0x F x <<⎧=⎨
⎩其他 B .2
01()0x x F x ⎧<<=⎨⎩其他
C .2
00
()0111
x F x x x x ≤⎧⎪
=<<⎨⎪≥⎩
D .201()1x x F x ⎧<<=⎨
⎩其他
7.设一个零件的使用寿命(单位:小时)服从指数分布(1/1000)E ,则三个相互独立的零件中恰好有一个的使用寿命超过1000的概率为( )。
A .1e -
B .1123(1)e e ---
C .13e -
D .13()e - 8.设随机向量(2,4)X
N ,则21X +( )。
A .(2,4)N
B .(5,8)N
C .(5,16)N
D .(4,16)N
9.已知连续型随机变量X 的概率密度函数()f x 是偶函数,即()()f x f x -=,()F x 是X 的分布函数,则对任意实数c 有()F c -=( )。
A .()F c B .
1()2c
f x dx -⎰ C .2()1F c - D .0
1()c f x dx -⎰
10.设(0,1)X N ,其概率密度函数为()x ϕ,则(0)ϕ=( )。
A .0
B .1/2
C .1 D
.二、填空题
1. 设,,A B C 是三个随机事件,则,,A B C 至少发生两个可表示为 , ,,A B C 恰好发生两个可表示为 。
2.已知两个事件A 和B 满足条件()()P AB P A B =且()P A p =,则()P B = 。
3.设5件产品中有2件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率为 。
4.口袋中有10个球,其中两个是红球。
现从袋中取球三次,每次取一球,取后不放回,求第三次才取到红球的概率为 。
5.设||()()x f x ke x -=-∞<<+∞是一概率密度函数,则k = 。
6.设随机变量(2,)X
B p ,(3,)Y B p ,若(1)5/9P X ≥=,则(1)P Y ≥= 。
7.设某城市在一个月内发生交通事故的次数服从参数为1的泊松分布,则一个月内至少发
生1次交通事故的概率为 。
8.设K 在[1,6]上服从均匀分布,则方程210x Kx ++=有实根的概率为 。
9.设X 的分布律见表格,
则2
1Y X =+的概率分布为
为 。
三、综合题
1.已知()P A α=,()0.2P B =,()0.7P A B =,
(1)若事件A 与B 互不相容,求α; (2)若事件A 与B 相互独立,求α。
2.设一箱产品共10件,其中次品个数从0到2是等可能的。
开箱检验时,从中随机抽取1件,如果发现有次品,则认为该箱产品不合要求而拒收。
(1)求该箱产品通过验收的概率;(2)若已知该箱产品通过验收,求其中确实没有次品的概率。
3.设连续型随机变量X 具有概率密度函数1
1
02()2
x x f x ⎧-+≤≤⎪=⎨⎪⎩其他
,
(1)求X 的分布函数()F x ; (2)求(13)P X ≤≤。
4.某高校一年级学生的数学成绩2(72,)X N σ,其中96分以上的占学生总数的2.3%,求
学生的数学成绩在60
84分之间的概率。
5.设随机变量X 的概率密度函数为21
(),(1)
f x x x π=
-∞<<+∞+,求 2Y X =的概率密
度函数。