化工热力学实验指导书剖析
化工原理实验4指导书
化工原理实验指导书化学工程系目录实验一流体机械能转换实验 (1)实验二离心泵特性曲线测定 (3)实验三对流给热系数测定 (9)实验四筛板精馏塔实验 (13)实验一流体机械能转换实验一、实验目的熟悉流动流体中各种能量和压头的概念及其互相转换关系,在此基础上掌握柏努利方程。
二、实验原理1. 流体在流动时具有三种机械能:即①位能,②动能,③压力能。
这三种能量可以互相转换。
当管路条件改变时(如位置高低,管径大小),它们会自行转换。
如果是粘度为零的理想流体,由于不存在机械能损失,因此在同一管路的任何二个截面上,尽管三种机械能彼此不一定相等,但这三种机械能的总和是相等的。
2. 对实际流体来说,则因为存在内摩擦,流动过程中总有一部分机械能因摩擦和碰撞而消失,即转化成了热能。
而转化为热能的机械能,在管路中是不能恢复的。
对实际流体来说,这部分机械能相当于是被损失掉了,亦即两个截面上的机械能的总和是不相等的,两者的差额就是流体在这两个截面之间因摩擦和碰撞转换成为热的机械能。
因此在进行机械能衡算时,就必须将这部分消失的机械能加到下游截面上,其和才等于流体在上游截面上的机械能总和。
3. 上述几种机械能都可以用测压管中的一段液体柱的高度来表示。
在流体力学中,把表示各种机械能的流体柱高度称之为“压头”。
表示位能的,称为位压头;表示动能的,称为动压头(或速度头);表示压力的,称为静压头;已消失的机械能,称为损失压头(或摩擦压头)。
这里所谓的“压头”系指单位重量的流体所具有的能量。
4. 当测压管上的小孔(即测压孔的中心线)与水流方向垂直时,测压管内液柱高度(从测压孔算起)即为静压头,它反映测压点处液体的压强大小。
测压孔处液体的位压头则由测压孔的几何高度决定。
5. 当测压孔由上述方位转为正对水流方向时,测压管内液位将因此上升,所增加的液位高度,即为测压孔处液体的动压头,它反映出该点水流动能的大小。
这时测压管内液位总高度则为静压头与动压头之和,我们称之为“总压头”。
第6章 化工过程热力学分析 ppt课件
6.1.3 不可逆过程的损耗功WL
实际过程都是不可逆的,实际功必定小于理想功,理想功 与实际功之差称为损耗功
过程热力学分析中应用极广
Gouy-Stodola)公式,在化工
6.2 化工单元过程的热力学分析
1 流体流动过程 2 传热过程 3 分离过程 4 化学反应过程
6.2.1 流体流动过程
根据热力学基本原理也可证明,和外界无热、功交换但有 压力降的流动过程必定有功损耗。可得流动过程的损耗功为:
6.3.2 两种损失和两种效率
6.3.2.1 两种损失 笼统地说能量损失非但违反热力学第一定律,而且无意义。 所谓能量损失,通常指通过各种途径由系统排到环境中去的未能 利用的能量。 ▉的损失可分成两部分。一部分称为内部损失,是由系统内 部各种不可逆因素造成的损失。 6.3.2.2 两种效率——第一定律效率与第二定律效率 (1)第一定律效率 。 (2)第二定律效率 。
6.4.2 非平衡热力学分析法简介
(2)不可逆过程的熵产率及昂萨格倒易关系
(3)非平衡热力学分析法及其应用举例 非平衡热力学分析法就是以非平衡热力学原理特别是熵产定 律来计算和分析过程的力和流以及由此产生的熵产率的大小,详 细揭示造成能量损耗的原因、部位和机制,并将之与具体过程设 备的结构和操作方式进行关联,以有效指导过程流程改进、操作 方式升级、节能设备的开发和设计等。
6.3.3 三种常规的热力学分析法汇总
6.3.3.1 能量衡算法 能量衡算法是通过物料与能量衡算,确定过程的排出能量 与能量利用率 。基于热力学第一定律的普遍适用性,可由此 求出许多有用的结果,如设备的散热损失、理论热负荷、可回 收的余热量和电力损失的发热量等。 6.3.3.2 熵分析法 熵分析法是通过计算不可逆过程熵产生量,确定过程的 损失和热力学效率。具体地说是以热力学第一定律与第二定律 为基础,通过物料和能量衡算,计算理想功和损耗功,求出过 程热力学效率 。
(能源化工行业)化工实验指导书
(能源化工行业)化工实验指导书化工原理实验指导书石河子职业技术学院化工原理实验室二00七年十二月目录序言 (2)实验一雷诺数的测定与流型观察 (4)实验二伯努利方程演示实验 (6)实验三流体阻力测定实验 (8)实验四流量计的流量校正 (11)实验五离心泵特性曲线的测定 (15)实验六过滤实验 (18)实验七传热 (22)实验八板式精馏塔的操作及塔板效率实验 (27)实验九吸收实验 (30)实验十液—液萃取塔的操作 (34)实验十一干燥实验 (38)实验十二板式塔性能实验 (42)仿真软件使用说明 (46)实验十三流体流动阻力的测定 (47)实验十四离心泵性能曲线的测定 (50)实验十五过滤实验 (52)实验十六传热实验(水----蒸汽) (54)实验十七精馏实验(乙醇----丙酮) (56)实验十八洞道干燥实验 (59)实验十九吸收实验(水----氨气) (61)序言一、化工原理实验的特点化工原理实验属于工程实验范畴,它不同于基础课程的实验。
后者面对的是基础科学,采用的方法是理论的、严密的,处理的对象通常是简单的、基本的甚至是理想的,而工程实验面对的是复杂的实际问题和工程问题。
对象不同,实验研究方法也必然不同。
工程实验的困难在于变量多,涉及的物料千变万化,设备大小悬殊,实验工作量之大之难是可想而知的。
因此不能把处理一般物理实验的方法简单地套用于化工原理实验。
数学模型方法和因次论指导下的实验研究方法是研究工程问题的两个基本方法,因为这两种方法可以非常成功地使实验研究结果由小见大,由此及彼地应用于大设备的生产设计上。
例如,在因次论指导下的实验,可不需要过程的深入理解,不需要采用真实的物料、真实流体或实际的设备尺寸,只需借助模拟物料(如空气、水、黄砂等)在实验室规模的小设备中,经一些设备性的实验或理性的推断得出过程的影响因素,从而加以归纳和概括成经验方程。
这种因次论指导下的实验研究方法,是确立解决难于作出数学描述的复杂问题的一种有效方法。
化工过程热力学分析3
out
AN
化工热力学
第六章 化工过程热力学分析 损失
第三节
当 AN 0 ,E 1即无
恒温 E XQ 变温
E XQ
化工热力学 6、
第六章 化工过程热力学分析
第三节
(无效能)A N
在不可逆过程中,有部分 降级而不能变为有用功,这
部分称为无效能或
。
恒温热源热量
:
E XQ
T0 T0 Q 1 Q Q T T
Q为总能量, Q
T0 T
为热量
,即: Q E XQ ANQ
浓度达到化学平衡 我们规定环境的T、P化学组成不变(即恒定的),规定了
化工热力学
第六章 化工过程热力学分析
第三节
T、P及化学组成的环境并不是自然环境,这种人为规定的环 境即为环境模型。我们是以环境模型为基准态。 (III)、约束性平衡(不完全平衡或限制性平衡) 当体系和环境仅有热平衡和力平衡称为约束性平衡。 (IV)、非约束性平衡: 体系与环境达到完全平衡(即热平衡、力平衡、化学平衡) (V)、能级:
E X E XK E XP E XPh E XC
化工热力学 3、物理
第六章 化工过程热力学分析
第三节
的计算:
Wid ( H 2 H1 ) T0 ( S 2 S1 )
当终态为环境状态(基准态)时,则:
E XPh ( H 0 H ) T0 ( S 0 S )
有用部分,可将其转化为有用功,但要付出一定代价;而 僵态能量,不能转化为有用功,节能的正确含义就是节 对于可逆过程, 无损耗,全部变为功, E X Wid 不可逆过程,
减少, E X 0 ,但
化工热力学对结晶过程的理论指导及实验测定(热力学II)林晨 201420120303
化工热力学对结晶过程的理论指导及实验测定摘要:结晶过程是净化产品、优化产品尺寸大小、固液相分离的基础,而结晶热力学性质又是结晶的理论前提。
本文从理论和实验的角度对结晶过程中的溶解度、介稳区、诱导期和黏度等热力学性质进行了研究,从而说明了结晶热力学对整个结晶过程的研究具有重要的指导意义。
关键词:结晶;热力学;溶解度;介稳区;诱导期Chemical thermodynamics theoretical guidance of the crystallizationprocess and experimental determination(School of Chem & Energy Eng, South China Univ of Technol, Canton 510640, China) Abstract:Crystallization process is the basic of purification products, optimize product size, solid-liquid phase separation, crystallization thermodynamic properties is the theoretical premise of the crystallization. From the point of theoretical and experimental, solubility, metastable zone, the induction period and viscosity properties of crystallization were studied, thus crystallization thermodynamics is an significance guiding for the study of the crystallization process.Keywords:Crystallization; thermodynamics; solubility; metastable zone; Induction period1、引言结晶过程是一个复杂的传质、传热过程,物化条件的改变就会引起结晶过程控制步骤的改变,表现为不同的结晶行为,因此对特定物系结晶过程行为的研究应该从该物系的热力学性质入手。
《化工热力学》课件
通过改进热力学过程,可以提高产品的质量和产量,提升企业竞争力。
03
02
01
历史回顾
化工热力学起源于工业革命时期,随着科技的发展和工业的进步,逐渐形成一门独立的学科。
发展趋势
随着环保意识的提高和能源需求的增加,化工热力学将更加注重节能减排、资源循环利用和可再生能源的开发利用。
未来展望
总结词:熵增加
详细描述:热力学第二定律指出,在封闭系统中,自发过程总是向着熵增加的方向进行,即系统总是向着更加混乱无序的状态发展。这个定律对于化工过程具有重要的指导意义,因为它揭示了能量转换和利用的限制,以及不可逆过程的本质。
绝对熵的概念
总结词
热力学第三定律涉及到绝对熵的概念,它指出在绝对零度时,完美晶体的熵为零。这个定律对于化工过程的影响在于,它提供了计算物质在绝对零度时的熵值的方法,这对于分析化学反应的方向和限度具有重要的意义。同时,它也揭示了熵的物理意义,即熵是系统无序度的量度。
总结词
化工过程的能量效率是衡量化工生产经济效益的重要指标,通过提高能量效率,可以降低生产成本并减少环境污染。
能量效率是评价化工过程经济性和环境影响的重要参数。它反映了化工过程中能量转化和利用的效率。提高能量效率意味着减少能源的浪费,降低生产成本,同时减少对环境的负面影响。为了提高能量效率,需要采用先进的工艺技术和设备,加强能源管理,优化操作条件。
《化工热力学》PPT课件
xx年xx月xx日
目 录
CATALOGUE
化工热力学概述热力学基本定律化工过程的能量分析化工过程的热力学分析化工热力学的应用实例
01
化工热力学概述
提高能源利用效率
通过优化化工过程的热力学参数,可以降低能耗,提高能源利用效率。
工程热力学实验指导书讲解
实验一 空气定压比热容测定一、实验目的1.增强热物性实验研究方面的感性认识,促进理论联系实际,了解气体比热容测定的基本原理和构思。
2.学习本实验中所涉及的各种参数的测量方法,掌握由实验数据计算出比热容数值和比热容关系式的方法。
3.学会实验中所用各种仪表的正确使用方法。
二、实验原理由热力学可知,气体定压比热容的定义式为()p p hc T∂=∂ (1) 在没有对外界作功的气体定压流动过程中,p dQ dh M=, 此时气体的定压比热容可表示为p p TQM c )(1∂∂=(2) 当气体在此定压过程中由温度t 1被加热至t 2时,气体在此温度范围内的平均定压比热容可由下式确定)(1221t t M Q c p t t pm-=(kJ/kg ℃) (3)式中,M —气体的质量流量,kg/s;Q p —气体在定压流动过程中吸收的热量,kJ/s 。
大气是含有水蒸汽的湿空气。
当湿空气由温度t 1被加热至t 2时,其中的水蒸汽也要吸收热量,这部分热量要根据湿空气的相对湿度来确定。
如果计算干空气的比热容,必须从加热给湿空气的热量中扣除这部分热量,剩余的才是干空气的吸热量。
低压气体的比热容通常用温度的多项式表示,例如空气比热容的实验关系式为3162741087268.41002402.41076019.102319.1T T T c p ---⨯-⨯+⨯-=(kJ/kgK)式中T 为绝对温度,单位为K 。
该式可用于250~600K 范围的空气,平均偏差为0.03%,最大偏差为0.28%。
在距室温不远的温度范围内,空气的定压比热容与温度的关系可近似认为是线性的,即可近似的表示为Bt A c p += (4)由t 1加热到t 2的平均定压比热容则为m t t t t pm Bt A tt B A dt t t Bt A c+=++=-+=⎰221122121(5) 这说明,此时气体的平均比热容等于平均温度t m = ( t 1 + t 2 ) / 2时的定压比热容。
化工原理实验指导书
化工原理实验指导书(2014修订版)大连大学环境与化学工程学院2014.3目录绪论 (1)实验一、流体流动阻力的测定 (5)实验二、流量计的流量校正 (11)实验三、离心泵特性曲线的测定 (16)实验四、恒压过滤常数的测定 (20)实验五对流传热系数与准数关联式常数的测定 (27)实验六板式精馏塔塔板效率的测定 (36)实验七填料吸收塔操作及体积吸收系数测定 (44)实验八洞道干燥速率曲线的测定 (50)附录一相关系数检验表 (55)附录二 F分布数值表 (56)附录三阿贝折光仪的使用方法 (60)附录四热电偶的工作原理 (62)附录五双对数坐标纸 (65)绪 论0.1 化工原理实验的意义和目的化工原理是以研究化工生产过程为对象的工程学科,它紧密联系化工生产实际,是化工专业学生的一门重要技术基础课。
实验则是学生学习、掌握和运用这门课程不可缺少的环节。
实验是教学中的实践环节,是学生巩固理论知识,从实践中进一步学习新知识的重要途径,它与课堂讲课、习题课、课程设计一样,是教学过程的重要组成部分。
所以,学生应当重视实验教学,认真上好实验课。
在近代科学技术的发展中,实验研究是不可缺少的手段和方法。
化学工程的建立和发展,如同其他学科一样,除了生产经验的总结外,理论与技术的进步都是建立在实验研究的基础上。
由于化学工程领域遇到的问题和处理的现象十分复杂,许多实际问题,不能只依靠几个假设与定理,或通过演绎推理的方法,就能得到可以应用的结果。
一般来说,无论理论问题或工程问题,都需要通过实验来验证开始的假设与模型。
从实践中发现问题,认识规律,总结经验上升为理论,或者将实验结果归纳整理为经验或半经验结果。
工程设计的依据,新技术的开发和应用,都离不开实验研究。
化工原理所涉及的绝大部分内容,也多半是以实验为基础的经验或半经验的关联。
例如流体在管内流动的阻力计算的研究,摩擦系数λ的确定,就是分析研究了影响阻力大小的许多因素,如管长、管径、管壁粗糙度、流体物性、流动状态等,利用因次分析方法得到一定的准数关系,如:()d d l R f u p e ερ,,/2=∆()d R f e ελ,=然后通过实验确定它们之间的定量关系。
2024版化工热力学精ppt课件
化学反应热效应计算方法
热力学第一定律
能量守恒定律在热力学中的应用,用于计算反 应热效应。
生成焓与反应焓
通过生成焓计算反应焓,进而求得反应热效应。
键能法
利用化学键能数据估算反应热效应。
化学反应方向判据及应用
根据熵变判断反应自发进 行的方向。
利用平衡常数判断反应进 行的方向和程度。
焓、熵和吉布斯自由能概念及应用
焓(H)
系统的热函数,表示系统总能量的变化。
熵(S)
表示系统的无序程度,用于描述不可逆过程 的自发性。
吉布斯自由能(G)
描述系统在特定条件下的最大有用功,用于 判断反应的方向和限度。
应用
用于分析化工过程中的热力学性质、相平衡、 化学反应平衡等问题。
化工过程能量优化方法
热力学第二定律 不可能把热从低温物体传到高温物体而不产生其他影响,或不可能从单一热源取热使之完全转换为有用 的功而不产生其他影响,或不可逆热力过程中熵的微增量总是大于零。
状态方程与状态参数
状态方程
描述系统或它的性质和本质的一系列 数学形式。将系统的物理性质用数学 形式表达出来,即建立该系统各状态 参数间的函数关系。
膜分离过程热力学原 理
利用膜的选择性透过性,实现混合物中 各组分的分离。膜分离过程涉及溶解平 衡、传质等热力学基本原理。
03
吸附过程热力学原理
利用吸附剂对混合物中各组分的选择性 吸附,实现组分的分离。吸附过程涉及 相平衡、传质等热力学基本原理。
THANK平衡和固固平衡简介
固液平衡
固体与液体之间的平衡状态,涉及溶解度、 溶度积等概念。在化工过程中,固液平衡 对于结晶、溶解等操作具有重要意义。
VS
第二篇 工程热力学实验指导书
第二篇工程热力学实验指导书实验一二氧化碳临界状态观测及p-v-t关系测定实验一、实验目的1、了解CO2临界状态的观测方法,增加对临界状态概念的感性认识。
2、加深对课堂所讲工质的热力状态、凝结、汽化、饱和状态等基本概念的理解。
3、掌握CO2的p-υ-t关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。
4、学会活塞式压力计、恒温器等部分热工仪器的正确使用方法。
二、实验内容1、测定CO2的p-υ-t关系。
在p-υ坐标图中绘出低于临界温度(t=20℃)、临界温度(t=31.1℃)和高于临界温度(t=50℃)的三条等温曲线,并与标准实验曲线(见图三)及理论计算值相比较,分析差异原因。
2、测定CO2在低于临界温度时(t=20℃,25℃)饱和温度与饱和压力之间的对应关系并与图四中绘出的t s=p s曲线比较。
3、观测临界状态(1)临界状态附近汽液两相模糊的现象。
(2)汽液整体相变现象(3)测定CO2的t c、p c、υc等临界参数,并将实验所得的υc值与理想气体状态方程和范德瓦尔斯方程的理论值相比较,简述其差异原因。
三、仪器设备1、实验所用设备及仪表有实验台本体及其防护罩,恒温器,压力台等三大部分组成。
如图3-1所示。
2、实验台本体如图3-2所示.图3-1 CO 2实验台系统图 1-实验台本体;2-活塞式压力计; 3-恒温器图3-2 实验台本体示意图1-高压容器;2-玻璃杯;3-压力油;4-水银;5-密封填料;6-填料压盖7-恒温水套;8-承压玻璃管;9-二氧化碳空间; 10-温度计四、所需耗材液压油。
五、实验原理、方法和手段1.当简单可压缩热力系统处于平衡状态时,状态参数压力p 、温度t 和比体积v 之间存在一定的函数关系,有:(,,)F p v t p = (3-1)或者 (,)t f p v = (3-2)当温度维持不变时,测定与不同压力所对应的比体积数值,从而可获得等温线的数据。
1873年范德瓦尔对理想气体状态方程作了相应修正,提出下列实际气体状态方程:RT b v v aP =-+))((2 (3-3) 或者 =p b v T R --2va(3-4)式中,a 与b 是各种气体所特有的,数值为正的常数,称为范德瓦尔常数。
化工热力学
(2)RK方程 RK方程是1949年建立的。 形式
RT a/ T p V b V (V b)
其中的方程常数与vdw方程常数的导出方法类似,与纯物质 的临界参数的关系为
R 2Tc2.5 a 0.42748 pc RTc b 0.08664 pc
RK方程的的特点:与vdw方程相比,其Zc(等于1/3)较 小,故预测流体性质的准确度提高了,但是,对液相P-VT关系的描述准确度还不够高。 (3)Soave-Redilich-Kwong(SRK)方程 1972年,Soave修正了RK方程中常数a,使a不仅与临界参 数有关,还与物质的蒸气压及外界条件温度相关联,建立 了SRK方程。 形式
第二章 流体的P-V-T性质
2.1 引言 1)用途:用流体的P-V-T性质,结合一定的热力学原理式, 可以推算更有用的性质M。这是流体的P-V-T性质的最重 要的用途之一,所以流体的P-V-T性质的研究是重要的基 础工作。 2)获得方法:流体的P-V-T性质的获得,主要通过两种方 法:一是实验测定,存在种种弊端 。虽然至今已经积累 了大量的纯物质及其混合物的P-V-T数据,如水、空气、 氨等,但是实验测定不具有普遍性,如费时、费力又耗 资;测定所有流体的P-V-T数据显然是不现实的,离散的 数据点不便于进行数学处理,难以采用理论的方法获得 数据点以外的或其它的热力学性质;二是用流体的临界 参数、正常沸点、饱和蒸气压等基础数据来预测流体的 P-V-T性质。这是具有实际意义的工作,因为绝大多数的 纯流体的上述基础数据能够在有关手册中查到, 这正是本 章要讨论的,
模型:经典热力学原理必须与反映系统特征的模型相结合, 才能解决实际问题。因为它只表示了上述两类热力学性质 之间的普遍依赖关系,并不因具体系统而异。具体系统的 这种关系还要由此系统的特征来决定,这种特征在实际应 用过程中,常采用半经验模型来表达。本书涉及到的半经 验模型主要有两种,一是状态方程(EOS),可以表示为 P = P(T、V、a、b,…) 二是活度系数模型,可以表示为
化工热力学实验指导书
实验一二氧化碳PVT关系一、实验目的1、了解CO2临界状态的观测方法,增加对临界状态概念的感性认识。
2、增加对课堂所讲的工质热力状态、凝结、汽化、饱和状态等基本概念的理解。
3、掌握CO2的p-v-t关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。
4、学会活塞式压力计,恒温器等热工仪器的正确使用方法。
二、实验内容1、测定CO2的p-v-t关系。
在p-v坐标系中绘出低于临界温度(t=20℃)、临界温度(t=31.1℃)和高于临界温度(t=50℃)的三条等温曲线,并与标准实验曲线及理论计算值相比较,并分析其差异原因。
2、测定CO2在低于临界温度(t=20℃、27℃)饱和温度和饱和压力之间的对应关系,并与图四中的t s-p s曲线比较。
3、观测临界状态(1)临界状态附近气液两相模糊的现象。
(2)气液整体相变现象。
(3)测定CO2的p c、v c、t c等临界参数,并将实验所得的v c值与理想气体状态方程和范德瓦尔方程的理论值相比教,简述其差异原因。
三、实验设备及原理整个实验装置由压力台、恒温器和实验台本体及其防护罩等三大部分组成(如图一所示)。
图一试验台系统图图二试验台本体试验台本体如图二所示。
其中1—高压容器;2—玻璃杯;3—压力机;4—水银;5—密封填料;6—填料压盖;7—恒温水套;8—承压玻璃杯;9—CO2空间;10—温度计。
、对简单可压缩热力系统,当工质处于平衡状态时,其状态参数p、v、t之间有:F(p,v,t)=0 或t=f(p,v) (1)本实验就是根据式(1),采用定温方法来测定CO2的p-v-t关系,从而找出CO2的p-v-t关系。
实验中,压力台油缸送来的压力由压力油传入高压容器和玻璃杯上半部,迫使水银进入预先装了CO2气体的承压玻璃管容器,CO2被压缩,其压力通过压力台上的活塞杆的进、退来调节。
温度由恒温器供给的水套里的水温来调节。
实验工质二氧化碳的压力值,由装在压力台上的压力表读出。
陈钟秀(第三版)化工热力学1绪论
绪论
Gibbs (1839 - 1903)
新乡学院
《化工热力学》
绪论
热力学基本定律反映了自然界的客观规律,以这 些定律为基础进行演绎、逻辑推理而得到的热力学 关系与结论,显然具有高度的普遍性、可靠性与实用 性,可以应用于机械工程、化学、化工等各个领域,由 此形成了化学热力学、工程热力学、化工热力学等 重要的分支。 化学热力学主要讨论热化学、相平衡和化学平衡 理论。 工程热力学主要研究热能动力装置中工作介质的 基本热力学性质、各种装置的工作过程以及提高能 量转化效率的途径。 化工热力学是以化学热力学和工程热力学为基础, 结合化工实际过程逐步形成的学科。
Joule (1818 - 1889)
新乡学院 《化工热力学》 根据热力学第一定律热功可以 按当量转化,而根据卡诺原理热却 不能全部变为功,当时不少人认为 二者之间存在着根本性的矛盾。 1850 年 , 德 国 物 理 学 家 Rudolf J. Clausius (1822 - 1888) 进一步研究了 热力学第一定律和克拉佩隆转述的 卡诺原理,发现二者并不矛盾。他 指出,热不可能独自地、不付任何 代价地从冷物体转向热物体,并将 这个结论称为热力学第二定律。克 劳胥斯在1854年给出了热力学第二 定 律 的 数 学 表 达 式 , 1865 年 提 出 “墒”的概念。
新乡学院
《化工热力学》
绪论
热力学是研究能量、能量转换以及与能量 转换有关的物性间相互关系的科学。 热力学(thermodynamics)一词的意思是热 (thermo)和动力(dynamics),既由热产生动力, 反映了热力学起源于对热机的研究。 从十八世纪末到十九世纪初开始,随着蒸 汽机在生产中的广泛使用,如何充分利用热能 来推动机器作功成为重要的研究课题。
《化工热力学实验》教学大纲
2、 掌握工质在循环过程的流动中的变化情况,并于理想循环进行比较; 3、 通过实验绘制出该工质的热力学工作曲线(T-S图); 4、 计算出不同实验条件下,该装置的制冷系数、制冷量、耗功量以及工质的循环量。 5、 能够用热力学的观点分析过程中工质的变化现象。 以上实验皆在化工实验楼化工热力学实验室(三楼)
1Hale Waihona Puke 实验三 用气相色谱法测定无限稀释溶液的活度系数 实验目的: 无限稀释活度系数是重要的热力学基础数据。通过无限稀释活度系数可以计算任意浓 度的活度系数、溶解热、混合热及混合熵等热力学参数。通过实验了解气相色谱的基本原 理以及测定无限稀释活度系数的基本过程。 实验内容: 1、 了解气相色谱的基本原理,熟悉其操作技术; 2、 测定溶质的比保留体积及无限稀释下的活度系数; 3、 测定两溶质的相对挥发度。
实验四 蒸汽压缩制冷循环 实验目的:
热力循环由若干个子过程所组成,各个子过程通常是在工业能量系统的不同装置中进 行的,这些装置连接起来就构成了整个能量系统。通过该实验了解工质在能量系统中通常 是在不断流动的过程中实现其热力循环,实际的热力循环不可避免的存在着各种不可逆性 因素,掌握热力学第一定律和热力学第二定律在实际中的应用。 实验内容: 1、 了解蒸气压缩制冷循环的基本原理,熟悉蒸气压缩制冷循环装置的结构及其每个组成 部件的作用;
《化工热力学实验》教学大纲
郑州大学化工学院
化工热力学实验教学大纲
课程名称:化工热力学实验 实验指导书名称:化工热力学实验指导 一、 对象、学时、学分 实验对象:本科生、专科生 (必修)总学时:20 总学分:1.5 (选修)总学时:5 总学分:0.5 二、 课程简介
本课程为化学工程与工艺、制药工程专业的必修实验和选修实验,主要面向三年级 本科生开设,内容涉及到热力学基础数据的测定与关联;热力学第一定律、热力学第二定 律的应用;溶液热力学性质的测定与预测;相平衡数据的测定;过程热力学分析等。实验 类型有验证型、综合性、开发型和设计性。必修实验主要根据《化工热力学》课程的教学 大纲并结合生产和科研技术的发展,开设3~4个较高水平的实验,使学生掌握在化工生 产、生物化工、精细化工、化学制药、生物制药各领域方向的能量的转化和合理地利用能 量。实验中同时学习热力学基础数据的的测定方法及理论预测模型的正确选型和验证,并 熟悉气相色谱分析的原理和定性、定量分析,了解气相色谱仪在热力学数据测定方面的重 要性。 三、 实验的地位、作用和目的 化工热力学实验课是专业基础技术课,是对学生所学《物理化学》、《化工原理 》和《化工热力学》等课程知识的综合运用与实践,让学生理论联系实际,明确热力学在 工业生产中、科学研究和工程设计中的重要性,有一个比较完整的感性认识和理性认识, 也是进行产品生产和科研开发的必要准备。通过专业技术基础课实验,使学生掌握一些基 本的操作技能,学习一些实验中所必需的测试技术、检测方法,学习简单的数据采集、数 据记录及分析处理等,学习如何将实验方案变成实际可操作的实践过程。
化工热力学总结剖析
Pc=3.80MPa, Tc=425.2K, ω=0.193
Tr
510 425.2
1.198
pr
2.5 3.80
0.658
则有:
0.686 0.439pr 0.686 0.439 0.658 0.9748 Tr 0.686 0.439pr 因此用普遍化第二维里系数法
绝热时: ws h
2、流体的p-V-T关系
一、几个常用的状态方程:
1. 理想气体状态方程
pV RT
2. 维里方程
Z
pV RT
1 B V
C V2
B/V表示二分子的相互作用; C /V 2表示三分
子的相互作用;……
3. 范德华方程
p
RT V b
a V2
4. RK方程
p
RT V b
T 1/ 2V
a (V
b)
5. SRK方程
ni
T , p,nji
两个重要的方程式 :
偏摩尔性质 偏摩尔性质与溶液摩尔性质间的关系
偏摩尔性质的计算:
逸度的定义
混合物整体
dG RTd ln f (T 恒定)
lim p0
f
p 1
f p
纯物质 i
dGi RTd ln fi (T 恒定)
lim
p0
fi
p
1
i
fi p
混合物中的 i 组分
GE G RT xi ln xi
S E S R xi ln xi
5、化工过程的能量分析
1.闭系非流动过程的能量平衡:
U Q W
Q:系统吸热取正号,系统放热取负号; W:系统对外做功取正号,系统得功取负号。
化工热力学Ⅱ(高等化工热力学)——第一章 绪论
CO2溶剂吸收分离
吸收溶剂必须具备的性能: 吸收溶剂必须具备的性能:
◆ CO2的溶解度大 ◆ 选择性好 ◆ 沸点高 无腐蚀, ◆ 无腐蚀,无毒性 ◆ 化学性能稳定 粘度小, ◆ 粘度小,扩散系数大
4 净松脂 purified pine gum 导热油 heat conduction oil 冷却水 3 cooling water 松节油 turpentine 1
2
松香 rosin 6 5
CO2或N2循环 CO2 or N2 circulation
7 1 3 5 7 气体加热炉 gas heating furnace 冷凝冷却器 condenser-cooler 2 4 6
Clean gas
VSA/ESA Column
VSA/TSA Column
Adsorbents
Fuel gas
Air
vacuum
Cooler
Nature gas
Boiler
CO2介孔分子筛吸附剂
利用其很大的比表面积和较大的孔容
CO2介孔分子筛吸附剂
表面接枝修饰的介孔材料 表面接枝胺基(diamine group) ,形成化学吸附位点 表面接枝胺基 硅基介孔材料在实际应用(例如作为催化剂载体) 硅基介孔材料在实际应用(例如作为催化剂载体) 中的一个很大问题是它的水热稳定性.有意思的是, 中的一个很大问题是它的水热稳定性.有意思的是, 介孔材料表面接枝后可以提高其水热稳定性,这可能 介孔材料表面接枝后可以提高其水热稳定性, 与所接枝的胺基基团与水分子形成某种弱化学作用, 与所接枝的胺基基团与水分子形成某种弱化学作用, 阻止了水分子与硅基材料的作用, 阻止了水分子与硅基材料的作用,从而使水热稳定性 提高. 提高.
化工热力学学习体会报告
《化工热力学》学习体会报告《化工热力学》是热力学与化学相结合的学科,它在热力学内容中补充化合物众多及化学变化的特点,又增加了气液溶液及化学反应的内容。
又是热力学与化学工程相结合,除增加化学热力学内容外,又强调了组成变化的规律,要确定反应物与产物的化学平衡组成规律,更要解决各种相平问题,即各相组成分布的规律。
化工热力学是在基本热力学关系基础上,重点讨论能量关系和组成关系。
能量关系要比物理化学中简单的能量守恒大大扩展,在组成计算中包括化学平衡体系组成及相平衡组成计算及预测,对于各种不同种类相平衡,在各相组元化学位相同的基础上提出了使用的关系式,并在各种不对称体系情况下,可以适应或做出修正。
一、重要章节知识点归纳第一章、绪论1、化工热力学的目的和任务通过一定的理论方法,从容易测量的性质推测难测量的性质、从有限的实验数据获得更系统的物性的信息具有重要的理论和实际意义。
化工热力学就是运用经典热力学的原理,结合反映系统特征的模型,解决工业过程(特别是化工过程)中热力学性质的计算和预测、相平衡和化学平衡计算、能量的有效利用等实际问题。
2、化工热力学及其特性:所谓热力学主要是研究热现象和能量转换的。
热力学以宏观体系作为自己的研究对象,就其内容而言,它涉及到热机的效率,能源的利用,各种物理、化学乃至生命过程的能量转换,以及这些过程在指定条件下有没有发生的可能性。
如今热力学已广泛的用于研究各种能量之间的关系,热力学从远古时期发展至今,可称它为一门“完善”的科学,这主要表现在它具有四大特性:⑴严密性⑵完整性⑶普遍性⑷精简性严密性表现在热力学具有严格的理论基础。
热力学证明是可以行通的事情,在实际当中才能够行的通;热力学证明是不可行的事情,在实际当中无论采用什么措施,也实施不了。
完整性是由于热力学具有热力学第一定律(能量守恒定律);第二定律(熵增原理);第三定律(绝对熵定律);第零定律(热平衡定律)这四大定律使热力学成为一门逻辑性强而完整的科学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一二氧化碳PVT关系一、实验目的1、了解CO2临界状态的观测方法,增加对临界状态概念的感性认识。
2、增加对课堂所讲的工质热力状态、凝结、汽化、饱和状态等基本概念的理解。
3、掌握CO2的p-v-t关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。
4、学会活塞式压力计,恒温器等热工仪器的正确使用方法。
二、实验内容1、测定CO2的p-v-t关系。
在p-v坐标系中绘出低于临界温度(t=20℃)、临界温度(t=31.1℃)和高于临界温度(t=50℃)的三条等温曲线,并与标准实验曲线及理论计算值相比较,并分析其差异原因。
2、测定CO2在低于临界温度(t=20℃、27℃)饱和温度和饱和压力之间的对应关系,并与图四中的t s-p s曲线比较。
3、观测临界状态(1)临界状态附近气液两相模糊的现象。
(2)气液整体相变现象。
(3)测定CO2的p c、v c、t c等临界参数,并将实验所得的v c值与理想气体状态方程和范德瓦尔方程的理论值相比教,简述其差异原因。
三、实验设备及原理整个实验装置由压力台、恒温器和实验台本体及其防护罩等三大部分组成(如图一所示)。
图一试验台系统图图二试验台本体试验台本体如图二所示。
其中1—高压容器;2—玻璃杯;3—压力机;4—水银;5—密封填料;6—填料压盖;7—恒温水套;8—承压玻璃杯;9—CO2空间;10—温度计。
、对简单可压缩热力系统,当工质处于平衡状态时,其状态参数p、v、t之间有:F(p,v,t)=0 或t=f(p,v) (1)本实验就是根据式(1),采用定温方法来测定CO2的p-v-t关系,从而找出CO2的p-v-t关系。
实验中,压力台油缸送来的压力由压力油传入高压容器和玻璃杯上半部,迫使水银进入预先装了CO2气体的承压玻璃管容器,CO2被压缩,其压力通过压力台上的活塞杆的进、退来调节。
温度由恒温器供给的水套里的水温来调节。
实验工质二氧化碳的压力值,由装在压力台上的压力表读出。
温度由插在恒温水套中的温度计读出。
比容首先由承压玻璃管内二氧化碳柱的高度来测量,而后再根据承压玻璃管内径截面不变等条件来换算得出。
四、实验步骤1、按图一装好实验设备,并开启实验本体上的日光灯(目的是易于观察)。
2、恒温器准备及温度调节:(1)、把水注入恒温器内,至离盖30~50mm。
检查并接通电路,启动水泵,使水循环对流。
(2)、把温度调节仪波段开关拨向调节,调节温度旋扭设置所要调定的温度,再将温度调节仪波段开关拨向显示。
(3)、视水温情况,开、关加热器,当水温未达到要调定的温度时,恒温器指示灯是亮的,当指示灯时亮时灭闪动时,说明温度已达到所需要恒温。
(4)、观察温度,其读数的温度点温度设定的温度一致时(或基本一致),则可(近似)认为承压玻璃管内的CO2的温度处于设定的温度。
(5)、当所需要改变实验温度时,重复(2)~(4)即可。
注:当初使水温高于实验设定温度时,应加冰进行调节。
3、加压前的准备:因为压力台的油缸容量比容器容量小,需要多次从油杯里抽油,再向主容器管充油,才能在压力表显示压力读数。
压力台抽油、充油的操作过程非常重要,若操作失误,不但加不上压力,还会损坏试验设备。
所以,务必认真掌握,其步骤如下:(1)关压力表及其进入本体油路的两个阀门,开启压力台油杯上的进油阀。
(2)摇退压力台上的活塞螺杆,直至螺杆全部退出。
这时,压力台油缸中抽满了油。
(3)先关闭油杯阀门,然后开启压力表和进入本体油路的两个阀门。
(4)摇进活塞螺杆,使本体充油。
如此交复,直至压力表上有压力读数为止。
(5)再次检查油杯阀门是否关好,压力表及本体油路阀门是否开启。
若均已调定后,即可进行实验。
4、作好实验的原始记录:(1)设备数据记录:仪器、仪表名称、型号、规格、量程、等。
(2)常规数据记录:室温、大气压、实验环境情况等。
(3)测定承压玻璃管内CO 2质量不便测量,而玻璃管内径或截面积(A )又不易测准,因而实验中采用间接办法来确定CO 2的比容,认为CO 2的比容ν与其高度是一种线性关系。
具体方法如下:a )已知CO 2液体在20℃,9.8MPa 时的比容ν(20℃,9.8Mpa )=0.00117M 3·㎏。
b )实际测定实验台在20℃,9.8Mpa 时的CO 2液柱高度Δh 0(m )。
(注意玻璃管水套上刻度的标记方法)c )∵ν(20℃,9.8Mpa )=kg m mAh /00117.030=∆ ∴)/(00117.020m kg K h A m =∆= 其中:K ——即为玻璃管内CO 2的质面比常数。
所以,任意温度、压力下CO 2的比容为:K hA m h ∆=∆=/ν (m 3/kg )式中,Δh=h-h 0h ——任意温度、压力下水银柱高度。
h 0——承压玻璃管内径顶端刻度。
5、测定低于临界温度t=20℃时的等温线。
(1)将恒温器调定在t=20℃,并保持恒温。
(2)压力从4.41Mpa 开始,当玻璃管内水银柱升起来后,应足够缓慢地摇进活塞螺杆,以保证等温条件。
否则,将来不及平衡,使读数不准。
(3)按照适当的压力间隔取h 值,直至压力p=9.8MPa 。
(4)注意加压后C O 2的变化,特别是注意饱和压力和饱和温度之间的对应关系以及液化、汽化等现象。
要将测得的实验数据及观察到的现象一并填入表1。
(5)测定t=25℃、27℃时其饱和温度和饱和压力的对应关系。
6、测定临界参数,并观察临界现象。
(1)按上述方法和步骤测出临界等温线,并在该曲线的拐点处找出临界压力p c 和临界比容νc ,并将数据填入表1。
(2)观察临界现象。
a)整体相变现象由于在临界点时,汽化潜热等于零,饱和汽线和饱和液线合于一点,所以这时汽液的相互转变不是象临界温度以下时那样逐渐积累,需要一定的时间,表现为渐变过程,而这时当压力稍在变化时,汽、液是以突变的形式相互转化。
b)汽、液两相模糊不清的现象处于临界点的CO2具有共同参数(p,v,t),因而不能区别此时CO2是气态还是液态。
如果说它是气体,那么,这个气体是接近液态的气体;如果说它是液体,那么,这个液体又是接近气态的液体。
下面就来用实验证明这个结论。
因为这时处于临界温度下,如果按等温线过程进行,使CO2压缩或膨胀,那么,管内是什么也看不到的。
现在,我们按绝热过程来进行。
首先在压力等于7.64Mpa附近,突然降压CO2状态点由等温线沿绝热线降到液区,管内CO2出现明显的液面。
这就是说,如果这时管内的CO2是气体的话,那么,这种气体离液区很接近,可以说是接近液态的气体;当我们在膨胀之后,突然压缩CO2时,这个液面又立即消失了。
这就告诉我们,这时CO2液体离气区也是非常接近的,可以说是接近气态的液体。
既然,此时的CO2既接近气态,又接近液态,所以能处于临界点附近。
可以这样说:临界状态究竟如何,就是饱和汽、液分不清。
这就是临界点附近,饱和汽、液模糊不清的现象。
7、测定高于临界温度t=50℃时的定温线。
将数据填入原始记录表1。
五、实验结果处理和分析1、按表1的数据,如图三在p-v坐标系中画出三条等温线。
2、将实验测得得等温线与图三所示的标准等温线比较,并分析它们之间的差异及原因。
3、将实验测得的饱和温度与压力的对应值与图四给出的t s-p s曲线相比较。
表1CO等温实验原始记录图三标准曲线4、将实验测定的临界比容νc 与理论计算值一并填入表2,并分析它们之间的差异及其原因。
表2临界比容V c [m 3/Kg]5、应用RK 状态方程:()b v v T ab v RT P +--=5.0 (1-5)cc c c P RTb P T R a 0867.0,4278.05.22==(1-6)进行体积数据推算并与相应的实验值比较。
CO2的临界参数为:T C=304.2 K ;P C=7.376 Mpa六、仪器参数尺寸:1000×400×800电源:220V 功率:1.5KW测定二氧化碳的P-V-T关系,测定其临界参数PVT/测定二氧化碳在不同压力下饱和蒸汽和饱和液体的比容,如测定二氧化碳和温度和饱和压力的对应关系七、参考文献1Vargaftic N B. Tables on the Thermophysical Properties of Liquids and Gases. 2nd Ed. New York: Hemisphere Publishing Corp., 1975. 167~1682Neindre B L E, Vodar B. Experimental Thermodynamics. Vol II. London: Butterworths, 1968.347~3583童景山. 分子聚集理论及其应用. 北京: 科学出版社,1999. 32~36,209~2164童景山. CO2气、液、固三相饱和态下PVT的计算. 工程热物理学报,2001,22(6): 668~670。