同济大学朱慈勉-结构力学第8章矩阵位移法

合集下载

同济大学朱慈勉位移法_结构力学

同济大学朱慈勉位移法_结构力学

C 第 7 章 习 题7-1 确定下列各结构位移法未知数数目。

题7-1图7-2 用位移法绘制下列结构弯矩图。

用位移法绘制以下下具有斜杆的刚架的弯矩图。

题7-3图题7-47-5 用位移法绘制以下刚架的弯矩图。

7-6 用位移法计算图示由剪力静定杆组成的刚架的弯矩图。

(EI为常数)A 6m 6m 6m(a) D(b)GF C E D 常数 6m 6m a 22(a)EI 2lEI k l l (b)(a) (b) (c) aak N = =3EIl 3BAliiD题 7-5图题 7-6图7-7 利用对称性,用位移法求作下列结构的弯矩图。

题7-7图 7-8 试用位移法求作下列结构由于支座位移产生的弯矩。

7-9 用混合法求作弯矩图。

题 7-9图C E F 2m 2m A ′D ′B ′ EI 2EI4m 3EI A D C B l EI EIϕl Δ=ϕ题 7-8图(a) B 4m 4m DAC B 2kN/m16m (b) EI=常数第7章7-1 (a )一个角位移未知量。

(b )三个角位移未知量,一个线位移未知量。

(c )四个角位移未知量,三个线位移未知量。

(d )三个角位移未知量,一个线位移未知量。

(e )一个角位移未知量,一个线位移未知量;或两个线位移未知量。

(f )三个角位移未知量,两个线位移未知量。

(g )一个角位移未知量,一个线位移未知量。

(h )一个角位移未知量,一个线位移未知量。

(i )三个角位移未知量,一个线位移未知量。

7-5 (a )2472ql MDC-=,62qlMDB=,8Q ql F AD -=。

(b )m kN 26⋅=BA M (上边受拉),m kN 14⋅=BC M (左侧受拉)。

(c )P49F MAD=(左侧受拉)。

(d )P N 6.0F F BE =,P N 2.1F F CF =,a F M BA P 6.0=(上边受拉)。

(e )PN )21(2221F F DC ++=,PN )21(22F F AC +=。

结构力学-矩阵位移法-PPT

结构力学-矩阵位移法-PPT
a11 AB a21
当p=l时才能相乘
a12 b11 a22 b21
a12 a22
共形
b11 a11 BA b21 a21
非共形
(2)不具有交换律,即 AB BA
6、转置矩阵 将一个阶矩阵的行和列依次互换,所得的阶矩 阵称之为原矩阵的转置矩阵,如:
任意矩阵与单位矩阵相乘仍等于原矩阵,即 AI =A IA =A
10、逆矩阵
在矩阵运算中,没有矩阵的直接除法,
除法运算由矩阵求逆来完成。例如,若
AB = C

B=A 1 C
-
此处A-1 称为矩阵A的逆矩阵。
一个矩阵的逆矩阵由以下关系式定义:A A 1 = A 1 A =I
矩阵求逆时必须满足两个条件: (1)矩阵是一个方阵。 (2)矩阵的行列式不为零,即矩阵是非奇异矩阵(行列 式为零的矩阵称为奇异矩阵)。
矩阵位移法(刚度法):
结点力
P
F
(物理条件)

结点位移
(几何条件)
(平衡条件)
杆端力
杆端位移
r11 z1 r12 z 2 L r1i zi R1p 0 r21 z1 r22 z 2 L r2i zi R2p 0 r31 z1 r32 z 2 L r3i zi R3p 0
结构力学
STRUCTURE MECHANICS
第十章
矩阵位移法
知识点:
• • • • 矩阵位移法的基本要点 常见单元单元刚度矩阵的建立 单元刚度矩阵的坐标变换 矩阵位移法计算连续梁和刚架
教学基本要求:
掌握矩阵位移法的基本要点;
理解各种常见单元杆端位移和杆端力的对应 关系,理解单刚矩阵的建立方法及过程,能正确 写出常见单元的单刚方程;理解坐标变化的意义 及方法。 掌握前处理法计算连续梁和不考虑轴线变形 的刚架,结合刚架理解后处理法的基本思想。

结构力学矩阵位移法

结构力学矩阵位移法
k的单位转角引起的j端弯矩用
k jk 表示,k端弯矩用 k kk 表示,放在劲度矩阵第二列;
k(1)k(2)k(3) k kk jjj
k kk jk k 2 4ii
2i 4i
21
K1是 1 1自由度发生单1自 位由 转度 角引 在起的刚
位移法用结点的平衡
K1
1.位移法作结点位移引起的单位内力(弯矩、剪力) 图 矩阵位移法将结点位移引起的杆端力放在单元劲度 矩阵中。
2.位移法从结点位移引起的单位内力(弯矩、剪力) 图中取出结点作为脱离体,由脱离体的力平衡条件 求得附加约束反力,即整体劲度系数。
矩阵位移法由单元劲度矩阵集合成整体劲度矩阵。
10
位移法和矩阵位移法求自由项系数的方法有何不同?
11
背:位移法矩阵位移法整体结点位移正负号规定?
整体结点位移,矩阵位移法中与整体坐标方向一 致为正。位移法中角位移顺钟向为正,线位移无 规定。
12
第二专题: 只有转角未知量的连续梁的矩阵位移法
13
用位移法和矩阵位移法求图示连续梁的杆端弯矩
FP1 FP FP2 2FP ql FP
14
背:位移法和矩阵位移法的基本系-结点转角处附加刚臂
K21kk(2j) 2i
23
K12是2自由度发生单1自 位由 转度 角引 在起的刚
位移法用结点的平衡
K12的形成
矩阵位移法:与1和2自由度都 有关的单元单元只有(2)单 元,1自由度对应(2)单元的 j端,2自由度对应(2)单元 的k端,故:
K12k(j2k) 2i
24
K22是2自由度发生单2自 位由 转度 角引 在起的刚
5
背:为什么矩阵位移法比位移法可能有更多的独立的 结点线位移作为基本未知量?

结构力学十三讲(矩阵位移法)

结构力学十三讲(矩阵位移法)
2
1 i1 2i23
2 i2 2i22
2 i2
4i23 3
F1
4i1 2i1 0 1
F2 = 2i1 4i1+4i2 2i2 2
传统位移法 根据每个结点位移 对附加约束上的约束
F3
0 2i2 4i2 3
{F}=[K]{}
力{F}的贡献大小进 行叠加而计算所得。
7
一、 单元集成法的力学模型和基本概念
一、矩阵位移法的基本思路
矩阵位移法的两个基本步骤是 (1)结构的离散化;(2)单元分析;(3)整体分析,
单元 分析
整体 分析
任务
建立杆端力与杆端位移 间的刚度方程,形成单 元刚度矩阵
由变形条件和平衡条件 建立结点力与结点位移 间的刚度方程,形成整 体刚度矩阵
意义 用矩阵形式表示杆 件的转角位移方程
单元贡献矩阵是单元刚度矩阵,利用“单元定位向量”进行“换码重排位”。
单元
(1) (2)
1 (1)
[k] = (2)
4i1 2i1
2i1 4i1

1
=
1 2
12 3
1 40i1 20i1 0
1
[K] = 2
20i1
40 i1
0
30 0 0
单元
(1) (2)
2 (1)
[k] = (2)
2i1
0
2
[k] =
4i2 2i2 2i2 4i2
12 [K] =
00 0
0 4i2 2i2 0 2i2 4i2
2i1 44i1i+1 4i2 20i2 0 20i2 40i2
4i1 2i1 0
整体刚度矩阵: [K]= 2i1 4(i1+i2) 2i2

同济大学朱慈勉 结构力学 第8章 矩阵位移法习题答案

同济大学朱慈勉 结构力学 第8章 矩阵位移法习题答案

同济大学朱慈勉 结构力学 第8章 矩阵位移法习题答案8-1 试说出单元刚度矩阵的物理意义及其性质与特点。

8-2 试说出空间桁架和刚架单元刚度矩阵的阶数。

8-3 试分别采用后处理法和先处理法列出图示梁的结构刚度矩阵。

(a)解:(a )用后处理法计算 (1)结构标识(2)建立结点位移向量,结点力向量[]T44332211 θνθνθνθν=∆[]T y M F M F M F M F F 4y43y32y211 =θ(3)计算单元刚度矩阵⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡=2222322211211462661261226466126122EI 21 l l -l l l -l -l l -l l l l - l k k k k k ①①①①①⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡=222233332232223 33 6 3632336 362EI 21 l l - l l l - l -l l -l l l -l l k k k k k ②②②②②lll⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡=222234443343323 33 6 3632336 362EI 2 1 l l - l l l - l -l l -l l l -l l k k k k k ③③③③③(4)总刚度矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++=222222222234443343333322322222112112 3300003 6 3 6 000 03403003601236000 0 3632600 363186120000 26460 0 0 06126122EI 0 0 00 0 0 4 3 2 1 4 3 2 1 l l -l l l - l - - l l -l l l l - l - - l l -l l -l l l l - -l -- l l -l l l l - l k k k k k k k k k k k k k ③③③③②②②②①①①①θ (5)建立结构刚度矩阵支座位移边界条件[][]00004311 θ θ θν=将总刚度矩阵中对应上述边界位移行列删除,得刚度结构矩阵。

结构力学应用-矩阵位移法

结构力学应用-矩阵位移法

3、集成总刚
(6)定位向量法:对号入座,同号相加 定位向量法:对号入座,
4.综合结点荷载
综合结点荷载 {F}={FD}+{FE} }――直接结点荷载 ①{FD}――直接结点荷载 }――等效结点荷载 ②{FE}――等效结点荷载 (7-1)局部坐标系单元固端力 (7-2)整体坐标系单元固端力 (7-3)单元等效结点荷载。 单元等效结点荷载。
等效原则: 等效原则: ——两种荷载对基本体系产生相同的结点位移。 两种荷载对基本体系产生相同的结点位移 ——两种荷载对基本体系产生相同的结点位移。
矩阵位移法的计算步骤及示例
矩阵位移法计算平面刚架 计算机计算――程序化) 程序化) (计算机计算 程序化
1. 编码、整理原始数据 编码、
(1)整体与局部坐标系 ) (2)结点位移编码 ) 单元编码 (3)原始数据: )原始数据: E 、A i、I i、l i 定位向量{λ} 定位向量 e, αi([ T ]) ])
几点补充说明
1、结点位移分量编号,定位向量 、结点位移分量编号,
——引入支承条件:已知位移约束的方向,编码为零。 引入支承条件:已知位移约束的方向,编码为零。 引入支承条件
2、铰结点处理: 铰结点处理: 铰结点处理
铰结的各杆杆端的转角均为基本未知量 ——分别编码(统一单元,程序简单) 分别编码(统一单元,程序简单) 分别编码
矩阵位移法
矩阵位移法——基本原理与位移法相同 基本原理与位移法相同 矩阵位移法 *数学工具 —— 矩阵运算
1、矩阵知识 矩阵: (1)矩阵:A 方阵: 方阵: 阶方阵A相应的行列式 (2)行列式:n阶方阵 相应的行列式 )行列式: 阶方阵 相应的行列式D 若D=0,A为奇异矩阵 (3)矩阵运算 相等:加减:数乘: 相等:加减:数乘: l aik 乘法: 乘法:Cmn=Aml*Bln,则 cij =

结构力学答案(下册).

结构力学答案(下册).

k 23 ② k33② + k 33③
0 k34 ③


⎥ 2EI ⎢6l
⎥= ⎥
l3
⎢⎢0
-6l 18 -3l -6 2l 2 -3l 6l 2 -3l 0 -6 -3l 12
3l l2 0
⎢⎣0 0
k 43③
k 44 ③
⎥ ⎦
⎢0
0 3l l 2 0 4l 2

⎢0 0 0 0 -6 -3l
⎢⎣0
① 1→2
l
cosα
1
sin α
0
② 3→4 ③ 1→3 ④ 2→4 ⑤ 2→3
⑥ 1→4
l
1
l
0
l
0
2l − 2
2
2l
2 2
0 -1 -1
−2 2
2 2
(2)建立结点位移向量,结点力向量
[ ] ∆ = µ1 ν 1 µ2 ν 2 µ3 ν 3 µ4 ν 4 T
[ ] F = Fx1 Fy1 0 -Fp Fx3 Fy3 0 0 T
1
⎥ ⎥
k⑥ = k⑤ =
⎢1
EA ⎢ 2
2l
⎢ ⎢-
1
1 2 -1
2 2⎥
⎢2 2
1 1⎥ ⎥
2 2⎦
⎢ ⎢-
1
-1
⎣2 2
4
-1 2
-
1 2
⎤ ⎥ ⎥
-1 2
-
1 2
⎥ ⎥
1
1
⎥ ⎥
2 2⎥
1 1⎥ ⎥
2 2⎦
(4)形成刚度矩阵,刚度方程
1
2
3
4
⎡4+ 2
⎢ ⎢

第八章矩阵位移法-135页PPT

第八章矩阵位移法-135页PPT


Fyi Fxj

F4 Fyj
8-1 概述
31
刚架单元
结构坐标系
1 (e) ui (e)

2


v
i

δ (e)

δi (e)

δ
j



3 4


i u j


5

6
8-1 概述
10
3.结构坐标系(整体坐标系)
• 对整个结构建立统一的坐标系 • 在整体分析中,采用统一的坐标来
描述结构的结点和单元位置等。
8-1 概述
11
4.单元坐标系(局部坐标系)
• 针对每一单元的坐标系 x o y
• 以杆轴线的某方向作为 x 轴正向,在轴线
上以箭头作正方向标记,以垂直于杆件轴线 方向为 y 轴,本章采用右手坐标系
u 1v 1 1u 2v 2
2u 3v 3
3u 4v 4
T 4
8-1 概述
20
结点位移
若平面刚架有n个结点
Δ u 1v 11u 2v 22 u nv nn T
第i结点的位移为 Δ i ui vi iT
则n个结点的位移向量为
Δ Δ 1 Δ 2 Δ nT
F x 1F y 1M 1F x 2F y 2M 2F x 3F y 3M 3F x 4F y 4M 4T
8-1 概述
25
刚架的结点力向量
• 第i结点的结点力为 Fi = ( Fxi Fyi Mi )T
• 刚架的结点力向量为 F =(F1 F2 F3 … Fi … Fn )T

矩阵位移法

矩阵位移法

那么就是说,这个杆端力它首先呢,是在局部坐标系下的(我只想知道我的 杆的轴力,剪力啊,什么的,并不想知道某个大方向上的力) ,那么就要用到局 部坐标系的各种参数。 其次,力是刚度乘位移的。 所以就是说,应该有这样
e e e F e k e e F e P k T F P
不过这个位移的话, 其实之前求出来了的话反正就这样吧。注意如果原来有 节点荷载的话这里是不用加它的, 我们只要加杆内荷载计算得到的固端力就好了, 这个力之前是查表得到的,非常方便加上去哦。 然后这里就告一段落啦。
呢? 在这之前, 必须要把局部坐标系下的单元刚度矩阵转化为整体坐标系下的单 元刚度矩阵。 那么必须要有这个杆件的方位角。假设这个杆件的正方形和水平向 右的夹角 (顺时针) 是 , 那么, 就有一个坐标变换矩阵的问题, 这个玩意叫 T 。 还有一个玩意叫坐标变化子矩阵,这玩意叫 t 。 这两个家伙有这么个关系。
e
e
t T kii et
其实还是挺麻烦的。如果说刚好是 90°的话,倒是就把对角线上第一第二 排换一下,然后右上角左下角的和旁边的换一下位子就 OK 了。 然后就可以用整体坐标系下的单元刚度矩阵集成整体刚度矩阵了。 这个其实 非常简单, 只要在整体坐标系下的单元刚度矩阵的周围写好它的定位向量,然后 在空白的地方把 0 以外的数字从小到大写好, 在相应的空位里把上面的抄下来加 起来就好啦。 因为这个整体刚度矩阵具有对称性和带状稀疏性, 所以只要把左下角三角形 的都写出来就好了,右上角是一模一样的。至于带状稀疏性的话,就是说它中间 的是有的,周围的基本都是 0,这是编码造成的,很小的码和很大的码应该是没 有交集的。 那么现在我们得到了一个整体刚度矩阵。
12 EI l3 6 EI l2 ke k e 12 EI 3 l 6 EI l2 6 EI l2 4 EI l 6 EI l2 2 EI l 12 EI l3 6 EI 2 l 12 EI l3 6 EI 2 l 6 EI 2 l 4 EI l 6 EI l2 2 EI l

《结构力学课件》矩 阵 位 移 法

《结构力学课件》矩 阵 位 移 法

将(17—21)及(17—25) T F 式代入上式得: e
K
T
e
T e
e
F
T
K
T e
e 另 [T]T[ K ] [I]=[K]e 则 用结分点块式表示为:
{F}e=[K]e{}e
e Fi e F j e Kii e K ji e e Kij i e Ke jj j
• 注:1) F , 为结构坐标的杆端力和杆端位移。 • 2) Kij e 表示单元e 的j端三个位移分别产生单位位移时在i 端各力 • 分量分别产生的力。 • 3) Kii , Kij , K ji , K jj 分别为单元在结构整体坐标中刚度。
e e

返回 下一张 上一张 小结图17-4来自返回 下一张 上一张 小结
• 17.1.6 引入支承条件,求结点位移
• 已知上例支承条件 1 =0,连同已获得的[K],以及各结点 荷载值(M1、M2、及M3=0)一起代入基本方程(7—6)式中,得:
4i1 2i 1 0 2i1 4i1 4i 2 2i 2 0 0 2i 2 2 4i 2 3 M1 M 2 0

矩阵位移法是以位移法为力学原理,应用矩阵理论,以电子 计算机为工具的结构分析方法。 有限单元法包含两个基本环节:一是单元分析;一是整体分析。
在矩阵位移法中:单元分析的任务是建立单元刚度方程,形 成单元刚度矩阵——讨论任意坐标系中单元刚度方程的通用形式; 整体分析的任务是将单元及合成整体,由单元刚度矩阵按照 刚度集成规则形成整体刚度矩阵,建立整体结构的位移法基本方 程,从而求解。 直接由单元刚度矩阵导出整体刚度矩阵的集成规则,是矩阵 位移法的核心内容。

第八章-矩阵位移法(一),同济大学结构力学课件,朱慈勉版教材,吕凤悟老师课件

第八章-矩阵位移法(一),同济大学结构力学课件,朱慈勉版教材,吕凤悟老师课件

2014/12/20
同济大学土木工程学院
结构力学 之 矩阵位移法
有限元分析技术的发展现状
由求解线性工程问题进展到分析非线性问题
线性理论已经远远不能满足设计的要求。
例如:结构工程中的弹塑性分析(物理非线性);索膜结构(几何非线性)。
非线性的数值计算是很复杂的,很难为一般工程技术人员所掌握。为此近年来 国外一些公司花费了大量的人力和投资开发诸如MARC、ABQUS和ADINA等 专长于求解非线性问题的有限元分析软件,并广泛应用于工程实践。 增强可视化的前置建模和后置数据处理功能 随着数值分析方法的逐步完善,尤其是计算机运算速度的飞速发展,整个计 算系统用于求解运算的时间越来越少,而数据准备和运算结果的表现问题却 日益突出。 在现在的工程工作站上,求解一个包含10万个方程的有限元模型只需要用几 十分钟。工程师在分析计算一个工程问题时有80%以上的精力都花在数据准备 和结果分析上。
先处理法的分析步骤
2014/12/20
同济大学土木工程学院
结构力学 之 矩阵位移法
几个基本概念
§8-3 单元刚度矩阵 Element stiffness matrix
F e K e Δe
杆端位移向量 单元刚度矩阵
单元刚度矩阵:单元杆端力与杆端位移之间的关系矩阵。
杆端力向量
杆端力和杆端位移的表示方法
2014/12/20
同济大学土木工程学院
结构力学 之 矩阵位移法
矩阵位移法进行结构分析的步骤
后处理法(直接刚度法)的分析步骤
结构离散并进行结构标识。 单元分析 计算各单元的刚度矩阵。 形成原始总刚度矩阵和原始总刚度方程。 引入位移边界条件,形成结构刚度矩阵和刚度方程。 结构整体分析 求解结构刚度方程,得未知的结点位移。 计算各单元杆端力和支座反力。 结构离散并进行结构标识。 单元分析 计算各单元的刚度矩阵。 形成结构刚度矩阵和刚度方程。 结构整体分析 求解结构刚度方程,得未知的结点位移。 计算各单元杆端力和支座反力。

结构力学矩阵位移法学习

结构力学矩阵位移法学习

第8章 矩阵位移法 ♍♦♐ 制作同济大学教材笔记(本章答案陆续上传中)一、知识要点: 1.结构坐标系一般采用右手坐标系,记为xoy 。

此时,结点位移和结点力均取与结构坐标系方向一致为正,其中结点的角位移和结点力矩按右手法则均取逆时针方向为正。

2.局部坐标系主要注意α角的定义,看如下图示即明白。

yxoijexyα3.桁架单元刚度方程000000000000eeexi i yi i xj j yj j EAEA F u l lF v EA EAF u l l F v ⎛⎫-⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪-⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭桁架结构变换矩阵Tcos sin 00sin cos 0000cos sin 00sin cos T αααααααα⎛⎫⎪-⎪= ⎪ ⎪-⎝⎭桁架在结构坐标系下的单元刚度矩阵22222222ee c sc c sc sc s sc s EA k l c sc c sc sc s sc s ⎛⎫-- ⎪-- ⎪=⎪-- ⎪⎪--⎝⎭4.刚架单元刚度方程32322232322212612664621261266264eeeyi i i i yj j j j EIEI EI EI l l l l F v EI EI EI EI M l l l l EI EI EI EI F v l l l l M EI EI EI EI l l l l θθ⎛⎫- ⎪⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎪-⎝⎭5.受轴向力作用的一般刚架单元刚度方程32322232322200001261260064620000001261260062640eexi i yi i i i xj j yj j EAEA ll EI EIEI EI F u l l l l F v EI EI EI EI M l l l l EA EA F u l l F v EIEI EI EI M l l l l EI EI EI EI l lllθ⎛⎫- ⎪⎪ ⎪⎛⎫- ⎪ ⎪⎪ ⎪ ⎪ ⎪- ⎪ ⎪=⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--- ⎪⎝⎭⎪ ⎪- ⎪⎝⎭ej j ⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭一般刚架单元刚度方程的坐标变换矩阵Tcos sin 0000sin cos 0000001000000cos sin 0000sin cos 0001T αααααααα⎛⎫⎪- ⎪ ⎪=⎪ ⎪ ⎪- ⎪ ⎪⎝⎭结构坐标系下的一般刚架单元刚度矩阵e k12412423523545645612412423523545645622ea a a a a a a a a a a a a a a a a a k a a a a a a a a a a a a a a a a a a --⎛-- --=---- ---- --⎝6.为什么已知杆端位移能求得单元的唯一杆端力,而已知杆端力却无法唯一确定杆端位移这是因为支座位移条件不已知,可能相差一个刚体位移,即位移的绝对值不同。

结构力学第8章 矩阵位移法

结构力学第8章 矩阵位移法

单元两端的杆端位移分别在单元坐标系和整体坐标系 下分解,其位移分量就构成上面的杆端位移向量。
与坐标轴的正方向一致者为正;
返回目录
作业1:已知单元的内力图,列出单元坐标下 及整体坐标下的杆端力向量。
3.04
1.24
y 0.43
4.38N)
x
作业2:已知单元的杆端力如图,写出单元坐 标及整体坐标表示的单元杆端力向量,并 作出单元的内力图。
2EI
l
x
2EI EI
l 6EIl x x
l2
EuIj 1
6EIl
x
l 2 uj 1
EA
l
x
EI
EuIj 1
l
平l面梁单元ul j 的1 x单元刚度矩阵
l
y
ui=1
6EI
l2
N ElA i y
6EI
l
12 2EI l3
12EI
Qi
0l 3
y
2EI
0 Ml iy
2EI 6EI
l
l2
vi =1 θi=1
等截面直杆的刚度方程
适用于两端都是刚结点的杆, 基本未知量为杆两端的转角和侧移;
刚度方程:
M AB
4i A
2i B
6i
l
M BA
2i A
4i B
6i
l
QAB
QBA
1 l
(
M
AB
M BA)
QAB
QBA
6i l
A
6i l
B
1 2i l2
4i
❖ 写成矩阵的形式:
❖ 杆端弯矩、剪力、杆端 侧移均以绕杆端顺时针 为正。关键掌握每个系

第八矩阵位移法二

第八矩阵位移法二

2
6
k (5)
EI l3
4l 2 2l 2
7
2l2 6
4l
2
7
v6 7 3
24
k (6)
EI l3
12l
12l
12l 8l 2 4l 2
12l v6
4l
2
7
8l 2 3
第12页/共22页
§8-5 先处理法
❖ 先处理法应用例题
⑷由单刚集成总刚,建立结构刚度方程
3
8l2
l2
l
l2
l
第4页/共22页

4
5

1
2
§8-5 先处理法 ❖ 先处理法的基本原理
➢ 先处理法的基本步骤 ✓ 结构标识 包括:结点编号、单元编号,设定局部坐标系、结构坐标系。 ✓ 列出待求的结点位移向量和已知的结点荷载向量。 ✓ 建立考虑位移约束条件后的单元刚度矩阵。 ✓ 形成结构刚度矩阵,建立结构刚度方程。 ✓ 求解结构刚度方程,得未知结点位移。 ✓ 计算单元杆端力和支座约束力。 ✓ 校核。
第14页/共22页
§8-5 先处理法
❖ 先处理法应用例题
⑶建立结构坐标系下的单元刚度矩阵
5 3
y
1 ①
3 4

1 x
2
③2
由刚架单元在结构坐标系下的单刚 (P.10式8-23)划行划列得到。
v1
1.5EI
k(1)

u2 0 0.5EA

v2 1.5EI
0 1.5EI
2
1.5EI v1
0
u2
v1
1.5EI

u2 0 0.875EA 0.375EI

第八章矩阵位移法-1

第八章矩阵位移法-1

8-1 概述
局部坐标系示例
12

8-1 概述
13
5.结点位移整体码
• 按结点编码由小到大的顺序对结点的位移编码 • 不同问题,结点位移个数不同。
等截面连续梁每结点1个转角; 平面桁架每结点2个线位移; 平面刚架每结点3个位移;
8-1 概述
14
结构的离散化示例
8-1 概述
15
结构的离散化示例
后处理
Δi ui vi T
n个结点的位移向量为
Δ Δ1 Δ2 Δn T

Δ u1 v1 u2 v2
un vn T
8-1 概述
19
平面刚架FP2 的单元
FP1
平面刚架的结点位移向量:
Δ 1 2 3 4 u1 v1 1 u2
5 6 7 8 9
局部坐标系中:
(e)
(e)
1
(e)
δ

δi
(e)



2
ui



v
i

F1 (e) F xi (e)
(e)
F

F i
(e)


F 2


F
yi

δ j 3 u j
F j F 3 F xj
32
四.坐标系选择
常用的三种坐标系
8-1 概述
坐标系示例
33

2
3

2
3
8-1 概述
34
y
① x
2②
x
y
v2 2 u3 v3 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档