小波变换与PCNN在图像处理中的比较与结合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
收稿日期:2005-10-25
基金项目:国家自然科学基金(60572011/f010204),“985”特色项目计划基金(LZ985-231-582627),甘肃省自然科学基金(YS021-A22-00910)
小波变换与PC NN 在图像处理中的比较与结合
田 勇,敦建征,马义德,夏春水,吴记群
(兰州大学信息科学与工程学院,甘肃兰州 730000)
摘 要: 主要介绍了小波变换和PCNN 的基本原理,结合它们在图像处理中的应用,比较说明了小波变换和PCNN 各自的优缺点.通过分析表明,将小波变换和PCNN 技术相结合在图像处理中会产生更好的效果.
关键词: 小波变换;脉冲耦合神经网络(PCNN);图像处理
中图分类号: TN 911.73 文献标识码: A 文章编号:1004-0366(2006)04-0053-03
The Comparison Between Wavelet Transform and PC NN in Image
Processing and Their Combination
TIAN Yo ng ,DUN Jian-zheng,M A Yi-de,X IA Chun-shui,W U J i-qun
(School of Information Science &Engineering ,L anzhou University ,Lanzhou 730000,China )
Abstract : The ba sic principles of w av elet transfo rm and PCNN a re first bining their applicatio ns in the image processing ,w e analy ze their adva ntag es and draw backs respectiv ely.From the analysis ,it is co ncluded tha t w e will g et better effects if we co mbine the tw o techniques tog ether in the imag e processing .
Key words : wav elet transform;pulse co upled neural netw o rk(PCNN);image processing 小波变换可对函数或信号进行多尺度的细化分析,解决了傅立叶变换不能解决的许多问题,被认为是时间——尺度分析和多分辨率分析的一种新技术[1]
.目前,它已被广泛应用于分形、信号处理、图像处理、地震勘探、语音识别等应用领域[1~4].脉冲耦合神经网络PCNN (Pulse Co upled Neural Netw ork,PCNN)是一种不同于传统人工神经网络的新型神经网络.PCNN 有着生物学的背景,是根据对动物的大脑视觉皮层同步脉冲发放所获得的实验结果[5~8]
,建立起来的一种神经网络数学模型.PCNN 在图像处理中的应用已经取得巨大成果[9~12].PCNN 在旋转、平移、尺度不变性等方面起着重要的作用.而小波变换的长处在于它能够生成含有输入信息显著特征的系数并且能够对信号进行由粗及精的逐级多分辨率分析.我们发现小波变换和PCNN 有许多相似点,只是在性能和本质特征上有一些差别.
1 小波变换理论简介
[13~16]
小波(wav elet)即小区域的波.“小”是指在时域
具有紧支集或近似紧支集;“波”指小波具有正负交替的波动性.连续小波函数的确切定义为:设J (t )为一平方可积函数,即J (t )∈L 2(R ),若J (k )(其傅里叶变换)满足容许条件(Admissible Co nditio n)
C J =∫
R
|J (k )|2
|k |d k <∞(1)
则称J (t )为一个基本小波或母小波(M other Wav elet).
小波函数具有多样性,实际应用中应根据支撑长度、对称性、正则性等标准选择合适的小波.常用的小波有:Haar 小波,Daubechies (dbN )小波系,Bio rthog onal(biorN r.Nd)小波系,Coiflet(coifN )小波系,Sy mletsA (sym N )小波系,M orlet 小波,M exican Hat 小波,M eyer 小波,Battle-Lemarie 小
第18卷 第4期2006年12月 甘肃科学学报Journal of Gans u Sciences
Vol.18 No.4
Dec.2006
波等.由同一母函数J (t )经伸缩和平移后得到的一组函数J a ,b (t )称为一族小波.小波变换的实质就是采用一族小波函数去表示信号或函数.
从20世纪90年代开始,
由Eckhor n 等对猫的视觉皮层神经元脉冲串同步振荡现象的研究,得到了哺乳动物神经元模型[5,6],并由此发展形成了脉冲耦合神经网络——PCNN 模型.当PCNN 用于图像处理时,它为一单层二维的局部连接的网络,神经元的个数等于输入图像中像素点的个数,神经元与像素点一一对应.每一个神经元与对应的像素点相连,同时与邻近的神经元相连.
如图1所示为PCNN 的一个神经元模型.神经元按照式(2)~式(7)进行迭代计算.
图1 脉冲耦合神经网络神经元模型
F ij [n ]=ex p (-T
F )F i j [n -1]+V F ∑m ijkl Y kl [n -1]+I i j ,
(2) L i j [n ]=ex p(-T L )L ij [n -1]+
V L ∑w ijkl Y kl [n -1],(3)U i j
[n ]=F ij [n ](1+U L ij [n ]),
(4)Y ij [n ]=1,if U ij [n ]>E i j [n ],
(5)Y ij [n ]=0,otherwise,
(6) E ij [n ]=ex p(-T E )E ij [n -1]+
V E ∑Y kl [n -1]F ,
(7)
其中F 就是第(i ,j )个神经元的n 次反馈输入F ij [n ];I ij 为外部输入刺激信号;U 为突触之间连接强度常数;同样L 为线性输入项L ij [n ];E 为神经元内部活动项U 能否激发脉冲产生动态门限E ij [n ];Y 是PCNN 脉冲输出Y i j [n ];U 为神经元内部活动项U ij [n ].
2 小波、PC NN 在图像处理中的比较
通常在图像处理的不同处理阶段,选择使用小波和PCN N 各自的优点,来获取最佳的效果.以下通过小波变换和PCNN 在图像处理中的几个应用问题,说明它们之间的异同,以及各自的优缺点[17].
(1)边缘检测 从理论上讲,小波针对于一维信号的奇异性检测是非常有效的.而对于二维图像
边缘检测问题,尽管基于小波变换的算法对噪声的敏感性相对于基于PCNN 的算法较低,因而在含噪情况下对该问题的处理具有优势.但小波却对角度、弧度等边缘问题,在多尺度的框架下,需要大量的变换系数来描述,通常的临界抽样或降维小波,很难达到设想的效果.而PCNN 所具有的旋转、平移、尺度不变性,正好可以弥补小波在该方面的缺点,因此它在这方面的应用中起着非常重要的作用.
(2)消噪处理 在图像及信号的除噪方面,用PCNN 处理,几乎不会给图像带来任何新的污染.用小波进行除噪也会产生很好的结果,但是如果噪声点处于边缘等重要位置,则除噪会导致边缘模糊,在这种情况下,PCNN 就显示出很大的优势.不过,就目前的评价标准而言,小波除噪算法已非常成熟,应用广泛,处理后图像的信噪比高,并且算法的计算复杂度远远小于基于PCNN 的除噪算法.而PCNN 用于图像除噪,仍处于理论探索阶段.就目前的研究成果来看,PCNN 的非线性特点非常适用于图像除噪领域,但必须跨越计算复杂度这一难关.
(3)纹理识别 图像的纹理识别与分割有很大关系,它包括将图像分割成一些“相类似”的区域,而
这些区域的局部纹理质量是不变的.纹理元素的方向和频率对识别来说是很重要的参数[18~20].要想从2个不同的纹理中识别出其中一个,必须观察垂直方向、水平方向、对角线方向的输出能量和它们的交叉尺度.另外,对于不同的图像,能量的交叉扩展尺度也是不相同的.在这种情况下,小波变换就会显示出很大优势.当然,小波的后处理算法必须聚集各个尺度和方向上的响应.PCNN 的旋转不变特性,具有提供任意不同方向特征的潜质,在该方面的研究,必将推动该领域的发展.
3 小波变换与PCNN 的结合
目前,在生物学和化学中小波变换和PCNN 技术已经得到广泛的应用[21,22].Mary Lou Padg ett 和John L Joh nso n [22]
提出了一种PCNN 和小波变换在生物传感器中的应用方法.从传感器得到的不稳定的数据流含有大量的噪声,将该含噪时间信号按规则构成一个二维矩阵,因此图像处理技术可得以应用.时间抽样序列形成的图像分成5个部分,其中4个角上的方形区域是通过4个传感器得到的数据,这4个区域被直线边界分开,中间部分是背景图像.应用PCNN 技术对形成的图像进行处理,可以得到由PCNN 因数形成的图像.由于4个角上传感器受
54
甘肃科学学报 2006年 第4期