第章吸收式热泵的工作原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 吸收式热泵的工作原理
3.1 吸收式热泵概述 3.2 吸收式热泵的工质对 3.3 吸收式热泵的循环及其计算 3.4 溴化锂吸收式热泵机组 3.5 溴化锂吸收式热泵的安装调试与维护
3.1 吸收式热泵概述
3.1.1 吸收式热泵的工作过程 3.1.2 吸收式热泵的分类 3.1.3 吸收式热泵的热力系数
返回首页
3.1.1 吸收式热泵的工作过程
3.1.2 吸收式热泵的分类
吸收式热泵的种类繁多,可以按其工质对、 驱动热源及其利用方式、制热目的、溶液循环 流程以及机组结构等进行分类。 1.按工质对划分 (1)水-溴化锂热泵 水为制冷剂,溴化锂为 吸收剂。 (2)氨-水热泵 氨为制冷剂,水为吸收剂。
2.按驱动热源划分
(1)蒸汽型热泵 以蒸汽的潜热为驱动热源。
(2)热水型热泵 以热水的显热为驱动热源。 热水包括工业余、废热水、地热水或太阳能热 水。
(3)直燃型热泵 以燃料的燃烧热为驱动热源。 可分为燃油型、燃气型或多燃料型。
(4)余热型热泵 以工业余热为驱动热源。
(5)复合热源型热泵 如热水与直燃型复合、 热水与蒸汽型复合、蒸汽与直燃型复合等形式。
溴化锂吸收式热泵机组是由各种换热器,并 辅以屏蔽泵、真空阀门、管道、抽气装置、控制 装置等组合而成。按照各换热器的布置方式分为 单筒型、双筒型或三筒型结构。
单效溴化锂吸收式热泵机组由下列九个主要部 分构成:
蒸发器 借助制冷剂水的蒸发来从低温热源 吸收热量。 吸收器 吸收制冷剂蒸汽,保持蒸发压力恒 定,同时放出吸收热。
6.按机组结构划分
(1)单筒式 机组的主要热交换器布置在一个 筒体内。
(2)双筒式 机组的主要热交换器布置在二个 筒体内。
(3)三筒式 机组的主要热交换器布置在三个 筒体内。
(4)多筒式 机组的主要热交换器布置在多个 简体内。
(a)
(b)
(c)
(d)
图3—15 单筒型结构布置方式 1—蒸发器;2—吸收器;3—发生器;4—冷凝器
3.按驱动热源的利用方式划分
(1)单效热泵 驱动热源在机组内被直接利用 一次。
(2)双效热泵 驱动热源在机组内被直接和间 接地利用两次。
(3)多效热泵 驱动热源在机组内被直接和间 接地利用多次。
(4)多级热泵 驱动热源在多个压力不同的发 生器内依次被直接利用。
4.按制热目的划分
(1)第一类吸收式热泵 也称增热型热泵, 是 利用少量的高温热源热能,产生大量的中温有 用热能。即利用高温热能驱动, 把低温热源的 热能提高到中温,从而提高热能的利用效率。
1.溴化锂水溶液的物理性质 一般性质、溶解度、密度、质量定压热容、饱 和蒸气压 表面张力、粘度、热导率 2.溴化锂溶液的热力状态图 压力-温度(p-t)图 、比焓-浓度(h-ξ)图
返回本节
3.3 吸收式热泵的循环及其计算
3.3.1 吸收式热泵循环 3.3.2 单效溴化锂吸收式热泵的循环及其计算 3.3.3 双效溴化锂吸收式热泵的循环及其计算
发生器 使稀溶液沸腾产生制冷剂蒸汽,稀溶液同时被浓 缩。 冷凝器 使制冷剂蒸汽冷凝,放出凝结热。 溶液热交换器 在稀溶液和浓溶液间进行热交换,提高机 组热效率。 液泵和制冷剂泵 输送溴化锂溶液和制冷剂水。 抽气装置 抽除影响吸收与冷凝效果的不凝性气体。 控制装置 有热量控制装置、液位控制装置等。 安全装置 确保安全运转所用的装置。
返回首页
3.2.1 工质对的选择
吸收式热泵中常用的工质对通常 是二组分溶液 。 1.工质对的种类 以水作为制冷剂 以醇作为制冷剂 以氨作为制冷剂 以氟利昂作为制冷剂
1.对工质对的要求 吸收式热泵对制冷剂的要求和压缩式热泵基本 相同。 对吸收剂则要求具有一些特别的性质(P73)。
返回本节
3.2.2 溴化锂水溶液的性质
第一 发生器
第一 热交换器
第二 发生器
第二 热交换器
吸 收 器
溶液泵
热水 (回水)
冷 凝 器 节流阀
热水 (供水)
蒸 发 器
冷剂泵
低温 热源
焓 质量分数 (%)
3.4 溴化锂吸收式热泵机组
3.4.1 单效溴化锂吸收式热泵机组的结构 3.4.2 双效溴化锂吸收式热泵机组的结构
返回首页
3.4.1 单效溴化锂吸收式热泵机组的结构
(a)
(b)
(c)
(d)
图3—17 双筒型结构布置方式 1—蒸发器;源自文库—吸收器;
3—发生器;4—冷凝器;5—热交换器
3.1.3 吸收式热泵的热力系数
Qh QaQc
Qg Qg
QaQ gQcTg T gT0TeT eT0cCO c P
3.2 吸收式热泵的工质对
3.2.1 工质对的选择 3.2.2 溴化锂水溶液的性质
返回首页
3.3.1 吸收式热泵循环
T
Tg
循环5—6—7—8—5为制
冷循环
Ta
Tc
循环1—2—3—4—1为动 力循环
T0
S
3.3.2 单效溴化锂吸收式热泵的循环及其计算
1.单效溴化锂吸收式热泵的理论循环
热水(供水)
冷凝器
蒸发器 10
发生器 溶 液 热 交 换 器
吸收器
热水(回水)
比焓(Kj/kg)
气态平衡辅助线 饱和液线
浓度(%)
2.热力计算 确定各循环节点参数 各设备的单位热负荷 各设备的热负荷 热力系数
3.3.3 双效溴化锂吸收式热泵的循环及其计算
1.双效溴化锂吸收式热泵的理论循环
双效(也称两效)吸收式热泵有两个发生器, 第一发生器中产生的制冷剂蒸汽,又用作第二发 生器的热源,因此,热力系数可明显提高。但是, 由于第一发生器中溶液的温度升高,其腐蚀性增 强;高、低压部分的压差增大,机组结构也比较 复杂。
5.按溶液循环流程划分
(1)串联式 溶液先进入高压发生器,再进入 低压发生器,然后流回吸收器。
(2)倒串联式 溶液先进入低压发生器,再进 入高压发生器,然后流回吸收器。
(3)并联式 溶液同时进入高压发生器和低压 发生器,然后流回吸收器。
(4)串并联式 溶液同时进入高压发生器和低 压发生器,流出高压发生器的溶液再进入低压 发生器,然后流回吸收器。
(2)第二类吸收式热泵 也称升温型热泵, 是 利用大量的中温热源热能产生少量的高温有用 热能。即利用中低温热能驱动, 用大量中温热 源和低温热源的热势差,制取热量少于但温度 高于中温热源的热量,将部分中低热能转移到 更高温的品位上,从而提高了热能的利用品位。
第二类吸收式热泵可利用中温的废热作驱 动。其特点是热泵循环中发生器的压力低于吸 收器的压力,冷凝器的压力低于蒸发器的压力。
相关文档
最新文档